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Abstract. We consider the shadow system of the Gierer-Meinhardt system in a smooth bounded domain
Ω ⊂ RN : {

At = ε2∆A − A + Ap

ξq , x ∈ Ω, t > 0,

τ |Ω|ξt = −|Ω|ξ + 1
ξs

∫
Ω

Ar dx, t > 0
with Robin boundary condition

ε
∂A

∂ν
+ aAA = 0, x ∈ ∂Ω,

where aA > 0, the positive reaction rates (p, q, r, s) satisfy

1 <
qr

(s + 1)(p − 1)
< +∞, 1 < p <

(
N + 2
N − 2

)
+

,

the diffusion constant is chosen such that ε << 1 and the time relaxation constant such that τ ≥ 0.
We rigorously prove results on the stability of spiky solutions.
These results are as follows: (i) If r = 2 and 1 < p < 1 + 4/N or if r = p + 1 and 1 < p < ∞ then for

aA > 1 and τ sufficiently small the interior spike is stable. (ii) For N = 1 if r = 2 and 1 < p ≤ 3 or if
r = p + 1 and 1 < p < ∞ then for 0 < aA < 1 the near-boundary spike, for which existence was obtained
in [1], is stable. (iii) For N = 1 if 3 < p < 5 and r = 2 then there exist a0 ∈ (0, 1) and µ0 > 1 such that for
a ∈ (a0, 1) and µ = 2q

(s+1)(p−1) ∈ (1, µ0) the near-boundary spike solution is unstable. This instability is
not present for the Neumann boundary condition but only arises for Robin boundary condition. Further
we show that the corresponding eigenvalue is of order O(1) as ε → 0.

1. Introduction

Since the work of Turing [25] in 1952, a lot of models have been established and investigated to

explore instability of homogeneous steady states, which is now called Turing instability. One of the

most famous models in biological pattern formation is the Gierer-Meinhardt system [9], [14], [15]. It

can be stated as follows: ⎧⎨
⎩

At = ε2∆A − A + Ap

Hq x ∈ Ω, t > 0,

τHt = D∆H − H + Ar

Hs x ∈ Ω, t > 0,
(1.1)

where Ω ⊂ RN is a bounded, smooth domain. Further, we assume that the reaction rates (p, q, r, s) are

positive and satisfy

1 <
qr

(s + 1)(p − 1)
< +∞, 1 < p <

(
N + 2

N − 2

)
,

where (
N + 2

N − 2

)
+

=

⎧⎨
⎩

+∞ for N = 1, 2

N+2
N−2

for N = 3, 4, . . .
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We assume that the first diffusion constant satisfies ε << 1 and we will consider the case of D = ∞,

the so-called shadow system of the Gierer-Meinhardt system. The time relaxation constant is chosen

such that τ ≥ 0 independent of ε.

This is a typical activator-inhibitor system, where A is called activator and H is called inhibitor.

This model has been extensively studied in recent years, usually with Neumann boundary conditions

[12], [26], [27], [28], [37], [38], [39].

In this work we consider Robin boundary conditions (also called mixed boundary conditions), which

can be stated as follows:

ε
∂A

∂ν
+ aAA = 0,

√
D

∂H

∂ν
+ aH = 0, x ∈ ∂Ω, (1.2)

where aA > 0, aH ≥ 0.

From a biological viewpoint, such boundary conditions correspond to an impermeable membrane/barrier.

While in many cases this is a realistic assumption, there are several cases, for example, in skeletal limb

development, where the boundary is a source of some chemical morphogens and a sink for others. It

is therefore essential that the study of these model equations is extended to incorporate more general

types of boundary conditions. For example, in [3], a comparative numerical study of a reaction-diffusion

system with a range of different boundary conditions revealed that certain types of boundary conditions

selected particular patterning modes at the expense of others. It was also shown that the robustness

of certain patterns could be greatly enhanced and the authors showed a possible application to skeletal

patterns in the limb. This study answered the standard criticism of Turing patterns being too sensitive

to fluctuations for the model to be viable for robust embryological patterning.

In this paper, we initiate a rigorous study of stationary spikes in (1.1), (1.2) in the shadow system

case.

We now (formally) derive the shadow system. To this end, we let D → ∞ and suppose that A and

H remain bounded. Then

∆H → 0 in Ω

and
∂H

∂ν
→ 0 on ∂Ω.

This implies that H(x) → ξ, a constant in Ω. To derive the equation for ξ, we integrate both sides of

the second equation in (1.1) over Ω. For the l.h.s we obtain

τ
∫
Ω

Ht(x) dx = τ
(∫

Ω
H(x) dx

)
t
→ τ |Ω|ξt.

To compute the r.h.s., we begin with

D
∫
Ω

∆H(x) dx = D
∫

∂Ω

∂H

∂ν
(x) dS =

=
√

D
∫

∂Ω
(−aH)H(x) dS → −

√
DaH |∂Ω|ξ,

where we have used (1.2). Further, we get∫
Ω

H(x) dx → |Ω|ξ
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and ∫
Ω

Ar(x)

Hs(x)
dx →

∫
Ω

Ar(x)

ξs
dx =

∫
Ω Ar(x) dx

ξs
.

From these computations, we finally get the following so-called shadow system of (1.1):⎧⎪⎪⎪⎨
⎪⎪⎪⎩

At = ε2∆A − A + Ap

ξq , x ∈ Ω, t > 0,

τ |Ω|ξt = −(|Ω| + √
DaH |∂Ω|)ξ + 1

ξs

∫
Ω Ar dx, t > 0,

ε∂A
∂ν

+ aAA = 0, ∂Ω, t > 0.

(1.3)

Remarks. 1. Note that since D → ∞, for the shadow system (1.3) to make sense, we need to assume

that limD→∞
√

DaH exists, i.e. we assume that, as D → ∞ either (i) aH ∼ 1√
D

or (ii) aH << 1√
D

. We

still denote this limit by “
√

DaH”. In Case (ii) the term “
√

DaH” is omitted in the shadow system.

2. We further discuss Case (ii) in the previous remark, i.e. aH << 1√
D

. If the term
√

DaH in (1.3)

vanishes, this merely changes one constant factor in the shadow system. The qualitative behavior of

solutions is not altered by this as one can compensate by a simple re-scaling of the amplitudes of both

functions A(x, t) and ξ(x, t) by a constant factor. Thus from now on we assume that aH = 0, i.e. the

inhibitor of the Gierer-Meinhardt system (1.1) satisfies the Neumann boundary condition.

Let us now consider stationary solutions to the shadow system (1.3). Set A(x) = ξq/(p−1)u(x), aA = a.

Then u satisfies ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ε2∆u − u + up = 0 for x ∈ Ω,

u > 0 for x ∈ Ω,

ε∂u
∂ν

+ au = 0 for x ∈ ∂Ω.

(1.4)

For ξ we have

0 = −(|Ω| +
√

DaH |∂Ω|)ξ +
ξqr/(p−1)

ξs

∫
Ω

ur dx

which gives

ξ1+s−qr/(p−1) =
1

|Ω| + √
DaH |∂Ω|

∫
Ω

ur dx

and so

ξ =

(
1

|Ω| + √
DaH |∂Ω|

∫
Ω

ur dx

)−(p−1)/(qr−(p−1)(s+1))

.

Problem (1.4) has been studied by Berestycki and Wei in [1] and the following result has been proved:

Theorem A. Let 1 < p <
(

N+2
N−2

)
+
. Then there exists a number a(N, p), where a(1, p) = 1 and

a(N, p) > 1 for N ≥ 2, such that problem (1.4) has a solution uε,a satisfying

(1) uε,a has the least energy among all solutions to (1.4), i.e.

Eε[uε,a] ≤ Eε[u] (1.5)

for all solutions u to (1.4), where Eε is the energy functional defined by

Eε[u] =
ε2

2

∫
Ω
|∇u|2 dx +

1

2

∫
Ω

u2 dx − 1

p + 1

∫
Ω

up+1
+ dx +

εa

2

∫
∂Ω

u2 ds. (1.6)
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(2) If 0 < a < a(N, p), then uε,a has a local maximum point xε ∈ Ω with

d(xε, ∂Ω)

ε
→ d0 > 0. (1.7)

(3) If a > a(N, p), then uε,a has a unique local maximum point xε ∈ Ω with

d(xε, ∂Ω) → max
x∈Ω

d(x, ∂Ω). (1.8)

Remarks. 1. The solution in part (2) of Theorem A is called a near-boundary spike (see Figure

1 in Section 4).

2. The solution in part (3) of Theorem A is called an interior spike (see Figure 2 in Section 4).

Now we consider the stability of the steady state (Aε,a, ξε,a) to the shadow system (1.3), where⎧⎪⎪⎨
⎪⎪⎩

Aε,a = ξq/(p−1)
ε,a uε,a

ξε,a =
(

1
|Ω|+√

DaH |∂Ω|
∫
Ω ur

ε,a dx
)−(p−1)/(qr−(p−1)(s+1))

.
(1.9)

and uε,a is the minimal energy solution of (1.4) given in Theorem A.

In analogy to Theorem A we also call (Aε,a, ξε,a) a near-boundary spike if 0 < a < a(N, p) and an

interior spike if a > a(N, p).

For the Neumann boundary condition a stability result has been be obtained in [34] for

r = 2 and 1 < p < 1 +
4

N
,

or

r = p + 1 and 1 < p <
(

N + 2

N − 2

)
. (1.10)

In this paper, for Robin boundary conditions, we can give an answer under similar but slightly more

restricted conditions.

Our first result implies that if a > a(N, p), then the interior spike is stable.

Theorem 1.1. (Stability of the interior spike.) Suppose that a > a(N, p). Assume that either

r = 2 and 1 < p < 1 +
4

N

or

r = p + 1 and 1 < p <
(

N + 2

N − 2

)
+

.

Then there exists τ0 > 0 such that if 0 < ε << 1 and 0 ≤ τ < τ0 the interior spike (Aε,a, ξε,a) is a

(linearly) stable steady state to the shadow system (1.3).

Our second theorem shows that if N = 1, i.e. if Ω is an interval, then in particular for all 1 < p ≤ 3

and 0 < a < 1 the near-boundary is stable.

Theorem 1.2. (Stability of the near-boundary spike.) Suppose that

N = 1 and 0 < a < 1. (1.11)
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Assume that either

r = 2 and 1 < p ≤ 3

or

r = p + 1 and 1 < p < ∞.

Then there exists a τ0 > 0 such that if 0 < ε << 1 and 0 ≤ τ < τ0 the boundary spike (Aε,a, ξε,a) is a

(linearly) stable steady state to the shadow system (1.3).

Our third and last theorem shows that the near-boundary spike may become unstable if the exponent

p is increased beyond 3.

Theorem 1.3. (Instability of the near-boundary spike.) Suppose that (1.11) holds. Assume that r = 2

and p > 3. Then there exist a0 > 0 and µ0 > 0 such that if

a0 < a < 1 and 1 < µ :=
2q

(p − 1)(s + 1)
< µ0 (1.12)

then for 0 < ε << 1 and all τ ≥ 0 the near-boundary spike (Aε,a, ξε,a) is an unstable steady state to the

shadow system (1.3).

Remarks.

1. The phenomenon described in Theorem 1.3 is new and unexpected. It is important to note that

for N = 1 and the Neumann boundary condition the minimal energy solution analogous to Theorem

A, which is a boundary spike, is stable for all p, q, s such that

1 < µ :=
2q

(p − 1)(s + 1)
,

see [33]. This means that the instability given in Theorem 1.3 only arises for the Robin boundary

condition and not for the Neumann boundary condition.

In some sense, for the Robin boundary condition the instability which for Neumann boundary con-

ditions occurs only for p > 5 is shifted to the range 3 < p ≤ 5.

2. Note that we assume that both the constants a < 1 and µ := qr
(p−1)(s+1)

> 1 are each sufficiently

close to 1.

3. Note that under the conditions (1.12) a proof similar the one for Theorem 1.1 shows that the interior

spike is unstable (this proof is omitted). On the other hand, by Theorem 1.3, the near-boundary spike

is unstable as well. Thus we do know about any stable spiky steady state and we conjecture that

there are none. This behavior is similar to the supercritical case µ := qr
(p−1)(s+1)

< 1 for the Neumann

boundary condition, see [28]. In all of these situations, due to the non-existence of stable steady states

blow-up frequently occurs for the dynamical system. This effect will be shown in the simulations of the

dynamical system in the final section of this paper (see Figures 3 and 4.)

Let us now outline the proof of Theorems 1.1 – 1.3 by highlighting the strategy and explaining the

main difficulties.
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To study the stability of the steady state, we have to linearise (1.3) at (1.9). This results in the

following eigenvalue problem: ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ε2∆φε − φε + pAp−1
ε

ξq
ε

φε − q Ap
ε

ξq+1
ε

η = αεφε,

r
τ |Ω|

∫
Ω

Ar−1
ε φε

ξs
ε

dx − 1+s
τ

η = αεη,

ε∂∂φε

∂ν
+ aφ = 0 on ∂Ω,

(1.13)

where (φε, ηε) in H2
rob(Ω) × R and

H2
rob(Ω) = {φ ∈ H2(Ω) : aφ

′
+ φ = 0 on ∂Ω}.

Using (1.9), it is easy to see that for aH = 0 the eigenvalues of problem (1.13) in H2
rob(Ω) × R are the

same as the eigenvalues of the eigenvalue problem

ε2∆φε − φε + pup−1
ε φε − qr

s + 1 + ταε

∫
Ω ur−1

ε φε dx∫
Ω ur

ε dx
up

ε = αεφ, φ ∈ H2
rob(Ω). (1.14)

in H2
rob(Ω).

When N = 1 and 0 < a < 1, we have uε,a(x) ∼ w
(

x−xε

ε

)
= w

(
x
ε
− xε

ε

)
=: wxε/ε

(
x
ε

)
, where w is the

unique homoclinic solution of the second-order ODE

w
′′ − w + wp = 0, w > 0, w = w(|y|), w(y) → 0 as |y| → ∞. (1.15)

Further, by the Robin boundary condition, xε

ε
→ y0, where y0 > 0 is determined by

w
′
(−y0) = aw(−y0). (1.16)

By (1.9) the steady state of the shadow system (1.3) is given.

Let αε be an eigenvalue of (1.14). Then the following Lemma holds.

Lemma A.

(1) For a > a(N, p) we have αε = o(1) as ε → 0 if and only if αε = (1+o(1))τ ε
j for some j = 1, ..., N ,

where τ ε
j is given in Theorem 3.4 below (interior spike case).

For N = 1 and a > a(N, p) there are no eigenvalues αε = o(1) (near boundary spike case).

(2) If αε → α0 
= 0, then all possible α0 are given by the eigenvalues of the following eigenvalue

problem

∆φ − φ + pwp−1
y0

φ − qr

s + 1 + τα0

∫∞
0 wr−1

y0
φ∫∞

0 wr
y0

wp
y0

= α0φ, (1.17)

where (i) for a > a(N,P ) we have wy0 = w, φ ∈ H1(R) (interior spike case) (ii) for N = 1 and

a < a(1, P ) = 1 we have wy0 = w(y−y0), where y0 is given by the unique solution of aw′(y0)+w(y0) = 0,

and we choose φ ∈ H2
rob(R

+) (near-boundary spike case).

Proof. When a > a(N, p) the proof of Part (1) in Lemma A for the Robin boundary condition is

similar to that in [34] for the Neumann boundary condition. In both cases, because interior spikes are

considered which have exponential decay with respect to the spatial variable, one has to expand the

solution to exponential order. There is, however, a major difference in the stability properties. Whereas

for the Neumann boundary condition interior spikes are unstable, they are stable for the Robin boundary
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condition. The difference comes from the fact that the expression ϕε,Pε(Pε) which plays a major role in

the proof (see Section 3), has different signs for Neumann and Robin boundary condition, respectively.

When N = 1 and a < 1 the proof of Part (1) in Lemma A for the Robin boundary condition is similar

to that in [33] for a boundary spike with the Neumann boundary condition: In both cases there are no

small eigenvalues αε = o(1).

The proof of (2) follows by a standard limiting process coupled with an argument of Dancer [2].

�
Notice that the eigenvalue problem in Part (ii) of Lemma A (near-boundary spike case) is a half-line

nonlocal eigenvalue problem NLEP with a Robin boundary condition. This is a new type of NLEP

which to the best of our knowledge has not been studied in the literature before. We will prove results

on its spectral and stability properties in the next section.

From now on we assume that τ = 0. By a regular perturbation argument the results also hold for

the case of τ being sufficiently small.

2. Study of the NLEP: Proof of Theorems 1.2 and 1.3

In this section, we study the NLEP

φ
′′ − φ + pwp−1φ − qr

s + 1

∫∞
0 wr−1

y0
φ dy∫∞

0 wr
y0

dy
wp

y0
= λφ, φ ∈ H1

rob(R
+), (2.18)

where wy0(y) = w(y − y0) for some y0 > 0. Let

L0φ := φ
′′ − φ + pwp−1

y0
φ, φ ∈ H1

rob(R
+).

We set

Lφ := L0φ − µ(p − 1)

∫∞
0 wr−1

y0
φ dy∫∞

0 wr
y0

dy
wp, φ ∈ H1

rob(R
+),

where

µ =
qr

(s + 1)(p − 1)
> 1.

We first prove

Lemma 2.1. Let φ ∈ H1
rob(R

+) satisfy

φ
′′ − φ + pwp−1

y0
φ = 0, ‖φ‖H1(R+) = 1. (2.19)

Then φ ≡ 0.

Proof. Recall that the Robin boundary condition gives

a =
w

′
y0

(0)

wy0(0)
(2.20)

and by (1.15) wy0 satisfies

w
′′
y0

= wy0 − wp
y0

,
(
w

′
y0

)2
= w2

y0
− 2

p + 1
wp+1

y0
. (2.21)
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We multiply (2.19) by w
′
y0

and integrate. After integration by parts, using (2.21) and the Robin

boundary condition for φ, we get

0 = φ
′
(0)w

′
y0

(0) − φ(0)w
′′
y0

(0) = φ(0)
[
aw

′
y0

(0) − w
′′
y0

(0)
]
. (2.22)

By (2.20) and (2.21) it follows that

aw
′
y0

(0) − w
′′
y0

(0) =
(w

′
y0

(0))2 − wy0(0)w
′′
y0

(0)

wy0(0)
=

(w
′
y0

(0))2 − (wy0(0))2 + (wy0(0))p+1

wy0(0)

=
p − 1

p + 1
wp

y0
> 0. (2.23)

Thus from (2.22) we have

φ(0) = 0 (2.24)

and finally we get φ
′
(0) = 0 by the Robin boundary condition. By the uniqueness properties of ODEs,

we conclude that φ(y) ≡ 0 on R+. The lemma is proved.

�
Lemma 2.1 implies, using the Fredholm Alternative, that the operator L0, defined on H1

rob(R
+), is

invertible.

Since

L0wy0 = (p − 1)wp
y0

, w
′
y0

(0) − awy0(0) = 0

we have

L−1
0 (wp

y0
) =

1

p − 1
wy0 . (2.25)

Another simple calculation shows that

L0

(
1

p − 1
wy0 +

1

2
yw

′
y0

)
= wy0 , (2.26)

but note that 1
p−1

wy0 + 1
2
yw

′
x0

does not satisfy the Robin boundary condition. Thus, since 1
p−1

wy0 +
1
2
yw

′
y0


∈ H1
rob(R

+), we do not have L−1
0 (wy0) = 1

p−1
wy0 + 1

2
yw

′
y0

. To overcome this difficulty and

determine L−1
0 (wy0), we prove the following lemma.

Lemma 2.2. We have

L−1
0 (wy0) =

1

p − 1
wy0 +

1

2
yw

′
y0

+ Aw
′
y0

,

where

A =
a

(p − 1)(1 − a2)
.

Proof. We need to choose A such that

A(w
′′
y0

(0) − awy0(0)) +
1

2
w

′
y0

(0) = 0.
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Using (2.23), we get

A =
p + 1

2(p − 1)
w

′
y0

(0)w−p
y0

(0). (2.27)

Now we use the explicit representation of the solution to the problem (1.15) which is given by

w(y) =

(
p + 1

2
cosh−2 (p − 1)y

2

)1/(p−1)

.

We compute

w
′
(y) = − tanh

(p − 1)y

2
w(y).

This gives
w

′
(−y0)

w(−y0)
= tanh

(p − 1)y0

2
= a.

So y0 can explicitly be expressed in terms of a as

y0 =
2

p − 1
artanh a

and we get

w(y0) =

(
(p + 1)(1 − a2)

2

)1/(p−1)

.

Inserting this expression into (2.27), we get

A =
p + 1

2(p − 1)

(
p + 1

2

)−1 a

1 − a2
=

a

(p − 1)(1 − a2)

which proves the lemma.

�
Remarks. 1. The extra term Aw

′
y0

in Lemma 2.2 only appears for Robin boundary conditions and

is not present for the Neumann boundary condition. As we will see, the presence of this term under

some extra conditions can lead to the destabilization of the near-boundary spike.

2. Note that A → ∞ as a → 1 and A → 0 as a → 0. The first limit will play a major role for the

rest of the paper. The second limit is in agreement with intuition since in the limit a → 0 the near-

boundary spike for the Robin boundary condition approaches the boundary spike for the Neumann

boundary condition, where this term does not occur.

We now compute the (sign of the) expression

ρ(y0) :=
∫ ∞

0
wy0L

−1
0 (wy0) dy

which will play the crucial in the stability analysis of the near-boundary spike.

From Lemma 2.2, we have

ρ(y0) =
∫ ∞

0
wy0L

−1
0 (wy0) dy

=
1

p − 1

∫ ∞

0
w2

y0
dy +

1

2

∫ ∞

0
ywy0w

′
y0

dy +
A

p − 1

∫ ∞

0
wy0w

′
y0

dy

=

(
1

p − 1
− 1

4

)∫ ∞

0
w2

y0
dy − A

2(p − 1)
w2

y0
(0)
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=

(
1

p − 1
− 1

4

)∫ ∞

0
w2

y0
dy − a

2(p − 1)2(1 − a2)

(
(p + 1)(1 − a2)

2

)2/(p−1)

=

(
1

p − 1
− 1

4

)∫ ∞

−y0

w2 dy − (p + 1)2/(p−1)a

2(p+1)/(p−1)(p − 1)2(1 − a2)(p−3)/(p−1)
. (2.28)

Let us differentiate ρ(y0) with respect to y0:

ρ
′
(y0) =

5 − p

4(p − 1)
w2

y0
(0) +

p + 1

4(p − 1)

[
w2−p

y0
(0)w

′′
y0

(0) + (2 − p)w1−p
y0

(0)(w
′
y0

(0))2
]

=
5 − p

4(p − 1)
w2

y0
(0) +

p + 1

4(p − 1)

[
(wy0 − wp

y0
)w2−p

y0
+ (2 − p)w1−p

y0

(
w2

y0
− 2

p + 1
wp+1

y0

)]
(0)

=
(p − 1)(3 − p)

4(p − 1)
w3−p

y0
(0) (2.29)

by (2.21). We arrive at the following important proposition.

Proposition 2.3. Suppose that 1 < p ≤ 3. Then∫ ∞

0
wy0L

−1
0 (wy0) dy > 0. (2.30)

Proof. For 1 < p ≤ 3, we get from (2.28) for y0 = 0 (and so also a = 0) that

ρ(0) =

(
1

p − 1
− 1

4

)∫ ∞

0
w2 dy > 0.

By (2.29) we compute ρ
′
(y0) ≥ 0 for all y0 ∈ (0,∞) and therefore ρ(y0) ≥ 0 for all y0 ∈ [0,∞).

�
We now show that for p > 3, in contrast to Proposition 2.3, the integral

∫∞
0 wy0L

−1
0 (wy0) dy may be

negative.

Proposition 2.4. Suppose that p > 3. Then for

5 − p

p − 1

∫ ∞

− 2
p−1

artanh a
w2 dy <

2(p−3)/(p−1)(p + 1)2/(p−1)a

(p − 1)2(1 − a2)(p−3)/(p−1)
(2.31)

it follows that
∫∞
0 wy0L

−1
0 (wy0) dy is negative. There exists some constant a0(p) < 1 such for a0(p) <

a < 1 condition (2.31) holds.

Proof. Condition (2.31) follows immediately from (2.28). The left hand side of (2.31) is positive and

remains bounded for all a ∈ (0, 1). The right hand side of (2.31) tends to 0 as a → 0+ and to +∞ as

a → 1−. By continuity, there exists some a0(p) ∈ (0, 1) such that (2.31) is true for a0(p) < a < 1.

�
Next we need

Lemma 2.5. The first eigenvalue of L0, which we call µ1, is positive. The second eigenvalue of L0 is

negative.
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Proof. Let

Q[u] =

∫∞
0 [(u

′
)2 + u2] dy + au2(0)

(
∫∞
0 up+1 dy)2/(p+1)

.

Then wy0 up to a scaling factor is the unique minimizer of Q[u] in H2
rob(R

+).

Similar to the proof of Theorem 2.1 of [13], we see that the second eigenvalue of L0 is non-positive,

and hence is negative since by Lemma 2.1 the kernel is trivial.

Now, to study the case r = 2, we introduce a new operator

L1φ := L0φ − (p − 1)

∫∞
0 wy0φ dy∫∞
0 w2

y0
dy

wp
y0
− (p − 1)

∫∞
0 wp

y0
φ dy∫∞

0 w2
y0

dy
wy0

+ (p − 1)

∫∞
0 wp+1

y0
dy
∫∞
0 wy0φ dy

(
∫∞
0 w2

y0
dy)2

wy0 (2.32)

which is defined for all φ ∈ H2
rob(R

+).

Then we have

Lemma 2.6. (1) The operator L1 is self-adjoint and the kernel of L1 (denoted by X1) is given by

span {wy0}.
(2) There exists a positive constant c0 > 0 such that

L1(φ, φ) :=
∫ ∞

0

[
(φ

′
)2 + φ2 − pwp−1

y0
φ2
]

dy

+
2(p − 1)

∫∞
0 wy0φ dy

∫∞
0 wp

y0
φ dy∫∞

0 w2
y0

dy
− (p − 1)

∫∞
0 wp+1

y0
dy(∫∞

0 w2
y0

dy
)2

(∫ ∞

0
wy0φ dy

)2

≥ c0d
2
L2(R+)(φ,X1)

for all φ ∈ H1
rob(0,∞), where dL2(0,∞) denotes the distance in the L2-norm.

Proof. By definition (2.32), it is an elementary calculation to show that (L1φ, ψ)L2(0,∞) = (L1ψ, φ)L2(0,∞)

for all φ, ψ ∈ H1(0,∞) which implies that the operator L1 is self-adjoint.

Next we compute the kernel of L1. It is easy to see that wy0 ∈ kernel(L1). On the other hand, if

φ ∈ kernel(L1), then

L0φ = c1(φ)wy0 + c2(φ)wp
y0

= c1(φ)L0

(
1

p − 1
wy0 +

1

2
yw

′
y0

+ Aw
′
y0

)
+ c2(φ)L0

(
1

p − 1
wy0

)

by Lemma 2.2, where

c1(φ) = (p − 1)

∫∞
0 wp

y0
φ dy∫∞

0 w2
y0

dy
− (p − 1)

∫∞
0 wp+1

y0
dy
∫∞
0 wy0φ dy

(
∫∞
0 w2

y0
dy)2

, c2(φ) = (p − 1)

∫∞
0 wy0φ dy∫∞
0 w2

y0
dy

.

Hence

φ = c1(φ)L−1
0 (wy0) + c2(φ)L−1

0 (wp
y0

) = c1(φ)L−1
0 (wy0) +

1

p − 1
c2(φ)wy0 . (2.33)

Note that by (2.33)

c1(φ) = c1(φ)

⎡
⎢⎣(p − 1)

∫∞
0 wp

y0
L−1

0 (wy0) dy∫∞
0 w2

y0
dy

− (p − 1)

∫∞
0 wp+1

y0
dy
∫∞
0 wy0L

−1
0 (wy0) dy(∫∞

0 w2
y0

dy
)2

⎤
⎥⎦
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= c1(φ)

⎡
⎢⎣1 − (p − 1)

∫∞
0 wp+1

y0
dy
∫∞
0 wy0L

−1
0 (wy0) dy(∫∞

0 w2
y0

dy
)2

⎤
⎥⎦ .

This implies that c1(φ) = 0. By (2.33) and Lemma 2.1, this proves (1).

It remains to prove (2). Suppose (2) is not true, then by (1) there exists (α, φ) such that (i) α > 0,

(ii) φ ⊥ wy0 , and (iii) L1φ = αφ.

We show that this is impossible. From (ii) and (iii), we have

(L0 − α)φ = (p − 1)

∫∞
0 wp

y0
φ dy∫∞

0 w2
y0

dy
wy0 . (2.34)

We first claim that
∫∞
0 wp

y0
φ dy 
= 0. In fact, if

∫∞
0 wp

y0
φ dy = 0, then α > 0 is the first (principal)

eigenvalue of L0. By Proposition 2.5, α = µ1 and φ has constant sign. This contradicts (ii).

Therefore we must have
∫∞
0 wp

y0
φ dy 
= 0 Hence α 
= µ1 and L0 − α is invertible. So (2.34) implies

φ = (p − 1)

∫∞
0 wp

y0
φ dy∫∞

0 w2
y0

dy
(L0 − α)−1wy0 .

Thus ∫ ∞

0
wp

y0
φ dy = (p − 1)

∫∞
0 wp

y0
φ dy∫∞

0 w2
y0

dy

∫ ∞

0
((L0 − α)−1wy0)w

p
y0

dy,

∫ ∞

0
w2

y0
dy = (p − 1)

∫ ∞

0
((L0 − α)−1wy0)w

p
y0

dy,∫ ∞

0
w2

y0
dy =

∫ ∞

0
((L0 − α)−1wy0)((L0 − α)wy0 + αwy0) dy,

0 =
∫ ∞

0
((L0 − α)−1wy0)wy0 dy. (2.35)

Let h1(α) =
∫∞
0 ((L0 − α)−1wy0)wy0 dy. Then h1(0) =

∫∞
0 (L−1

0 wy0)wy0 dy = ρ0(α) > 0 by Proposition

2.3. Moreover h
′
1(α) =

∫∞
0 ((L0 −α)−2wy0)wy0 =

∫∞
0 ((L0 −α)−1wy0)

2 dy > 0. This implies h1(α) > 0 for

all α ∈ (0, µ1). Clearly, since limα→+∞ h1(α) = 0−, we also have h1(α) < 0 for α ∈ (µ1,∞).

This is a contradiction to (2.35), and completes the proof.

�
First we have the following theorem about (in)stability of a near-boundary spike in the case of Robin

boundary condition including the exponents r = 2, 1 < p ≤ 3, which is similar to results for an interior

or a boundary spike in the case of Neumann boundary condition:

Theorem 2.7. Suppose 0 < a < 1. If

r = 2 and 1 < p ≤ 3

or if

r = p + 1 and 1 < p < ∞,

then the following NLEP{
φ

′′ − φ + pwp−1
y0

φ − µ(p − 1)

∫∞
0

wr−1
y0

φ dy∫∞
0

wr
y0

dy
wp

y0
= λφ, φ ∈ H1

rob(R
+), (2.36)

is stable for µ > 1 and unstable for µ < 1.
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In contrast, for the exponents r = 2, p > 3, we have the following instability result for the near-

boundary spike in the case of Robin boundary condition:

Theorem 2.8. If

r = 2 and p > 3

then there exist some a0 ∈ (0, 1) and µ0(a) > 1 such that for

a0 < a < 1 (2.37)

and

1 < µ < µ0(a) (2.38)

the NLEP (2.36) has a positive eigenvalue.

Remark. The number a0 can be chosen according to (2.31).

To show the instability part in Theorems 2.7 and 2.8, we first prove the following result.

Theorem 2.9. (1) If µ < 1 and r = 2, 1 < p ≤ 3 or r = p + 1, 1 < p < ∞, the NLEP (2.36) has a

positive eigenvalue.

(2) If r = 2 and ∫ ∞

0
wy0L

−1
0 wy0 dy < 0,

then under the condition (2.38) the NLEP (2.36) has a positive eigenvalue.

Proof.

(1) Suppose µ < 1. We look for a positive eigenvalue α to (2.36) which is equivalent to⎧⎨
⎩ φ = µ(p − 1)

∫∞
0

wr−1
y0

φ dy∫∞
0

wr
y0

dy
(L0 − α)−1wp

y0
, 0 < y < +∞,

φ
′
(0) − aφ(0) = 0.

Multiplying by wr−1
y0

and integrating, we get∫ ∞

0
wr

y0
dy = µ(p − 1)

∫ ∞

0

[
(L0 − α)−1wp

y0

]
wr−1

y0
dy.

Using the identity

(p − 1)(L0 − α)−1wp−1
y0

= wy0 + α(L0 − α)−1wy0

we get ∫ ∞

0
wr

y0
dy = µ

(∫ ∞

0
wr

y0
dy + α

∫ ∞

0

[
(L0 − α)−1wy0

]
wr−1

y0
dy
)

which is equivalent to

1

α

(
1

µ
− 1

)∫ ∞

0
wr

y0
dy =

∫ ∞

0

[
(L0 − α)−1wy0

]
wr−1

y0
dy. (2.39)

If r = 2 and 1 < p ≤ 3 then by Proposition 2.3 the right hand side of (2.39) is positive for α = 0.

If r = p + 1 and 1 < p < ∞ then the right hand side of (2.39) is positive for α = 0 since∫ ∞

0

[
L−1

0 wy0

]
wp

y0
dy =

1

p − 1

∫ ∞

0
w2

y0
dy > 0.
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Therefore, as α → 0+, the left hand side of (2.39) tends to +∞ while the right hand side tends to

some positive number. As α → µ−
1 , the left hand side tends to some positive number while the right

hand side tends to +∞. By continuity, there exists a solution to (2.39).

(2) If r = 2, then (2.39) becomes

1

α

(
1

µ
− 1

)∫ ∞

0
w2

y0
dy =

∫ ∞

0

[
(L0 − α)−1wy0

]
wy0 dy. (2.40)

As α → 0+, the left hand side of (2.40) tends to −∞ while the right hand side tends to some negative

number. As α → µ−
1 , the left hand side tends to some negative number while the right hand side tends

to −∞.

By continuity, there exists a solution to (2.40).

�
Proof of Theorem 2.8:

The proof of Theorem 2.8 is completed by combining Proposition 2.4 and part (2) of Theorem 2.9.

�
Proof of Theorem 2.7:

The instability part of Theorem 2.7 is contained in part (1) of Theorem 2.9.

Now we prove the stability part of Theorem 2.7. We divide the proof into two cases:

Case 1. r = 2, 1 < p ≤ 3.

Case 2. r = p + 1, 1 < p < ∞.

Let α0 = αR + iαI be an eigenvalue and φ = φR + iφI an eigenfunction of (2.36). Since α0 
= 0, we

can choose φ ⊥ kernel(L0). Then we obtain the two equations

L0φR − (p − 1)µ

∫∞
0 wy0φR dy∫∞

0 w2
y0

dy
wp

y0
= αRφR − αIφI , (2.41)

L0φI − (p − 1)µ

∫∞
0 wy0φI dy∫∞

0 w2
y0

dy
wp

y0
= αRφI + αIφR. (2.42)

Multiplying (2.41) by φR and (2.42) by φI and adding the two equations, we obtain

−αR

∫ ∞

0
(φ2

R + φ2
I) dy = L1(φR, φR) + L1(φI , φI)

+(p − 1)(µ − 2)

∫∞
0 wy0φR dy

∫∞
0 wp

y0
φR dy +

∫∞
0 wy0φI dy

∫∞
0 wp

y0
φI dy∫∞

0 w2
y0

dy

+(p − 1)

∫∞
0 wp+1

y0
dy

(
∫∞
0 w2

y0
)2 dy

[(∫ ∞

0
wy0φR dy

)2

+
(∫ ∞

0
wy0φI dy

)2
]
.

Multiplying (2.41) by wy0 and (2.42) by wy0 , respectively, and integrating we obtain

(p − 1)
∫ ∞

0
wp

y0
φR dy − (p − 1)µ

∫∞
0 wy0φR dy∫∞

0 w2
y0

dy

∫ ∞

0
wp+1

y0
dy = αR

∫ ∞

0
wy0φR dy − αI

∫ ∞

0
wy0φI dy,

(2.43)

(p − 1)
∫ ∞

0
wp

y0
φI dy − (p − 1)µ

∫∞
0 wy0φI dy∫∞

0 w2
y0

dy

∫ ∞

0
wp+1

y0
dy = αR

∫ ∞

0
wy0φI dy + αI

∫ ∞

0
wy0φR dy.

(2.44)
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Multiplying (2.43) by
∫∞
0 wy0φR dy and (2.44) by

∫∞
0 wy0φI dy and adding, we obtain

(p − 1)
∫ ∞

0
wy0φR dy

∫ ∞

0
wp

y0
φR dy + (p − 1)

∫ ∞

0
wy0φI dy

∫ ∞

0
wp

y0
φI dy

=

(
αR + (p − 1)µ

∫∞
0 wp+1

y0
dy∫∞

0 w2
y0

dy

)((∫ ∞

0
wy0φR dy

)2

+
[∫ ∞

0
wy0φI dy

)2
]
.

Therefore we have

−αR

∫ ∞

0
(φ2

R + φ2
I) dy = L1(φR, φR) + L1(φI , φI)

+(p − 1)(µ − 2)

(
1

p − 1
αR + µ

∫∞
0 wp+1

y0
dy∫∞

0 w2
y0

dy

)
(
∫∞
0 wy0φR dy)2 + (

∫∞
0 wy0φI dy)2∫∞

0 w2
y0

dy

+(p − 1)

∫∞
0 wp+1

y0
dy(∫∞

0 w2
y0

)2

[(∫ ∞

0
wy0φR dy

)2

+
(∫ ∞

0
wy0φI dy

)2
]
.

Set

φR = cRwy0 + φ⊥
R, φ⊥

R ⊥ X1, φI = cIwy0 + φ⊥
I , φ⊥

I ⊥ X1,

where X1 was defined in Lemma 2.6. Then∫ ∞

0
wy0φR dy = cR

∫ ∞

0
w2

y0
dy,

∫ ∞

0
wy0φI dy = cI

∫ ∞

0
w2

y0
dy,

d2
L2(R+)(φR, X1) = ‖φ⊥

R‖2
L2 , d2

L2(R+)(φI , X1) = ‖φ⊥
I ‖2

L2 .

By some straightforward computations, we have

L1(φR, φR) + L1(φI , φI)

+(µ − 1)αR(c2
R + c2

I)
∫ ∞

0
w2

y0
dy + (p − 1)(µ − 1)2(c2

R + c2
I)
∫ ∞

0
wp+1

y0
dy + αR(‖φ⊥

R‖2
L2 + ‖φ⊥

I ‖2
L2) = 0.

By Lemma 2.6 (2), we get

(µ − 1)αR(c2
R + c2

I)
∫ ∞

0
w2

y0
dy

+(p − 1)(µ − 1)2(c2
R + c2

I)
∫ ∞

0
wp+1

y0
dy + (αR + a1)(‖φ⊥

R‖2
L2 + ‖φ⊥

I ‖2
L2) ≤ 0.

Since µ > 1, we must have αR < 0, which proves Theorem 2.7 in Case 1: r = 2, 1 < p ≤ 3.

Now we consider Case 2: r = p + 1, 1 < p < ∞.

Then the nonlocal operator in (2.36) becomes

Lφ = L0φ − µ(p − 1)

∫∞
0 wp

y0
φ dy∫∞

0 wp+1
y0 dy

wp
y0

.

We need to define yet another new operator:

L2φ := L0φ − (p − 1)

∫∞
0 wp

y0
φ dy∫∞

0 wp+1
y0 dy

wp
y0

. (2.45)

We have the following result.
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Lemma 2.10. (1) L2 is self-adjoint and the kernel of L2 (denoted by X2) is spanned by wy0.

(2) There exists a positive constant c3 > 0 such that

L2(φ, φ) :=
∫ ∞

0

[
(φ

′
)2 + φ2 − pwp−1

y0
φ2
]

dy +
(p − 1)

(∫∞
0 wp

y0
φ dy

)2

∫∞
0 wp+1

y0 dy

≥ c3d
2
L2(R+)(φ,X2), ∀φ ∈ H1

rob(R
+).

Proof:

The proof of (1) is similar to that of Lemma 2.6. We omit the details. It remains to prove (2).

Suppose (2) is not true, then by (1) there exists (α, φ) such that (i) α > 0, (ii) φ ⊥ wy0 , and (iii)

L2φ = αφ.

We show that this is impossible. From (ii) and (iii), we have

(L0 − α)φ =
(p − 1)

∫∞
0 wp

y0
φ dy∫∞

0 wp+1
y0 dy

wp
y0

. (2.46)

Similar to the proof of Lemma 2.6, we have that
∫∞
0 wp

y0
φ dy 
= 0 and α 
= µ1. Hence L0−α is invertible.

So (2.46) implies

φ =
(p − 1)

∫∞
0 wp

y0
φ dy∫∞

0 wp+1
y0 dy

(L0 − α)−1wp
y0

.

Thus ∫ ∞

0
wp

y0
φ dy = (p − 1)

∫∞
0 wp

y0
φ dy∫∞

0 wp+1
y0 dy

∫ ∞

0
((L0 − α)−1wp

y0
)wp

y0
dy

and ∫ ∞

0
wp+1

y0
dy = (p − 1)

∫ ∞

0
((L0 − α)−1wp

y0
)wp

y0
dy. (2.47)

Let

h2(α) = (p − 1)
∫ ∞

0
((L0 − α)−1wp

y0
)wp

y0
dy −

∫ ∞

0
wp+1

y0
dy.

Then we have

h2(0) = (p − 1)
∫ ∞

0
(L−1

0 wp
y0

)wp
y0

dy −
∫ ∞

0
wp+1

y0
dy = 0.

Moreover, we compute

h
′
2(α) = (p − 1)

∫ ∞

0
((L0 − α)−2wp

y0
)wp

y0
dy = (p − 1)

∫ ∞

0
((L0 − α)−1wp

y0
)2 dy > 0.

This implies h2(α) > 0 for all α ∈ (0, µ1). Clearly, also h2(α) < 0 for α ∈ (µ1,∞). This is a contradiction

to (2.47) and the lemma is proved.

�
We now finish the proof of Theorem 2.7 in Case 2.

Let α0 = αR + iαI and φ = φR + iφI . Since α0 
= 0, we can choose φ ⊥ kernel(L0). Then, similarly

to Case 1, we obtain the two equations

L0φR − (p − 1)µ

∫∞
0 wp

y0
φR dy∫∞

0 wp+1
y0 dy

wp
y0

= αRφR − αIφI , (2.48)
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L0φI − (p − 1)µ

∫∞
0 wp

y0
φI dy∫∞

0 wp+1
y0 dy

wp
y0

= αRφI + αIφR. (2.49)

Multiplying (2.48) by φR and (2.49) by φI , integrating and adding, we obtain

−αR

∫ ∞

0
(φ2

R + φ2
I) dy = L2(φR, φR) + L2(φI , φI)

+(p − 1)(µ − 1)
(
∫∞
0 wp

y0
φR dy)2 + (

∫∞
0 wp

y0
φI dy)2∫∞

0 wp+1
y0 dy

.

By Lemma 2.10 (2)

αR

∫ ∞

0
(φ2

R + φ2
I) + a2d

2
L2(φ,X1) + (p − 1)(µ − 1)

(
∫∞
0 wp

y0
φR)2 + (

∫∞
0 wp

y0
φI)

2∫∞
0 wp+1

y0

≤ 0

which implies αR < 0 since µ > 1.

Theorem 2.7 is thus proved in Case 2: r = p + 1, 1 < p < ∞.

�
Note that Theorem 2.7 implies Theorem 1.2, and Theorem 2.8 implies Theorem 1.3.

3. Eigenvalue Estimates: Proof of Theorem 1.1

In this section, we shall study eigenvalue estimates for Lε := ε2∆ − 1 + p(uε)
p−1 and finish the proof

of Theorem 1.1.

We will state a theorem for the small (i.e. o(1)) eigenvalues. But before we do this, let us first

introduce some notation and give some important lemmas.

Let

dµP0(z) = lim
ε→0

e−
2|z−P0|

ε dz∫
∂Ω e−

2|z−P0|
ε dz

. (3.1)

It is easy to see that the support of dµP0(z) is contained in B̄d(P0,∂Ω)(P0) ∩ ∂Ω.

A point P0 is called a “nondegenerate peak point” if the following statements (H1) and (H2) hold:

There exists a ∈ RN such that ∫
∂Ω

e<z−P0,a>(z − P0)dµP0(z) = 0 (H1)

and (∫
∂Ω

e<z−P0,a>(z − P0)i(z − P0)jdµP0(z)
)

:= G(P0) is nonsingular. (H2)

Such a vector a is unique. Moreover, G(P0) is a positive definite matrix. A geometric characterization

of a nondegenerate peak point P0 is the following:

P0 ∈ interior (convex hull of support(dµP0(z)).

For a proof of the above, see Theorem 5.1 of [30].

Next, we introduce the following definition:

For each P ∈ Ω, let wε,P be the unique solution of

ε2∆u − u + wp
(

x − P

ε

)
= 0 in Ω, ε

∂u

∂ν
+ au = 0 on ∂Ω. (3.2)
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Let ϕε,P (x) = w
(

x−P
ε

)
− wε,P (x). Then ϕε,P satisfies

⎧⎨
⎩

ε2∆ϕε,P − ϕε,P = 0 in Ω,

aϕε,P + ε
∂ϕε,P

∂ν
= aw

(
x−P

ε

)
+ ε

∂w(x−P
ε )

∂ν
on ∂Ω.

(3.3)

For x ∈ ∂Ω, we have

aw
(

x − P

ε

)
+ ε

∂w
(

x−P
ε

)
∂ν

= aw
(

x − P

ε

)
+ w

′
(

x − P

ε

)
< x − P, ν >

|x − P |

= w
(

x − P

ε

)(
a − < x − P, ν >

|x − P | + O

(
ε

d(P, ∂Ω)

))
≥ (a − 1 − δ)w

(
x − P

ε

)
,

where w
′
(y) = dw(r)

dr
for r = |y| and a− 1− δ > 0. Therefore, there exist two positive constants C1 and

C2 such that

C1ϕε,P,1 ≤ ϕε,P ≤ C2ϕε,P,1, (3.4)

where ϕε,P,1 satisfies {
ε2∆ϕε,P,1 − ϕε,P,1 = 0 in Ω,

ϕε,P,1 + a−1ε
∂ϕε,P,1

∂ν
= w

(
x−P

ε

)
on ∂Ω.

(3.5)

The study of ϕε,P,1 depends on the following lemma.

Lemma 3.1. (Theorem 3.8 of [32].) Suppose that d(P, ∂Ω) > d0 > 0. Let ϕD
ε,P be the unique solution of{

ε2∆ϕD
ε,P − ϕD

ε,P = 0 in Ω,

ϕD
ε,P = w

(
x−P

ε

)
on ∂Ω.

(3.6)

Then for, any arbitrarily small δ > 0, the following holds for ε sufficiently small:∣∣∣∣∣ε∂ϕD
ε,P

∂ν

∣∣∣∣∣ ≤ (1 + δ)ϕD
ε,P . (3.7)

From Lemma 3.1 we conclude that on ∂Ω

ϕD
ε,P + a−1ε

ϕD
ε,P

∂ν
≤ ϕD

ε,P (1 + a−1(1 + δ)) ≤ (1 + a−1(1 + δ))w
(

x − P

ε

)

and

ϕD
ε,P + a−1ε

ϕD
ε,P

∂ν
≥ ϕD

ε,P (1 − a−1(1 − δ)) ≥ (1 − a−1(1 − δ))w
(

x − P

ε

)
.

Using a comparison principle, it is straightforward to derive the following lemma:

Lemma 3.2. There exist two positive constants C1 and C2 such that

C1ϕ
D
ε,P ≤ ϕε,P,1 ≤ C2ϕ

D
ε,P .

The convergence of (3.6) is well understood. It is studied in Section 4 of [20]. By Lemma 4.6 of [20]

we have the following convergence results:



GIERER-MEINHARDT SYSTEM WITH ROBIN BOUNDARY CONDTIONS 19

Lemma 3.3. (i) Let Vε(y) := ϕε,xε(xε + εy)/ϕε,xε(xε). Then Vε(y) → V0(y) locally, where V0(y) is a

solution of

∆u − u = 0, u(0) = 1, u > 0 in RN . (3.8)

Moreover, for any σ > 0,

sup
y∈Ωε

e−(1+σ)|y|Vε(y) − V0(y) → 0. (3.9)

(ii) As ε → 0,

−ε log(ϕε,xε(xε)) → 2d(x0, ∂Ω). (3.10)

For P ∈ Ω, let

Ωε,P = {y|εy + P ∈ Ω},
Sε(u) = ∆u − u + up for u ∈ H2

rob(Ωε,P ), ∂j =
∂

∂Pj

,

Kε,P = span {∂jwε,P |j = 1, ..., N} ⊂ H1
rob(Ωε,P ), K⊥

ε,P =
{
u ∈ H1

rob(Ωε,P )|
∫
Ω

u∂jwε,P = 0, j = 1, ..., N
}

,

and

Cε,P = span {∂jwε,P |j = 1, ..., N} ⊂ L2(Ωε,P ), C⊥
ε,P =

{
u ∈ L2(Ωε,P )|

∫
Ω

u∂jwε,P = 0, j = 1, ..., N
}

.

Let Q0
ε := P0 + ε1

2
d(P0, ∂Ω)a, where P0 is a nondegenerate peak-point (i.e. it satisfies ((H1)) and

((H2))) and Λ := Bβ0ε(Q
0
ε), where β0 is sufficiently small.

For each P ∈ Λ we can find a solution ϕε,P ∈ K⊥
ε,P such that

Sε(wε,P + ϕε,P ) ∈ Cε,P

as was shown in [1].

Now we state our theorem on the small eigenvalues.

Theorem 3.4. The eigenvalue problem

ε2∆φ − φ + pup−1
ε φ = τ εφ in Ω,

∂φ

∂ν
+ aφ = 0 on ∂Ω (3.11)

admits the following set of o(1)) eigenvalues:

τ ε
j = (c0 + o(1))ϕε,P0(P0)λj, j = 1, ..., N,

where λj, j = 1, ..., N are the eigenvalues of the matrix G(P0) introduced in (H2) and

c0 = 2d−2(P0, ∂Ω)

∫
RN pwp−1w

′
V

′
0 (r) dy∫

RN

(
∂w
∂y1

)2
dy

< 0, (3.12)

where Vr(r) is the unique radial solution of the problem (3.8). Furthermore, the eigenfunction (suitably

normalized) corresponding to τ ε
j , j = 1, ..., N is given by

φε
j =

N∑
l=1

(aj,l + o(1))ε
∂wε,P

∂Pl

|P=Pε , (3.13)
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where �aj = (aj,1, ..., aj,N)t is the eigenvector of G(P0) corresponding to λj, namely

G(P0)�aj = λj�aj, j = 1, ..., N.

Proof of Theorem 3.4: Let

uε = wε,Qε + vε,Qε .

Let (τ ε, φε) be a pair such that

Lεφε = τ εφε in Ω,
∂φε

∂ν
+ aφ = 0 on ∂Ω. (3.14)

We normalize φε such that ‖φε‖ε = 1.

We now assume that τε → 0 as ε → 0. Then after a scaling and limiting process (see [17], [18] and

[20]), we have φ̃ε(y) = φε(Qε + εy) → φ0, where φ0 is a solution of

∆v − v + pwp−1v = 0 in RN , v ∈ H1(RN).

By Lemma 4.2 of [18], there exists sj such that φ0 =
∑N

j=1 sj
∂w
∂yj

.

This suggests that we decompose φε as φε =
∑N

j=1 sε
jε∂jwε,Qε + φ̄ε, where φ̄ε ∈ K⊥

ε,Qε
and |sε

j| ≤ C.

Since ‖φε‖ε = 1, we have ‖φ̄ε‖ε ≤ C and φ̄ε satisfies

(Lε − τ ε)φ̄ε +
N∑

j=1

sε
j[p(uε)

p−1ε∂jwε,Qε − pwp−1ε∂jw] = τ ε
N∑

j=1

sε
jε∂jwε,Qε . (3.15)

Since τ ε → 0, then by the same argument as in Proposition 6.3 of [31] we have that πε,Qε ◦ (Lε − τ ε) :

K⊥
ε,Qε

→ C⊥
ε,Qε

is invertible. Since φ̄ε ∈ K⊥
ε,Qε

, we have

‖φ̄ε‖H1(Ωε,Qε) = O

⎛
⎜⎝
∥∥∥∥∥∥

N∑
j=1

sε
j[p(uε)

p−1ε∂jwε,Qε − pwp−1ε∂jw]

∥∥∥∥∥∥
L2(Ωε,Qε)

⎞
⎟⎠

= O

⎛
⎝(|ϕε,Qε(Qε)|(1+σ)/2)

N∑
j=1

|sε
j|
⎞
⎠ .

Multiplying (3.15) by ε∂k(wε,Qε) and integrating, we obtain

N∑
j=1

sε
j

∫
Ωε,Qε

[p(uε)
p−1ε∂jwε,Qε − pwp−1ε∂jw]ε∂kwε,Qε dx

= τ ε
N∑

j=1

∫
Ωε,Qε

sε
jε∂jwε,Qεε∂kwε,Qε dx

+
∫
Ωε,Qε

[p(uε)
p−1φ̄εε∂k(wε,Qε) − pwp−1φ̄εε∂kw] dx + O(|τε|‖φ̄ε‖H1(Ωε,Qε)) (3.16)

We first estimate the left-hand side of (3.16). To begin with, we calculate,

−
∫
Ωε,Qε

[
pwp−1ε

∂w

∂Pj

|P=Qε − p(wε,Qε + vε,Qε)
p−1ε

∂wε,P

∂Pk

|P=Qε

]
dy

= −ε2
∫
Ωε,Qε

[
pwp−1 ∂w

∂Pj

|P=Qε − p(wε,Qε)
p−1∂wε,P

∂Pj

|P=Qε

]
∂wε,P

∂Pk

|P=Qε dy + O(|ϕε,Qε(Qε)|1+σ)
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= −ε2
∫
Ωε,Qε

∂

∂Pj

|P=Qε [wp − (wε,Qε)
p]

∂wε,P

∂Pk

|P=Qε dy + O(|ϕε,Qε(Qε)|1+σ)

= −ε2
∫
Ωε,Qε

∂

∂Pj

|P=Qε

[
pwp−1ϕε,Qε(Qε + εy)

] ∂wε,P

∂Pk

|P=Qε + O(|ϕε,Qε(Qε)|1+σ)

= 2ϕε,P0(P0)(1 + o(1))

×
∫

RN
pwp−1

∫
∂Ω

e
<

z−P0
|z−P0| ,y>

e
<

z−P0
|z−P0| ,

2(Qε−P0)

ε
>
dµP0(z)

(
z − P0

|z − P0|
)

j

∂w

∂yk

dy + O(|ϕε,Qε(Qε)|1+σ)

= 2ϕε,P0(P0)(1 + o(1))

×
∫

RN
pwp−1

∫
∂Ω

e
<

z−P0
|z−P0| ,y>

e<z−P0,a>

(
z − P0

|z − P0|
)

j

dµP0(z)
∂w

∂yk

dy + O(|ϕε,Qε(Qε)|1+σ)

=
2γ

d2(P0, ∂Ω)
ϕε,P0(P0)

(∫
∂Ω

e<z−P0,a>(z − P0)i(z − P0)kdµP0(z) + o(1)
)

,

where

γ :=
∫

RN
pwp−1w

′
(y)V

′
0 (y) dy.

For the left hand side of (3.16), we have

l.h.s. of (3.16)

=
N∑

j=1

sε
j

(∫
Ωε,Qε

[p(wε,Qε)
p−1ε∂jwε,Qε − pwp−1ε∂jw]ε∂kwε,Qε dy

)
+ O(|ϕε,Qε(Qε)|1+σ))

=
∫

∂Ω
e<z−P0,a> <

z − P0

|z − P0| , s
ε >

(
z − P0

|z − P0|
)

k

ϕε,P0(P0)dµP0(z)(−2γ + o(1))

where sε = (sε
1, ..., s

ε
N ).

Similar but simpler computations for the right hand side of (3.16) give

r.h.s. of (3.16)

= τ ε
N∑

j=1

sε
j(Bδjk + o(1)) + O

⎛
⎝ N∑

j=1

|sε
j||ϕε,Qε(Qε)|(1+σ)

⎞
⎠+ O

⎛
⎝|τ ε|(

N∑
j=1

|sε
j||ϕε,Qε(Qε)|(1+σ)/2)

⎞
⎠ ,

where B =
∫
RN ( ∂w

∂y1
)2dy.

Hence we have

|τ ε| = O(ϕε,Qε(Qε)) = O(ϕε,P0(P0))

and τ ε/ϕε,P0(P0) → τ0, sε → s, where (τ0, s) satisfies

(−2γ)G(P0)s = Bd2(P0, ∂Ω)τ0s.

Thus Bd2(P0,∂Ω)
−2γ

τ0 is an eigenvalue of G(P0). Therefore τ ε/ϕε,P0(P0) → τj, sε → �aj where

τj =
−2γ

Bd2(P0, ∂Ω)
λj, G(P0)�aj = λj�aj, j = 1, ..., N.

By an argument of Dancer [2], we know that these are the only small eigenvalues.

This finishes the proof of Theorem 3.4.

�
Completion of the Proof of Theorem 1.1:
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The small eigenvalues given by Theorem 3.4 all have negative real part. By a proof along the lines of

the proof of Theorem 2.7 (replacing wy0 by w and considering interior spikes instead of near-boundary

spikes) the large eigenvalues all have negative real part. Finally, Theorem 1.1 follows by combining

these two results.

�

4. Numerical Simulations

We show numerical simulations which display the various effects which have been analytically proved

in this paper.

We consider the Gierer-Meinhardt system (1.1), (1.2) on Ω = (−1, 1) for the following parameters:

diffusion constants ε2 = 0.01, D = 109, time relaxation constant τ = 10−9, Robin boundary condition

parameters varying aA, aH = 0, reaction constants varying p and q, r = 2, s = 0.

First we consider the classical Gierer-Meinhardt system with p = 2, q = 1. We show stable near-

boundary spikes for various aA (Figure 1) and interior spikes for various aA (Figure 2). We see that

a change of aA has strong influence on a near-boundary spike, but only a minor influence on interior

spikes.

Then we numerically explore the instability of near-boundary spikes. We consider the Gierer-

Meinhardt system for various p, q = 2, r = 2, s = 0. with Robin boundary condition for aA = 0.8.

We start with p = 4.0 and then increase p incrementally in steps of 0.01. The final steady state for

the previous p is used as initial condition for the next one. The final steady state is displayed for

p = 4.5, 4.8, 4.85 (Figure 3).

At p = 4.86 a rather dramatic change of stability is observed: The solution blows up in finite time

(Figure 4). The simulations show a sharp peak, and after a finite time the simulation breaks down:

The amplitudes of the solution become very large, and the finite element software is no longer able to

resolve the solution since this peak occurs on a very small spatial scale. This is similar to phenomena

which occur for supercritical systems. In some sense the Robin boundary condition is able to squeeze

the threshold between sub- and supercritical to lower reaction rates.

Figure 1. Near-boundary spikes for variable constant aA in the Robin boundary. We have chosen

aA = 0.2, 0.4, 0.6, 0.8. It is numerically stable (final state is shown for t = 10, 000).
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Figure 2. Interior-boundary spikes for variable constant aA in the Robin boundary. We have

chosen aA = 0.2, 0.8. It is numerically stable (final state is shown for t = 10, 000).
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Figure 3. Stable near-boundary spikes. We choose constants aA = 0.8, q = 2, r = 2, s = 0 and

varying p. For p = 4.0, 4.5, 4.8, 4.85 the near-boundary spike is shown. It is numerically stable (final

state is shown for t = 10, 000).

Figure 4. Unstable near-boundary spike. We choose constants aA = 0.8, q = 2, r = 2, s = 0 and

p = 4.86. The near-boundary spike is now numerically unstable. In the time evolution the amplitude

increases (shown for t = 1, 000, 3, 000, 5, 000, 6, 390). Then the simulation diverges.
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Linéaire 15 (1998), 459–492.
[37] J. Wei and M. Winter, On the two-dimensional Gierer-Meinhardt system with strong coupling, SIAM J. Math.

Anal. 30 (1999), 1241–1263.
[38] J. Wei and M. Winter, Spikes for the two-dimensional Gierer-Meinhardt system: The strong coupling case, J.

Differential Equations 178 (2002), 478–518.



GIERER-MEINHARDT SYSTEM WITH ROBIN BOUNDARY CONDTIONS 27

[39] J. Wei and M. Winter, Spikes for the two-dimensional Gierer-Meinhardt system: The weak coupling case, J.
Nonlinear Science 11 (2001), 415–458.

[40] J. Wei and M. Winter, A nonlocal eigenvalue problem and the stability of spikes for reaction-diffusion systems with
fractional reaction rates, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 13 (2003), 1529–1543.

[41] J. Wei and L. Zhang, On a nonlocal eigenvalue problem, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 30 (2001), 41–61.

Centre for Mathematical Biology, Mathematical Institute, University of Oxford, 24-29 St Giles’,

Oxford OX1 3LB and Oxford Centre for Integrative Systems Biology, Department of Biochemistry,

University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom

E-mail address: maini@maths.ox.ac.uk

Department of Mathematics, The Chinese University of Hong Kong, Shatin, Hong Kong

E-mail address: wei@math.cuhk.edu.hk

Department of Mathematical Sciences, Brunel University, Uxbridge UB8 3PH, United Kingdom

E-mail address: matthias.winter@brunel.ac.uk


