ON A SINGULAR PERTURBED PROBLEM IN AN ANNULUS

SANJIBAN SANTRA AND JUNCHENG WEI

Abstract

In this paper, we extend the results obtained by Ruf-Srikanth [8]. We prove the existence of positive solution under Dirichlet and Neumann boundary conditions, which concentrate near the inner boundary and outer boundary respectively of an annulus as $\varepsilon \rightarrow 0$. In fact, our result is independent of the dimension of \mathbb{R}^{N}.

1. Introduction

There has been a considerable interest in understanding the behavoir of positive solutions of the elliptic problem

$$
\left\{\begin{array}{c}
\varepsilon^{2} \Delta u-u+f(u)=0 \quad \text { in } \Omega \tag{1.1}\\
u>0 \text { in } \Omega \\
u=0 \text { or } \frac{\partial u}{\partial \nu}=0 \quad \text { on } \partial \Omega
\end{array}\right.
$$

where $\varepsilon>0$ is a parameter, f is a superlinear nonlinearity and Ω is a smooth bounded domain in \mathbb{R}^{N}. Let $F(u)=\int_{0}^{u} f(t) d t$. We consider the problems when $f(0)=0$ and $f^{\prime}(0)=0$. This type of equations arises in various mathematical models derived from population theory, chemical reactor theory see Gidas-Ni-Nirenberg [6]. In the Dirichlet case, Ni - Wei showed in [13] that the least energy solutions of equation (1.1) concentrate, for $\varepsilon \rightarrow 0$, to single peak solutions, whose maximum points P_{ε} converge to a point P with maximal distance from the boundary $\partial \Omega$. In the Neumann case, Ni-Takagi [11] showed that for sufficiently small $\varepsilon>0$, the least energy solution is a single boundary spike and has only one local maximum $P_{\varepsilon} \in \partial \Omega$. Moreover, in [12], they prove that $H\left(P_{\varepsilon}\right) \rightarrow \max _{P \in \partial \Omega} H(P)$ as $\varepsilon \rightarrow 0$ where $H(P)$ is the mean curvature of $\partial \Omega$ at P. A simplified proof was given by del Pino-Felmer in [3], for a wider class of nonlinearities using a method of symmetrisation.

Higher dimensional concentrating solutions was studied by Ambrosetti-Malchiodi - Ni in [1], [2]; they consider solutions which concentrate on spheres, i.e. on $(N-1)$ dimensional manifolds. They studied

$$
\left\{\begin{align*}
\varepsilon^{2} \Delta u-V(r) u+f(u)=0 & \text { in } A \tag{1.2}\\
u>0 \text { in } A, u=0 & \text { on } \partial A
\end{align*}\right.
$$

the problem, in an annulus $A=\left\{x \in \mathbb{R}^{N}: 0<a<|x|<b\right\}, V(r)$ is a smooth radial potential bounded below by a positive constant. They introduced a modified potential $M(r)=r^{N-1} V^{\theta}(r)$, with $\theta=\frac{p+1}{p-1}-\frac{1}{2}$, satisfying $M^{\prime}(b)<0$ (respectively $\left.M^{\prime}(a)>0\right)$, then there exists a family of radial solutions which concentrates on

[^0]$|x|=r_{\varepsilon}$ with $r_{\varepsilon} \rightarrow b$ (respectively $r_{\varepsilon} \rightarrow a$) as $\varepsilon \rightarrow 0$. In fact, they conjectured that in $N \geq 3$ there could exist also solutions concentrating to some manifolds of dimension k with $1 \leq k \leq N-2$. Moreover, in \mathbb{R}^{2}, concentration of positive solutions on curves in the general case was proved by del Pino-Kowalczyk-Wei [4]. In [9], the asymptotic behavior of radial solutions for a singularly perturbed elliptic problem (1.2) was studied using the Morse index information on such solutions to provide a complete description of the blow-up behavior. As a consequence, they exhibit sufficient conditions which guarantees that radial ground state solutions blow-up and concentrate at the inner or outer boundary of the annulus.

In this paper, we consider the following two singular perturbed problems,

$$
\begin{align*}
& \left\{\begin{aligned}
\varepsilon^{2} \Delta u-u+u^{p}=0 & \text { in } A \\
u>0 & \text { in } A \\
u=0 & \text { on } \partial A
\end{aligned}\right. \tag{1.3}\\
& \left\{\begin{aligned}
\varepsilon^{2} \Delta u-u+u^{p}=0 & \text { in } A \\
u>0 & \text { in } A \\
\frac{\partial u}{\partial \nu}=0 & \text { on } \partial A
\end{aligned}\right. \tag{1.4}
\end{align*}
$$

where A is an annulus in $\mathbb{R}^{N}=\mathbb{R}^{M} \times \mathbb{R}^{K}$ with $A=\left\{x \in \mathbb{R}^{N}: 0<a<|x|<b\right\}$ and $\varepsilon>0$ is a small number and ν denotes the unit normal to ∂A and $N \geq$ 2. In this paper, we are interested in finding solution $u(x)=u(r, s)$ where $r=$ $\sqrt{x_{1}^{2}+x_{2}^{2}+\cdots x_{M}^{2}}$ and $s=\sqrt{x_{M+1}^{2}+x_{M+2}^{2}+\cdots x_{K}^{2}}$.

Let us consider the conjecture due to Ruf and Srikanth:
Does there exist a solution for the problems (1.3) and (1.4), which concentrates on \mathbb{R}^{M+K-1} dimensional subsets as $\varepsilon \rightarrow 0$?

Theorem 1.1. For $\varepsilon>0$ sufficiently small, there exists a solution of (1.3) which concentrates near the inner boundary of A.

Theorem 1.2. For $\varepsilon>0$ sufficiently small, there exists a solution of (1.4) which concentrates near the outer boundary of A.

2. SET UP FOR THE APPROXIMATION

Note that under symmetry assumptions, A can be reduced to a subset of \mathbb{R}^{2} where $\mathcal{D}=\left\{(r, s): r>0, s>0, a^{2}<r^{2}+s^{2}<b^{2}\right\}$. Let $P_{\varepsilon}=\left(P_{1, \varepsilon}, P_{2, \varepsilon}\right)$ be a point of maximum of u_{ε} in A, then $u_{\varepsilon}\left(P_{\varepsilon}\right) \geq 1$. From (1.3) we obtain

$$
\begin{equation*}
\varepsilon^{2} u_{r r}+\varepsilon^{2} u_{s s}+\varepsilon^{2} \frac{(M-1)}{r} u_{r}+\varepsilon^{2} \frac{(K-1)}{s} u_{s}-u+u^{p}=0 \tag{2.1}
\end{equation*}
$$

Let $\mathcal{D}_{1}, \mathcal{D}_{2}$ are the inner and outer boundary of \mathcal{D} respectively and $\mathcal{D}_{3}, \mathcal{D}_{4}$ are the horizontal and vertical boundary of \mathcal{D} respectively.

If $P=\left(P_{1}, P_{2}\right)$ be a point in \mathcal{D} such that $\operatorname{dist}\left(P, \mathcal{D}_{1}\right)=d$, then we can express,

$$
\begin{equation*}
P_{1}=(a+d) \cos \theta ; P_{2}=(a+d) \sin \theta \tag{2.2}
\end{equation*}
$$

where θ is the angle between the $x-$ axis and the line joining P. Furthermore, if $\operatorname{dist}\left(P, \mathcal{D}_{2}\right)=d$, then we can express,

$$
\begin{equation*}
P_{1}=(b-d) \cos \theta ; P_{2}=(b-d) \sin \theta \tag{2.3}
\end{equation*}
$$

See Figure 1 and Figure 2.

Figure 1. Dirichlet case

The functional associated to the problem is

$$
\begin{equation*}
I_{\varepsilon}(u)=\int_{\mathcal{D}} r^{M-1} s^{K-1}\left(\frac{\varepsilon^{2}}{2}|\nabla u|^{2}+\frac{1}{2} u^{2}-\frac{1}{p+1} u^{p+1}\right) d r d s \tag{2.4}
\end{equation*}
$$

Moreover, (1.3) reduces to

$$
\left\{\begin{array}{r}
\varepsilon^{2} u_{r r}+\varepsilon^{2} u_{s s}+\varepsilon^{2} \frac{(M-1)}{r} u_{r}+\varepsilon^{2} \frac{(K-1)}{s} u_{s}-u+u^{p}=0 \text { in } \mathcal{D} \\
u=0 \text { on } \mathcal{D}_{1} \cup \mathcal{D}_{2} \\
\frac{\partial u}{\partial \nu}=0 \text { on } \mathcal{D}_{3} \cup \mathcal{D}_{4}
\end{array}\right.
$$

Re-scaling about the point P, we obtain in A_{ε}

$$
\begin{equation*}
u_{r r}+u_{s s}+\varepsilon \frac{(M-1)}{P_{1}+\varepsilon r} u_{r}+\varepsilon \frac{(K-1)}{P_{2}+\varepsilon s} u_{s}-u+u^{p}=0 \tag{2.5}
\end{equation*}
$$

The entire solution associated to (2.1) where U satisfies

$$
\left\{\begin{align*}
& \Delta_{(r, s)} U-U+U^{p}=0 \tag{2.6}\\
& \text { in } \mathbb{R}^{2} \\
& U(r, s)>0 \\
& \text { in } \mathbb{R}^{2} \\
& U(r, s) \rightarrow 0
\end{align*} \quad \text { as }|(r, s)| \rightarrow \infty .\right.
$$

Let $z=(r, s)$. Moreover, $U(z)=U(|z|)$ and the asymptotic behavior of U at infinity is given by

$$
\left\{\begin{array}{c}
U(z)=A|z|^{-\frac{1}{2}} e^{-|z|}\left(1+O\left(\frac{1}{|z|}\right)\right) \tag{2.7}\\
U^{\prime}(z)=-A|z|^{-\frac{1}{2}} e^{-|z|}\left(1+O\left(\frac{1}{|z|}\right)\right)
\end{array}\right.
$$

for some constant $A>0$.
Let $K(z)$ denote the fundamental solution of $-\Delta_{(r, s)}+1$ centered at 0 . Then for $|z| \geq 1$, we have

$$
\left\{\begin{array}{c}
U(z)=\left(B+O\left(\frac{1}{|z|}\right)\right) K(z) \tag{2.8}\\
U^{\prime}(z)=\left(-B+O\left(\frac{1}{|z|}\right)\right) K(z)
\end{array}\right.
$$

for some positive constant B.
Let $U_{\varepsilon, P}(z)=U\left(\left|\frac{z-P}{\varepsilon}\right|\right)$. Now we construct the projection map for the Dirichlet case as

$$
\left\{\begin{align*}
\varepsilon^{2} \Delta_{(r, s)} P U_{\varepsilon, P}-P U_{\varepsilon, P}+U_{\varepsilon, P}^{p}=0 & \text { in } \mathcal{D} \tag{2.9}\\
P U_{\varepsilon, P}(r, s)>0 & \text { in } \mathcal{D} \\
P U_{\varepsilon, P}(r, s)=0 & \text { on } \partial \mathcal{D}
\end{align*}\right.
$$

and the projection in the Neumann case as

$$
\left\{\begin{align*}
\varepsilon^{2} \Delta_{(r, s)} Q U_{\varepsilon, P}-Q U_{\varepsilon P}+U_{\varepsilon, P}^{p}=0 & \text { in } \mathcal{D} \tag{2.10}\\
Q U_{\varepsilon, P}(r, s)>0 & \text { in } \mathcal{D} \\
\frac{Q U_{\varepsilon, P}}{\partial \nu}(r, s)=0 & \text { on } \partial \mathcal{D}
\end{align*}\right.
$$

If $v_{\varepsilon}=U_{\varepsilon, P}-P U_{\varepsilon, P}$ and $w_{\varepsilon}=U_{\varepsilon, P}-Q U_{\varepsilon, P}$. Then we have

$$
\begin{gather*}
\left\{\begin{array}{rlrl}
\varepsilon^{2} \Delta_{(r, s)} v_{\varepsilon}-v_{\varepsilon} & =0 & \text { in } \mathcal{D} \\
v_{\varepsilon} & =U_{\varepsilon, P} & & \text { on } \partial \mathcal{D}
\end{array}\right. \tag{2.11}\\
\left\{\begin{array}{rlrl}
\varepsilon^{2} \Delta_{(r, s)} w_{\varepsilon}-w_{\varepsilon} & =0 & \text { in } \mathcal{D} \\
\frac{\partial w_{\varepsilon}}{\partial \nu} & =\frac{\partial U_{\varepsilon, P}}{\partial \nu} & & \text { on } \partial \mathcal{D} .
\end{array}\right. \tag{2.12}
\end{gather*}
$$

Consider the function $s(\theta)=\cos ^{M-1} \theta \sin ^{K-1} \theta$ in $\left[0, \frac{\pi}{2}\right]$. Then neither $\theta_{0}=0$ nor $\theta_{0}=\frac{\pi}{2}$ are points of maxima of s. But $s>0$ and hence θ_{0} lies in $\left(0, \frac{\pi}{2}\right)$.

For any $\theta \in\left[\theta_{0}-\delta, \theta_{0}+\delta\right]$ we define the configuration space for the Dirichlet and Neumann case as

$$
\begin{equation*}
\Lambda_{\varepsilon, D}=\left\{P \in \mathcal{D}: \operatorname{dist}\left(P, \mathcal{D}_{1}\right) \geq \frac{k}{2} \varepsilon \ln \frac{1}{\varepsilon}\right\} \tag{2.13}
\end{equation*}
$$

and

$$
\begin{equation*}
\Lambda_{\varepsilon, N}=\left\{P \in \mathcal{D}: \operatorname{dist}\left(P, \mathcal{D}_{2}\right) \geq \frac{k}{2} \varepsilon \ln \frac{1}{\varepsilon}\right\} \tag{2.14}
\end{equation*}
$$

respectively for some $k>0$ small.
We develop the following lemma similar to $\mathrm{Lin}, \mathrm{Ni}$ and Wei [10].
Lemma 2.1. Assume that $\frac{k}{2} \varepsilon|\ln \varepsilon| \leq d\left(P, \mathcal{D}_{1}\right) \leq \delta$, then we obtain

$$
\begin{equation*}
v_{\varepsilon}(z)=(B+o(1)) K\left(\frac{\left|z-P^{\star}\right|}{\varepsilon}\right)+O\left(\varepsilon^{2+\sigma}\right) \tag{2.15}
\end{equation*}
$$

where $P^{\star}=P+2 d\left(P, \mathcal{D}_{1}\right) \nu_{\bar{P}}$ and $\bar{P} \in \mathcal{D}_{1}$ is a unique point, such that $d(P, \bar{P})=$ $2 d\left(P, \mathcal{D}_{1}\right)$ and σ is a small positive number; δ is the sufficiently small. Moreover, $\nu_{\bar{P}}$ is the outer unit normal at \bar{P}.
Proof. Define

$$
\left\{\begin{align*}
\varepsilon^{2} \Delta_{(r, s)} \Psi_{\varepsilon}-\Psi_{\varepsilon}=0 & \text { in } \mathcal{D} \tag{2.16}\\
\Psi_{\varepsilon}>0 & \text { in } \mathcal{D} \\
\Psi_{\varepsilon}=1 & \text { on } \partial \mathcal{D}
\end{align*}\right.
$$

Then for sufficiently small $\varepsilon, \Psi_{\varepsilon}$ is uniformly bounded.

But for $z \in \partial \mathcal{D}$, we obtain

$$
U_{\varepsilon, P}(z)=U\left(\frac{|z-P|}{\varepsilon}\right)=(A+o(1)) \varepsilon^{\frac{1}{2}}|z-P|^{-\frac{1}{2}} e^{-\frac{|z-P|}{\varepsilon}}
$$

First, we have

$$
U_{\varepsilon, P}(z)=(B+o(1)) K\left(\frac{|z-P|}{\varepsilon}\right)
$$

Hence by the comparison principle we obtain, for some $\sigma>0$, small

$$
v_{\varepsilon} \leq C \varepsilon^{2+\sigma} \Psi_{\varepsilon} \text { whenever } d\left(P, \mathcal{D}_{1}\right) \geq 2 \varepsilon|\ln \varepsilon|
$$

Therefore, it remains to check whether (2.15) holds in

$$
\begin{equation*}
\frac{k}{2} \varepsilon|\ln \varepsilon| \leq d\left(P, \mathcal{D}_{1}\right) \leq 2 \varepsilon|\ln \varepsilon| \tag{2.17}
\end{equation*}
$$

Define the function

$$
\begin{equation*}
\phi_{1}(z)=\left(B-\varepsilon^{\frac{1}{4}}\right) K\left(\frac{\left|z-P^{\star}\right|}{\varepsilon}\right)+\varepsilon^{2+\sigma} \Psi_{\varepsilon} \tag{2.18}
\end{equation*}
$$

Then ϕ_{1} satisfies

$$
\begin{equation*}
\varepsilon^{2} \Delta_{(r, s)} \phi_{1}-\phi_{1}=0 \tag{2.19}
\end{equation*}
$$

For any z in \mathcal{D}_{1} with $|z-P| \leq \varepsilon^{\frac{3}{4}}$ we have

$$
\begin{equation*}
\frac{|z-P|}{\varepsilon}=\left(1+O\left(\varepsilon^{\frac{1}{2}}\right)|\ln \varepsilon|\right) \frac{\left|z-P^{\star}\right|}{\varepsilon} \tag{2.20}
\end{equation*}
$$

and hence

$$
v_{\varepsilon} \leq \phi_{1}
$$

For any $z \in \mathcal{D}_{1}$ with $|z-P| \geq \varepsilon^{\frac{3}{4}}$ we have

$$
v_{\varepsilon}(z) \leq C e^{-\varepsilon^{-\frac{1}{4}}} \leq \varepsilon^{2+\sigma} \leq \phi_{1}
$$

Summarizing, we obtain,

$$
v_{\varepsilon} \leq \phi_{1} \text { for all } z \in \mathcal{D}_{1}
$$

Similarly, we obtain the lower bound for $z \in \mathcal{D}_{1}$,

$$
\begin{equation*}
v_{\varepsilon}(z) \geq\left(B+\varepsilon^{\frac{1}{4}}\right) K\left(\frac{\left|z-P^{\star}\right|}{\varepsilon}\right)-\varepsilon^{2+\sigma} \Psi_{\varepsilon} \tag{2.21}
\end{equation*}
$$

Corollary 2.1. Assume that $\frac{k}{2} \varepsilon|\ln \varepsilon| \leq d\left(P, \mathcal{D}_{2}\right) \leq \delta$ where δ is sufficiently small. Then

$$
\begin{equation*}
w_{\varepsilon}(z)=-(B+o(1)) K\left(\frac{\left|z-P^{\star}\right|}{\varepsilon}\right)+O\left(\varepsilon^{2+\sigma}\right) \tag{2.22}
\end{equation*}
$$

where $P^{\star}=P+2 d\left(P, \mathcal{D}_{2}\right) \nu_{\bar{P}}$ where $\bar{P} \in \mathcal{D}_{2}$ is a unique point, such that $d(P, \bar{P})=$ $2 d\left(P, \mathcal{D}_{2}\right)$ and σ is a small positive number. Moreover, $\nu_{\bar{P}}$ is the outer unit normal at \bar{P}.

3. Refinement of the projection

Define

$$
H_{0}^{1}(\mathcal{D})=\left\{u \in H^{1}: u(x)=u(r, s), u=0 \text { in } \mathcal{D}_{1} \text { and } \mathcal{D}_{2} ; \frac{\partial u}{\partial \nu}=0 \text { in } \mathcal{D}_{3} \text { and } \mathcal{D}_{4}\right\}
$$

Define a norm on $H_{0}^{1}(\mathcal{D})$ as

$$
\begin{equation*}
\|v\|_{\varepsilon}^{2}=\int_{\mathcal{D}} r^{M-1} r^{K-1}\left[\varepsilon^{2}|\nabla v|^{2} d x+v^{2}\right] d r d s \tag{3.1}
\end{equation*}
$$

In this section, we will refine the projection, to incorporate the Neumann boundary condition on \mathcal{D}_{3} and \mathcal{D}_{4}. We define a new projection as $V_{\varepsilon, P}=\eta P U_{\varepsilon, P}$ where $0 \leq \eta \leq 1$ is smooth cut off function

$$
\eta(x)= \begin{cases}1 & \text { in } \mathcal{D} \cap B_{d}(P) \tag{3.2}\\ 0 & \text { in } \mathcal{D} \backslash B_{2 d}(P)\end{cases}
$$

Here $d=\operatorname{dist}(P, \partial \mathcal{D})$ is dependent on ε. We will choose d at the end of the proof. We define

$$
\begin{equation*}
u_{\varepsilon}=V_{\varepsilon, P_{\varepsilon}}+\varphi_{\varepsilon, P} \tag{3.3}
\end{equation*}
$$

Using this Ansatz, (1.3) reduces to

$$
\left\{\begin{array}{r}
\varepsilon^{2} \Delta_{(r, s)} \varphi_{\varepsilon}-\varphi_{\varepsilon}+\varepsilon^{2} \frac{(M-1)}{r} \varphi_{\varepsilon, s}+\varepsilon^{2} \frac{(K-1)}{s} \varphi_{\varepsilon, r} \quad+f^{\prime}\left(V_{\left.\varepsilon, P_{\varepsilon}\right)}\right) \varphi_{\varepsilon}=h \text { in } \mathcal{D}, \\
\varphi_{\varepsilon}=0 \text { on } \mathcal{D}_{1} \cup \mathcal{D}_{2} \\
\frac{\partial \varphi_{\varepsilon}}{\partial \nu}=0 \text { on } \mathcal{D}_{3} \cup \mathcal{D}_{4} ;
\end{array}\right.
$$

where $h=-S_{\varepsilon}\left[V_{\varepsilon, P_{\varepsilon}}\right]+N_{\varepsilon}\left[\varphi_{\varepsilon}\right]$ and

$$
\begin{align*}
S_{\varepsilon}\left[V_{\varepsilon, P}\right] & =\varepsilon^{2} \Delta_{(r, s)} V_{\varepsilon, P}+\varepsilon^{2} \frac{(M-1)}{r} V_{\varepsilon, P, r}+\varepsilon^{2} \frac{(K-1)}{s} V_{\varepsilon, P, s} \\
& -V_{\varepsilon, P}+f\left(V_{\varepsilon, P}\right) \tag{3.4}
\end{align*}
$$

and

$$
N_{\varepsilon}\left[\varphi_{\varepsilon}\right]=\left\{f\left(V_{\varepsilon, P_{\varepsilon}}+\varphi_{\varepsilon}\right)-f\left(V_{\varepsilon, P_{\varepsilon}}\right)-f^{\prime}\left(V_{\varepsilon, P_{\varepsilon}}\right) \varphi_{\varepsilon}\right\} .
$$

Let

$$
E_{\varepsilon, P}=\left\{\omega \in H_{0}^{1}(\mathcal{D}),\left\langle\omega, \frac{\partial V_{\varepsilon, P}}{\partial r}\right\rangle_{\varepsilon}=\left\langle\omega, \frac{\partial V_{\varepsilon, P}}{\partial s}\right\rangle_{\varepsilon}=0\right\} .
$$

Lemma 3.1. Then for any $z \in \mathcal{D} \backslash B_{d}(P)$

$$
\begin{equation*}
V_{\varepsilon, P}(z)=\eta\left(U\left(\frac{|z-P|}{\varepsilon}\right)-v_{\varepsilon, P}(z)\right) . \tag{3.5}
\end{equation*}
$$

Moreover, we have

$$
\begin{equation*}
V_{\varepsilon, P}(z)=O\left(\varepsilon^{k}\right) \tag{3.6}
\end{equation*}
$$

Proof. For any $z \in \mathcal{D} \backslash B_{d}(P)$ we have

$$
\begin{align*}
V_{\varepsilon, P}(z) & \leq\left|U\left(\frac{|z-P|}{\varepsilon}\right)-v_{\varepsilon, P}(z)\right| \\
& =O\left(e^{-\frac{|x-P|}{\varepsilon}}+e^{-\frac{\left|x-P^{\star}\right|}{\varepsilon}}+\varepsilon^{3+\sigma}\right) \\
& =O\left(e^{-\frac{d\left(P, P^{\star}\right)}{\varepsilon}}+\varepsilon^{2+\sigma}\right) \\
& =O\left(e^{-\frac{2 d\left(P, \partial \mathcal{D}_{1}\right)}{\varepsilon}}+\varepsilon^{2+\sigma}\right)=O\left(\varepsilon^{k}\right) \tag{3.7}
\end{align*}
$$

Moreover, $V_{\varepsilon, P}$ is zero outside $B_{2 d}(P)$.

Lemma 3.2. The energy expansion is given by

$$
\begin{aligned}
I_{\varepsilon}\left(V_{\varepsilon, P}\right) & =\int_{\mathcal{D}} r^{M-1} s^{K-1}\left(\frac{\varepsilon^{2}}{2}\left|\nabla V_{\varepsilon, P}\right|^{2}+\frac{1}{2} V_{\varepsilon, P}^{2}-\frac{1}{p+1} V_{\varepsilon, P}^{p+1}\right) d r d s \\
& =\gamma \varepsilon^{2} P_{1}^{M-1} P_{2}^{K-1}+\gamma_{1} \varepsilon^{2} P_{1}^{M-1} P_{2}^{K-1} U\left(\frac{\left|P-P^{\star}\right|}{\varepsilon}\right) \\
& +o\left(\varepsilon^{2+k}\right)
\end{aligned}
$$

where $\gamma=\frac{p-1}{2(p+1)} \int_{\mathbb{R}^{2}} U^{p+1} d r d s$ and $\gamma_{1}=\int_{\mathbb{R}^{2}} U^{p} e^{-r} d r d s$.

Proof. We obtain

$$
\begin{aligned}
I_{\varepsilon}\left(V_{\varepsilon, P}\right) & =\int_{\mathcal{D}} r^{M-1} s^{K-1}\left(\frac{\varepsilon^{2}}{2}\left|\nabla V_{\varepsilon, P}\right|^{2}+\frac{1}{2} V_{\varepsilon, P}^{2}-\frac{1}{p+1} V_{\varepsilon, P}^{p+1}\right) d r d s \\
& =\int_{\mathcal{D}} \eta^{2} r^{M-1} s^{K-1}\left(\frac{\varepsilon^{2}}{2}\left|\nabla P U_{\varepsilon, P}\right|^{2}+\frac{1}{2} P U_{\varepsilon, P}^{2}-\frac{1}{p+1} P U_{\varepsilon, P}^{p+1}\right) d r d s \\
& +\frac{1}{p+1} \int_{\mathcal{D}} r^{M-1} s^{K-1}\left(\eta^{2}-\eta^{p+1}\right) P U_{\varepsilon, P}^{p+1} d r d s \\
& +\varepsilon^{2} \int_{\mathcal{D}} r^{M-1} s^{K-1} \eta \nabla \eta P U_{\varepsilon} \nabla P U_{\varepsilon} d r d s+\varepsilon^{2} \int_{\mathcal{D}} r^{M-1} s^{K-1}|\nabla \eta|^{2}\left(P U_{\varepsilon, P}\right)^{2} d r d s \\
(3.8) & =J_{1}+J_{2}+J_{3}+J_{4} .
\end{aligned}
$$

Hence we have

$$
\begin{aligned}
J_{1} & =\int_{\mathcal{D}} r^{M-1} s^{K-1}\left(\frac{\varepsilon^{2}}{2}\left|\nabla P U_{\varepsilon, P}\right|^{2}+\frac{1}{2} P U_{\varepsilon, P}^{2}-\frac{1}{p+1} P U_{\varepsilon, P}^{p+1}\right) d r d s \\
& -\int_{\mathcal{D}}\left(1-\eta^{2}\right) r^{M-1} s^{K-1}\left(\frac{\varepsilon^{2}}{2}\left|\nabla P U_{\varepsilon, P}\right|^{2}+\frac{1}{2} P U_{\varepsilon, P}^{2}-\frac{1}{p+1} P U_{\varepsilon, P}^{p+1}\right) d r d s \\
& =\int_{\mathcal{D}} r^{M-1} s^{K-1}\left(\frac{1}{2} U_{\varepsilon, P}^{p} P U_{\varepsilon, P}-\frac{1}{p+1} P U_{\varepsilon, P}^{p+1}\right) d r d s \\
& +\varepsilon^{2} \int_{\partial B_{2 d}(P)} r^{M-1} s^{K-1}\left(\frac{\partial P U_{\varepsilon, P}}{\partial r}+\frac{\partial P U_{\varepsilon, P}}{\partial s}\right) P U_{\varepsilon, P} d r d s \\
& -\varepsilon^{2} \int_{\partial B_{d}(P)} r^{M-1} s^{K-1}\left(\frac{\partial P U_{\varepsilon, P}}{\partial r}+\frac{\partial P U_{\varepsilon, P}}{\partial s}\right) P U_{\varepsilon, P} d r d s \\
& =\varepsilon^{2}\left(\frac{1}{2}-\frac{1}{p+1}\right) \int_{\mathcal{D}_{\varepsilon}}\left(P_{1}+\varepsilon r\right)^{M-1}\left(P_{2}+\varepsilon s\right)^{K-1} U^{p+1}(z) d r d s \\
& +\frac{1}{2} \int_{\mathcal{D}} U_{\varepsilon, P}^{p} v_{\varepsilon} r^{M-1} s^{K-1} d r d s \\
& =\left(\frac{1}{2}-\frac{1}{p+1}\right) \varepsilon^{2} P_{1}^{M-1} P_{2}^{K-1} \int_{\mathbb{R}^{2}} U^{p+1} d r d s \\
& +\frac{1}{2} \int_{\mathcal{D}} U_{\varepsilon, P}^{p} v_{\varepsilon} r^{M-1} s^{K-1} d r d s \\
& +\varepsilon^{2} \int_{\partial B_{2 d}(P)} r^{M-1} s^{K-1}\left(\frac{\partial P U_{\varepsilon, P}}{\partial r}+\frac{\partial P U_{\varepsilon, P}}{\partial s}\right) P U_{\varepsilon, P} d r d s \\
& -\varepsilon^{2} \int_{\partial B_{d}(P)} r^{M-1} s^{K-1}\left(\frac{\partial P U_{\varepsilon, P}}{\partial r}+\frac{\partial P U_{\varepsilon, P}}{\partial s}\right) P U_{\varepsilon, P} d r d s \\
(3.9) & \int_{\mathcal{D} \backslash B_{d}} r^{M-1} s^{K-1}\left(\frac{\varepsilon^{2}}{2}\left|\nabla P U_{\varepsilon, P}\right|^{2}+\frac{1}{2} P U_{\varepsilon, P}^{2}-\frac{1}{p+1} P U_{\varepsilon, P}^{p+1}\right) d r d s+o\left(\varepsilon^{2}\right)
\end{aligned}
$$

Now we estimate

$$
\begin{align*}
& \varepsilon^{2}\left(\frac{1}{2}-\frac{1}{p+1}\right) \int_{\mathcal{D}_{\varepsilon}}\left(P_{1}+\varepsilon r\right)^{M-1}\left(P_{2}+\varepsilon s\right)^{K-1} U^{p+1}(z) d r d s \\
= & \frac{p-1}{2(p+1)} \varepsilon^{2} P_{1}^{M-1} P_{2}^{K-1} \int_{\mathbb{R}^{2}} U^{p+1} d r d s+O\left(\varepsilon^{4}\right) P_{1}^{M-1} P_{2}^{K-1} \tag{3.10}
\end{align*}
$$

From Lemma 3.1, we compute the interaction term

$$
\begin{align*}
\int_{\mathcal{D}} U_{\varepsilon, P}^{p} v_{\varepsilon} r^{M-1} s^{K-1} d r d s & =\varepsilon^{2} \int_{\mathcal{D}_{\varepsilon}} U^{p} U\left(\left|z-\frac{P-P^{\star}}{\varepsilon}\right|\right)\left(P_{1}+\varepsilon r\right)^{M-1}\left(P_{2}+\varepsilon s\right)^{K-1} d r d s \\
& +O\left(\varepsilon^{4}\right) \\
& =\varepsilon^{2} P_{1}^{M-1} P_{2}^{K-1} U\left(\left|\frac{P-P^{\star}}{\varepsilon}\right|\right)(\gamma+o(1))+O\left(\varepsilon^{4}\right) \\
(3.11) & =\varepsilon^{2} P_{1}^{M-1} P_{2}^{K-1} U\left(\frac{2 d\left(P, \partial \mathcal{D}_{1}\right)}{\varepsilon}\right)(\gamma+o(1))+O\left(\varepsilon^{4}\right) \tag{3.11}
\end{align*}
$$

Also we have

$$
J_{2}=\int_{\mathcal{D}} r^{M-1} s^{K-1}\left(\eta^{2}-\eta^{p+1}\right) P U_{\varepsilon, P}^{p+1} d r d s=O\left(\varepsilon^{2}\right) \varepsilon^{\frac{(p+1) k}{2}}
$$

Furthermore, we have

$$
\begin{gathered}
\varepsilon^{2} \int_{\partial B_{d}(P)} r^{M-1} s^{K-1}\left(\frac{\partial P U_{\varepsilon, P}}{\partial r}+\frac{\partial P U_{\varepsilon, P}}{\partial s}\right) P U_{\varepsilon, P} d r d s=O\left(\varepsilon^{2+\frac{1}{3}+k}\right) \\
J_{3}=\varepsilon^{2} \int_{\mathcal{D}} r^{M-1} s^{K-1} \eta \nabla \eta P U_{\varepsilon} \nabla P U_{\varepsilon} d r d s=o\left(\varepsilon^{k+2}\right)
\end{gathered}
$$

and

$$
J_{4}=\varepsilon^{2} \int_{\mathcal{D}} r^{M-1} s^{K-1}|\nabla \eta|^{2}\left(P U_{\varepsilon, P}\right)^{2} d r d s=o\left(\varepsilon^{k+2}\right)
$$

Hence we obtain the result.

4. The reduction

In this section, we will reduce the proof of Theorem 1.1 to finding a solution of the form $V_{\varepsilon, P}+\varphi_{\varepsilon, P}$ for (1.3) to a finite dimensional problem. We will prove that for each $P \in \Lambda_{\varepsilon, D}$, there is a unique $\varphi_{\varepsilon, P} \in E_{\varepsilon}$ such that

$$
\left\langle I_{\varepsilon}^{\prime}\left(V_{\varepsilon, P}+\varphi_{\varepsilon, P}\right), \eta\right\rangle_{\varepsilon}=0 ; \forall \eta \in E_{\varepsilon, P}
$$

Let

$$
J_{\varepsilon}(\varphi)=I_{\varepsilon}\left(V_{\varepsilon, P}+\varphi_{\varepsilon, P}\right)
$$

From now on we consider $\varphi_{\varepsilon, P}=\varphi$. We expand $J_{\varepsilon}(\varphi)$ near $\varphi_{\varepsilon, P}=0$ as

$$
J_{\varepsilon}(\varphi)=J_{\varepsilon}(0)+l_{\varepsilon, P}(\varphi)+\frac{1}{2} Q_{\varepsilon, P}(\varphi, \varphi)+R_{\varepsilon}(\varphi)
$$

where

$$
\begin{align*}
l_{\varepsilon, P}(\varphi) & =\int_{\mathcal{D}} r^{M-1} s^{K-1}\left[\varepsilon^{2} \nabla V_{\varepsilon, P} \nabla \varphi+V_{\varepsilon, P} \varphi-V_{\varepsilon, P}^{p} \varphi\right] d r d s \\
& =\int_{\mathcal{D}} r^{M-1} s^{K-1} S_{\varepsilon}\left[V_{\varepsilon, P}\right] \varphi d r d s \tag{4.1}\\
Q_{\varepsilon, P}(\varphi, \psi) & =\int_{\mathcal{D}} r^{M-1} s^{K-1}\left[\varepsilon^{2} \nabla \varphi \nabla \psi+\varphi \psi-p V_{\varepsilon, P}^{p-1} \varphi \psi\right] d r d s, \tag{4.2}
\end{align*}
$$

and

$$
\begin{align*}
R_{\varepsilon}(\varphi) & =\frac{1}{p+1} \int_{\mathcal{D}} r^{M-1} s^{K-1}\left[\left(V_{\varepsilon, P}+\varphi\right)^{p+1}-\left(V_{\varepsilon, P}\right)^{p+1}\right. \\
& \left.-(p+1)\left(V_{\varepsilon, P}\right)^{p} \phi-\frac{p(p+1)}{2}\left(V_{\varepsilon, P}\right)^{p-1} \varphi^{2}\right] d r d s \tag{4.3}
\end{align*}
$$

We will prove in Lemma 4.1 that $l_{\varepsilon, P}(\varphi)$ is a bounded linear functional in $E_{\varepsilon, P}$. Hence by the Riesz representation theorem, there exists $l_{\varepsilon, P} \in E_{\varepsilon, P}$ such that

$$
\left\langle l_{\varepsilon, P}, \varphi\right\rangle_{\varepsilon}=l_{\varepsilon, P}(\varphi) \forall \varphi \in E_{\varepsilon, P}
$$

In Lemma 4.2 we will prove that $Q_{\varepsilon, P}(\varphi, \eta)$ is a bounded linear operator from $E_{\varepsilon, P}$ to $E_{\varepsilon, P}$ such that

$$
\left\langle Q_{\varepsilon, P} \varphi, \eta\right\rangle_{\varepsilon}=Q_{\varepsilon, P}(\varphi, \eta) \forall \varphi, \eta \in E_{\varepsilon, P}
$$

Thus finding a critical point of $J_{\varepsilon}(\varphi)$ is equivalent to solving the problem in $E_{\varepsilon, P}$:

$$
\begin{equation*}
l_{\varepsilon, P}+Q_{\varepsilon, P} \varphi+R_{\varepsilon}^{\prime}(\varphi)=0 \tag{4.4}
\end{equation*}
$$

We will prove in Lemma 4.3 that the operator $Q_{\varepsilon, P}$ is invertible in $E_{\varepsilon, P}$. In Lemma 4.5, we will prove that if φ belongs to a suitable set, $R_{\varepsilon}^{\prime}(\varphi)$ is a small perturbation term in (4.4). Thus we can use the contraction mapping theorem to prove that (4.4) has a unique solution for each fixed $P \in \Lambda_{\varepsilon, D}$.

Lemma 4.1. The functional $l_{\varepsilon, P}: H_{0}^{1}(\mathcal{D}) \rightarrow \mathbb{R}$ defined in (4.1) is a bounded linear functional. Moreover, we have

$$
\left\|l_{\varepsilon, P}\right\|_{\varepsilon}=O\left(\varepsilon^{2}\right)
$$

Proof. We have $l_{\varepsilon, P}$

$$
\begin{aligned}
l_{\varepsilon, P}(\varphi) & =\int_{\mathcal{D}} r^{M-1} s^{K-1} S_{\varepsilon}\left[V_{\varepsilon, P}\right] \varphi d r d s \\
& =\int_{\mathcal{D}} r^{M-1} s^{K-1}\left[\varepsilon^{2} \Delta_{(r, s)} V_{\varepsilon, P}+\varepsilon^{2} \frac{(M-1)}{r} V_{\varepsilon, P, r}+\varepsilon^{2} \frac{(K-1)}{s} V_{\varepsilon, P, s}-V_{\varepsilon, P}+f\left(V_{\varepsilon, P}\right)\right] \varphi \\
& =\int_{\mathcal{D}} r^{M-1} s^{K-1}\left[\varepsilon^{2} \Delta_{(r, s)} \eta P U_{\varepsilon, P}+\varepsilon^{2} \frac{(M-1)}{r}\left(\eta P U_{\varepsilon, P}\right)_{r}+\varepsilon^{2} \frac{(K-1)}{s}\left(\eta P U_{\varepsilon, P}\right)_{s}\right. \\
& \left.-\eta P U_{\varepsilon, P}+f\left(\eta P U_{\varepsilon, P}\right)\right] \varphi \\
& =\int_{\mathcal{D}} \eta r^{M-1} s^{K-1}\left[\varepsilon^{2} \Delta_{(r, s)} P U_{\varepsilon, P}+\varepsilon^{2} \frac{(M-1)}{r} P U_{\varepsilon, P, r}+\varepsilon^{2} \frac{(K-1)}{s} P U_{\varepsilon, P, s}\right. \\
& \left.-P U_{\varepsilon, P}+f\left(P U_{\varepsilon, P}\right)\right] \varphi+\varepsilon^{2} \int_{\mathcal{D}} r^{M-1} s^{K-1}\left[P U_{\varepsilon, P} \Delta_{(r, s)} \eta+\nabla P U_{\varepsilon, P} \nabla \eta\right] \varphi \\
& +\int_{\mathcal{D}} r^{M-1} s^{K-1}\left(\eta-\eta^{p}\right) P U_{\varepsilon, P}^{p} \varphi \\
& =\varepsilon^{2} \int_{\mathcal{D}} r^{M-1} s^{K-1}\left[\frac{(M-1)}{r} P U_{\varepsilon, P, r}+\frac{(K-1)}{s} P U_{\varepsilon, P, s}\right] \varphi \\
& +\varepsilon^{2} \int_{\mathcal{D}} r^{M-1} s^{K-1}\left[\eta_{r} \frac{(M-1)}{r} P U_{\varepsilon, P, r}+\eta_{s} \frac{(K-1)}{s} P U_{\varepsilon, P}\right] \varphi \\
& +\int_{\mathcal{D}} \eta r^{M-1} s^{K-1}\left[f\left(P U_{\varepsilon, P}\right)-f\left(U_{\varepsilon, P}\right)\right] \varphi \\
& =\varepsilon^{2} \int_{\mathcal{D}} \eta r^{M-1} s^{K-1}\left[\frac{(M-1)}{r} P U_{\varepsilon, P, r}+\frac{(K-1)}{s} P U_{\varepsilon, P, s}\right] \varphi d r d s \\
& +\int_{\mathcal{D}} \eta r^{M-1} s^{K-1}\left[f\left(P U_{\varepsilon, P}\right)-f\left(U_{\varepsilon, P}\right)\right] \varphi \\
& +\int_{\mathcal{D}} r^{M-1} s^{K-1}\left(\eta-\eta^{p}\right) P U_{\varepsilon, P}^{p} \varphi d r d s \\
& +\varepsilon^{2} \int_{\mathcal{D}} r^{M-1} s^{K-1}\left[P U_{\varepsilon, P} \Delta_{(r, s)} \eta+\nabla P U_{\varepsilon, P} \nabla \eta\right] \varphi d r d s
\end{aligned}
$$

In order to estimate all the terms we decompose the domain into $\mathcal{D}=\left(\mathcal{D} \backslash B_{2 d}(P)\right) \cup$ $\left(B_{2 d}(P) \backslash B_{d}(P)\right) \cup B_{d}(P)$. We obtain

$$
\begin{aligned}
& \int_{\mathcal{D}} \eta r^{M-1} s^{K-1}\left[f\left(P U_{\varepsilon, P}\right)-f\left(U_{\varepsilon, P}\right)\right] \varphi d x=\int_{\mathcal{D}} r^{M-1} s^{K-1}\left[f\left(P U_{\varepsilon, P}\right)-f\left(U_{\varepsilon, P}\right)\right] \varphi d x \\
+ & \int_{\mathcal{D}}(1-\eta) r^{M-1} s^{K-1}\left[f\left(P U_{\varepsilon, P}\right)-f\left(U_{\varepsilon, P}\right)\right] \varphi d x \\
= & I_{1}+I_{2} .
\end{aligned}
$$

From I_{1}, we obtain

$$
\begin{aligned}
I_{1} & \leq \int_{B_{d}(P)}\left(U_{\varepsilon, P}\right)^{p-1} v_{\varepsilon} \varphi d x+\int_{B_{2 d}(P) \backslash B_{d}(P)}\left(U_{\varepsilon, P}\right)^{p-1} v_{\varepsilon} \varphi d x \\
& +\int_{\mathcal{D} \backslash B_{2 d}(P)}\left(U_{\varepsilon, P}\right)^{p-1} v_{\varepsilon} \varphi d x \\
& \leq C \varepsilon^{2}\left(\int_{B_{d}(P)}|\varphi|^{2} r^{M-1} s^{k-1} d r d s\right)^{\frac{1}{2}}+C \varepsilon^{2+k}\|\phi\|_{\varepsilon}+o(1) \varepsilon^{2+k}\|\phi\|_{\varepsilon} \\
& =O\left(\varepsilon^{2}\right)\|\varphi\|_{\varepsilon}
\end{aligned}
$$

Furthermore,

$$
I_{2} \leq \int_{B_{2 d}(P) \backslash B_{d}(P)}\left(P U_{\varepsilon, P}\right)^{p-1} v_{\varepsilon} \varphi=O\left(\varepsilon^{2}\right)\|\varphi\|_{\varepsilon}
$$

Also it is easy to check using the decay estimates in (2.15), all the other terms are of order $\varepsilon^{2}\|\varphi\|_{\varepsilon}$. Hence we obtain

$$
\left|l_{\varepsilon, P}(\varphi)\right|=O\left(\varepsilon^{2}\right)\|\varphi\|_{\varepsilon}
$$

and as a result

$$
\left\|l_{\varepsilon, P}\right\|_{\varepsilon}=O\left(\varepsilon^{2}\right)
$$

Lemma 4.2. The bilinear form $Q_{\varepsilon, P}(\varphi, \eta)$ defined in (4.2) is a bounded linear. Furthermore,

$$
\left|Q_{\varepsilon, P}(\varphi, \eta)\right| \leq C\|\varphi\|_{\varepsilon}\|\eta\|_{\varepsilon}
$$

where C is independent of ε.
Proof. Using the Hölder's inequality, there exists $C>0$, such that

$$
\int_{\mathcal{D}} r^{M-1} s^{K-1} V_{\varepsilon, P}^{p-1} \varphi \eta d r d s \leq C \int_{\mathcal{D}} r^{M-1} s^{K-1}\left|\varphi\|\eta \mid \leq C\| \varphi\left\|_{\varepsilon}\right\| \eta \|_{\varepsilon}\right.
$$

and

$$
\left|\int_{\mathcal{D}} r^{M-1} s^{K-1}\left[\varepsilon^{2} \nabla \varphi \nabla \eta+\varphi \eta\right] d r d s\right| \leq C\|\varphi\|_{\varepsilon}\|\eta\|_{\varepsilon}
$$

Lemma 4.3. There exists $\rho>0$ independent of ε, such that

$$
\left\|Q_{\varepsilon, P} \varphi\right\|_{\varepsilon} \geq \rho\|\varphi\|_{\varepsilon} \forall \varphi \in E_{\varepsilon, P}, P \in \Lambda_{\varepsilon, P}
$$

Proof. Suppose there exists a sequence $\varepsilon_{n} \rightarrow 0, \varphi_{n} \in E_{\varepsilon_{n}, P}, P \in \Lambda_{\varepsilon, P}$ such that $\left\|\varphi_{n}\right\|_{\varepsilon_{n}}=\varepsilon_{n}$ and

$$
\left\|Q_{\varepsilon_{n}} \varphi_{n}\right\|_{\varepsilon_{n}}=o\left(\varepsilon_{n}\right)
$$

Let $\tilde{\varphi}_{i, n}=\varphi_{n}\left(\varepsilon_{n} z+P\right)$ and $\mathcal{D}_{n}=\left\{y: \varepsilon_{n} z+P \in \mathcal{D}\right\}$ such that

$$
\begin{equation*}
\int_{\mathcal{D}_{n}} r^{M-1} s^{K-1}\left[\left|\nabla \tilde{\varphi}_{i, n}\right|^{2}+\left.\tilde{\varphi}_{i, n}\right|^{2}\right]=\varepsilon_{n}^{-2} \int_{\mathcal{D}} r^{M-1} s^{K-1}\left[\varepsilon^{2}\left|\nabla \varphi_{i, n}\right|^{2}+\left.\varphi_{i, n}\right|^{2}\right]=1 \tag{4.5}
\end{equation*}
$$

Hence there exists $\varphi \in H^{1}\left(\mathbb{R}^{2}\right)$ such that $\tilde{\varphi}_{n} \rightharpoonup \varphi \in H^{1}\left(\mathbb{R}^{2}\right)$ and hence $\tilde{\varphi}_{n} \rightarrow \varphi \in$ $L_{l o c}^{2}\left(\mathbb{R}^{2}\right)$. We claim that

$$
\Delta_{(r, s)} \varphi-\varphi+p U^{p-1} \varphi=0 \text { in } \mathbb{R}^{2}
$$

that is for all $\eta \in C_{0}^{\infty}\left(\mathbb{R}^{2}\right)$,

$$
\begin{equation*}
\int_{\mathbb{R}^{2}} r^{M-1} s^{K-1} \nabla \varphi \nabla \eta+\int_{\mathbb{R}^{2}} r^{M-1} s^{K-1} \varphi \eta=p \int_{\mathbb{R}^{2}} r^{M-1} s^{K-1} U^{p-1} \varphi \eta \tag{4.6}
\end{equation*}
$$

Now

$$
\begin{aligned}
\int_{\mathcal{D}} r^{M-1} s^{K-1}\left[\varepsilon^{2} D \varphi_{\varepsilon} D \eta+\varphi_{\varepsilon} \eta-p V_{\varepsilon, P}^{p-1} \varphi_{\varepsilon} \eta\right] & =\left\langle Q_{\varepsilon_{n}, P} \varphi_{n}, \eta\right\rangle_{\varepsilon} \\
& =o\left(\varepsilon_{n}\right)\|\eta\|_{\varepsilon_{n}}
\end{aligned}
$$

which implies

$$
\int_{\mathcal{D}_{\varepsilon}} r^{M-1} s^{K-1}\left[\nabla \tilde{\varphi}_{\varepsilon} \nabla \tilde{\eta}+\tilde{\varphi}_{\varepsilon} \tilde{\eta}-p \tilde{V}_{\varepsilon, P}^{p-1} \tilde{\varphi}_{\varepsilon} \tilde{\eta}\right]=o(1)\|\tilde{\eta}\|
$$

where

$$
\begin{gathered}
\tilde{V}_{\varepsilon_{n}, P_{n}}=V_{\varepsilon_{n}, P_{n}}\left(\varepsilon_{n} y+P\right), \\
\|\tilde{\eta}\|^{2}=\int_{\mathcal{D}_{n}} r^{M-1} s^{K-1}\left[|\nabla \tilde{\eta}|^{2}+|\tilde{\eta}|^{2}\right], \\
\tilde{E}_{\varepsilon_{n}, P}=\left\{\tilde{\eta}: \int_{\mathcal{D}_{n}} r^{M-1} s^{K-1} \nabla \tilde{\eta} \nabla \tilde{W}_{n, r}+r^{M-1} s^{K-1} \tilde{\eta} \tilde{W}_{n, r}\right. \\
\left.=0=\int_{\mathcal{D}_{n}} r^{M-1} s^{K-1} \nabla \tilde{\eta} \nabla \tilde{W}_{n, s}+r^{M-1} s^{K-1} \tilde{\eta} \tilde{W}_{n, s}\right\},
\end{gathered}
$$

and $\tilde{W}_{n, r}=\varepsilon_{n} \frac{\partial \tilde{V}_{\varepsilon_{n}}\left(\varepsilon_{n} y+P_{n}\right)}{\partial r}, \tilde{W}_{n, s}=\varepsilon_{n} \frac{\partial \tilde{V}_{\varepsilon_{n}}\left(\varepsilon_{n} y+P\right)}{\partial s}$. Let $\eta \in C_{0}^{\infty}\left(\mathbb{R}^{2}\right)$. Then we can choose $a_{1}, a_{2} \in \mathbb{R}$ such that

$$
\tilde{\eta}_{n}=\eta-\left[a_{1} \tilde{W}_{n, r}+a_{2} \tilde{W}_{n, s}\right] .
$$

Note that $\tilde{W}_{n, r}$ satisfies the problem

$$
\left\{\begin{array}{cl}
-\Delta_{(r, s)} \tilde{W}_{n, r}+\tilde{W}_{n, r}=p \eta U^{p-1}(y) \frac{\partial U}{\partial r}+\Phi_{n}(y) & \text { in } \mathcal{D}_{n} \tag{4.7}\\
\tilde{W}_{n, r}=0 & \text { on } \mathcal{D}_{1, n} \cup \mathcal{D}_{2, n} \\
\frac{\partial \tilde{W}_{n, r}}{\partial \nu}=0 & \text { on } \mathcal{D}_{3, n} \cup \mathcal{D}_{4, n}
\end{array}\right.
$$

where $\Phi_{n}(y)=\varepsilon_{n} \frac{\partial \eta}{\partial r} U^{p}+\frac{\partial}{\partial r}\left[\nabla \eta \nabla \tilde{P} U_{\varepsilon, P}+\Delta \eta \tilde{P} U_{\varepsilon, P}\right]$.

Then we claim that $\tilde{W}_{n, r}$ is bounded in $H_{0}^{1}\left(\mathcal{D}_{n}\right)$. Using the Hölder's inequality, we have

$$
\begin{align*}
\int_{\mathcal{D}_{n}} r^{M-1} s^{N-1}\left[\left.\nabla \tilde{W}_{n, r}\right|^{2}+\tilde{W}_{n, r}^{2}\right] & =p \int_{\mathcal{D}_{n}} r^{M-1} s^{N-1} \eta U^{p-1} \frac{\partial U}{\partial r} \tilde{W}_{n, r} \\
& +\int_{\mathcal{D}_{n}} r^{M-1} s^{N-1} \Phi_{n} W_{n, r} \\
& \leq C\left(\int_{\mathcal{D}_{n}} r^{M-1} s^{k-1} \tilde{W}_{n, r}^{2}\right)^{\frac{1}{2}} \\
4.8) \quad & \leq C\left(\int_{\mathcal{D}_{n}} r^{M-1} s^{N-1}\left[\left.\nabla \tilde{W}_{n, r}\right|^{2}+\tilde{W}_{n, r}^{2}\right]\right)^{\frac{1}{2}} . \tag{4.8}
\end{align*}
$$

$$
\tilde{W}_{n, r} \rightharpoonup W_{r} \text { in } H^{1}\left(\mathbb{R}^{2}\right)
$$

up to a subsequence. Hence

$$
\tilde{W}_{n, r} \rightarrow W_{r} \text { in } L_{l o c}^{2}
$$

Note that W_{r} satisfies the problem,

$$
\left\{\begin{align*}
-\Delta_{(r, s)} W_{r}+W_{r} & =p U^{p-1} \frac{\partial U}{\partial r} & \text { in } \mathbb{R}^{2} \tag{4.9}\\
\int_{\mathbb{R}^{2}} r^{M-1} s^{K-1}\left[\left|\nabla W_{r}\right|^{2}+\left|W_{r}\right|^{2}\right] & =p \int_{\mathbb{R}^{2}} r^{M-1} s^{K-1} U^{p-1} \frac{\partial U}{\partial r} W_{r} &
\end{align*}\right.
$$

We claim that $\tilde{W}_{n, r} \rightarrow W_{r}$ in $H^{1}\left(\mathbb{R}^{2}\right)$. First note that

$$
\begin{aligned}
\int_{\mathcal{D}_{n}} r^{M-1} s^{K-1}\left[\left|\nabla \tilde{W}_{n, r}\right|^{2}+\left|\tilde{W}_{n, r}\right|^{2}\right] & =p \int_{\mathcal{D}_{n}} r^{M-1} s^{K-1} U^{p-1} \frac{\partial U}{\partial r} \tilde{W}_{n, r} \\
& +\int_{\mathcal{D}_{n}} r^{M-1} s^{K-1} \Phi_{n} \tilde{W}_{n, r} \\
& \rightarrow p \int_{\mathbb{R}^{2}} r^{M-1} s^{K-1} U^{p-1} \frac{\partial U}{\partial r} W_{r} \\
4.10) & =\int_{\mathbb{R}^{2}} r^{M-1} s^{K-1}\left[\left|\nabla W_{r}\right|^{2}+\left|W_{r}\right|^{2}\right] d r d s .
\end{aligned}
$$

Here we have used that $\tilde{W}_{n, r}$ converges weakly in L^{2}. Hence $\tilde{W}_{n, r} \rightarrow W_{r}=\frac{\partial U}{\partial r}$ in H^{1} strongly. Similarly, we can show that $\tilde{W}_{n, s} \rightarrow W_{s}=\frac{\partial U}{\partial s}$ in H^{1} strongly. Now if we plug the value η_{n} in (4.7) we obtain and letting $n \rightarrow \infty$, we have

$$
\begin{aligned}
& \int_{\mathbb{R}^{2}} r^{M-1} s^{K-1}\left[\nabla \varphi \nabla \eta-p U^{p-1} \varphi \eta+\varphi \eta\right] \\
= & a_{1}\left(\int_{\mathbb{R}^{2}} r^{M-1} s^{K-1}\left[\nabla \varphi \nabla \frac{\partial U}{\partial r}+\varphi \frac{\partial U}{\partial r}-p U^{p-1} \varphi \frac{\partial U}{\partial r}\right]\right) \\
+ & a_{2}\left(\int_{\mathbb{R}^{2}} r^{M-1} s^{K-1}\left[\nabla \varphi \nabla \frac{\partial U}{\partial s}+\varphi \frac{\partial U}{\partial s}-p U^{p-1} \varphi \frac{\partial U}{\partial s}\right]\right) .
\end{aligned}
$$

Using the non-degeneracy condition we obtain

$$
\int_{\mathbb{R}^{N}} r^{M-1} s^{K-1}\left[\nabla \varphi \nabla \eta+\varphi \eta-p U^{p-1} \varphi \eta\right]=0
$$

Hence we have (4.6).
Since $\varphi \in H^{1}\left(\mathbb{R}^{2}\right)$, it follows by non-degeneracy

$$
\varphi=b_{1} \frac{\partial U}{\partial r}+b_{2} \frac{\partial U}{\partial s}
$$

Since $\tilde{\varphi}_{n} \in \tilde{E}_{\varepsilon_{n}, P}$, letting $n \rightarrow \infty$ in (4.7), we have

$$
\begin{aligned}
& \int_{\mathbb{R}^{2}} r^{M-1} s^{K-1} \nabla \varphi \nabla \frac{\partial U}{\partial r}=0 \\
& \int_{\mathbb{R}^{2}} r^{M-1} s^{K-1} \nabla \varphi \nabla \frac{\partial U}{\partial s}=0
\end{aligned}
$$

which implies $b_{1}=b_{2}=0$. Hence $\varphi=0$ and for any $R>0$ we have

$$
\int_{B_{\varepsilon_{n} R}(P)} r^{M-1} s^{K-1} \varphi_{n}^{2} d r d s=o\left(\varepsilon_{n}^{2}\right)
$$

Hence

$$
\begin{aligned}
o\left(\varepsilon_{n}^{2}\right) \geq\left\langle Q_{\varepsilon_{n}, P}\left(\varphi_{n}\right), \varphi_{n}\right\rangle_{\varepsilon_{n}} & \geq\left\|\varphi_{n}\right\|_{\varepsilon_{n}}^{2}-p \int_{\mathcal{D}}\left(V_{\varepsilon_{n}, P}\right)^{p-1} \varphi_{n}^{2} \\
& \geq \varepsilon_{n}^{2}-o(1) \varepsilon_{n}^{2}
\end{aligned}
$$

which implies a contradiction.
Lemma 4.4. Let $R_{\varepsilon}(\varphi)$ be the functional defined by (4.3). Let $\varphi \in H_{0}^{1}(\mathcal{D})$, then

$$
\begin{equation*}
\left|R_{\varepsilon}(\varphi)\right| \leq o(1)\|\varphi\|_{\varepsilon}^{2}+o(1) \varepsilon^{\frac{(p-1) k}{2}}\|\varphi\|_{\varepsilon}^{2}=\varepsilon^{\tau}\|\varphi\|_{\varepsilon}^{2} \tag{4.11}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|R_{\varepsilon}^{\prime}(\varphi)\right\|_{\varepsilon} \leq o(1)\|\varphi\|_{\varepsilon}+o(1) \varepsilon^{\frac{(p-1) k}{2}}\|\varphi\|_{\varepsilon}=\varepsilon^{\tau}\|\varphi\|_{\varepsilon} \tag{4.12}
\end{equation*}
$$

for some $\tau>0$ small.
Proof. We have

$$
\begin{aligned}
\left|R_{\varepsilon}(\varphi)\right| & \leq o\left(\int_{\mathcal{D}} r^{M-1} s^{K-1} V_{\varepsilon, P}^{p-1} \varphi^{2}\right) \\
& \leq o(1) \int_{B_{d}(P)} r^{M-1} s^{K-1} V_{\varepsilon, P}^{p-1} \varphi^{2}+o\left(\int_{\mathcal{D} \backslash B_{d}(P)} V_{\varepsilon, P}^{p-1} \varphi^{2}\right)
\end{aligned}
$$

Moreover, by the exponential decay of $V_{\varepsilon, P}$ we obtain,

$$
o\left(\int_{\mathcal{D} \backslash B_{d}(P)} r^{M-1} s^{K-1} V_{\varepsilon, P}^{p-1} \varphi^{2}\right) \leq \operatorname{Co}(1) \varepsilon^{\frac{p-1}{2} k} \int_{\mathcal{D}} r^{M-1} s^{K-1} \varphi^{2} \leq o(1) \varepsilon^{\frac{p-1}{2} k}\|\varphi\|_{\varepsilon}^{2}
$$

The second estimate follows in a similar way.
Lemma 4.5. There exists $\varepsilon_{0}>0$ such that for $\varepsilon \in\left(0, \varepsilon_{0}\right]$, there exists a C^{1} map $\varphi_{\varepsilon, P}: E_{\varepsilon, P} \rightarrow H$, such that $\varphi_{\varepsilon, P} \in \Lambda_{\varepsilon, D}$ satisfying

$$
\left\langle I_{\varepsilon}^{\prime}\left(V_{\varepsilon, P}+\varphi_{\varepsilon, P}\right), \eta\right\rangle_{\varepsilon}=0, \forall \eta \in \Lambda_{\varepsilon, D}
$$

Moreover, we have

$$
\left\|\varphi_{\varepsilon, P}\right\|_{\varepsilon}=O\left(\varepsilon^{2}\right)
$$

Proof. We have $l_{\varepsilon, P}+Q_{\varepsilon, P} \varphi+R_{\varepsilon}^{\prime}(\varphi)=0$. As $Q_{\varepsilon, P}^{-1}$ exists, the above equation is equivalent to solving

$$
Q_{\varepsilon, P}^{-1} l_{\varepsilon, P}+\varphi+Q_{\varepsilon, P}^{-1} R_{\varepsilon}^{\prime}(\varphi)=0
$$

Define

$$
\mathcal{G}(\varphi)=-Q_{\varepsilon, P}^{-1} l_{\varepsilon, P}-Q_{\varepsilon, P}^{-1} R_{\varepsilon}^{\prime}(\varphi) \forall \varphi \in \Lambda_{\varepsilon, D}
$$

Hence the problem is reduced to finding a fixed point of the map \mathcal{G}.
For any $\varphi_{1} \in \Lambda_{\varepsilon}$ and $\varphi_{2} \in E_{\varepsilon}$ with $\left\|\varphi_{1}\right\|_{\varepsilon} \leq \varepsilon^{2-\tau},\left\|\varphi_{2}\right\|_{\varepsilon} \leq \varepsilon^{2-\tau}$

$$
\left\|\mathcal{G}\left(\varphi_{1}\right)-\mathcal{G}\left(\varphi_{2}\right)\right\|_{\varepsilon} \leq C\left\|R_{\varepsilon}^{\prime}\left(\varphi_{1}\right)-R_{\varepsilon}^{\prime}\left(\varphi_{2}\right)\right\|_{\varepsilon}
$$

From Lemma 4.4, we have

$$
\left\langle R_{\varepsilon}^{\prime}\left(\varphi_{1}\right)-R_{\varepsilon}^{\prime}\left(\varphi_{2}\right), \eta\right\rangle_{\varepsilon} \leq o(1)\left\|\varphi_{1}-\varphi_{2}\right\|_{\varepsilon}\|\eta\|_{\varepsilon}
$$

Hence we have

$$
\left\|R_{\varepsilon}^{\prime}\left(\varphi_{1}\right)-R_{\varepsilon}^{\prime}\left(\varphi_{2}\right)\right\|_{\varepsilon} \leq o(1)\left\|\varphi_{1}-\varphi_{2}\right\|_{\varepsilon}
$$

Hence \mathcal{G} is a contraction as

$$
\left\|\mathcal{G}\left(\varphi_{1}\right)-\mathcal{G}\left(\varphi_{2}\right)\right\|_{\varepsilon} \leq C o(1)\left\|\varphi_{1}-\varphi_{2}\right\|_{\varepsilon}
$$

Also for $\varphi \in E_{\varepsilon}$ with $\|\varphi\|_{\varepsilon} \leq \varepsilon^{2-\tau}$, and $\tau>0$ sufficiently small

$$
\begin{align*}
\|\mathcal{G}(\varphi)\|_{\varepsilon} & \leq C\left\|l_{\varepsilon, P}\right\|_{\varepsilon}+C\left\|R_{\varepsilon}^{\prime}(\varphi)\right\|_{\varepsilon} \\
& \leq C \varepsilon^{2}+C \varepsilon^{2-\tau+\tau} \\
& \leq C \varepsilon^{2} \tag{4.13}
\end{align*}
$$

Hence

$$
\mathcal{G}: \Lambda_{\varepsilon, D} \cap B_{\varepsilon^{2-\tau}}(0) \rightarrow \Lambda_{\varepsilon, D} \cap B_{\varepsilon^{2-\tau}}(0)
$$

is a contraction map. Hence by the contraction mapping principle, there exists a unique $\varphi \in \Lambda_{\varepsilon, D} \cap B_{\varepsilon^{k}}(0)$ such that $\varphi_{\varepsilon, P}=\mathcal{G}\left(\varphi_{\varepsilon, P}\right)$ and

$$
\left\|\varphi_{\varepsilon, P}\right\|_{\varepsilon}=\left\|\mathcal{G}\left(\varphi_{\varepsilon, P}\right)\right\|_{\varepsilon} \leq C \varepsilon^{2}
$$

We write $u_{\varepsilon}=V_{\varepsilon, P}+\varphi_{\varepsilon, P}$. Then we have

$$
\begin{aligned}
I_{\varepsilon}\left(u_{\varepsilon}\right) & =I_{\varepsilon}\left(V_{\varepsilon, P}\right) \\
& +\int_{D} r^{M-1} s^{K-1}\left(\varepsilon^{2} \nabla V_{\varepsilon, P} \nabla \varphi_{\varepsilon}-V_{\varepsilon, P} \varphi_{\varepsilon}+f\left(V_{\varepsilon, P}\right) \varphi_{\varepsilon}\right) d r d s \\
& +\frac{1}{2}\left(\int_{D} r^{M-1} s^{K-1}\left[\varepsilon^{2}\left|\nabla \varphi_{\varepsilon}\right|^{2}-\varphi_{\varepsilon}^{2}+f^{\prime}\left(V_{\varepsilon, P}\right) \varphi_{\varepsilon, P}^{2}\right] d r d s\right) \\
& -\int_{D} r^{M-1} s^{K-1}\left[F\left(V_{\varepsilon, P}+\varphi_{\varepsilon}\right)-F\left(V_{\varepsilon, P}\right)-\varepsilon f\left(V_{\varepsilon, P}\right) \varphi_{\varepsilon, P}-\frac{1}{2} f^{\prime}\left(V_{\varepsilon, P}\right) \varphi_{\varepsilon, P}^{2}\right] d r d s
\end{aligned}
$$

which can be expressed as

$$
\begin{aligned}
I_{\varepsilon}\left(u_{\varepsilon}\right) & =I_{\varepsilon}\left(V_{\varepsilon, P}\right) \\
& +\int_{\mathcal{D}} E_{\varepsilon}\left(V_{\varepsilon, P}\right) \varphi_{\varepsilon, P} r^{M-1} s^{K-1} d r d s \\
& +\frac{1}{2}\left(\int_{\mathcal{D}}\left[\varepsilon^{2}\left|\nabla \varphi_{\varepsilon}\right|^{2} d x-f^{\prime}\left(V_{\varepsilon, P}\right) \varphi_{\varepsilon}^{2}\right] r^{M-1} s^{K-1} d r d s\right) \\
& -\int_{\mathcal{D}} r^{M-1} s^{K-1}\left[F\left(V_{\varepsilon, P}+\varphi_{\varepsilon}\right)-F\left(V_{\varepsilon, P}\right)-f\left(V_{\varepsilon, P}\right) \varphi_{\varepsilon}-\frac{1}{2} f^{\prime}\left(V_{\varepsilon, P}\right) \varphi_{\varepsilon}^{2}\right] d r d s \\
& =I_{\varepsilon}\left(V_{\varepsilon, P}\right)+O\left(\left\|l_{\varepsilon, P}\right\|_{\varepsilon}\left\|\varphi_{\varepsilon, P}\right\|_{\varepsilon}+\left\|\varphi_{\varepsilon}\right\|_{\varepsilon}^{2}+R_{\varepsilon}\left(\varphi_{\varepsilon, P}\right)\right) \\
(4.14) & =I_{\varepsilon}\left(V_{\varepsilon, P}\right)+O\left(\varepsilon^{4}\right) .
\end{aligned}
$$

5. The reduced problem: min-max procedure

Proof of Theorem 1.1. Let $\mathcal{G}_{\varepsilon}(P)=\mathcal{G}_{\varepsilon}(d, \theta)=I_{\varepsilon}\left(u_{\varepsilon}\right)$. Consider the problem

$$
\min _{d \in \Lambda_{e, P}} \max _{\theta_{0}-\delta \leq \theta \leq \theta_{0}+\delta} \mathcal{G}_{\varepsilon}(d, \theta) .
$$

To prove that $\mathcal{G}_{\varepsilon}(P)=I_{\varepsilon}\left(V_{\varepsilon, P}+\varphi_{\varepsilon, P}\right)$ is a solution of (1.1), we need to prove that P is a critical point of $\mathcal{G}_{\varepsilon}$, in other words we are required to show that P is a interior point of $\Lambda_{\varepsilon, D}$.
For any $P \in \Lambda_{\varepsilon, P}$, from Lemma 4.3 we obtain

$$
\begin{align*}
\mathcal{G}_{\varepsilon}(P) & =I_{\varepsilon}\left(V_{\varepsilon, P}\right)+O\left(\left\|l_{\varepsilon, P}\right\|_{\varepsilon}\left\|\varphi_{\varepsilon, P}\right\|_{\varepsilon}+\left\|\varphi_{\varepsilon}\right\|_{\varepsilon}^{2}+R_{\varepsilon}\left(\varphi_{\varepsilon, P}\right)\right) \\
& =I_{\varepsilon}\left(V_{\varepsilon, P}\right)+o(1) \varepsilon^{k+2} \\
& =\varepsilon^{2} \gamma P_{1}^{M-1} P_{2}^{K-1}+\varepsilon^{2} \gamma_{1} P_{1}^{M-1} P_{2}^{K-1} U\left(\frac{2 d\left(P, \mathcal{D}_{1}\right)}{\varepsilon}\right)+o\left(\varepsilon^{k+2}\right) . \tag{5.1}
\end{align*}
$$

We have the expansion

$$
\begin{aligned}
\mathcal{G}_{\varepsilon}(d, \theta) & =\gamma \varepsilon^{2}\left[a^{M+K-2}+a^{M+K-1} d+\gamma^{-1} \gamma_{1} a^{M+K-2} U\left(\frac{2 d\left(P, \mathcal{D}_{1}\right)}{\varepsilon}\right)\right. \\
& \left.+O\left(d^{2}\right)\right] \cos ^{M-1} \theta \sin ^{K-1} \theta+o\left(\varepsilon^{2+k}\right) .
\end{aligned}
$$

It is clear that the maximum is attained at some interior point of $\theta^{\prime} \in\left(\theta_{0}-\delta, \theta_{0}+\delta\right)$.
Now we prove that for that θ^{\prime} the minimum is attained at a critical point of $\Lambda_{\varepsilon, P}$.
Let $P \in \Lambda_{\varepsilon, P}$, be a point of minimum of $\mathcal{G}_{\varepsilon}\left(d, \theta^{\prime}\right)$, then we obtain

$$
\mathcal{G}_{\varepsilon}\left(d, \theta^{\prime}\right)=\gamma \varepsilon^{2}\left[a^{M+K-2}+a^{M+K-1} d+O\left(d^{2}\right)\right] \cos ^{M-1} \theta^{\prime} \sin ^{K-1} \theta^{\prime}+O\left(\varepsilon^{2+k}\right) .
$$

Choose \tilde{P} such that the $d^{\prime}=d\left(\tilde{P}, \partial \mathcal{D}_{1}\right) \geq \frac{k}{2} \varepsilon|\ln \varepsilon|$. Then $\tilde{P} \in \Lambda_{\varepsilon, P}$.
But by definition, we have

$$
\begin{equation*}
\mathcal{G}_{\varepsilon}\left(d, \theta^{\prime}\right) \leq \mathcal{G}_{\varepsilon}\left(d^{\prime}, \theta^{\prime}\right) . \tag{5.2}
\end{equation*}
$$

From this we obtain

$$
\begin{aligned}
& \gamma\left[a^{M+K-2}+a^{M+K-1} d+O\left(d^{2}\right)\right] \cos ^{M-1} \theta^{\prime} \sin ^{K-1} \theta^{\prime}+O\left(\varepsilon^{k}\right) \\
\leq & \gamma\left[a^{M+K-2}+a^{M+K-1} d^{\prime}+\gamma_{1} \gamma^{-1} e^{\frac{d^{\prime}}{\varepsilon}}+O\left(d^{2}\right)\right] \cos ^{M-1} \theta^{\prime} \sin ^{K-1} \theta^{\prime} \\
+ & o\left(\varepsilon^{k}\right)
\end{aligned}
$$

Hence this implies that $d \sim \varepsilon|\ln \varepsilon|$. Hence $d \rightarrow 0$. This finishes the proof.

6. The reduced problem: max-max procedure

Proof of Theorem 1.2. Here we obtain the critical point using a max-max procedure. The projection in the Neumann case is just $Q_{\varepsilon, P}$. Hence the reduced problem

$$
\begin{equation*}
\mathcal{R}_{\varepsilon}(P)=\varepsilon^{2} \gamma P_{1}^{M-1} P_{2}^{K-1}-\varepsilon^{2} \gamma_{1} P_{1}^{M-1} P_{2}^{K-1} U\left(\frac{2 d\left(P, \mathcal{D}_{2}\right)}{\varepsilon}\right)+o\left(\varepsilon^{k+2}\right) \tag{6.1}
\end{equation*}
$$

Consider

$$
\begin{equation*}
\max _{d \in \Lambda_{\varepsilon, N}} \max _{\theta_{0}-\delta \leq \theta \leq \theta_{0}+\delta} \mathcal{R}_{\varepsilon}(d, \theta) \tag{6.2}
\end{equation*}
$$

We have the expansion

$$
\begin{aligned}
\mathcal{R}_{\varepsilon}(d, \theta) & =\gamma \varepsilon^{2}\left[a^{M+K-2}+a^{M+K-1} d-\gamma^{-1} \gamma_{1} a^{M+K-2} U\left(\frac{2 d\left(P, \mathcal{D}_{2}\right)}{\varepsilon}\right)\right. \\
& \left.+O\left(d^{2}\right)\right] \cos ^{M-1} \theta \sin ^{K-1} \theta+o\left(\varepsilon^{2+k}\right)
\end{aligned}
$$

It is clear that the maximum in θ is attained at some interior point of $\theta^{\prime} \in\left(\theta_{0}-\right.$ $\left.\delta, \theta_{0}+\delta\right)$. Now we prove that for that θ^{\prime} the minimum is attained at a critical point of $\Lambda_{\varepsilon, N}$.

Let $P \in \Lambda_{\varepsilon, N}$, be a point of maximum of $\mathcal{R}_{\varepsilon}\left(d, \theta^{\prime}\right)$, then we obtain

$$
\mathcal{R}_{\varepsilon}\left(d, \theta^{\prime}\right)=\gamma \varepsilon^{2}\left[a^{M+K-2}+a^{M+K-1} d+O\left(d^{2}\right)\right] \cos ^{M-1} \theta^{\prime} \sin ^{K-1} \theta^{\prime}+o\left(\varepsilon^{2+k}\right)
$$

Choose \tilde{P} such that the $d^{\prime}=d\left(\tilde{P}, \partial \mathcal{D}_{1}\right) \geq \frac{k}{2} \varepsilon|\ln \varepsilon|$. Then $\tilde{P} \in \Lambda_{\varepsilon, P}$. But by definition, we have

$$
\begin{equation*}
\mathcal{R}_{\varepsilon}\left(d^{\prime}, \theta^{\prime}\right) \leq \mathcal{R}_{\varepsilon}\left(d, \theta^{\prime}\right) \tag{6.3}
\end{equation*}
$$

This implies

$$
\begin{aligned}
& \gamma\left[a^{M+K-2}+a^{M+K-1} d+O\left(d^{2}\right)\right] \cos ^{M-1} \theta^{\prime} \sin ^{K-1} \theta^{\prime}+o\left(\varepsilon^{k}\right) \\
\geq & \gamma\left[a^{M+K-2}+a^{M+K-1} d^{\prime}-\gamma_{1} \gamma^{-1} e^{\frac{d^{\prime}}{\varepsilon}}+O\left(d^{2}\right)\right] \cos ^{M-1} \theta^{\prime} \sin ^{K-1} \theta^{\prime} \\
+ & o\left(\varepsilon^{k}\right)
\end{aligned}
$$

Hence $d \sim \varepsilon|\ln \varepsilon|$. Hence $d \rightarrow 0$. Theorem 1.2 is proved.

References

[1] A. Ambrosetti, A. Malchiodi, W. Ni; Singularly perturbed elliptic equations with symmetry: existence of solutions concentrating on spheres. I. Comm. Math. Phys. 235 (2003), no. 3, 427-466.
[2] A. Ambrosetti, A. Malchiodi, W. Ni; Singularly perturbed elliptic equations with symmetry: existence of solutions concentrating on spheres. II. Indiana Univ. Math. J. 53 (2004), no. 2, 297-329.
[3] M. Del Pino, P. Felmer; Spike-layered solutions of singularly perturbed elliptic problems in a degenerate setting. Indiana Univ. Math. J. 48 (1999), no. 3, 883-898.
[4] M. Del Pino, M. Kowalczyk, J. Wei; Concentraton on curves for nonlinear Schrödinger equations. Comm. Pure Appl. Math. 60 (2007), no. 1, 113-146.
[5] M. Esteban, P. Lions; Existence and nonexistence results for semilinear elliptic problems in unbounded domains. Proc. Roy. Soc. Edinburgh Sect. A 93 (1982/83), 1-14.
[6] B. Gidas, W. Ni, L. Nirenberg; Symmetry and related properties via the maximum principle. Comm. Math. Phys. 68 (1979), no. 3, 209-243.
[7] F. Pacella, P.N.Srikanth; A reduction method for semilinear elliptic equations and solutions concentrating on sphere. (Preprint 2012).
[8] B. Ruf, P. Srikanth; Singularly perturbed elliptic equations with solutions concentrating on a 1-dimensional orbit. J. Eur. Math. Soc. 12 (2010), no. 2, 413-427.
[9] P. Esposito, G.Mancini, S.Santra, P. Srikanth; Asymptotic behavior of radial solutions for a semilinear elliptic problem on an annulus through Morse index. J. Diff. Equations 239 (2007), no. 1, 1-15.
[10] F. Lin, W. M. Ni, J. Wei; On the number of interior peak solutions for a singularly perturbed Neumann problem. Comm. Pure Appl. Math. 60 (2007), no. 2, 252-281.
[11] W. M. Ni, I. Takagi; On the shape of least-energy solutions to a semilinear Neumann problem. Comm. Pure Appl. Math. 4 (1991), no. 7, 819-851.
[12] W. M. Ni, I. TAKAgI; Locating the peaks of least-energy solutions to a semilinear Neumann problem. Duke Math. J. 70 (1993), no. 2, 247-281
[13] W. M. Ni, J. Wei; On the location and profile of spike-layer solutions to singularly perturbed semilinear Dirichlet problems. Comm. Pure Appl. Math. 48 (1995), no. 7, 731-768.

Sanjiban Santra, School of Mathematics and Statistics, The University of Sydney, NSW 2006, Australia.

E-mail address: sanjiban.santra@sydney.edu.au
Juncheng Wei, Department of Mathematics, The University of British Columbia, VANCOUVER.

E-mail address: jcwei@math.ubc.ca

[^0]: 1991 Mathematics Subject Classification. Primary 35J10, 35J35, 35J65.
 Key words and phrases. Dirichlet problem, Neumann problem, annulus, concentration.
 The first author was supported by the Australian Research Council.

