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Abstract. In this paper, we review analytical methods for a rigorous study of the existence and stability
of stationary, multiple spots for reaction-diffusion systems. We will consider two classes of reaction-
diffusion systems: activator-inhibitor systems (such as the Gierer-Meinhardt system) and activator-
substrate systems (such as the Gray-Scott system or the Schnakenberg model).

The main ideas are presented in the context of the Schnakenberg model, and these results are new to
the literature.

We will consider the systems in a two-dimensional, bounded and smooth domain for small diffusion
constant of the activator.

Existence of multi-spots is proved using tools from nonlinear functional analysis such as Liapunov-
Schmidt reduction and fixed-point theorems. The amplitudes and positions of spots follow from this
analysis.

Stability is shown in two parts, for eigenvalues of order one and eigenvalues converging to zero, re-
spectively. Eigenvalues of order one are studied by deriving their leading-order asymptotic behavior and
reducing the eigenvalue problem to a nonlocal eigenvalue problem (NLEP). A study of the NLEP reveals
a condition for the maximal number of stable spots.

Eigenvalues converging to zero are investigated using a projection similar to Liapunov-Schmidt reduc-
tion and conditions on the positions for stable spots are derived. The Green’s function of the Laplacian
plays a central role in the analysis.

The results are interpreted in the biological, chemical and ecological contexts. They are confirmed by
numerical simulations.

1. Introduction: An Overview

One of the central issues in developmental biology is to understand how spatial patterns arise as an

embryo develops from a single fertilized cell into an adult. In 1952, Alan Turing [64] proposed that a

system of interacting chemicals could be driven unstable by diffusion and evolve into a spatial pattern.

This was an example of self-organization giving rise to emergent behavior. Since his seminal work, many

models have been proposed, from a huge spectrum of applications. A good account of these models

can be found in J. Murray’s book [43]. Among those models, in particular three stand out: the Gierer-

Meinhardt system [17] in biological development, the Gray-Scott model and the Schnakenberg model in

chemical reaction theory. In a two-dimensional domain, intricate spatially localized patterns, consisting

of either spots, stripes, mixed spot-stripe patterns, or space-filling curves, have been observed in

numerical simulations of those Turing systems. For activator-inhibitor systems, such as the well-known

Gierer-Meinhardt model of biological morphogenesis, spot and stripe patterns are ubiquitous ([17], [41],

[42], [34], [35]). For the Gray-Scott or Schnakenberg model of theoretical chemistry, an even greater

diversity of spatio-temporal patterns occur, including spot-replication behavior, spatio-temporal chaos

of spot patterns and labyrinthine patterns of stripes ([31], [32], [50], [51], [52]).
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Most of the previous analysis of the stability of localized patterns has been based on a weakly

nonlinear theory, where the solution is assumed to be close to some spatially uniform state across

the domain. However, numerical and analytical analysis shows that the stable patterns are far from

the uniform state. In this paper, we shall give a unified and rigorous treatment of multiple spots

for reaction-diffusion systems on a two-dimensional domain.

We begin with a classification of reaction-diffusion systems.

1.1. Reaction-Diffusion Systems. A two-component reaction-diffusion system in R2 is given by

vt = ε2∆v + f(u, v), τut = D∆u + g(u, v).

The unknowns u = u(x, t) and v = v(x, t) represent the concentrations of two chemicals at a point

x ∈ Ω ⊂ R2 and at a time t > 0, respectively, where Ω is a bounded and smooth domain in R2;

∆ :=
∑2

j=1
∂2

∂x2
j

is the Laplace operator in R2; ν(x) is the outer normal at x ∈ ∂Ω; ε2 and D are positive

diffusion constants; τ ≥ 0 is a non-negative time relaxation constant. Note that for the special case

τ = 0 we have a mixed parabolic-elliptic system, otherwise a parabolic system. The functions f(u, v)

and g(u, v) describe nonlinear reaction terms which are explained in more detail below.

It is well-known that for two-component reaction-diffusion systems the Turing instability, which leads

to pattern formation [64], is possible for exactly two types of systems which are characterized by the

signs of the Jacobian at a homogeneous, positive, steady state [43]. After a suitable relabelling of the

two components these two types can be written as follows:

J1 =


 + −

+ −


 , J2 =


 + +

− −


 .

We now consider some important examples of reaction-diffusion systems for both types.

Activator-inhibitor systems which are suggested in equation (12) of [17] to have the reaction terms

f(u, v) = −v +
vp

uq
, g(u, v) = −u +

vr

us
, where 1 <

qr

(p− 1)(s + 1)
, 1 < p (1.1)

(after re-scaling) are of type one. It is commonly assumed that there is a fast-diffusing inhibitor,

u, which inhibits the production of a slowly-diffusing activator, v. On the other hand, v activates

itself and the inhibitor. This mechanism drives sharply localized spatial spots of activator coupled

with nearby shallow peaks of inhibitor. A particular case of activator-inhibitor system which is now

commonly called the Gierer-Meinhardt system is the special case (p, q, r, s) = (2, 1, 2, 0).

Activator-substrate systems which are suggested in equation (11) of [17] (called Depletion Model

there) to have the reaction terms

f(v) = −v + uv2, g(u) = A− µu− uv2, where A > 0 (1.2)

(after re-scaling) are of type two. It is commonly assumed that there is a fast-diffusing substrate,

u, which is consumed by a slowly-diffusing activator, v, and supplied to the system at a constant

rate. On the other hand, v activates itself. This mechanism drives sharply localized spatial spots of

activator coupled with nearby shallow dips of substrate.
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Further, to get pattern formation, for activator-substrate systems the feed-rate must be large enough:

if the feed-rate is too small there is not enough substrate to support the production of activator and

any pattern will eventually die out. This is in contrast to the activator-inhibitor case, which does not

have any feeding mechanism.

The effect of the feed-rate is modelled by the constant A. To get stable multi-spots one has to assume

that A is large enough (see Theorem 2.2 below).

Particular cases of activator-substrate systems are µ = 1 which is now commonly called the Gray-

Scott system [18], [19] and µ = 0 which is now commonly called the Schnakenberg model [59]. In

both cases the reaction kinetics is derived from simple chemical reactions using the mass balance law.

So there is a marked difference between activator-inhibitor and activator-substrate systems: Near

activator peaks the inhibitor has high values, but the substrate has low values. This is easy to understand

intuitively, as in the first case high values of activator lead to strong activation of inhibitor, resulting

in an inhibitor peak, whereas in the second case high values of activator lead to fast consumption of

substrate, causing a substrate dip. This difference is clearly reflected in our analytical results and

numerical simulations for multi-spot patterns.

1.2. Previous Results on Peaked Solutions. Let us now give an overview of the literature to the

problem. For the one-dimensional Gierer-Meinhardt model we refer to [7], [63]. For the two-dimensional

Gierer-Meinhardt system existence and stability of multi-spots have been analyzed in [73], [74] [75]

(proving a conjecture of Ni [44]). For the shadow system see [68].

For the Gray-Scott system we refer to [54] (numerical simulation), [41], [42] (asymptotic expansion),

[8], [9], [10] (rigorous proofs for one dimension), [69], [70], [76], [77] (rigorous study of multi-spots for

higher dimensions), [7], [45], [46], [48], [49], [25], [26], [62] (rigorous study of instability mechanisms of

multi-spots).

The Turing bifurcations for the Schnakenberg model with spatially varying diffusion coefficients are

studied on a spatial two-dimensional square in [1]. It is shown how this spatial variation can be used to

partially reduce the degeneracy in the Turing bifurcation. Interesting phenomena are established which

include stable subcritical striped patterns and stripes losing stability super-critically to give stable

spotted patterns.

For the Schnakenberg model on a one-dimensional interval the existence and stability of multiple

interior spike solutions have been established in the symmetric case (i.e. spots of equal amplitudes) [22]

and in the asymmetric case (i.e. spots of two different amplitudes) [71].

The motion of spots has been analyzed in [12], [45]. For absolute instability see [58]. For chaotic

behavior see [50]. Singular eigenvalue problems for reaction-diffusion equations have been studied in

[47].

Reviews on pattern formation for reaction-diffusion systems and its biological, chemical and eco-

logical implications are given in [33], [38], [37] [67]. For an overview of biological modelling we refer to

[43].
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1.3. Biological implications. We now discuss biological, chemical and ecological implications of these

models.

Biological applications of the Gierer-Meinhardt model and its generalizations to such diverse bio-

logical processes as animal skin patterns, patterns on tropical sea shells, organ formation, nerve cell

and brain activity, regeneration in hydra and segmentation have been described in [38], [39].

A Turing model has been suggested to explain the development of pigmentation patterns on certain

species of growing angle-fish such as Pomacanthus semicirculantus where colored stripes are observed

which change their number, size and orientation [27]. After this model was refined, adding effects such

as cell growth and movement, also stripes of various thickness could be explained [53].

For reaction-diffusion systems on growing domains, which is a good model for the growth of organisms,

we mention [3], [4], [34], [35].

Recently in [61] hair follicle arrangements in mice have been modelled by a reaction-diffusion system

where the WNT and DKK proteins serve as an activator and inhibitor, respectively, and experiments

are combined with numerical computations. See also the perspective in [36].

In chemistry, open systems in which chemicals are fed into the system play an important role.

Simple models for this are Gray-Scott and Schnakenberg [65].

The Gray-Scott model and its relevance as a model for the ferrocyanide-iodate-sulfate (FIS) reaction

have been investigated both numerically and experimentally in [31], [32]. Self-replication spots have

been investigated numerically and by formal analysis in [56], [57].

In chemistry one criticism has been that the diffusion constants of the different chemical substances

are probably not very different. It has been shown mathematically, using Turing instability, that

chemical patterns with equal diffusion coefficients are possible [65]. These ideas have then been applied

to the Belousov-Zhabotinskii reaction [55]. However, a mathematical analysis of multi-spots in one

space-dimension for the Gray-Scott system revealed that they are unstable for equal diffusion constants

[14], [15], [20], [21].

For the CIMA reaction experimentally found pattern formation [2], [6], [51], [52] could successfully

be explained by reaction-diffusion modelling [30].

Even though the Schnakenberg model is unquestionably a simplification of processes in chemical

reactors many of the patterns observed experimentally can be computed with the Schnakenberg model,

such as multi-spots forming hexagonal arrays, stripes and wiggled stripes [11].

Let us finally comment on ecology. In [33] it is argued that pattern and scale are the central processes

in ecology which unify population biology and ecosystems science and are essential for pure and applied

ecology. The main task is therefore to understand the mechanism leading to pattern formation which

acts on various scales. These patterns can be explained by Turing instabilities [60] and Turing patterns

have the advantages that no genetic information is required and that almost every conceivable pattern

can be explained. Patterns are important in ecology as they can explain diversity. So the study of

Turing patterns in an ecological context is very interesting and important.
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Since multi-spots are frequently observed in biology, chemistry or ecology they certainly

have a strong relevance in the natural world.

1.4. Analysis of Multi-spots. We now turn to our problem of describing and analyzing multi-spots.

Throughout the paper, for (1.2) we assume that

ε2

|Ω| << 1 does not depend on x,

τ ≥ 0 does not depend on x or ε,

D,A > 0 do not depend on x (but may depend on ε),

C1 ≤ D

|Ω| << eC2/(ε/
√
|Ω|) for some C1 > 0, 0 < C2 < 1.

To emphasize the dependence on ε, we sometimes use the notations Dε and Aε. We will make remarks on

the relevance of these conditions towards the end of the introduction after explaining the main results.

Note that the constants ε2

|Ω| and D
|Ω| are invariant under scaling of the domain. For example, if one

stretches the length-scales by factor 2, i.e. one multiplies the area of domain by factor 4, and also

multiplies the diffusion constants by factor 4, one has re-scaled the system to a new system which has

the same dynamical behavior.

What is a spot? It is a stationary localized structure for which the (slowly-diffusing) activator

has a sharp peak and the other (fast-diffusing) component has a more shallow maximum (for activator-

inhibitor systems) or minimum (for activator-substrate systems), respectively.

To describe a spot quantitatively, we first explain how the profile of the activator for a spot looks

like. After re-scaling the spatial variable and the amplitude of the spot it is, to leading order, given by

the solution w of the following problem:




∆w − w + w2 = 0, w > 0 in R2,

w(0) = maxy∈R2 w(y), w(y) → 0 as |y| → ∞.
(1.3)

The uniqueness of the solution w was proved in [29]. By [16] we know that w is rotationally symmetric.

It is also important to note that

w(y) ∼ |y|−1/2e−|y| as |y| → ∞, (1.4)

so w has exponential decay at infinity. In some sense, w is the “ground state” to the multi-spot problem.

To get multi-spots from w, one re-scales space by the factor ε, the amplitude by ξε (depending on

ε) and places spots at the positions P ε
j which converge to some limiting positions P 0

j as ε → 0. This is

how we construct a good approximation to a solution. Then, using tools from nonlinear functional

analysis, such as Liapunov-Schmidt reduction and fixed-point theorems, a multi-spot steady-state

is established which is close to these multiple w’s. This solves the existence problem.

Now we highlight the main ideas for solving the stability problem. This is done in two parts.

Part I: Study of the eigenvalues with λε = O(1),

Part II: Study of the eigenvalues with λε = o(1) as ε → 0.



6 JUNCHENG WEI AND MATTHIAS WINTER

To establish Part I, we take the limit of the linearized operator to leading order as ε → 0. Then,

using tools from nonlinear functional analysis such as nonlocal eigenvalue problems (NLEPs)

and elliptic estimates we study the behavior of the eigenvalues of the limit problem for ε = 0. If

λε = O(1) by an argument of Dancer [5] we know that the stability behavior of the spectrum of the

limit problem is the same as that for small ε.

To establish Part II, the analysis used in Part I is not good enough for the eigenvalues with λε = o(1)

since knowing that their limit is zero does not tell us anything about the signs of the real parts of the

eigenvalues for ε small. So a refined analysis is needed which goes beyond the leading order O(1).

Since zero eigenvalues of the limit problem are connected with translation modes which belong to the

kernel of the linearized operator, for small ε we have to deal with small eigenvalues and a corresponding

approximate kernel. We use a projection similar to Liapunov-Schmidt reduction. This analysis leads

to conditions on the positions of the multi-spots which are expressed in terms of the Green’s function.

We now make a remark on the choice of diffusion constants. If ε/
√
|Ω| is small enough the

spots have radius of the order ε much smaller than the typical domain size (length-scale of the order√
|Ω|). So the spots are well separated and an explicit analysis is possible. The behavior for finite

and not necessarily small ε/
√
|Ω| is not so easy to capture analytically, and we have only been able to

investigate it by numerical simulations (see Section 5).

The scaling given by the constants in the system can be reduced to the following two dimensionless

parameters which are invariant under spatial scaling:

ηε =
1

2π

|Ω|
Dε

log

√
|Ω|
ε

, αε =
ε2

|Ω|
∫
R2 w2 dy

A2
ε

. (1.5)

Note that ηε describes the relative size of the diffusion constants scaled with respect to domain size and

αε measures the relative size of the activator diffusion constant scaled to domain size and the feed rate

Aε, which is invariant under spatial scaling.

We prove that, in leading order, the maximal number K of stable spots is given by

K ≤
(

ηε

αε

)1/2

= Aε


 1

2π
∫
R2 w2 dy

|Ω|
Dε

|Ω|
ε2

log

√
|Ω|
ε




1/2

. (1.6)

If there are more spots than described by (1.6) an overcrowding instability occurs which is linked to

an eigenvalue of order O(1) with positive real part. Dynamically, this implies that some of the spots will

disappear on an O(1) timescale due to overcrowding. We prove that this statement is true for τ = 0.

Then, by a perturbation argument, it also holds if τ is small enough. For τ = 0 the eigenvalues become

unstable by crossing the imaginary axis through zero.

Now we discuss the influence of the time-relaxation constant τ on the substrate. First we note that

the one-spot solution is stable if τ is small. For increasing τ this spot may become unstable due to

a Hopf bifurcation: The spot starts to oscillate, hereby disappearing and reappearing periodically.

This means that if the substrate approximates a steady-state more slowly (increasing τ) oscillations
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are more preferred. In the one-dimensional case this phenomenon has been studied analytically and

numerically [72].

For multi-spots there are two competing instability mechanisms: Hopf bifurcation (which dom-

inates for τ large) and overcrowding instability (which dominates for K large).

Inequality (1.6), which is true for ε2/Ω sufficiently small, implies that the maximal number of stable

spots increases if Aε increases or if Dε/|Ω| decreases. These monotonicity properties are also observed

numerically if ε2/Ω is finite and not necessarily very small.

We have simulated multi-spots numerically, and the results are presented in Section 5. Setting

ε2 = 0.001 and varying D we computed the Schnakenberg dynamics with feed rate A = 1 and time

relaxation constant τ = 1 on the unit disc with an initial condition having sixfold symmetry, see Figure

1. For D/ε2 ≥ 10, we have obtained multi-spots for the final state (i.e. the long-time limit) which is

numerically stable. Further, the number of spots increases with decreasing D, see Figure 2. If D/ε2 = 5

or smaller we did not observe multi-spots any more, but instead realized complex, chaotic dynamical

behavior (not shown).

The problem with the quantitative application of our analytical results for finite ε/
√
|Ω| is the follow-

ing: They are derived taking into account O(1) terms but neglecting terms of the order O

(
1

log

√
|Ω|
ε

)
.

However, if ε/
√
|Ω| is not very small, then these two orders are comparable since

(
log |Ω|

ε2

)−1
decays

only very slowly. We could improve the results by taking into account also contributions of the or-

der O

(
1

log
|Ω|
ε2

)
, but then the analysis becomes much more complicated since the positions and the

amplitudes of the multi-spots are now both coupled with the diffusion constants.

Note that for the Gray-Scott system a constant similar to the one given in(1.6), which depends on ηε

and αε only, determines the maximal number of stable spots.

For the Gierer-Meinhardt it is only ηε, that means the relative size of the two diffusion constants –

each scaled to domain size, which decides on the maximal number of stable spots. When the diffusion

constant of the inhibitor becomes smaller, the maximal number of stable spots increases.

1.5. Structure of this paper. The structure of this paper is as follows: In Section 2 we state our

main results. In Section 3 we prove the existence of multi-spots and determine the amplitudes and

positions of the spots. In Section 4 we prove the stability of spots. In Section 5 we confirm our results

by numerical simulations. In Section 6 we discuss our results. In three appendices we present the main

technical tools: In Section 7/Appendix A we give an introduction to the Liapunov-Schmidt reduction

which is used in Section 3. In Section 8/Appendix B we prove the stability of two nonlocal eigenvalue

problems (NLEPs) which is needed in Subsection 4.1. In Section 9/Appendix C we study the small

eigenvalues and these results are used in Subsection 4.2.

When technical details are omitted, they can be found in [75] or [76], even if we do not make explicit

reference every time. To simplify our notation, we use e.s.t. to denote exponentially small terms (in

their respective norms); more precisely, e.s.t. = O(e−C2/(ε/
√
|Ω|)) as ε → 0 for some 0 < C2 < 1.
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2. Main Analytical Results: Existence and Stability of Multi-spot Solutions

We now present the main results of this paper about existence and stability of multi-spot solutions.

They will be explicitly given for the Schnakenberg system for which they are new. Then the

earlier results for the Gierer-Meinhardt system and the Gray-Scott system will be summarized and all

the results will be compared.

We assume that the diffusion constant of activator is small compared to the domain size, 0 <

ε2/|Ω| << 1. This implies that the radius ε of spots will be small compared to the length scale√
|Ω| of the domain. In this limit we are able to give an explicit analysis of existence and stability of

multi-spots.

For the diffusion constant of the substrate in the limit ε → 0 we assume that limε→0
Dε

|Ω| = D0

|Ω| ∈ (0, +∞]

(note that this limit may be infinity). Let β2
ε = |Ω|

Dε
; then limε→0 βε = β0 ∈ [0, +∞).

We recall the two constants ηε, αε, describing the diffusion constant of the substrate and the feed

rate, respectively, which were defined in (1.5):

ηε =
|Ω|

2πDε

log

√
|Ω|
ε

, αε =
ε2

|Ω|
∫
R2 w2 dy

A2
ε

.

Note that ηε depends only on the two diffusion constants and is monotone decreasing in Dε/|Ω|, so ηε

describes the growth rate of Dε/|Ω| as ε → 0. On the other hand, αε depends on the diffusion constant

of the activator and the feed rate. It is monotone decreasing in Aε, so αε describes the growth rate of

Aε as ε → 0.

We consider the limits

η0 = lim
ε→0

ηε ∈ [0, +∞], α0 = lim
ε→0

αε ∈ [0, +∞] (2.1)

and we assume that these limits exist (note that these limits may be zero or infinity).

For existence we assume that

(T1) K2 lim
ε→0

αε

ηε

6= 1,

where K is the number of spots. We assume condition (T1) for the rest of the paper.

For stability we assume that

(T2) K2 lim
ε→0

αε

ηε

< 1,

where K is the number of spots. Note that (T2) gives an explicit bound on the maximal number of

stable spots. Further, K increases if αε decreases, i.e. if the feed rate Aε increases, or if ηε increases,

i.e. if Dε/|Ω| decreases. In short, one has many stable spots if feeding dominates over diffusion, scaled

with domain size, for the substrate.

Note that we sometimes write
α0

η0

= lim
ε→0

αε

ηε

in case this limit exists.



SCHNAKENBERG MODEL 9

With these notations, steady states for the Schnakenberg model




vt = ε2∆vε − vε + Aεuεv
2
ε in Ω,

τut = Dε∆uε + 1− uεv
2
ε in Ω,

∂uε

∂ν
= ∂vε

∂ν
= 0 on ∂Ω.

(2.2)

are the solutions of the system




ε2∆vε − vε + Aεuεv
2
ε = 0 in Ω,

Dε∆uε + 1− uεv
2
ε = 0 in Ω,

∂uε

∂ν
= ∂vε

∂ν
= 0 on ∂Ω.

(2.3)

Note that we get (2.2) from (1.2) for the choice µ = 0 and after the re-scaling v̂ = v, û = Au (and then

dropping hats). We make this re-scaling to simplify the calculation.

Now we describe the positions of the spots. Let P = (P1, . . . , PK) ∈ ΩK , where P is arranged

such that

P = (P1, P2, . . . , PK) with Pi = (Pi,1, Pi,2) for i = 1, 2, . . . , K.

For the rest of the paper we assume that the spots are well separated, which is made precise as

follows:

Assume that P ∈ Λ̄ ⊂ ΩK , where for δ > 0 fixed we define

Λ =

{
(P1, P2, . . . , PK) ∈ ΩK : |Pi − Pj| > 2δ for i 6= j

and d(Pi, ∂Ω) > δ for i = 1, 2 . . . , K

}
. (2.4)

The positions of the spots can be determined explicitly. For this purpose, we introduce the Green’s

function G(x, ξ) of the Laplace operator with Neumann boundary condition as follows:




∆G(x, ξ)− 1
|Ω| + δ(x− ξ) = 0, x, ξ ∈ Ω,

∫

Ω
G(x, ξ) dx = 0, ξ ∈ Ω,

∂G(x, ξ)

∂νx

= 0, x ∈ ∂Ω, ξ ∈ Ω.

(2.5)

Let

H(x, ξ) = G(x, ξ)− 1

2π
log

1

|x− ξ|
be the regular part of G(x, ξ).

For P ∈ Λ, we define

F (P) =
K∑

k=1

H(Pk, Pk) +
∑

i,j=1,...,K,i6=j

G(Pi, Pj) (2.6)

and

M(P) = ∇2
PF (P). (2.7)

Note that F (P) ∈ C∞(Λ).



10 JUNCHENG WEI AND MATTHIAS WINTER

For existence we assume that the positions of the spots approach a non-degenerate critical point

of F (P).

For stability we assume that the positions of the spots approach a non-degenerate local minimum

point of F (P).

After these preparations, we have all the notations in place which we need to formulate our results.

Our first main result concerns the existence of K−spot solutions.

Theorem 2.1. (Existence of K-spot solutions).

Suppose that limε→0 βε = limε→0

( |Ω|
Dε

)1/2 ≥ 0 and that (T1) holds. Assume that

(∗) P0 = (P 0
1 , P 0

2 , . . . , P 0
K) ∈ Λ is a nondegenerate critical point of F (P)

(defined by (2.6)). Then, for ε sufficiently small, problem (2.3) has a multi-spot solution (vε, uε) with

the following properties:

(1) vε(x) =
∑K

j=1
1

Aεξε

(
w

(
x−P ε

j

ε

)
+ O(h(ε, β))

)
uniformly for x ∈ Ω̄,

ξε = Kαε(1 + O(h(ε, β)), (2.8)

where

h(ε, β) = max





1

log

√
|Ω|
ε

, β2





(2.9)

(2) uε(x) = ξε(1 + O(h(ε, β)) uniformly for x ∈ Ω̄.

(3) P ε
j → P 0

j as ε → 0 for j = 1, ..., K.

Remarks: 1. The case β0 = 0 (i.e. Dε/|Ω| → ∞) is called the weak-coupling case. The case β0 > 0

(i.e. Dε/|Ω| → D0/|Ω| for some D0/|Ω| ∈ (0,∞)) is called the strong-coupling case. The analysis is

different in both cases and therefore these two cases have been considered separately. In this paper

the main ideas of the proofs are explained for the weak-coupling case. We refer to [73] and [74] for a

rigorous investigation of the strong-coupling case for the Gierer-Meinhardt system.

2. Note that the substrate has higher diffusion constant and so has a more shallow profile, which, to

leading order, may be assumed to be constant in the weak-coupling case. In the strong-coupling

case this assumption is not true anymore which makes the analysis more complicated.

Our second main result concerns the stability of the K-spot solutions constructed in Theorem 2.1.

We say that an eigenvalue problem is (linearly) stable if there exists a constant c0 > 0 such that for

all eigenvalues λ, we have Re(λ) ≤ −c0. We say it is (linearly) unstable if there exists an eigenvalue

λ with Re(λ) > 0.

Theorem 2.2. (Stability of K−spot solutions).

Let (vε, uε) be the steady-state K−spot solutions of (2.2) constructed in Theorem 2.1 and let us assume

that the conditions made in Theorem 2.1 are true. Further, we assume that

(∗∗) P0 is a nondegenerate local minimum point of F (P).
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Then we have the following stability results:

Case 1. ηε/αε → 0.

If K = 1, there exists a unique τ1 > 0 such that for τ < τ1, (uε, vε) is linearly stable, while for τ > τ1,

(uε, vε) is linearly unstable.

If K > 1, then (uε, vε) is linearly unstable for any τ ≥ 0.

Case 2. ηε/αε →∞.

Then (uε, vε) is linearly stable for any τ ≥ 0.

Case 3. ηε/αε → η0/α0 ∈ (0,∞).

If condition (T2) holds, there exist 0 < τ2 < τ3 such that (uε, vε) is linearly stable for 0 ≤ τ < τ2 or

τ > τ3.

If K = 1 and 1 > η0

α0
, there exist 0 < τ4 < τ5 such that (uε, vε) is linearly stable for τ < τ4 and linearly

unstable for τ > τ5.

If K > 1 and K2 > η0

α0
, then (uε, vε) is linearly unstable for all τ ≥ 0.

Remark: We are in the critical Case 3 of Theorem 2.2 if

Aε ∼



Dε

|Ω|
ε2

|Ω|
1

log

√
|Ω|
ε




1/2

(compare equation (1.6)).

Note that in the special case Dε

|Ω| = O(1) the critical rate for Aε is

(
ε2

|Ω|
1

log

√
|Ω|
ε

)1/2

.

The chemical interpretation of this is the following: For the critical rate the feeding of substrate

matches exactly the consumption.

2.1. Comparison of results with Gierer-Meinhardt system and Gray-Scott system. It is

interesting to compare these results with previous results on the Gierer-Meinhardt and Gray-Scott

systems.

For the Gierer-Meinhardt system the condition (T2) is replaced by

K < η0.

This says that with decreasing diffusion constant of the inhibitor the maximal number of stable spots

increases. There is no feeding mechanism for activator-inhibitor systems and so only one constant

plays a role. In short, one has many stable spots if the inhibitor diffuses slowly.

For the Gray-Scott system the condition (T2) is replaced by

(2η0 + K)2 <
η0

α0

.

Comparing this formula with (T2), there is an extra term 2η0 on the left-hand side for Gray-Scott.

So for the Gray-Scott system the maximal number of spots is smaller than for the Schnakenberg

system. If K >> η0 they are asymptotically the same.

Further, for Gray-Scott K increases if α0 decreases, i.e. the feed rate increases. Interestingly, for

Gray-Scott the dependence of K from η0 is not monotone: If η0α0 < 16 then K increases if η0
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increases, i.e. if D0/|Ω| decreases. This is the same behavior as for Schnakenberg or Gierer-Meinhardt.

However, if η0α0 > 16 then K decreases if η0 increases, i.e. if D0/|Ω| increases. This behavior is the

reverse of Schnakenberg or Gierer-Meinhardt. So for Gray-Scott we have the most complicated behavior

of the three as the diffusion and feeding mechanisms interact in an intricate way.

For all three systems condition (T1), or its equivalent, is obtained by making inequality (T2), or its

equivalent, into an equality. Finally, for all three systems the function F (P) (defined by (2.6)), which

determines the positions of the spots, remains the same.

More comments on and explanations of these results can be found in the discussion section, Section

6.

3. Existence Analysis

In this section, we prove the existence result given in Theorem 2.1. We search for solutions of (2.3)

in the following form

v(x) ∼
K∑

j=1

1

Aξε,j

w
(

x− Pj

ε

)
, u(Pj) = ξε,j, (3.1)

where w is the unique solution of (1.3), (P1, ..., PK) ∈ Λ, ξε,j is the amplitude of the j−th spot and

Pj is the position of the j−th spot.

In the first part, we determine, in the leading order, the equations for the amplitudes. In the second

part, we use a Liapunov-Schmidt reduction procedure to find the positions for the spots.

3.1. Existence Proof I: Determining the amplitudes of the spots. In this section we compute

the amplitudes of the spots, to leading order as ε → 0. It is found that, to leading order, the amplitudes

depend on the number of spots but not on their positions. This computation depends very much

on the reaction kinetics and for the Schnakenberg system is different from the other systems.

We first introduce some notation which we need to make a leading-order ansatz for a multi-spot

solution of (2.3). Then we compute the unknown amplitudes of the spots.

We define cut-off functions as follows: Let χ be a smooth cut-off function which is equal to 1 in B1(0)

and equal to 0 in R2 \B2(0), where Br(0) is the open ball with the origin as its center and radius r.

With this notation in place, we can now make the following leading-order ansatz for a multi-spot

solution (vε, uε) of (2.3):




vε =
∑K

j=1
1

Aξε,j
w(x−Pj

ε
)χε,j(x)(1 + h(ε, β)),

uε(Pj) = ξε,j(1 + h(ε, β)),
(3.2)

where w is the unique solution of (1.3), (P1, ..., PK) ∈ Λ, ξε,j is the amplitude of uε at Pj, and

χε,j(x) = χ
(

x− Pj

r0

)
, x ∈ Ω, j = 1, . . . , K. (3.3)

Note that the supports of χε,j and χε,i are disjoint for i 6= j.
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From the second equation in (2.3), we get

∆uε +
β2

|Ω| −
β2

|Ω|uεv
2
ε = 0. (3.4)

Now, using (2.5) and the decomposition for the Green’s function G given after (2.5), we get from (3.4),

for some unknown real constant c,

uε(Pi)− c = ξε,i − c =
∫

Ω
G(Pi, ξ)

β2

|Ω|(1− uε(ξ)v
2
ε (ξ)) dξ

= − 1

A2ξε,i

β2

2π

ε2

|Ω| log

√
|Ω|
ε

∫

R2
w2(y) dy(1 + h(ε, β)), i = 1, ..., K. (3.5)

Inserting the constants ηε and αε given in (1.5), from (3.5) we obtain the following system of equations

for the amplitudes ξε,i:

ξε,i − c +
ηεαε

ξε,i

= O




K∑

j=1

β2αε

ξε,j


 , i = 1, ..., K, (3.6)

for some unknown real constant c.

Integrating (3.4) over Ω and using the fact that uε satisfies the Neumann boundary condition, we get

the solvability condition

|Ω| =
∫

Ω
uε(ξ)v

2
ε (ξ) dξ.

This implies, using (3.2),

K∑

j=1

1

A2ξε,j

ε2
∫

R2
w2(y) dy = |Ω|(1 + h(ε, β)). (3.7)

and (3.7) implies

K∑

j=1

αε

ξε,j

= 1 + O(h(ε, β)). (3.8)

Our goal now is to solve the system (3.6), (3.8) for small ε. We first consider the case ε = 0. Taking

the limit ε → 0 in (3.6), (3.8), we get the following algebraic equations, where ξ0 are the limits of

the amplitudes ξε as ε → 0:

ξi − c +
η0α0

ξi

= 0,
K∑

i=1

α0

ξi

= 1, (3.9)

for some unknown real constant c. Now we look for multi-spots of equal size. This means that ξi should

be independent of i. Denoting ξ0 := ξi, i = 1, 2, . . . , K, from the second equation of (3.9) we get

ξ0 = Kα0.

Then the first equation of (3.9) implies

c = Kα0 +
η0

K
.

The case of small ε can now be solved by the finite-dimensional version of the implicit function

theorem under the assumption (T1), made throughout the paper.

This proves (2.8) in Theorem 2.1 and determines the amplitudes of the spots to leading order.
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For other reaction kinetics, e.g. Gierer-Meinhardt of Gray-Scott, one has to solve similar, but different

systems for the amplitudes.

3.2. Existence Proof II: Determining the positions of the spots. We complete the proof of

Theorem 2.1 by rigorously determining the positions of the spots. Here an analysis is required which

goes beyond the leading order. This is achieved in three steps.

Step 1. Choose good approximations to the solution. The main idea is to solve the second

equation exactly for a good choice of the activator vε and then estimate the error in the first equation.

An estimate, using the Green’s function G given in (2.5), provides the crucial step.

Step 2. If the spots are far apart they interact only weakly. Therefore they can be translated easily.

These “translation modes” correspond to small eigenvalues in the linearized system. To eliminate

these one has to project the corresponding 2K-dimensional kernel and co-kernel. This is achieved in

a rigorous way using Liapunov-Schmidt reduction. This process effectively reduces the problem of

finding multi-spots to a finite-dimensional problem of dimension 2K for the positions of the spots.

Step 3. Solve the finite-dimensional problem derived in Step 2. One has to derive the finite-

dimensional problem explicitly and show that it can be solved using a finite-dimensional fixed-point

theorem. Again the Green’s function plays the central role. Checking the sufficiency conditions for

the fixed-point theorem leads to the non-degeneracy condition (∗) in Theorem 2.1.

The details of the proof are given in Appendix A.

4. Stability Analysis

In this section, linearizing the system (2.2) at the equilibrium states (vε, uε) given in Theorem 2.1,

we first derive the eigenvalue problem. There are two types of eigenvalues λε = O(1) and λ = o(1),

respectively, and so the rest of the proof is divided into two parts.

Part I. λε = O(1). Then, taking ε → 0, we derive the limit eigenvalue problem for ε = 0 which is

a vectorial nonlocal eigenvalue problem (NLEP). By diagonalization we derive two scalar nonlocal

eigenvalue problems (NLEPs) which will be analyzed in Appendix B.

If λ0 6= 0, by an argument of Dancer [5], the stability problem for small ε > 0 is equivalent to stability

in the limiting case ε = 0.

Part II. λε = o(1). In this case we have λ0 = 0 and so the limiting eigenvalue does not give any

information about the character of the eigenvalues for small ε > 0. Hence an analysis of the eigenvalue

problem beyond the order O(1) is required to understand the asymptotic behavior of the eigenvalues

λε = o(1) and determine their stability properties.

The argument is reminiscent of the Liapunov-Schmidt reduction considered in Subsection 3.2. The

technical details of this analysis are presented in Appendix C.
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We begin by deriving the eigenvalue problem. Here we use the same leading-order approximation of

the solution as in Section 4, namely




vε ∼ ∑K
i=1

1
Aξε,i

w
(

x−P ε
i

ε

)
χε,i(x),

uε(P
ε
i ) ∼ ξε,i,

(4.1)

where ξε,i ∼ ξε ∼ Kαε as computed in Section 4.

Linearizing around the equilibrium states (vε, uε)




v = vε + φε(y)eλεt,

u = uε + ψε(x)eλεt,

and substituting the result into (2.2) we deduce the following eigenvalue problem




∆yφε − φε + 2Auεvεφε + Aψεv
2
ε = λεφε,

1
β2 ∆ψε − 2uεvεφε − ψεv

2
ε = τλεψε.

(4.2)

Here D = |Ω|
β2 , λε is some complex number and

φε ∈ H2
N(Ωε), ψε ∈ H2

N(Ω), (4.3)

where the index N indicates that φε and ψε satisfy no-flux boundary conditions and

Ωε = {y ∈ R2|εy ∈ Ω}.

4.1. Stability Part I: Large Eigenvalues. In the case λε = O(1) we derive the vectorial NLEP and

the two scalar NLEPs which will be investigated in Appendix B.

We compute the limit ε → 0 in the eigenvalue problem (4.2). The most important part here is to

expand the second eigenfunction ψε, using the Green’s function defined in (2.5).

Let

ψε(P
ε
j )

1

ξ2
j

= ψ̂ε,j, Ψ̂ε = (ψ̂ε,1, ..., ψ̂ε,K) → Ψ̂0. (4.4)

Then we have

ξ2
i ψ̂ε,i =


 1

τλ0


−2Aαε

∑K
j=1

∫
R2 wφε,j∫

R2 w2
− αε

K∑

j=1

ψ̂ε,j


 +

(
−2Aηεαε

∫
R2 wφi∫
R2 w2

− ηεαεψ̂ε,i

) 
(1 + o(1)).

Written in matrix notation, we obtain in the limit ε → 0
[
(ξ2

0 + η0α0)I +
α0

τλ0

E
]
lim
ε→0

Ψ̂0 =
(
−2Aη0α0I − 2Aα0

τλ0

E
) ∫

R2 wΦ dy∫
R2 w2 dy

,

where I is the identity matrix,

E =




1 · · · 1
...

...
...

1 · · · 1


 (4.5)
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and

Φ =




φ1

φ2

...

φK



∈ (H2(R2))K .

Thus for τλ0 6= 0 in the limit ε → 0 from (4.2) we obtain the following vectorial nonlocal eigenvalue

problem (NLEP):

∆Φ− Φ + 2wΦ− 2B
∫
R2 wΦ∫
R2 w2

w2 = λ0Φ, (4.6)

where

B =
[
(ξ2

0 + η0α0)I +
α0

τλ0

E
]−1 (

η0α0I +
α0

τλ0

E
)

. (4.7)

Note that we have expressed the matrix B explicitly. It is composed of the matrices I and E . The

constants depend on ξ0(= Kα0), η0, α0, τ .

More precisely, we have the following statement:

Theorem 4.1. Assume that (vε, uε) satisfies (4.1).

Let λε be an eigenvalue of (4.2) such that Re(λε) > −c0, where 0 < c0 < 1.

(1) Suppose that (for suitable sequences εn → 0) we have λεn → λ0 6= 0. Then λ0 is an eigenvalue of

the problem (NLEP) given in (4.6), (4.7).

(2) Let λ0 6= 0 be an eigenvalue of the problem (NLEP) given in (4.6), (4.7). Then for ε sufficiently

small, there is an eigenvalue λε of (4.2) with λε → λ0 as ε → 0.

The proof of Theorem 4.1 is based on our derivation of the vectorial (NLEP) (4.6), (4.7) given before

this theorem and the argument of Dancer [5].

¤
Theorem 4.1 says that to analyze the character of eigenvalues λε = O(1) for small ε it is enough to

analyze them for λ = 0. We will do this in the following.

Diagonalizing (4.6), (4.7), the study of large eigenvalues can be reduced to the study of the system

of two scalar nonlocal eigenvalue problems (4.6), (4.7). To this end, we compute the eigenvalues of B:

b1 =
η0α0τλ0 + Kα0

(ξ2
0 + η0α0)τλ0 + Kα0

, b2 = · · · = bK =
η0α0

ξ2
0 + η0α0

. (4.8)

Note that the first eigenvalue is simple, the second eigenvalue has algebraic multiplicity K − 1.

Thus the study of the vectorial NLEP (4.6), (4.7) is reduced to the study of the following two scalar

NLEPs:

∆Φ− Φ + 2wΦ− 2(η0α0τλ0 + Kα0)

(ξ2
0 + η0α0)τλ0 + Kα0

∫
R2 wΦ∫
R2 w2

w2 = λ0Φ (4.9)

and

∆Φ− Φ + 2wΦ− 2η0α0

η0α0 + ξ2
0

∫
R2 wΦ∫
R2 w2

w2 = λ0Φ. (4.10)

The two NLEPs (4.9) and (4.10) will be studied in Appendix B.
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Remark: In the special case τ = 0 the proof of Theorem 4.1 has to be modified, using the Green’s

function G defined in (2.5) and a solvability condition analogous to (3.7). Then one gets the result of

Theorem 4.1 with (4.7) replaced by

B =

[
(ξ2

0 + η0α0)I − ξ2
0

K
E

]−1

η0α0I. (4.11)

The eigenvalues of B in this case are

b1 = 1, b2 = ... = bK =
η0α0

ξ2
0 + η0α0

.

These are the same eigenvalues as obtained by (formally) taking the limit τ → 0 in the eigenvalues for

τ > 0. Note that for the Gierer-Meinhardt and Gray-Scott systems, respectively, this difficulty does

not arise and there the cases τ > 0 and τ = 0 can be treated in a unified way.

4.2. Stability Part II: Small Eigenvalues. In this section we study the small eigenvalues, i.e., we

assume that λε = o(1). Small eigenvalues are important in the sense that they control the translational

dynamics of the multi-spots.

This case uses a projection to approximate kernel and co-kernel which similar is similar to the

Liapunov-Schmidt reduction presented in Appendix A. The details will be presented in Appendix C.

In particular, we will show in Appendix C that the eigenvalues λε = o(1) are given by the eigenvalues

of the following finite-dimensional problem:

ε2|Ω|αεβ
2
ε

2ξε

(
−

∫

R2
w2w

′|y| dy
) K∑

j=1

2∑

k=1

aε
j,k

(
∂

∂P ε
l,m

∂

∂P ε
j,k

F (Pε)

)
+ o


ε2|Ω|β2

ε

K∑

j=1

2∑

k=1

|aε
j,k|




= λεa
ε
l,m

∫

R2

(
∂w

∂y1

)2

. (4.12)

Note the prominent role which is played in (4.12) by the function F (Pε) defined in (2.6). In fact,

equation (4.12), up to scaling, is an eigenvalue problem for the matrix M(Pε) = ∇2
PεF (Pε) defined in

(2.7).

If condition (∗∗) in Theorem 2.2 holds, then the symmetric matrix M(P0) is strictly negative definite.

Therefore Re(λε) < 0 for ε small. Thus we have proved that the small eigenvalues λε = o(1) are stable

if ε is small enough.

Combining the results for the large eigenvalues (Part I) and for the small eigenvalues (Part II), we

have completed the proof of Theorem 2.2.

5. Confirmation of the Results by Numerical Simulations

We present some numerical simulations using the Finite Element Software COMSOL Multiphysics.

In particular, the simulations show that for smaller D more stable spots are possible. For the

simulations the original parabolic system (2.2) was implemented. The multi-spot plots shown are the

activator concentration, reached as long-time limits and are numerically stable for the time-dependent

problem.
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In (2.2) we set ε2 = 0.001, A = 1 and τ = 1. We take Ω to be the unit disk. For D we choose

the following values: D = 3.5, 3.0, 2.5, 2.0, 0.40, 0.30, 0.10, 0.03, 0.01. Note that in the last case

the ratio of the two diffusion coefficients is only 10. The number of stable spots in these cases are

K = 3, 4, 5, 6, 6, 11, 18, 19, 24.5 (counting boundary spots as half spots). Note the positions of the

spots: In the first five cases they form regular polygons. In the sixth case we get a regular polygon

plus two spots in the interior. In the seventh case we get two concentric polygons. In the eighth case

we get two concentric polygons plus a spot in the middle. In the ninth case we get a more complicated

configuration which shows some boundary spots as well as an almost hexagonal configuration of interior

spots which have to be matched with the boundary spots. We display 2D projected plots as well as 3D

plots (concentration .

The initial condition which has sixfold symmetry is shown in Figure 1. The final multi-spot states

which are all numerically stable (shown for t = 105) are displayed in Figure 2.

Of course, the initial condition does influence the dynamics. To emphasize other effects than the

initial condition, we have kept it unchanged for all the simulations. The choice of initial condition will

effect the time-dependent solution. It will also effect the final state, so that different initial conditions

will a give different number of spots. After all, the results in Theorem 2.2 only give an upper bound

on the number of spots, but all the solutions which have the maximal number or less, are stable if the

positions of the spots are appropriate. Choosing other initial conditions, one would still get multi-spots

as the final state, but slightly different numbers.

The simulations highlight the fact that for unchanged initial condition the number of spots in the

long-time limit increases if the diffusion constant of the substrate decreases. Further, they show typical

positions of the spots on a circular domain.
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Initial condition (same for all D)

Figure 1. Initial condition (for t = 0) on unit circle, for all D, given by

a(x, y) = 1.55 + 0.1 sin π(x2 + y2) sin100 ϕ,

where ϕ = sin

(
arcsin

(
x√

x2 + y2

))
is the angle with the x-axis.
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Final state for various D

D = 3.5

D = 3.0

D = 2.5
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D = 2.0

D = 0.40

D = 0.30

D = 0.10
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D = 0.03

D = 0.01

Figure 2. Plots for D = 3.5, 3.0, 2.5, 2.0, 0.40, 0.30, 0.10, 0.03, 0.01. For decreasing D more and

more stable spots are possible.
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6. Discussion

We have studied multi-spots for activator-inhibitor systems (such as Gierer-Meinhardt) and activator-

substrate systems (such as Gray-Scott and Schnakenberg), with particular emphasis on Schnakenberg.

A rigorous analysis for existence and stability has been given. A result has been derived which gives

an upper bound on the maximal number of stable spots in terms of the diffusion constants and for

activator-substrate systems also the feed rate.

The results for Schnakenberg are new, whereas for Gierer-Meinhardt and Gray-Scott the results are

reviewed.

All the results are rigorous if the diffusion constant of the activator is small enough, with respect to

domain size. However, qualitatively, also for finite ε/
√
|Ω|, even if the maximal number of spots is not

correctly predicted by our analytical results due to bad convergence properties of our method of proof,

the monotonicity properties obtained (number of spots increases with decreasing diffusion constant of

substrate and with increasing feed rate for Schnakenberg) are still correct.

A few remarks about the positions of spots are in order. The problem of finding the positions has

been solved in our analysis by linking it to the Green’s function. It can shown that the condition

(∗∗) given in Theorem 2.2 can be achieved generically. So for a given domain and given number of

spots, if their number is not too large, one can generically find suitable positions for them such that the

resulting configuration is stable. A more explicit relation to the geometry of the domain is desirable.

For recent progress we refer to [23], [24].

An open problem is to get a better general understanding of the influence of the reaction-kinetics

on the existence and stability of multi-spots. This is important since in biology or ecology many

different types of reaction-kinetics, depending on the application, are being considered. We have studied

three particular systems (Gierer-Meinhardt, Gray-Scott and Schnakenberg) which have two qualitatively

different feed-back mechanisms (activator-inhibitor and activator-substrate). But this merely scratches

the surface in gaining a full understanding of what will happen for general reaction kinetics. Can the

reaction kinetics naturally be divided into classes which have similar behavior? What is the possible

or typical behavior? Do large systems, which might be a better model of a biological system than

a two-component or other small system, show many new effects or can they be well understood by

reducing them to a few components which determine their behavior? Many questions remain and a lot

of future work remains to be done to gain a better understanding of the full picture.

7. Appendix A: The Liapunov-Schmidt Reduction

The Liapunov-Schmidt reduction is a powerful tool of nonlinear functional analysis which has been

used to prove the existence of multi-spot solutions for the Gierer-Meinhardt system [73], [74], [75] as

well as for the Gray-Scott system [76], [77]. Here we will apply Liapunov-Schmidt reduction to the

Schnakenberg system. We will focus on explaining the main ideas and refer to the above papers for

complete proofs.

Step 1. Choose good approximations to the solution.
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Let P ∈ Λ and (ξ1, ..., ξK) = (ξ0, ..., ξ0) where ξ0 = Kα0. Now we choose good approximations to the

solution. Let (ξε,1, ..., ξε,K) be such that |ξε,j − ξj| ≤ δ0, where δ0 > 0 and δ0 is small enough. For the

approximate solution use

vε,P(y) :=
K∑

j=1

v̂ε,j(y),

where

vε,j(y) :=
1

Aξε,j

w
(
y − Pj

ε

)
χε,j(εy), y ∈ Ωε := ε−1Ω (7.13)

and χε,j has been defined in (3.3). Note that ξε,j is still undetermined. The second component, uε,P, is

determined by solving the second component of the Schnakenberg system, which is linear in uε,P.

Using the Green’s function derived in (2.5), the following result estimating the error in the first

equation has been derived. (Recall the definition of F (P) in (2.6)):

Lemma 7.1. For x = Pi + εy, |εy| < δ, we have

∆yvε,P − vε,P + v2
ε,Puε,P =: S1(vε,P, uε,P) = S1,1 + S1,2, (7.14)

where

S1,1(y) = β2αε
1

Aξ3
ε,i

w2(y)(ε∇Pi
F (P) · y + O(εβ2|y|+ ε2|y|2)) (7.15)

and

S1,2(y) =
β2αε

Aξ3
ε,i

∫
R2 w2

w2(y)
∫

R2
log

|y − z|
|z| w2(z)dz. (7.16)

Furthermore, S1(vε,P, uε,P) = e.s.t. for |x− Pj| ≥ δ, j = 1, 2, ..., K and we have the estimate

‖S1(vε,P, uε,P)‖H2(Ωε) = O(h(ε, β)). (7.17)

Step 2. Use Liapunov-Schmidt reduction to derive a finite-dimensional problem for the positions

of the spots.

We first study the linearized operator defined by

L̃ε,P : H2
N(Ωε)×H2

N(Ω) → L2(Ωε)× L2(Ω), L̃ε,Pφ := S ′ε


 vε,P

uε,P


 φ,

where ε > 0 is small and P ∈ Λ̄.

Then the asymptotic limit of L̃ε,P as ε → 0 is given by the following system of linear operators

LΦ := ∆Φ− Φ + 2wΦ− 2B0

∫
R2 wΦ∫
R2 w2

w2, Φ =




φ1

φ2

...

φK



∈ (H2(R2))K , (7.18)

where

B0 =

(
(ξ2

0 + α0η0)I − ξ2
0

K
E

)−1

α0η0I (7.19)
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and E is defined in (4.5). The eigenvalues of B0 are given by

b1 = 1, b2 = ... = bK =
η0α0

ξ2
0 + η0α0

.

It is easy to see that 2b1 6= 1 and 2b2 = 1 if and only if η0α0 = ξ2
0 . This is excluded by assumption (T1).

Now we have the following lemma which states some key properties of the linear operator L.

Lemma 7.2. Assume that assumption (T1) holds. Then

Ker(L) = Ker(L∗) = X0 ⊕X0 ⊕ · · · ⊕X0, (7.20)

where

X0 = span

{
∂w

∂y1

,
∂w

∂y2

}

and L∗ is the adjoint operator of L under the (L2(R2))K inner product.

As a consequence, the operator

L : (H2(R2))K → (L2(R2))K

is an invertible operator if it is restricted as follows

L : (X0 ⊕ · · · ⊕X0)
⊥ ∩ (H2(R2))K → (X0 ⊕ · · · ⊕X0)

⊥ ∩ (L2(R2))K .

Moreover, L−1 is bounded.

Proof: The result follows from the Fredholm Alternative Theorem. ¤
Next we are going to reduce the infinite-dimensional problem to a finite-dimensional problem. There-

fore, we now define an approximate kernel and an approximate co-kernel of the linear operator L̃ε,P

by

Kε,P = Cε,P =: span

{
∂vε,P

∂Pj,l

∣∣∣∣∣ j = 1, . . . , K, l = 1, 2

}

in H2
N(Ωε) and L2

N(Ωε), respectively, and we set

Kε,P := Kε,P ⊕ {0} ⊂ H2
N(Ωε)×H2

N(Ω), Cε,P := Cε,P ⊕ {0} ⊂ L2(Ωε)× L2(Ω).

Let πε,P denote the projection in L2(Ωε)× L2(Ω) onto C⊥ε,P, where the orthogonal complement is taken

with the L2 scalar product.

We are going to show that the equation

πε,P ◦ Sε


 vε,P + Φε,P

uε,P + Ψε,P


 = 0

has the unique solution Σε,P =


 Φε,P(y)

Ψε,P(x)


 ∈ K⊥ε,P if ε is small enough, where the orthogonal comple-

ment is taken with the L2 scalar product.

The following two propositions show the uniform invertibility of the corresponding linearized operator.
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Proposition 7.3. Let Lε,P = πε,P ◦ L̃ε,P. There exist positive constants ε, β, C such that for all ε ∈
(0, ε), β ∈ (0, β),

‖Lε,PΣ‖L2(Ωε)×L2(Ω) ≥ C‖Σ‖H2(Ωε)×H2(Ω) (7.21)

for arbitrary P ∈ Λ̄, Σ ∈ K⊥ε,P.

Proposition 7.4. There exist positive constants ε, β such that for all ε ∈ (0, ε), β ∈ (0, β) the map

Lε,P = πε,P ◦ L̃ε,P : K⊥ε,P → C⊥ε,P
is surjective for arbitrary P ∈ Λ̄.

The main idea in the proofs of Propositions 7.3 and 7.4 is using an indirect argument and Lemma

7.2. For more details we refer to [75].

Using the Contraction Mapping Principle and recalling Lemma 7.1, we get

Lemma 7.5. There are ε > 0, β, C > 0 such that for every triple (ε, β,P) with 0 < ε < ε, 0 < β < β,

P ∈ Λ̄ there exists a unique solution (Φε,P, Ψε,P) ∈ K⊥ε,P satisfying Sε


 vε,P + Φε,P

uε,P + Ψε,P


 ∈ Cε,P.

Further, we have the estimate

‖(Φε,P, Ψε,P)‖H2(Ωε)×H2(Ω) ≤ Ch(ε, β). (7.22)

Remark. The previous Lemma says that the function (Φε,P, Ψε,P) ∈ K⊥ε,P solves the equation

Sε


 vε,P + Φε,P

uε,P + Ψε,P


 = 0 up to a function which is contained in the finite-dimensional space Cε,P.

We will solve this finite-dimensional problem in Step 3.

Step 3. Solve the finite-dimensional problem derived in Step 2.

By Lemma 7.5 there exists a unique solution (Φε,P, Ψε,P) ∈ K⊥ε,P such that

Sε


 vε,P + Φε,P

uε,P + Ψε,P


 ∈ Cε,P.

Our idea is to find P ∈ Λ such that

Sε


 vε,P + Φε,P

uε,P + Ψε,P


 ⊥ Cε,P.

Let

Wε(P) := (Wε,1,1(P), ...,Wε,K,2(P)),

where

Wε,j,i(P) :=
2Aξ4

ε,j

αεβ2
ε ε

2

∫

Ωε

S1(vε,P + Φε,P, uε,P + Ψε,P)
∂vε,P

∂Pj,i

dy.

We calculate, using the expansion of the Green’s function,

Wε(P) = c0∇PF (P)(1 + O(h(ε, β))),
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where

c0 = −
∫

R2
w2 ∂w

∂yi

yi dy =
1

3

∫

R2
w3 dy.

Now we conclude the proof by applying some tools from nonlinear functional analysis.

Suppose that for P0 we have ∇PF (P0) = 0, det(∇2
P(F (P0)) 6= 0, then, since Wε is continuous and

for ε, β sufficiently small maps balls into (possibly larger) balls, the standard Brouwer’s fixed point

theorem shows that for ε << 1 there exists a Pε such that Wε(P
ε) = 0 and Pε → P0.

Thus we have proved the following proposition.

Proposition 7.6. For ε sufficiently small there exist points Pε with Pε → P0 such that Wε(P
ε) = 0.

Finally, we complete the proof of Theorem 2.1.

Proof of Theorem 2.1: By Proposition 7.6, there exists Pε → P0 such that Wε(P
ε) = 0. Let

vε = vε,Pε + Φε,Pε , uε = uε,Pε + Ψε,Pε . It is easy to see that uε = ξε,j(1 + O(h(ε, β))) and hence vε ≥ 0.

By the Maximum Principle, vε > 0. Therefore (vε, uε) satisfies Theorem 2.1.

¤
This concludes the rigorous proof of the existence of multi-spot steady states.

8. Appendix B: Study of Two Nonlocal Eigenvalue Problems

In this appendix, we give a rigorous study of the nonlocal eigenvalue problems (4.9) and (4.10). To

this end, we write them in a unified form:

Lφ := ∆φ− φ + 2wφ− f(τλ0)

∫
R2 wφ∫
R2 w2

w2 = λ0φ, φ ∈ H2(R2), (8.1)

where w is the unique solution of (1.3),

f(τλ0) =
2(η0α0τλ0 + Kα0)

(ξ2
0 + η0α0)τλ0 + Kα0

and f(τλ0) =
2η0α0

ξ2
0 + η0α0

for (4.9) and (4.10), respectively. Note that f is a continuous function.

We will study these NLEPs in a sequence of lemmas, where the main results are Lemma 8.4 and

Lemma 8.5.

We begin with the following auxiliary lemma about instability for small f(0).

Lemma 8.1. If f(0) < 1 and 0 < c ≤ f(α) for α > 0, then there exists a positive eigenvalue of (8.1)

for any τ ≥ 0.

Proof: This result was introduced and proved in [76]. The main ideas of the proof are as follows:

First the algebraic equation
∫

R2
w2 = f(τλ0)

∫

R2
[((L0 − λ0)

−1w2)w] dy (8.2)

is derived and it is shown that it is equivalent to (8.1). Then, using certain identities for w and the

intermediate value theorem, it is shown that there is a positive solution of (8.2) and hence a positive

eigenvalue of (8.1).

¤
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Similarly, we have the following result about instability if f is small for large arguments.

Lemma 8.2. If limτ→+∞ f(τλ) = f+∞ < 1 and 0 < c ≤ f(α) for α > 0, there exists a positive

eigenvalue of (8.1) for τ > 0 large.

Proof: Similar to Lemma 8.1.

¤
The following lemma summarizes the result if f is a real constant.

Lemma 8.3. Consider the eigenvalue problem

∆φ− φ + 2wφ− γ

∫
R2 wφ∫
R2 w2

w2 = λ0φ, φ ∈ H2(R2), (8.3)

where w is the unique solution of (1.3) and γ is real.

(1) If γ > 1, there exists a positive constant c0 such that Re(λ0) ≤ −c0 for any nonzero eigenvalue

λ0 of (8.3).

(2) If γ < 1, there exists a positive eigenvalue λ0 of (8.3).

(3) If γ 6= 1 and λ0 = 0, then φ ∈ span { ∂w
∂y1

, ∂w
∂y2
}.

(4) If γ = 1 and λ0 = 0, then φ ∈ span {w, ∂w
∂y1

, ∂w
∂y2
}.

Proof: (1), (3) and (4) have been proved in Theorem 5.1 of [69]. (2) follows from Lemma 8.1. ¤
Now we consider the function f(τλ) = µ

1+τλ
. We then have

Lemma 8.4. Let γ = µ
1+τλ0

where µ > 0, τ ≥ 0.

(1) Suppose that µ > 1. Then there exists a unique τ = τ1 > 0 such that for τ > τ1, (8.1) admits a

positive eigenvalue, and for τ < τ1, all eigenvalues of problem (8.1) satisfy Re(λ) < 0. At τ = τ1, L has

a Hopf bifurcation.

(2) Suppose that µ < 1. Then L admits a real eigenvalue λ0 with λ0 ≥ c2 > 0.

Proof of Lemma 8.4:

(2) follows from Lemma 8.1 and (1) was proved in [76]. The main ideas of the proof are to write

the eigenvalue problem as a system of two real algebraic equations at the Hopf bifurcation

point λ0 = λI

√−1, then applying the intermediate value theorem to one of the these equations to

compute the eigenvalue and finally using the other equation to compute (the unique) τ .

¤
Now we consider (8.1) with f(τλ) = 2(η0α0τλ+Kα0)

(η0α0+ξ2
0)τλ+Kα0

and 0 < τ < ∞. We have

Lemma 8.5. Let

a =
6η2

0α
2
0(η0α0 − ξ2

0)
2

∫
R2 w4

(ξ2
0 + η0α0)2

∫
R2 w2

, b =
8Kη2

0α
3
0ξ

2
0

∫
R2 w4

(ξ2
0 + η0α0)2

∫
R2 w2

,

c =
3

2
K2α2

0 (8.4)
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and let 0 < τ2 ≤ τ3 be the two solutions (if they exist) of the following quadratic equation

aτ 2 − bτ + c = 0 (8.5)

(1) If η0α0 > ξ2
0 , then for τ < τ2 or τ > τ3 problem (8.1) with f(τλ) = 2(η0α0τλ+Kα0)

(η0α0+ξ2
0)τλ+Kα0

is stable. (If

there are no solutions of (8.5) then this problem is stable for all τ ≥ 0.)

(2) If η0α0 < ξ2
0 , for τ small problem (8.1) with f(τλ) = 2(η0α0τλ+Kα0)

(η0α0+ξ2
0)τλ+Kα0

is stable while for τ large it

is unstable.

Remarks: 1. Equation (8.5) may not have a solution if η0α0 is large. It is also easy to see that

0 < τ2 ≤ τ3 :=
b

a
=

4ξ2
0Kα0

3(η0α0 − ξ2
0)

2
. (8.6)

2. While τ2 and τ3 are rigorous estimates of the true values they are in general not optimal. from

above and from below

Proof: We prove (1) first.

We first multiply the nonlocal eigenvalue problem by φ̄ and integrate to express it as a quadratic

form. This quadratic form is simplified in two steps: first multiplying the nonlocal eigenvalue problem

by w, integrating and using the resulting identity; second considering the real part of the eigenvalue

problem and using an inequality for quadratic forms (see Lemma B.1 in [69]).

After these two steps we get the following inequality:

3

2
K2α2

0 +
(

3

2
(η0α0 − ξ2

0)
2τ 2 − 2τKα0ξ

2
0

)
λ2

I ≤ 0. (8.7)

λR ≥ 0, where λ = λR +
√−1λI and we have assumed that under the assumption that λR ≥ 0.

If τ ≥ τ4, then (8.7) does not hold. To study the case τ < τ4, we need to have an upper bound for

λI . The quadratic form of the eigenvalue problem gives the estimate

λI

∫

R2
|φ|2 dy = Im

(
−f(τλ)

∫
R2 wφdy∫
R2 w2 dy

∫

R2
w2φ̄

)
dy

Hence, Schwartz inequality gives

|λI | ≤ |f(τλ)|
√√√√

∫
R2 w4 dy∫
R2 w2 dy

≤ 2η0α0

ξ2
0 + η0α0

√√√√
∫
R2 w4 dy∫
R2 w2 dy

. (8.8)

Substituting (8.8) into (8.7), λI is eliminated, and we see that if

aτ 2 − bτ + c > 0

where a, b, c are defined in (8.4), then (8.7) is impossible.

We next prove (2). For τ large, it follows that f(τλ) → f+∞ := 2η0α0

ξ2
0+η0α0

< 1, then the perturbation

argument of Dancer [5] shows that there exists a real and positive eigenvalue of (8.1) with f(τλ) =
2(η0α0τλ+Kα0)

(η0α0+ξ2
0)τλ+Kα0

. For τ small, the proof follows by the argument in (1).
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9. Appendix C: The small eigenvalues

We shall analyze the small eigenvalues λε = o(1) and determine if they give rise to an instability or

not.

Let us first define

ṽε,j

(
y − P ε

j

ε

)
= χε,j(x)v̂ε(y), j = 1, ..., K,

where χε,j was defined in (3.3) and v̂ε ∈ H2
N(Ωε).

Similar to the Liapunov-Schmidt reduction in Appendix A we decompose the eigenfunction of the

activator, φε, as follows:

φε =
K∑

j=1

2∑

k=1

aε
j,k

∂ṽε,j

∂yk

+ φ⊥ε (9.9)

with real numbers aε
j,k, where

φ⊥ε ⊥ Knew
ε,Pε = span

{
∂ṽε,j

∂yk

∣∣∣∣∣ j = 1, . . . , K, k = 1, 2

}
⊂ H2

N(Ωε).

Accordingly, we put

ψε(x) =
K∑

j=1

2∑

k=1

aε
j,kψε,j,k + ψ⊥ε (9.10)

by solving the second equation of the system which is linear in ψε,j,k.

Suppose that ‖φε,j‖H2(Ωε) = 1. Then |aε
j,k| ≤ C. Now the main idea is to first show that φ⊥ε is small

(Step 1) and then to obtain algebraic equations for aε
j,k (Step 2).

We begin with

Step 1: Estimates for φ⊥ε .

Substituting the decompositions (9.9) of φε and (9.10) of ψε into (4.2), we have

K∑

j=1

2∑

k=1

aε
j,k(ṽε,j)

2

[
ψε,j,k − ε

∂uε

∂xk

]
+ ∆yφ

⊥
ε − φ⊥ε + 2v̂εuεφ

⊥
ε + (v̂ε)

2ψ⊥ε − λεφ
⊥
ε

= λε

K∑

j=1

2∑

k=1

aε
j,k

∂ṽε,j

∂yk

. (9.11)

Since φ⊥ε ⊥ Knew
ε,Pε , then by an argument similar to the proof of Lemma 7.5 it follows that to estimate

‖φ⊥ε ‖H2(Ωε) it is enough to ψε,l,k − ε ∂uε

∂xk
near x ∈ Br0(P

ε
l ). This is possible by expanding the Green’s

function. We refer to [75] and [76] for details.

Step 2: Algebraic equations for aε
j,k.

Multiplying both sides of (9.11) by −∂ṽε,l

∂ym
and integrating over Ωε,P ε

l
, we obtain

r.h.s. = λε

K∑

j=1

2∑

k=1

aε
j,k

∫

Ωε,Pε
l

∂ṽε,j

∂yk

∂ṽε,l

∂ym

dy =
1

ξ2
ε,l

λε

∑

j,k

aε
j,kδjlδkm

∫

R2

(
∂w

∂y1

)2

dy (1 + o(1))

=
1

ξ2
ε,l

λεa
ε
l,m

∫

R2

(
∂w

∂y1

)2

dy (1 + o(1))
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and

l.h.s. = ε2
K∑

j=1

2∑

k=1

aε
j,k

∫

Ωε,Pε
l

(ṽε,j)
2

[
ψε,j,k − ε

∂uε

∂xk

]
∂ṽε,l

∂ym

dy + o


β2ε2|Ω|

K∑

j=1

2∑

k=1

|aε
j,k|




=
ε2|Ω|β2

ε αε

ξ3
ε,j

∫

R2
w2 ∂w

∂ym

ym dy
K∑

j=1

2∑

k=1

aε
j,k

(
− ∂

∂P ε
l,m

∂

∂P ε
j,k

F (Pε)

)

+o


β2

ε ε
2|Ω|

K∑

j=1

2∑

k=1

|aε
j,k|


 ,

using the Green’s function to expand ψε,j,k.

Applying some identities for w and combining l.h.s. and r.h.s., the finite-dimensional eigenvalue

problem (4.12) follows.

¤
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