SIGN-CHANGING BLOW-UP SOLUTIONS FOR YAMABE PROBLEM

SHENGBING DENG, MONICA MUSSO, AND JUNCHENG WEI

Abstract: Let (M, g) be a smooth compact Riemannian manifold of dimension n > 3. We are
concerned with the following elliptic problem

4
Agu+ hu = |u|»=2 " u, in M,

where A, = —divy(V) is the Laplace-Beltrami operator on M, h is a C I function on M, ¢ is a
small real parameter such that € goes to 0.

1. INTRODUCTION

Let (M, g) be a smooth compact Riemannian manifold of dimension n > 3, where g denotes
the metric tensor. We are interested in the following asymptotically critical elliptic equation

(1.1) Agu+hu = [u|7= "%y, in M,

where A, = —divy(V) is the Laplace-Beltrami operator on M, h is a C' function on M, ¢ is a
small real parameter such that ¢ — 0.

If h = ;2=2.Scal,, the problem

4(n—1)
A "2 Sealu=u 1 in M in M
(1.2) gu—|—m calgu = u in u>0 in M,
is just the so called prescribed scalar curvature problem with ¢ = 0, where 2* = % The

existence of a conformal metric with constant scalar curvature on compact Riemannian manifolds

was studied by Yamabe [26], Trudinger [25], Aubin [1] and Schoen [24]. If u is a solution, then

4(n—1) L
n—2

is the scalar curvature of the conformal metric § = u»—2g.

Recently, nonlinear elliptic equations on compact Riemannian manifold have been brought
much attention. Consider the following problem

(1.3) e2Agu+u=|uf*u in M,

where (M, g) is a compact, connected, Riemannian manifold of class C*° with Riemannian
metric g, dimM =n > 3, 2 < p < n2f2 and ¢ is a positive parameter. In [4], the authors
proved that the problem (1.3) has a mountain pass solution u. which exhibits a spike layer. In
particular, they proved that the maximum point of u. converges to a maximum point of the
scalar curvature Scaly as € goes to zero. Multiple solutions were obtained in [2] for the problem
(1.3), the authors showed that multiplicity of solutions to (1.3) depends on the topological
properties of the manifold M. More precisely, they showed that problem (1.3) has at least
cat(M) + 1 nontrivial solutions provided ¢ is small enough. Here cat(M) denotes the Lusternik-
Schnirelmann category of M. In [15] the authors showed that for any stable critical point of

the scalar curvature it is possible to construct a single peak solution, whose peak approaches
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such a point as € goes to zero. In [6] the authors proved that for any fixed positive integer k,
problem (1.3) has a k—peak solution, whose peaks collapse, as € goes to zero, to an isolated local
minimum point of the scalar curvature. Recently in [16] the authors proved that the existence of
positive or sign changing multi-peak solutions of (1.3), whose both positive and negative peaks
approach different stable critical points of the scalar curvature as € goes to zero.

Regarding the asymptotically critical case (1.1) on Riemannian manifolds there are also in-
tensive research on the existence of positive blowing-up solutions: see for instance [3] for the
Yamabe equation, [9], [12], [17] for perturbations of the Yamabe equation, [5], [13] for equa-
tions on the sphere, and the references therein. In terms of sign-changing bubbling solutions,
in [21-23], the authors constructed a new kind of sign-changing bubbling solution to (1.1) by
imposing a negative bubble on the top of a positive solution to the Yamabe problem. In [20]
the authors constructed sign-changing bubbling towers for (1.1).

In all the papers mentioned above, the canonical profile of bubbling is the positive solution

to
2
(1.4) Au+ |[uflu=0 in R", p= i,
n—2
which can be written explicitly
A n—2

1.5 Uy¢=c(—— )72
( ) A€ n(>\2+‘$—§’2)

In this paper we are interested in gluing more complicated sign-changing solutions of (1.6)
on Riemannian manifolds. More precisely the canonical profile is the sign-changing solution to
(1.1) on the canonical sphere constructed in [7]. In [7] it is proven that there exists an integer
Ky such that for any integer K > Kj, a solution solution QQ = Qx to Problem

2
(1.6) Au+uff'u=0 in R" p:”—+2,
n—
exists. Moreover, if we define the energy by
1 1
1.7 Eu)=~- | |Vudy— —— [ [uffTdy,
(17) W= [ 1Vufdy—— [ uptiay

we have
(K+1)S, (1+O0(K*™)) if n>4,
E(Qk) =
(K+1)S3 (1+O(K logK|™) ifn=3

as K — oo, where S, is a positive constant, depending on n. The solution () = Qi decays at
infinity like the fundamental solution, namely
n—2

(1.8) lim_[y""2 Qic(y) = <4>4 2"7% (1 + ex)

ly|— n(n — 2)
where
O(K™1) ifn>4,
CK = as K — oo.
O(KYlogK|?) ifn=3
Furthermore, the solution @ = Qx has a positive global non degenerate maximum at y = 0. To
be more precisely we have
n—2 n —
(1.9 QW) =lntn -2 (1 -

2

2
yP? +0<|yr3>) as [yl =0,
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and also there exists n > 0, depending on Ky, but independent of K, so that

1
(110 1<QW) Q) forall fyl <3,
for any K. Another property for the solution () = Qx is that it is invariant under rotation of
angle 2% in the y1,y2 plane, namely

2m _ _
(1.11) Qexy,y)=Q0Y), ¥=w1y), ¥ =Us- . yn)
It is even in the y;-coordinates, for any j = 2,...,n
(112) Q(ybaij7yn):Q(y1>7_y]>7yn)7 ]:2,,TL
It respects invariance under Kelvin’s transform:
- Y

(1.13) Qy) = yl? "Q(W)-

These solutions are non-degenerate, as proved in [18], in the sense precisely in Section 6.2. More
precisely, the dimensional of the kernels of the linearized operator at @

~A¢ =plQP "¢
is shown to be 3n.

In this paper, we will use Qx to construct sign changing solutions to problem (1.1). It was
used to construct sign-changing blowing-up solutions for supercritical Bahri-Coron’s problem in
a bounded domain of R™ in the recently work [19].

For £ € M, we define the function,

(1.14) o) = h(€) — 4(’:1__21) (1 + ”3;4K> Scaly(€).

We have the validity of the following result.

Theorem 1.1. Let (M, g) be a smooth compact Riemannian manifold of dimension n > 5. Let
h be a Ct function on M such that the operator A, + h is coercive, and let & be a Cl—stable
critical point of the function ¢(§), and @(§)sign(e) > 0. Then there exists an integer Ky such
that for any integer K > Ky, there exists e, such that for any ¢ € (0,ex), the problem (1.1)
has a sign changing solution u..

This paper is organized as follows. In Section 2, we we introduce some framework and
preliminary results. The proof of the main result is given in Section 3. Section 4 is devoted to
perform the finite dimensional reduction. Section 5 contains the asymptotic expansion of the
reduced energy. In Appendix, we will recall the construction of sign changing solution Qg and
its non-degenerate, and we also give some useful technical estimates.

2. SOME PRELIMINARY RESULTS

Let M be a compact Riemannian manifold of class C*°. On the tangent bundle of M it is
defined the exponential map exp : T'"M — M which has the following properties:

(i) exp is of class C*°;

(ii) there exists a constant r > 0 such that expg‘B(O’T) : B(0,7) — Bgy(&, ) is a diffeomorphism
for all £ € M.
where B(0,r) denotes the ball in R centered at 0 with radius r and By(¢,r) denotes the ball
in M centered at & with radius r with respect to the distance induced by the metric g.

Geodesic normal coordinates
expe : TeM DV = M
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and an isomorphism
E:RY - T:M

given by any basis of the tangent space at the fixed basepoint £ € M. If the additional structure
of a Riemannian metric is imposed, then the basis defined by E may be required in addition
to be orthonormal, and the resulting coordinate system is then known as a Riemannian normal
coordinate system.

Normal coordinates exist on a normal neighborhood of a point £ in M. A normal neighborhood
U is a subset of M such that there is a proper neighborhood V of the origin in the tangent space
Te M and expy acts as a diffeomorphism between U and V. Now let U be a normal neighborhood
of £ in M then the chart is given by:

@ :=E1 oexpg1 U - RY
The isomorphism E can be any isomorphism between both vectorspaces, so there are as many
charts as different orthonormal bases exist in the domain of E.

Fix such an r in this paper with r < i,/2, where i, denotes the injectivity radius of (M, g).
Let € be the atlas on M whose charts are given by the exponential map and P = {, }wee be
a partition of unity subordinate to the atlas €. For u € Hgl(M), we have

/M Vgl dvg = 3" [ (@) Vgul? dug,

wee v

where dvgy = /det g dz denotes the volume form on M associated to the metric g. Moreover, if
u has support inside one chart w = Bgy(&, ), then

" ou(expg(z)) Oulexpg(z 1
/ngUF dvg:/B(OT) S () (expe(2)) Ou(expe(2)) g ()} dz,

0z 0z
a,b=1 a b

where g¢ denotes the Riemannian metric reading in B(0,r) through the normal coordinates
defined by the exponential map exp, at £&. We denote |g¢(2)| := det(ge(z)) and (ggb)(z) is the
inverse matrix of g¢(z). In particular, it holds
9&(0) = 6ap,  g¢(0) = Id,
where d,p is the Kronecker symbol and
b
dg¢
0z
Since M is compact, there are two strictly positive constants C' and C such that

VéEeM, YveTM, Clv|?<gvv) <Clv|*

(0)=0 for any a,b,c.

Hence, we have )
VEeM, C"<l|gl <
Let L? be the Banach space L9(M) with the norm

1/q
ol = ([t ay)
M

Since the operator A, + h is coercive, the Sobolev space H 2(M) is endowed with the scalar
product (-, ), defined by

(2.1) (u, v)h:/ (Vu, Vv)gdvg+/ huvdug
M M
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for all u,v € HZ(M). We let || - || be the norm induced by (-, -);, this norm is equivalent to the
standard norm on HZ(M).

It is clear that the embedding i : H?(M) < L?> (M) is a continuous map. We let i* :
L2V (2 (M)« HZ(M) be the adjoint operator of the embedding i, the embedding i* is a
continuous map such that for any w in L (+2) (M), the function u = i*(w) in HZ(M) is the
unique solution of the equation Aju+hu = w in M. By the continuity of the embedding HZ(M)
into L (M), we have

(2.2) 7" (W)l < Clwlanm+2)
for some positive constant C' independent of w.

In order to study the supercritical, by the standard elliptic estimates (see [11]), given a real
number s > 2n/(n — 2), that is ns/(n + 2s) > 2n/(n + 2), for any w in L™/ (25 (M), the
function ¢*(w) belongs to L*(M) and satisfies
(23) |Z*(w)‘8 < C|w|ns/(n+23)
for some positive constant C' independent of w. For € small, we set

2* —Ze if e <O
Se 1= 2

9+ if &>0,
and set H. = HZ(M) N L% (M) be the Banach space provided with the norm

[ellnse = llulln + luls..
If € > 0, the subcritical case, the space H. is the Sobolev space Hf (M), and the norm || - ||5.s.
is equivalent to the norm || - ||;,. And we can compute that there holds
(2.4) nse :{25;81_6 %f e <0

n —|— 235 m lf g > 0,

2

Here we note that 15— = f—fQ - n(njifgﬁ)e + O(Je]?) for & < 0 small.

Then by (2.2) (or (2.3) in the supercritical case), equation (1.1) can be written as
(2.5) u=1i"(fe(u), ueH{(M),
where f.(u) = |ulP~!~%u, here and in the follows we will denote p by p = 2£2.
3. THE EXISTENCE RESULT

By compactness of manifold M, we have that the injectivity radius i, of the manifold is
nonzero. Fix 7 > 0 small than i,. Let x, be a smooth cut-off function satisfying

1 if ze€ B(0,3);
(3.1) xr(2) :=¢ €(0,1) if ze B(0,r)\B(0,5);
0 if zeR™\B(0,r),

and |Vx,(2)] < 2, [V3(2)] < &
Let
A= ()"576179) S RY x M x R" x RQn_3.
We will denote A € A if (A, €,a,0) € RT x M x R™ x R?"=3, such that

1
(3.2) n<t<—, forsome fixedn >0,
n

1
(3.3) EeM, aeB:= {a:(al,ag,O,...,O)ER" : |a]<2},
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and
(34) 9 - (9127613a'"791n79237"'792n) S O:

where O is a compact manifold of dimension 2n — 3 with no boundary.
Now, for A € A, set

(3.5) A= /tle].

We define the function Wx(x) = Wy ¢ q9(x) on M by

—1 1 . .
(3.6) Wa(z) = Xr (eXpE (w)) Wa(z) if x € By(&,r);
0 otherwise,
where
Wa(z) =Q <P9 oJoT_q0JoDy10P; o emp?(:c)) ,
that is,
-1 exp; () dg(z,€)?
—~ n_2 | €TP, (T d 2-n £ — Pyale\Es)
67 Wa@ =275 (ic (ﬁ)) ~ foe g(?o‘ e ead ]
o wrg — Poa 5|

where @ = Q is a solution of problem (1.6) for K large enough, which was proved in [7].
Moreover, let us define on M the functions

(3.8) Zi(a) o 0 (50 (@) Zia) i @ € By(e. )
4 0 otherwise,

fori=0,1,2,---,3n — 1. where

-1 exp; *(z) dg(2,£)?
7i n=2| €L x d 2—n e Y P ferts)
(39) Zal@) =" 2 dp(g ()) ~ Foa g(ijg)’ ’ 3‘1( ) X 2
L, exp,; (z z,
I - Ppalazd)

where z;, 1 =0,1,2,...,3n — 1, are defined in (6.5)- (6.9).
We define the projections 114 and Hj of the Sobolev space H. onto the respective subspaces

(3.10) Ky = Span{Zﬁ,Z}l, . ,Zj"—l},

(3.11) Kt.= {QSEHE : (¢,Z}’4>h:o,w:o,1,...,3n—1},

where (-, -)p, is as in (2.1).
We will look for a solution to (2.5), or equivalently to (1.1), of the form

(3.12) ue = Wa(z) + dpa(z),
1

where Wy () is given by (3.6), and the rest term ¢4 belongs to the space K. In order to solve
problem (2.5) we will solve the system

(3.13) I {Wa + ¢a — i [f- (Wa + ¢a)]} =0,

(3.14) A {Wa+ ¢a =" [fe Wa+ da)]} = 0.

We first give the result whose proof is postponed until Section 4 to solve equation (3.13).
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Proposition 3.1. Ifn > 6, for A € A, ife is small enough, there exists a unique ¢ o = ¢(g, A)
which solves equation (3.13), which is continuously differential with respect to A, moreover,

Inle| [*2 if n=6 and &> 0;
1 < ||| ;
(3.19) Ie.allns. < € { le| In|e] | otherwise.
Furthermore,
2/3 P '
(3.16) IV adeallns, < C 4 eIl if n=6 and ¢>0;
T lel In|e] | otherwise.

where C' is a positive constant.

We introduce the functional J; : H. — R defined by

1 1
= 2/ |V gul? dvg + 2/ h(x)u? dv, — 1 8/ [u[PTE duy,

It is well known that any critical point of J. is solut1on to problem (1.1). We also define the
functional F, : RT x M x R>*»3 x R” — R by

(317) fs(ta 67 a, 0) = JE (WA + ¢A) y

where Wy is as (3.6) and ¢4 is given by Proposition 3.1.
The next result, whose proof is postponed until Section 5, allows to solve equation (3.14), by
reducing the problem to a finite dimensional one.

Proposition 3.2. (i) For ¢ small, if (t,£,a,0) is a critical point of the functional Fe, then
Wa + ¢a is a solution of (2.5), or equivalently of problem (1.1).
(ii) If n > 6, for A € A, there holds

(3.18) J:(Wa(z)) = %0 — dyelog |e| — doe + g\I’(t,ﬁ,a, 0)e + o(|e]).

as € — 0, C'—uniformly with respect to A in A, where

U(t, & a,0) = —dslogt + sign(e)p(§)t — sign(e)d4a(Bg79)aT t

(3.19) + [sign(€) (—2(€) + ds Scaly(€)) t + dg] lal* + o(|al?)
with
(3.20) (©) = h(©) - 2 (14 222K ) Scaly(¢)

’ PSS 4(n—1) 3n “Wgis),
and
(3.21) By = (Po)T (Rij)nxn Py
is a n X n matriz. The constants di = "Tdc(), do = %co — "2—;201 — @02 with

2n_ 2n_ 2n_
o= [1QWIFHds, o= [ 10w loglQidy. = [ 10w 1oz lyldy.
Rn R Rn

Moreover, the constants ds, dy4, ds, dg are defined by

n—2 n(n —2)%(n —
Sn(n—=2)(n+2)  (n—2)(n—4)
dy = 12(n —1)(n —6) + B K
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(n—2)n2-9n—2) (n—2)(n—3)(n—4)

a5 = n(n—1)(n—6) 3n2(n — 1) K
~ n*(n—2)*(n—4) n—2

(ii) If n > 6, there holds
Fe(t, 6 a,0) = J.(Wa + ¢a) = Je(Wa) + o(le])
as € — 0, Ct uniformly with respect to (t,¢,a,0) € A.

Now we are ready to prove the main result Theorem 1.1.

Proof of Theorem 1.1: From Proposition 3.2, we have that the function u. = W4 + ¢4 is a
solution of equation (2.5), or equivalently of problem (1.1) for & small enough if we find a
critical point (t,&, a,0) of functional F, it is equivalent to find a critical point of the function
U(t,&, a,d) which is given in (3.19).
Recall that A = (¢,&,a,0) € A= (n, %) x M x B x O, where
B:= {a: (a1,a2,0,...,0) e R" : |a| < ;},

and O is a compact manifold of dimension 2n — 3 with no boundary. By Proposition 3.2, we
have

U(t, &, a,0) = —dslogt + sign(e)p(€)t — sign(e)dsa(Be g)a’ t
(3.22) + [sign(e) (=2¢(€) + dsScaly(€)) t + dg] [al* + o(lal?),

where ¢(€) is defined in (1.14).
Firstly, from (3.19), we have

(3.23) V(t,€,a,6) = 1(t,€) + O(la]?),
where
D (t, &) = —dslogt + sign(e)p(€)t,
with (&) is given in (3.20). By assumption, there is a stable critical point &y of ¢(&), satisfying
90(50) >0, if € > 0;
w(&) <0, ife<O.

Set ty = %sign(a), we have tg > 0 and (o, &) is a critical point of ®1(¢, ). Since deg(V ¢, By(&o, 0),0) #

0 for some g > 0, then deg(V,®1(t, &), By(&o, 0),0) # 0, by the continuity of the Brouwer degree
via homotopy considering the function H : [0,1] x RT x M — R"*! defined by

D1 (¢, 091 (t,6XP, (v)) 0®1(t,€XPe (y))
H(Tvt7£):7— 19(155)’< : 83/1g > 7’<1aT§>
|y:0 |y:0

O(po€XPe(y)) 0(po€XP,(y))
+(1—T) <t_t07< 8y1€ >|y:0"“,( 8yn§ )ly_0>'

We get that (tg,&p) is a critical point of ®1(¢,&), such that

deg(qu)l, Bg(§07 Q)7 0) ;é 07
By Brouwer degree, we then have that (¢, &) is a stable critical point of ®1(¢,&). By Proposition
3.2, we have

O (i]—" _ @1(75,@) ‘ + ‘ag <i]—" _ <1>1(t,g)) ’ o0,
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as € — 0, uniformly with respect to A = (,§,a,€) € A. By the properties of the Brouwer
degree, it follows that there exists a family of critical points (¢, &) of F. converging to (to,&o)
as € — 0.

On the other hand, we observe that the function 6 — W(t, ¢, a,6) has a maximum point 6.
Because ¥(t, &, a, ) is a continuous function for # on a compact set of R?"~3 without boundary.
Moreover, the function ¥(tg, &, a, #) has a non degenerate minimum( & > 0) or maximum (e < 0)
at a = (ay,a2) = (0,0).

Thus, we obtain that (tg,&p,0,0) is a stable critical point of U(t,&,a,f). O

4. THE FINITE DIMENSIONAL REDUCTION

This section is devoted to the proof of Proposition 3.1. Let us introduce the linear operator
Lea: HY(M)N Ks — K7 defined by

Lea(¢a) =11 {¢a —i* [fL(Wa)pa] }.
This operator is well defined by using (2.2). Therefore equation (3.13) is equivalent to

(4.1) Lc a(¢a) = Nea(da) + Rea

where

(4.2) Nea(pa) = T4 {i* [f-(Wa+ ¢a) — f-(Wa) — fL(Wa)ba] },
and

(4.3) Rea = T4 {i* (f-(Wa)) — Wa}.

As a first step, we want to study the invertibility of L. 4.

Lemma 4.1. Ifn > 6 and for any A € A, and for any ¢4 € HZ(M)NK, if € is small enough,
there holds

(44) HLS,A(¢A)

where C is a positive constant.

Ihse = Clloalln,se

Proof. We argue by contradiction. Assume there exist a sequences ¢, — 0, A., € A with
tr € (n, %), & € M, 6 in a compact of R?"73 and a,, € B C R”, and a sequences of functions

¢r € HZ (M) N Kjk such that

(4.5) Leya(06) = Yk dkllns, =1 and  |xllns., — 0.
From (4.5) we get there exists (, € HZ(M) N K 4, such that
(4.6) or — i [fL, (Wa,)or] = Vi + G-

Step 1, we claim that
(4.7) ICkllns. =0 as k— oc.

Let ( := 351 cZZiAk. For any 7 = 0,1,---,3n — 1, we multiply (4.6) by ZlAk, and taking
into account tfzgt O, Y € K jk, we get

3n—1

(48) > (zh,. 2, ) == (" [ Wadai] 25, )

1=0
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By changing of variable z = expy, (Aty), for i,j =0,1,---,3n — 1 and for any k, we have
i J
<ZAk’ ZAk>h

- / <vz@k,vzﬁ,k> dvg + / h(x)Z}y, 7%, dug
M 9 M

i) Oxr (k)
= \2 / ab e ( Y e +M 2n, Y
: gjlg " o o Owy) + S5 (P
B(Ovr/Ak)
Iy 2 — Foa))
Tyl OXr(MeY) (| 12em_ Y
= O Oxr(Ary) v R

Yy 1
X2 / B (expg, () Xe )22 (L = Poa)y (o1 = Po) g, Ol

B(O7r/)‘k)
By the Taylor’s expansion, from (2.1), we have
(4.9) 9 \ey) = Sap + ONRIYI?) = dap + O(tilerlly]?);
and
1
(4.10) 196 Qxy)[2 = 1+ O\ |2*) = 1+ O(tileallyl?).

Therefore, we find

(20,20, == [ A" = 2o (WP = o))y + 00

R

“Je

= [ 1055 )y + o)

Jon 1QIP~1 22 (y)dy + o(e) if Q= j;

Jon QI 21(y) 2ng2(y)dy +0(e)  if i=1, j=n+2;
Jon QWP 22(y) 203 (y)dy + 0(e)  if i=2, j=n+3;

o(e) otherwise.

P Y
it = Py

‘2 nQ(‘ ’2 Pga) ‘ ’2

(4.11) -

NI

— Ppa)dy + o(\3)

- Pg&))

dy

Here [p. [Q)P~122(y)dy, [n Q)P 21(y)2nr2(y)dy and [g. [Q(y) [P 22(y) 2nss(y)dy are

fixed numbers, different from zero, that are independent of €.

Now, set
-1
_ eapg, (z) dy (2,6x)°
_nzz eapg ! () dg(x, &) |2 2 Pt
on@) =N P ey T Pgaxi‘ ! 2
9(55'7516) k D¢, () _p adg(l“:fk)
dg(2,Ek) 08Xk
we have

_n—2 ~
dr(ezpe, (Mey) = Ay 2 [yl "o <| E PH“)
We now have

<i* [fL.(Wa) k], 2%, >h
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Z/ fék(WAk)Zik¢kdUg

M

- [ r (xmy) NS ”Q(H P9a>)><
B(0,r/Ak)

<o Ol <|j,2 - Pea) 3 (Hg - Pea))\/ 196 vy
= )‘1:226/fé;C <Q <‘ 2 PW)) |y’2n+(n_2)5 X
Rn
%z <|yy|2 - )m (| - Pea) 196, v dy + O()

set y = — Pya

¥y
|y|?
(@1 / Q@) 22 Q)7 + Poa| =" 22 ()1 (§)dy + O(?)

1) /IQ (5)e()dy

(4.12)

as g, — 0.
Since, for any k, the function ¢ € Kjk, by the same change of variable for = = expg, (Ary),
we have

0= (24, 0x), == | Al(w) duly)dpg,,

h R

(4.13) +22 /R h (expe, (Aky)) Xr (M) 7 On dpsge,

where g¢, (y) = expg, 9(Aky) with dpg, = |ge, ()\;Cy)|% dz. Then, passing the limit in (4.13), we
get
VzjVé dy = 0.
Rn
Since the function z; is a solution of equation L(z;) = 0, the operator L is given in (6.4), it
yields that

(4.14) szng; dy = (2 — 1)/ |Q]2*_lzjqz~5 dy = 0.
R” R7
It follows from (4.8), (4.11), (4.12) and (4.14) that for any ¢ = 0,1,---,3n — 1, there holds
¢, = 0 as a — oo, therefore our claim (4.7) is proved.
Step 2: We prove that

(4.15) hm 1nf/ Il (Wa)ui dvg — ¢ > 0.

where

(4.16) up = ¢ — Y, — Ck,  with  [Jugllp — 1.
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Let us write equation (4.6) as
(4.17) Agup, + h(@)uy = fL, (Wa, Juk + f1, Wa) (g + G,
We first prove that
(4.18) lilgiorgf |luglln = ¢ > 0.

In fact, by (4.17) we deduce
(4.19) wp = 0 {fo, (Wa Ju + fL, (W) (@ + o) }
and by (2.3), (4.5), (4.7) and (4.16), use the Holder inequality, we get

il < C |70 ] e+ |2, V)00 + ) 2|

s
n+255k n+255k

<C ‘fék (WAk){ 2nsey, |uk|2* + ‘fék (WAk)‘g W}k + Ck|s€k]

2717(n76)55]C

2n7(n76)55k

<C }fék(WAk)‘%# |uk|os + 0(1)

2n7(n76)55k

(wlln + 11CklIn)

n
2

(4.20) < Clluklln + o(1),

as k — oo. Then, if [lug|, — 0, by (4.20) we deduce that also [ug|s,, — 0, this is not impossible
because of (4.16). This gives the validity of (4.18).
We multiply (4.17) by uj, we deduce that

(4.21) lurll7, = / FL (Wa, g dvg +/ fee(Wa ) Wk, + Ge)ur dug.
M M

By Hélder inequality, from (4.5), (4.7), we have

VM fo, (Wa ) (r + Geu, dug| < |fék(WAk)\% |9k + Gkl 20 [uk] 20

(4.22) < Ok + Cllnlluglln = o(1).

Then, (4.15) follows by (4.18), (4.21) and (4.22).
Step 3: Let us prove that a contradiction arises, by showing that

(4.23) lim inf /M £ (Wa, )ui dvg — 0.

k—o0

In fact, set

engkl(a?) _ P adg(zvfk)Q

1
expg, (7) adg@@c)f—% A

—=Sk Py —
dg(z, &) Ak pr(sklf(f‘)) _ Peadg(;c,ik) 2
9\ TSk k

_n=2

(4.24) ug(z) = A, 2

We will show that
(4.25) Gy — 0 weakly in DY*(R™) and strongly in LI (R"),

loc

for any ¢ € [2,2*). That fact implies that

| do, = [ W60 v,
Bg(glav”")
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a0 (e - R ) ¢

B(0,r/ )
2 1
gl (ak<|y| - 7)) g, )l dy
(4.26) <oaT (3% £, QD) g, (8D 2y = 010
for e, — 0, because ]|g + Pga\@_”)akfék (Q(y ‘Ln/Q(R") = O(1) holds.

Finally, we prove (4.25). By (4.17) we get

/ |Vgugly dug + / h(z)ui dug

=/ fL (Wa)ui dug +/ JL (Wa, ) (r + Ce)ur duyg
M M

(4.27) - /M S (W dug + of1),

because (4.22) holds.
By an change of variable x = expy, (Axy) in (4.27), we get

(4.28) =\, 3 Ek/ L, CeOny)Q(y)) @ dpg,, + o(1).

Moreover, we observe that [|ig||p12mny < cl|uglln < ¢, that is the sequence {@x} is bounded in
DL2(R™), then there exists @ such that @y (z) — @ weakly in D12?(R™) and strongly in L?(R")
for any ¢ € [2,2*) if n > 3. Then we deduce that @ solve the problem

(4.29) Au=(2*-1)|Q* % in R",
by (4.14), we get that the function @ is identically zero, then (4.25) holds.
Therefore from the contradiction (4.15) with (4.23), we end proof of Lemma 4.1. O

From [17], we have the following estimate of the error term R. 4.

Lemma 4.2. If n > 6 and for any A € A, if € is small enough, there holds

23 ifn=6and e > 0;
430 R <C le] |In ||| it n =06 and € > 0;
(4.30) 1Bz, allnse < {]5\ In |e]| otherwise,
where C' is a positive constant.

Proof of Proposition 3.1: In order to solve (3.13), we need to find a fixed point for the operator
Toa:H2(M)N Ky — H}(M) N K5 defined

Tea(¢) = Loy (Ne,a(94) + Rz a),
for £ small and for any A € A. We also let
B(B) = {6 € HHOM) N K} : [8lns. < BlRenllns. }

where f is a positive constant to be chosen later on.
By Lemma 4.1, we deduce

(4.31) 174 (D), < C (INa(@) . + 1 Resaly )
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and
(4.32) ITea(01) = Tea(62)ll, < € (INaa(1) = Noa(62)ly . ) -
By (2.2) and (2.3), we deduce

[N a(@) s, < C|fe(Wa+8) = fo(Wa) — fé(WA)M%
(4.33) + | feWa+ ¢) = fo(Wa) — fé(WAW‘n% ;
and

[Ne,a(91) — Neya(@2) .

S C|fe(Wa+¢1) — fo(Wa + d2) — fLWa)(d1 — ¢2) _nse_

(4.34) + | fe(Wa + 1) = fo-(Wa + ¢2) — fLWA) (P — ¢2)\n% :

Then by the mean value theorem and the Holder inequality, we obtain that if n =6 and € > 0,
for any 7 € (0,1),

[FWart &) = fo(Wa+ 62) = FLWa) (61 = 6)] 2
= | (FLWa + g2 +7(¢1 — ¢2)) = FL(Wa)) (b1 — 62)] 2a

n+2

2s¢ 2se
(435) <C <\¢1!s? + [@alsr ) |61 — b2l 20 < C (H¢1Hi,§i + H¢2Hi,_si) 61 — 2

‘h,se-
We note that by (2.4) we have 25— = nQ—fQ for e > 0.
If n > 7 or e <0, there holds
|f-Wa+ 1) = f-(Wa + ¢2) — fLWaA)(d1 — ¢2)}#82555
< O|(IWal? 7 fréo + (1= D)erl + Iroo + 1 =)ol ) (61 = 2)| .,
ntZos

2*—3—¢
(436) <O (Wale + lé1lls, + 02l ) (Il o) 161 = G2l

Since the probler;n is supercritical if € < 0, s > %, ie., NT;SE > n2—]:2, by the embedding
L2 (M) < Lnt2 (M), we get

‘fe(WA + ¢1) - fs(WA + ¢2) - fé(WA)((bl - ¢2>} 2n

h,se + ”¢2

n+2
*—3—¢
= C (IWaly, + 161l +192ls, ) (191, + 62l ) 61 = B2l
(4.37)
Moreover, if n > 7 and € > 0, from (2.4), we have RT;SS = %

Taking ¢1 = ¢, ¢2 = 0 into (4.35) or (4.36) and (4.37), from (4.33), we can get
Cllo i_s‘i if n=6ande>0;
h,se S 2 2*—1—¢ .
C ||<;5|h785—|—||¢)||h’8€ if n>7o0re<0.
By the definition of B(f), from (4.30), (4.31) and (4.38), we can get that there exists 5 > 0 such
that

(4.39) ¢ B(B) = T al¢) €B(B),

(4.38) 1N gg(¢)




SIGN-CHANGING BLOW-UP SOLUTIONS FOR YAMABE PROBLEM 15

provided that ¢ is sufficiently small. Next we will show that the map T 4 is a contraction map
for any e small enough.

If n =6 and € > 0, by (4.32), (4.34) and (4.35), we deduce that there exists ¥ € (0,1) such
that

161 ln5e [ B2llns. < le] el
(4.40) = |1 Tz,a(01) — Tz a(92)[[n,s. < Vld1 = d2llns. -

If n>7ore <0, by (4.32), (4.34),(4.36) and (4.37), we can deduce that there exists ¥ € (0,1)
such that

[@1lln,se» If2lns. < lel Ine]]
(4.41) = [[Te,4(¢1) — T, a(d2)|n,s. < Dldr — 2llns. -
By (4.39) and (4.40) or (4.41), we deduce that T, 4 is a contraction mapping from B(3) into
B(3) for € small enough, so it has a fixed point ¢, 4 which satisfies (3.13), and (3.15) holds from
(4.30).

By the Implicit Function Theorem to prove that the map A — ¢, 4 is a C! map. In fact,
we apply the Implicit Function Theorem to the function G(A,¢) : A € A x He — H. defined
by G(A,¢) = ¢ — L(E 4 (Ne,a(¢) + Re 4) - The proof is standard, we omit it here, see [17]. This
finishes the proof. O

5. THE EXPANSION OF ENERGY

Lemma 5.1. [1//In a normal coordinates neighborhood of & € M, the Taylor series of g around
& 1s given by

gij = 0ij + %Rkijlzkzl +0( |2,
as |z| = 0. Moreover, the volume element on normal coordinates has the following expansion
det(g) = 1~ cRu=! +O(12P),
where Ry = Ric(eg,e;) = giniklj = g R(ei, ek, €1, e;), with {e;}7 is a basic of Te(M).
This section is devoted to the proof of Proposition 3.2. At the first step, we have

Lemma 5.2. Fore small, if (A, §,a,0) is a critical point of the functional F., then W4+ ¢4 is
a solution of (2.5), or equivalently of problem (1.1).

Proof. Let (A,§,a,0) be a critical point of F.. Let £ = {(y) = expe(y), y € B(0,7). We note
that £(0) = &. since (), &, a,0) is a critical point of F., there holds

0
(5.1) JL(Wa+ ¢a) [8tWA+ td’A]ZQ
, 0

(5.2) J.(Wa+¢a) o WA—I—igf)A =0, l=1,...,n,
(5.3) JL(Wa+ ¢a) 6W+ aqs =0

: cWa+oa) | g5 -Wat g5 =0,
and
(5.4) JL(Wa+da) iW +i¢ =0, k=12

: c(Wat o) |5 Wat 504 =0, k=12
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Let 0y, denotes 0; or 9y, forl = 1,2,--- ,n, or Oy, , Oy, , OF 8%. for 0;; € {612,613,...,61n,023,...,62,}.
By (3.13) we get
0=0mF:-(\,§,0,0) = J.(Wa + ¢a) [0mWa + 0
= (Wa+¢a =i [f-(Wa +62)], OnWa + Omda)

3n—1

= Z Cé <Zj47 amWA + 8m¢A>h 9
=0

for some ¢! € R. Since 9,Ws = Z7 + o(1) and Oy,da = o(1), thus 9, Fe(N, €, a,0) = 0 is
equivalent to get

02:0 for any ¢=0,1,---3n — 1.
for € is small enough. O

Now we give the expansion of the energy J.(Wy4).
+o0 4

Let p,q € R, such that p — ¢ > 1 and assume that I} = 0 dt. An integration by

(1+1)?
parts, we have
p—q—1 +1 q+1
(55) Ig+1 — Tlg, and Ig+1 = m §+1.
n—8 n n—6 n n—4 n(n — 4) n=6
J 2z — J 2 J2 =] 2 — 2
e R o 4(n —1)(n—2) "2
e n(n+2) 2t 2 (n-2(n—d) e (nod) eg
" 4(n—1)(n—2) % " nin+2) " 4(n —1) "2
and A
n—6 n n—=6 n—4 n — n—=6
J 2 — 2 J 2 = J 2
n—1 2(n . 2) n—2" n—1 2(n . 2) n—2

The energy functional is

1 1 1 .
Je(Wa) = 5 /M VWa(@)lpdvg + 5 /M (@) [ Wa (o) Pdvy — — /M Wa(2)[2~du,.

We observe that by change of variable z = exp¢(Az), for z € B(0,7), we have

—~ —~ _n-2| 2z 2-n z — Pyaz|?
Wa(x) = Walexpe(Az)) = A7 2 i PgCL|Z|‘ Q| ———=
B Pga\z\‘
z
_n=2 _ z 2—n T - P@G/
=\ 2 ‘2‘2 n’Z‘Q—PQG‘ Q 7‘Z B}
ﬁ - P@CL‘
, _ z
since |2|” "Q(W):Q(Z)
= AfnTﬂ\zF*nQ Eo Pya ).
2]

We set
z

Qalz) = MHQ(W _ a), with &= Pya.
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Then we find

1 1 .
L) =5 [ IVWa@) e, + 5 [ h@Wa@)Pdv, - g [ W@,

- [ [ G e

o]
B(0,%)

2
X (1 — %Rklzkzl + O()\3|z\3))dz

Since

2
;/MWWA(UC)@dUg _ 1 / ngaQa( %) 9Qal(z )(1_ %Rklzkzl+0()\3\z\3)>dz

2 £ 9z 0z;
B(0,%)
1 = 2 A2 = 2. k.1 2
=3 IVQa(z)|7dz — ERM IVQa(z)|°2"2"dz 4+ o(\),
Rn Rn

and

- /Mh<x>|WA<x>\2dvg—h / Gal2) Pz + o(32).

On the other hand,

z)|* " dvg
1 n=2. Ao (2% —e _E kL 31,13
= 5\ / 1Qa(2) (1 R+ OV ))dz
B(0,%)
/=2 (n—2)? 9 n—2 9
= ( o + 2 e+ 0(e )) (1—}—5 log(\) + O(e )) X

X / 1Qa(2)| 72 (1 ~ clog |Qa(2)] + 0(52)) (1 - ?Rklzkzl + O()\3|z]3))dz

o= 2dz—/\2

Rkl/]Qa ]n 5%l

+54&tﬂ@wﬂm-g;/@ww$m@WW4
Rn R

telog(n)" 2 / 1Ga(2)|E2dz + 0(02) + o(e).

R

Therefore, for A = \/t|e|, we get

J.(Walx /IQa 5z — e log(t) /rcza =1r
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/\Qa )2 dz Rkl /]VQG )22F2ld

R

= / |@a<z>|f—”2z’ledz)]|a|
—[”‘2 /IQa rwdz—/mza n2log|c2a<>|dz]s

/ Qa2 2dz + offe]).
Rn

—elog|£|

Since
Qa(2)|2dz = [ |o]72"|Q( 5 — g = Q(y)| 72 dy = co,
R[ z /z a) z R[ Y Y=g
/ Qale) Pz = fiiwd
and
[ 1Ga(2] 5 0g| Qa2
.
:/\z|2” Q(é—d) mlog“z]%"Q(é—d)‘dz
2
=/‘Q(y—~ %log‘lyln_zQ(y—&)‘dy
2,
= -2 [ |ow-a oglyiay + [ [@(u—a)| ™ x|y - a)|ay
R™ R™
= (=) [ 107 tog |y +aldy+ [ 10/ log Q) ldy.
R™ R®
Then we find

1 n— —2)2 n—2 n—2
Je(Wy(x)) = —co 4n2) co — )E - co log(t)e

+t{(;/||;2_(i_y;||4d Rkl /|VQa (2)]22F2ldz — /|Q iy gkl dz)hs]
Re

—2)2 20
+(n2n)/!Q(y)!”2 log |y + a|dy & + o(|e]),

2
cp elog le| — ((n

(5.6)
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where

_2n_
or = [ 107 g Q(w)ldy.
Now we observer that a = Pya, for |a| small, a Taylor expansion, we have

2
a
yeral=t = (o + 20+ aP) 7 = i (1 2+ 05)

:\m4(1-—2(2’|24—tjz)-+3(2ﬁ| +;:) +wxuu%>

_Lywa LlaP? L wa)? | o))

5.7 - 21 1 19 + ,
7 ol \y|6 P |y\4
where ya = y1a1 + yoas9, then f‘ Q(y) 1Q(y)|2dy = ‘y|6 dy Thus
1Q(y /lQ 2 !Q(y)l2 Glalz |Q(y)|2 p
dy — dy + dy + o(|a
|y+a|4 VR A
Qy n— Qy)? _
/’ - |2 | ,yg' ay + o{al?)
(5.9 5 (2 ~lal) +oflaP) + o(e),
n—=6
where 8 = “%-ta?] 2, .
Recall that Qa(z) = |2[%~ ”Q<|z— ) we have
IVQa(2)]” = 2]V, QW) > + (n = 2)|P>"|Q)I” + 2(n — 2)|2[ " Q(y)V,Q(y)>
where y = B | — Pya. Thus

Ry / \V@a(z) |22kzldz
Rn

_ s g2 QWP
= Ry /R" {VyQ(yﬂ + (n—2)? [y + Poal?

(y + Ppa)VyQ(y)QW) | (y + Ppa)*(y + Ppa)’
ly + Pyal? ly + Ppal*

V,Q(y)|? k I
=R + Pya + Pya)'d
kl/Rn \y+Pga|4(y pa)" (y + Poa)'dy

+2(n —2)

tn-22my [ AL I+ Py + Pra)ldy

ly + Pyal®
+ Ppa)V
+2(n — 2)Ryy / g |(; -)i- ;i?é/)Q(y) (y + Pya)k(y + Pya)'dy
=11+ Ir+ Is.

Using (5.7), we have

B VWP IV,Q)7 20— 6) [V QW2 .
‘R’“’/Rn{ pt e v T e Peel el
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< (v + o (Boa) + ' (Poa) + (Poa) (P ) dy
_ Sealy(€) [ [IVQWP 200 =6) [V,QW)P »
S oon /n[ lyl? n i ‘]dy

2
'Vy|§|iy)' dy + of|al?) + oe)

+ Ry (Pya)* (Ppa) ;

(n—2)2w,

_ n—2 n 2n—=6
_ 1a3<1n2 k- 20

n—4 n
(I,ﬂ +KI,$)|a|2> Scaly(€)

n 2

+(n —2)? "21 o2 <I * +KIj > Rii(Pya)*(Pya)’ + o(|al®) + o(e)

_ 5 [(n—2)2(n—4) N (n— 2)(n—4)K (n—2)(n—4)(n—6)(1 +K)a|2] Seal, (&)

dn(n — 1) 4(n—1) 2n(n —1)

5 _( 2¥ 1) Y (14 K) Ruu(Pa)* (Poa)! + of(af?) + o(c).

Moreover, since

e 1 ya 3m-8)[a?  o(aP)
L N 7 P
We have
-2 QW _3(1-8) QW
=8 lg(f)/n[ o "]dy
2
+n= 2P RutPra) (Bt [ By ofja?) + o)
n—2)%w, n— n-8
- oo, 2(1 7, - A 8)In_22|a]2> Scal, ()
+(n— 2" a 0217, R(Pya)*(Ppa) + o(jaf?) + o(c)
n—2)?2 n— n—
- g (o2 B seay e
+Bn(;l: ?2 Rya(Pya)*(Psa)’ + o(lal) + o(e),
and
I = 9m — (y + Ppa)VQ(y)Q(y) k !
s=2n =2y [ VI Pyt (y+ Py
_2n=2)g yVRW)QWY) _3(n—8)yVR()Q(Y),
R zg(g)/n{ ly|* n ly[* laf") @

+200 - DB (Foa) [ STEEE Dy 1 ofja?) + o)

2 —2)%wa 2 (5 _3n=8) 250 o
= <I - I.2|a Scaly(§)

2~ 2R 02T (Poa)(Paa)! + of[al) + ofe)
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_ 3 <_ (n—2)(n—4) N 3(n — Qg(n —8) ]a|2> Scal, (€)

—Bn(n —2) Ry(Pya)*(Pya)l + o|al?) + o(e).

Therefore, we obtain

I+ 1+ 13
(n—2)(n+2) (n—2)(n—4)
:6<4(n—1) +K—4(n—1) > Scaly(&)
(n —2)(n® + 8n? — 132n + 48) (n —2)(n —4)(n — 6)
b < 2n(n — 1)(n —6) T 1) ) laf? Scaly(€)
B <n(n4_(n2)_(q)+(f)_(7é; 4 n(n4—(n2)_(ri)— 4 K> Ry (Pya)*(Pya)’

(9 +olla) +o(e),
where § = “%La %InQS

On the other hand,

2n
n—2
sz/|Qa w324z = Ry ’;Qiyzgga‘zl(y + Pya)*(y + Pya)'dy

_ 2n_ 1 2(n — 6 n—6 n-2
:“’"2 1@,22( IL* +KI,* >—(n) <In2 + K1 >\al2> Scalg(€)
n n

— <n(n—4) (1+Kn—2> _(n ;(i)(_n;)r 2) <1+KW> Mz) Scal, (€)

g+ <1+KW) Ria(Pya)*(Pya)' + of|al®) + o(z).
(5.10)

Finally, we have

(5.11) /|Q n?log}y%—a‘dy—cQ%—ﬂ (( 14)) <1+Kn;

2) 0P + ofjal?) + o(e),

where
on_
e = / Q)72 log |yldy.
Rn
From (5.6), (5.8)-(5.11), we get
J(Wa(w) = © — dhelog el — de + D W(1,€,0,0)c + o).

where

U(t, & a,0) = —dslogt + sign(e)p(&)t — sign(e)dsa(Beg)a’ t
+ [sign(e) (=2p(€) + dsScaly (€)) t + do] |al® + o(|al*)

21
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where B¢ g = (Pg)T(Rij)anPQ is a n X n matrix, and

n—2 n—4
=h(&) — 1 K 14(8).
P =) - o (14 %K) Seal€)
The constants cg, c1,c0 and d;, i = 1,...,6 are given in Proposition 3.2.

6. APPENDIX

6.1. The sign changing solution Q. Recall that, In [7,8] it was proved that there exists kg
such that for all integer k > k¢ there exists a solution @ = Q to (1.6) that can be described as
follows

(6.1) Qr(y) = Uly) + o).

where

(6.2) Udly) =Uly) - Z Uj(y),
j=1

while q} is smaller than U,. The functions U and U; are positive solutions to (1.6), respectively
defined as

n—2
n—2

(63 U =an (1500) o U@ =T U - )

where a,, = [n(n — 2)]%_2 . For any integer k large, the parameters pg > 0 and the k points &,
l=1,...,k are given by

[i“] H;EQ:<1+O(;)>, for k — oo

=1 (1 —cos Hl)ng

in particular g ~ k=2 if n > 4, and pg, ~ k=2|log k|2 if n = 3, as k — oo, and

& =+1- ,u,2 (nl,O).

n (6.1), ¢(y) satisfies

N ka
[9(y)| =0 <(1—|—\y|)”—2> )

for ¢ > 5.

6.2. About the non-degeneracy of the basic cell. Let 3 be the set of nontrivial solutions
of equation

~AQ=1Q|"2Q, in R
Let N be the group of one-to-one maps of R™ U {oo} generated by
the translations Ty : y — y + a, where a € R";
the dilations D)y : y — Ay, where A > 0;

the linear isometries Py;

the inversion J : y — ﬁ
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From [10], for x,& € M, we then have
Q (Pg oJoT so0JoDy-10 ]39_1 o expgl(x)) €.

In [18], is was proved that these solutions are non degenerate. That is, fix one solution
Q = Qg of problem (1.6) and define the linearized equation around @ as follows

(6.4) L(¢) = Ao +p|QPP o,
The invariances (1.11), (1.12), (1.13), together with the natural invariance of any solution to
(1.6) under translation (if w solves (1.6) then also u(y + () solves (1.6) for any ¢ € R™) and

under dilation (if u solves (1.6) then /\_anu(/\*ly) solves (1.6) for any A > 0) produce some
natural functions ¢ in the kernel of L, namely

L(p) = 0.
These are the 3n linearly independent functions we introduce next:
n—2

(6.5) 2(y) = —5—Qy) +VQ) v,
(6.6) z()—ﬁQ() for a= n

. Ocy—aya y7 et A B
and
(67) 2 (4) = 12 - QM) + 1 Q)

. n+1\Y) = y28y1 Y yl@yg Y),
(6.8) znr2(y) = —2y120(y) + [y 21(y),  2nts(y) = —24220(y) + |yl*22(y)
and, for I/ =3,...,n
(6.9) Znpir1(y) = w21 (y) +viz(y),  zenv-1(y) = —wz2(y) + vez(y)-

Indeed, a direct computation gives that
L(zq) =0, foral a=0,1,...,3n—1.
A solution @ is said to be non degenerate if
(6.10) Kernel(L) = Span{z, : « =0,1,2,...,3n — 1},

or equivalently, any bounded (or any solution in D'2) of L(¢) = 0 is a linear combination of
the functions z,, a =0,...,3n — 1.
The function zp defined in (6.5) is related to the invariance of Problem (1.6) with respect

to dilation /\_RTJQ(/\*ly). The functions z;, i = 1,...,n, defined in (6.6) are related to the
invariance of Problem (1.6) with respect to translation Q(y + ¢). The function 2,41 defined in
(6.7) is related to the invariance of @) under rotation in the (y1,y2) plane. The two functions
Znt+2 and z,43 defined in (6.8) are related to the invariance of Problem (1.6) under Kelvin
transformation (1.13). The functions defined in (6.9) are related to the invariance under rotation
in the (y1,y;) plane and in the (y2,%;) plane respectively.

Let us be more precise. Denote by O(n) the orthogonal group of n x n matrices P with real
coefficients, so that PT P = I, and by SO(n) C O(n) the special orthogonal group of all matrices
in O(n) with detP = 1. SO(n) is the group of all rotations in R”, it is a compact group, which

n(n—1)

can be identified with a compact set in R~ 2 . Consider the sub group S of SO(n) generated
by rotations in the (z1,z2)-plane, in the (z;,z,)-plane, for any j = 1,2 and a = 3,...,n. We
have that S is compact and can be identified with a compact manifold of dimension 2n — 3, with
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. o s . A n(n—1) ~
no boundary. In other words, there exists a smooth injective map x : S — R~ 2 so that x(S5)
is a compact manifold of dimension 2n — 3 with no boundary and x~! : x(5) — S is a smooth
parametrization of S in a neighborhood of the Identity. Thus we write

0€0=x(S), Py=x""(0)

where O is a compact manifold of dimension 2n — 3 with no boundary and Py denotes a rotation
inS. Let 0 = (012, 13, . .., 010,093, .., ng), and we write

Py = P12(012) P13(013) P14(014) - - - P1n(010) Pa3(623) Poa(624) - - - Pon(021),

where P;;(6;;) is the Rotation in the (i, j)—plane,

1--- 0 0---0 0 . 0
0---cosbij0---0—sinf--- 0
0--- 0 1---0 0 . 0
Py(0i) =1 ¢+ i o], i<y
0--- 0 0---1 0 .0
0---sinf;; 0--- 0 cost; 0
0 0 0---0 0 1
We set
PG = (Cij)nxn-
By a direct calculation, we have
c11 = cos b1 cos B3 cos B4 - - - cos Oy,
ci1 = sinfy;cos by 410801 ;42 --cosbiy,, 1=2,3,...,n,
and
c12 = —sin 1 cos a3 cos by 4 - - - cos bay,
— cos 012 sin 013 sin O3 cos By - - - cos O,
— ¢0s 012 cos 013 sin 014 sin B4 cos Oo5 - - - cos Oay,
— cos g cos i3 cosbiy -+ -cosbi 1 cosbig—1sinbs,_1cosbsy,
— cos g cos by 3cosbiy---cosbyp_1cosbi,_1sinby,sinby,,
and for i = 2,3,...,n,

ciz = cos f1; sin fg; cos 02 ;11 cos by ;49 - - - cos Oz,
— sin 912‘ sin 91,i+1 sin 92,i+1 COS 92,i+2 COS 92’7;+2 <+ - COS 02n
— sin (912' COS 9171'_;_1 sin (9171‘4_2 sin 9271‘4_2 COS 9271‘4_3 COS 9271‘4_2 +++ COS 9271
— sinfy; cos 01 ;41 cos 6y i42 - - - cos 01 5,—25in 01 4,1 sin b ;1 cos bay,

— sin@q; cos 01 ;41 €08 01 i42 - - - cos by 5,2 cos b1 51 sin O p, sin Oay,.
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6.3. Some useful estimates.

Lemma 6.1. We have

(6.11) /Wdy =(n— 2)2“’”2*10431? +0 (k—%) ,
i

(6.12) ’V%?'Qdy = -2l o (k).

(6.13) |Q;f‘|’2 Py = e 0212, + 0 (7).,

(6.14) / |Ql(/1|/2’2dy = wg‘lailﬁ +0 (k‘%) ,

(6.15) / ‘Q(‘?'ng dy = w’glaﬁlﬁl + W”Q*la,%k:lﬁ +0 (k ) ,

d
;:.16) / ‘Q(‘Z)|Ln_2 dy = wnglaﬁfﬁ + wnglaﬁlﬂ? + O (k_%) .

Proof. Proof of (6.13): by the definition of @), we have
QWP / Uy) = 251 Usw) + ow)|”
4

|y|*

/|U a +Z/W /&'(y@@?dy

Uy U; 4
(6.17) +2/| Ipo 4( ) ¢(y)|dy.
|yl
Since
U@W)?,  wn n-6

(6.18) |y‘4 dy_ 5 an]n 99

3 Ui, _ Zk:/ pr L

= Wl = umy &2yt

1 1
2 2
= 6% d
& Z/ A+ Py ez + 1
=)
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1
_ 2
= pie, Z / 1+\z\ 2 e+ R

J= 1‘ |<2uk
k
1 1
+ 2 2 / d
il | TP g
Jj=1 1
MZ@
— a2y / ! ! <1+O(“’“2)> dy
B L (1+[22)"=2 g Bl
J 1
‘Z|§2/‘l‘k
k
1 1 (51
2 J
1+0 d
2 [ arpmm (oG @
|22 52
(6.19) = O(kpi|log px|) = O (k™ logk).
Using (6.1), we have
|6(y) 2 2n/ 1 Com
6.20 dy =0k dy) =0k~ 7).
(6:20) i@ = 00 | ppeegt) =007F)
R™ R™
Moreover,

Ll i Uslo) + 9]
Y

ly|*

._.+/ ...+/
B(0,6) Us_,B(0,0) R™\(B(0,6)uUk_,; B(0,9))

~0 (Mk_ k‘Z) +0 <M,§‘”52> +0(k4)

(6.21) =

From (6.28)-(6.21), we get (6.13).

Proof of (6.14): As the same computation as (6.13) we can get. In fact, by the definition of
Q, we have

dy

U, 2 §5 2
R
Rn

:1]Rn

QWP / UGy) - Sk Ui () + o(y) [
6 ly|*

|U a
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Uy Uj(y) + 5
(6.22) +2/| 1D/ 6( m+owl,
Y
Since
U(y)]? Wn— n=s8
2 _ 2 15
(6.23) iyl dy 5 an S
k e
Z ’Uj(y) zz/ 2 1 dy
=, =7 umy &2 [yl0
1 1
2 9
= an d
ik Z/(1+|Z|2)"2 |z + &l Y
]*an
k
1 1
2 9
) ; o @) ez + 10
k
1 1
+u2ai / — dy
' ; S e L
s 1 1 Bz
2 9
' g (PG (1)
‘Z|7m
i 1 1 &1
—Hﬂai / — <1+O 1591 >d
* JZ—; (14 [22)7=2 |20 (ukz)
2125
(6.24) = O(kpg|log pe|) = O(k~>logk).
Using (6.1), we have
|6(y)|> _Qn/ 1 o
6.25 dy =0k dy) =0k ).
(0:29) e ( (1+ [y 22y o v)=o(k¥)
R~ Rn
Moreover,
|6(y)|? _Qn/ 1 o
6.26 dy=0lk « dv) = Ok~ ).
(6:20) e ( (1+ [y 22y o v)=o(k¥)
R~ Rn
Moreover,

/IU I 51 Uily )+¢3(y)ldy

|y|®

B(0,5) u’?le(o,a) ]R{”\(B(O,E)UU’?:lB(O,J))
n—2 _n—2
o(w Tk >+O< 2>+O<k )
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~0 (M,fz> +0(1K7)
(6.27) ok ) +0 (ki) =0 (k7).

From (6.22)-(6.27), we get (6.14).
Proof of (6.15): we have

s Uly) = X521 Ui(w) + ()
/IQ(|yy)‘|2 dy:/\ y 1Uj = " &y
&

/’ w d+z/|J d+/‘¢|\2

e R a U o ]
699 = JLECI>RTIREY Ol

v=1 Rn

Since

2n
U n-2 o] 2o n—d
(6.29) /‘ (‘y;’L dy="ai 71,7,

k 2n 2 k
Z/’UJ’(ZJ”” *d Z/ 1 dy
P - uk+|y &Pyl
277. k 1
> / Sy
1+|Z| )" ez + &1

2 1 1
= a2 / dy
" Z (L+ 22" |z + €512

n2
o Z | arrre e

ez gt

1 Ui 2
ol 0
= o Z | arer <” (|s]|>>d

el st

P 1 1 [$1
+ay, 2 / <1+O J >dy
2 | arEmrmee 002

(6.30) 0l TRILT +O<k ) n> 4.
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Using (6.1), we have

~ 2n
lp(y)|»—2 _n 2n 1 _ _nm o\ _n
(6.31) /Iyl2 dy_O(k a 2/(1+y|)2n‘y|2dy)_0(k: a 2) _O(k: q).
Rn Rn
Moreover, for v € (1, % -1,
~ 2n__
U5 Ujy) + )72
2 dy
2, vl

(6.32)

B(0,5) Uk_, B(0,0) R™\(B(0,6)uU¥_, B(0,9))

= (M]:22<"2%7) —|—k‘_7ql(n2—n2_’y)>

Therefore (6.15) follows from (6.28)-(6.32).

Proof of (6.16), which is the same as (6.15). O
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