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Abstract

Recently, skyrmions with integer topological charges have been observed numer-
ically but have not yet been shown rigorously on two-component systems of nonlinear
Schrödinger equations (NLSE) describing a binary mixture of Bose-Einstein condensates
(cf. [2] and [25]). Besides, half-skyrmions characterized by half-integer topological charges
can also be found in the nonlinear σ model which is a model of the Bose-Einstein con-
densate of the Schwinger bosons (cf. [18]). Here we prove rigorously the existence of
half-skyrmions which may come from a new type of soliton solutions called spike-vortex
solutions of two-component systems of NLSE on the entire plane R2. These spike-vortex
solutions having spikes in one component and a vortex in the other component may form
half-skyrmions. By Liapunov-Schmidt reduction process, we may find spike-vortex solu-
tions of two-component systems of NLSE.

1 Introduction

Spikes and vortices are important phenomena in one-component nonlinear Schrödinger
equations (NLSE) having applications in many physical problems, especially in Bose-Einstein
condensation. In the last two decades, there have been many analytical works on both spikes
and vortices, respectively. One may refer to [19] for a good survey on spikes, and [1], [11] and
[21] for survey on vortices. Recently, a double condensate i.e. a binary mixture of Bose-Einstein
condensates in two different hyperfine states has been observed and described by two-component
systems of NLSE (cf. [22]). It would be possible to find spike and vortex solutions from two-
component systems of NLSE. However, until now, there is no result to deal with spike-vortex
solutions having spikes in one component and a vortex in the other component. In this paper,
we want to find such solutions and investigate the interaction of spikes and vortices.
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Ordinary skyrmions being of topological solitons resemble polyhedral shells which look like
closed loops, possibly linked or knotted. Besides their intrinsic fundamental interest, skyrmions
have important applications in nuclear physics (cf. [17]), and analogous structures are postu-
lated for early universe cosmology (cf. [4]). To get a skyrmion, one may consider the multi-
component wave function which may introduce the extra internal degrees of freedom and result
in a nontrivial structure characterized by topological charges. For two-dimensional Skyrme
model, skyrmions have been investigated by the method of concentration-compactness (cf. [13]).
In a double condensate, skyrmions with integer topological charges have been observed by
numerical simulations on two-component systems of NLSE (cf. [2] and [25]). Besides, half-
skyrmions characterized by half-integer topological charges can also be found in the nonlinear
σ model which may describe the Bose-Einstein condensate of the Schwinger bosons (cf. [18]).
Here we prove rigorously the existence of half-skyrmions in a double condensate using spike-
vortex solutions of two-component systems of NLSE.

To get spike-vortex solutions, we study soliton solutions of time-dependent two-component
systems of NLSE as follows:

−√−1
∂ψj

∂t
= 4ψj +

2∑
i=1

βij|ψi|2ψj , for x ∈ Rn , t > 0 , j = 1, 2 , (1.1)

where the spatial dimension n = 2 and ψj = ψj(x, t) ∈ C for j = 1, 2. The system (1.1)
is a standard model to describe a double condensate. Physically, ψj’s are the corresponding
complex-valued wave functions, and the coefficients βij ∼ −aij for i, j = 1, 2, where ajj’s and
a12 = a21 are the intraspecies and interspecies scattering lengths, respectively. When the spatial
dimension is one, i.e. n = 1, it is well-known that the system (1.1) is integrable, and there
are many analytical and numerical results on soliton solutions of coupled nonlinear Schrödinger
equations (e.g. [7], [8], [9]). Recently, from physical experiments (cf. [3]), even three-dimensional
solitons have been observed in Bose-Einstein condensates. It is natural to believe that there
are two-dimensional (i.e. n = 2) solitons in double condensates. However, when the spatial
dimension is two, the system (1.1) becomes non-integrable and has only few results on two-
dimensional solitons. This may lead us to study two-dimensional soliton solutions of the system
(1.1) and find different types of solitons.

In the vicinity of a Feshbach resonance, scattering lengths aij’s depend sensitively on the
magnitude of an externally applied magnetic field (cf. [23] and [24]), allowing the magnitude and
sign of βij’s to be tuned to any value. Generically, when both βjj’s are positive, the system (1.1)
is of self-focusing and has bright soliton solutions on the associated two components. On the
other hand, when both βjj’s are negative, the system (1.1) is of self-defocusing and has dark
soliton solutions on the associated two components. Here we have interest on the case that β11

and β22 have opposite signs which may result in a new type of soliton solutions called spike-
vortex solutions of the system (1.1) i.e. one component has spikes and the other component
has a vortex. Furthermore, we may obtain half-skyrmions by these spike-vortex solutions.

To obtain soliton solutions of the system (1.1), we set

ψj(x, t) = e
√−1 λjt · uj(x) , uj ∈ C , j = 1, 2 . (1.2)
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Substituting (1.2) into (1.1), we may obtain a two-component system of semilinear elliptic
partial differential equations given by

{
4u1 − λ1u1 + β11 |u1|2 u1 + β12 u1 |u2|2 = 0,

4u2 − λ2u2 + β22 |u2|2 u2 + β12|u1|2u2 = 0,
(1.3)

where β12 is the coupling constant. In [15]-[16], we studied the ground state solutions of (1.3)
for the case that β11 > 0, β22 > 0 and uj’s are positive functions. Namely, we investigated the
following problem: 




4u− λ1u + β11u
3 + β12uv2 = 0,

4v − λ2v + β22v
3 + β12u

2v = 0,

u, v > 0, u, v ∈ H1(Rn) .

(1.4)

Due to each λj > 0 and βjj > 0, both u and v components have attractive self-interaction
which may let spikes occur in these two components. One the other hand, when n = 2, λj < 0
and βjj < 0, j = 1, 2, and uj’s are complex-valued solutions of (1.3), vortices may exist in both
u1 and u2 components (cf. [12]).

In this paper, we study the case that n = 2, λ1, β11 > 0, λ2, β22 < 0, and u1 is positive but
u2 is complex-valued function. Without loss of generality, we may assume that

λ1 = −λ2 = β11 = −β22 = 1 .

Namely, we study the following system:
{
4u− u + u3 + βu|v|2 = 0 in R2 ,

4v + v − |v|2v + βu2v = 0 in R2 ,
(1.5)

where u > 0 and v ∈ C. To get skyrmions, a defining property of the skyrmion is that
the atomic field approaches a constant value at spatial infinity (cf. [26]). Hence we may set
boundary conditions of the system (1.5) as follows: u(x) → 0 and |v(x)| → 1 as |x| → ∞.

As β = 0, the first equation of the system (1.5) becomes a standard nonlinear Schrödinger
equation given by

4u− u + u3 = 0, u ∈ H1(R2) (1.6)

which has a unique least-energy spike solution w = w(r), r = |x| satisfying w′(r) < 0 for r > 0
and

w(r) = A0r
− 1

2 e−r
[
1 + O

(1

r

)]
, w′(r) = −A0r

− 1
2 e−r

[
1 + O

(1

r

)]
. (1.7)

Actually, this is also a typical spike solution of nonlinear Schrödinger equations. On the other
hand, as β = 0, the second equation of the system (1.5) can be written as

4v + v − |v|2v = 0, v = v(z) ∈ C for z ∈ C ∼= R2 , (1.8)

which is of conventional Ginzburg-Landau equations (cf. [1]) having a symmetric vortex solution
of degree d ∈ Z\{0} with the following form

vd(z) = Sd(r)e
√−1 dθ, (1.9)
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where Sd(r) satisfies {
S ′′d + 1

r
S ′d − d2

r2 Sd + Sd − S3
d = 0,

Sd(0) = 0, Sd(+∞) = 1,
(1.10)

and

S ′d(r) > 0, Sd(r) = 1− d2

2r2
+ O

( 1

r4

)
as r → +∞ . (1.11)

Here we want to prove that when β increases or decreases, there exist spike-vortex solutions of
the system (1.5). This may become the first paper to illustrate such solutions of two-component
nonlinear Schrödinger systems.

The main purpose of this paper is to construct a spike-vortex solution (u, v) of the sys-
tem (1.5) such that u ∼ w and v ∼ vd. Actually, the main difficulty of this paper is to study
the interaction of typical spike and vortex solutions. Our first result shows that even a weak
repulsive interaction (β > 0 being small) can produce abundant bound states by solving the
system (1.5). More precisely, we have

THEOREM 1.1. Let n = 2, d ∈ N and k ≥ 2 satisfy

(i) k ≥ 2 is any positive integer if d = 1,

(ii) 2(d − 1) 6≡ 0 mod k i.e. there does not exist any integer µ such that 2(d − 1) = kµ if
d ≥ 2.

Then for β > 0 sufficiently small, the problem (1.5) has a solution (uβ, vβ) satisfying uβ(z) > 0
for z ∈ C, vβ(0) = 0 with degree d, and uβ(z) → 0 , |vβ(z)| → 1 as |z| → ∞. Moreover, as
β → 0+, (uβ, vβ) has the following asymptotic form





uβ(z) =
k∑

j=1

w
(
z − ξβ

j

)
+ O(|β|),

vβ(z) = Sd(r)e
√−1 dθe

√−1ψβ(z), ψβ(z) = O(|β|) ∈ C,

(1.12)

where w is the unique radial solution of (1.6),
〈
ξβ
1 , ..., ξβ

k

〉
forms a regular k-polygon with

ξβ
j = lβe

√−1
2π(j−1)

k , j = 1, ..., k, (1.13)

and lβ → +∞ as β → 0+ satisfying lβ = l̂β + O(1), where l̂β satisfies

l̂
5
2
β e−2l̂β sin π

k = β. (1.14)

A picture of (uβ, vβ) is given by
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uβ uβ

vβ

In [15]-[16], the positive sign of β may give inter-component attraction when the inter-
component interaction is only for spikes. Conversely, the positive sign of β may contribute
inter-component repulsion when the inter-component interaction is for spikes and a vortex.
The inter-component repulsion between u and v components may balance with self-attraction in
u-component so a new kind of soliton solutions called spike-vortex solutions of two-component
nonlinear Schrödinger systems can be obtained in Theorem 1.1.

For β < 0, we may consider the radial solution of (1.5) given by

u = u(r) , v = f(r) e
√−1dθ , (1.15)

satisfying 



u′′ + 1
r
u′ − u + u3 + βf 2 u = 0 , ∀r > 0 ,

f ′′ + 1
r
f ′ − d2

r2 f + f − f 3 + βu2 f = 0 , ∀r > 0 ,
u′(0) = 0, u(+∞) = 0,
f(0) = 0, f(+∞) = 1 ,

(1.16)

where d ∈ N and (r, θ) is the polar coordinates in R2. Then we have the following existence
theorem:

THEOREM 1.2. Assume that n = 2 and β < 0. Then the problem (1.5) has radially
symmetric solutions of the following form:

u = u(r) , v = f(r) e
√−1dθ (1.17)

where u(r) is strictly decreasing, f(r) is strictly increasing and (u, f) satisfies (1.16).

Remarks:
1. It is easy to see that the solution (u(r), f(r)) is unique for the system (1.16) if β is small
enough. It is an interesting question to study the uniqueness for general β < 0.
2. Note that the solution (u(r), f(r)e

√−1dθ) is not a global minimizer for the corresponding
energy functional of (1.5) since the equation of u is superlinear. It is conjectured that there
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exists a least energy solution (see definitions in [16]) satisfying E[u(r), f(r)e
√−1dθ] ≤ E[u, v]

for any solution (u, v) of (1.5) with deg(v) = d. Here the corresponding energy functional is
defined as

E[u, v] =
1

2

∫

R2

(|∇u|2 + u2)− 1

4

∫

R2

u4 +
1

2

∫

R2

|∇v|2 +
1

4

∫

R2

(1− |v|2)2 − β

2

∫

R2

u2|v|2. (1.18)

To get half-skyrmions, we may define a S2-valued map

−→n ≡ 1√
u2 + v2

1 + v2
2




v1

v2

u


 , (1.19)

where (u, v1+
√−1 v2) is the spike-vortex solution obtained in Theorem 1.1 and 1.2. Generically,

the topological charge of S2-valued maps is defined by (cf. [6])

Q =
1

4π

∫

R2

−→n · (∂x
−→n ∧ ∂y

−→n ) dx dy . (1.20)

Then we have

THEOREM 1.3. The S2-map defined by (1.19) is of half-skyrmions with topological charge d
2
.

Throughout the rest of the paper, we assume that

l̂β − γ < l < l̂β + γ (1.21)

for some suitable γ. Note that

l̂β =
1

2 sin π
k

log
1

β
+ ck log log

1

β
+ O(1), (1.22)

where ck is constant depending on k only. Besides, unless otherwise stated, the letter C will
always denote various generic constants which are independent of β, especially for β sufficiently
small. The constant α ∈ (0, 1

2
) is a fixed small constant.

The rest of this paper is organized as follows: In Section 2, we introduce useful properties
about the spike solution w and the symmetric vortex solution vd. In Section 3, we define the
approximate solutions of spike-vortex solutions and derive the associated error estimates. In
Section 4, we use Liapunov-Schmidt reduction process to find spike-vortex solutions. Then we
may complete the proof of Theorem 1.1 and 1.2 in Section 5 and 6, respectively. Finally, we
give the proof of Theorem 1.3 in Section 7.

Acknowledgments: The research of the first author is partially supported by a research Grant
from NSC of Taiwan. The research of the second author is partially supported by an Earmarked
Grant from RGC of Hong Kong.
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2 Properties of Spikes and Vortex

We recall some properties of w and Sd(r)e
√−1 dθ, where |d| = 1 or |d| > 1 and 2(d− 1) 6≡ 0

mod k. Let
{

L1[φ] = 4φ− φ + 3w2φ,

L2[ψ] = 4ψ + ψ − S2
dψ − 2Re(Sd(r)e

−√−1 dθψ)Sd(r)e
√−1 dθ ,

(2.1)

for φ is a real-valued function and ψ is a complex-valued function. For convenience, we may
define the conjugate operator of L2 by

L̂2 := e−
√−1dθL2e

√−1dθ (2.2)

Then by simple computations, it is easy to check that

L̂2[ψ1 +
√−1ψ2] = L̂2,1[ψ1, ψ2] +

√−1 L̂2,2[ψ1, ψ2] , (2.3)

for ψ1 and ψ2 are real-valued functions, where

L̂2,1[ψ1, ψ2] = ∆ψ1 + (1− 3S2
d)ψ1 − d2

r2
ψ1 − 2d

r2
∂θψ2 ,

L̂2,2[ψ1, ψ2] = ∆ψ2 + (1− S2
d)ψ2 − d2

r2
ψ2 +

2d

r2
∂θψ1 .

Set a function space

Σ =

{(
φ
ψ

)
=

(
φ(z)
ψ(z)

)
∈ R× C

∣∣∣∣∣
φ(ze

√−1 2π
k ) = φ(z), φ(z̄) = φ(z),

ψ(ze
√−1 2π

k ) = e
√−1 2π

k ψ(z), ψ(z̄) = ψ(z)∗

}
, (2.4)

where k ≥ 2 is an integer. Hereafter, both the over-bar and asterisk denote complex conjugate.
We remark that the equation (1.5) is invariant under the following two maps





T1

(
φ

ψ

)
=

(
φ(ze

√−1 2π
k )

e−
√−1 2π

k ψ(ze
√−1 2π

k )

)
,

T2

(
φ

ψ

)
=

(
φ(z̄)

ψ(z̄)∗

)
.

(2.5)

Therefore, we may look for solutions of (1.5) in the space
∑

. We first have

LEMMA 2.1.

(1) Suppose L1[φ] = 0, φ ∈ H2(R2) and φ(z̄) = φ(z). Then φ(z) = c ∂w
∂z1

(z), where z =

z1 +
√−1z2, zj ∈ R and c is a constant.
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(2) Suppose

L2[ψ] = 0, |ψ| ≤ C, ψ(z)∗ = ψ(z̄), and ψ(ze
√−1 2π

k ) = e
√−1 2π

k ψ(z) , (2.6)

where C is a positive constant. Then ψ ≡ 0, provided that |d| = 1 or |d| > 1 and
2(d− 1) 6≡ 0 mod k.

PROOF. (1) is easy to show. See Appendix C of [20]. We only need to show (2). We
firstly state the proof for the case when |d| = 1. For simplicity, we may assume d = 1.
From [21](Theorem 3.2), we know that

ψ = c0

(√−1S(r)e
√−1θ

︸ ︷︷ ︸
‖

ψ0,0

)
+

2∑
j=1

cj
∂

∂zj

(
S(r)e

√−1θ
)

︸ ︷︷ ︸
‖

ψ0,j

, (2.7)

where cj’s are constants. It is easy to calculate that
(√−1S(r)e

√−1θ
)∗

= −√−1S(r)e−
√−1θ,

ψ0,1 =
(S(r)

r

)′ x2

r
+ S(r)

r
+
√−1 (S(r)

r
)′xy, and ψ0,2 =

(S(r)
r

)′ xy
r

+
√−1

[
(S(r)

r
)′y2+ S(r)

r

]
, where x = z1

and y = z2. Consequently, (ψ0,0(z))∗ = −ψ0,0(z̄), (ψ0,1(z))∗ = ψ0,1(z̄) and (ψ0,2(z))∗ 6= ψ0,2(z̄).
Moreover, due to ψ(z)∗ = ψ(z̄), we have c0 = c2 = 0. Hence we only have

ψ(z) = c1ψ0,1(z) .

However, it is obvious that ψ0,1 doesn’t satisfy ψ0,1

(
ze
√−1 2π

k

)
= e

√−1 2π
k ψ0,1(z). Thus c1 = 0

and ψ ≡ 0.
Now we give the proof for the case that |d| > 1. From [14], the solution ψ locally may

become a linear combination of ψd,0(z) =
√−1 h(r) e

√−1 dθ and the following forms

ψd,m(z) = a(r) e
√−1 (d−m)θ + b(r) e

√−1 (d+m)θ , (2.8)

for m ∈ N, where z = r e
√−1 θ and (r, θ) is the polar coordinate. Here h, a and b are real-valued

functions. Actually, these forms are invariant to the operator L2 so one may decompose the func-
tion space Σ as invariant subspaces having the forms like ψd,0 and ψd,m’s. Then the condition

ψ(z)∗ = ψ(z) may imply ψd,0(z)∗ = ψd,0(z). However, since ψd,0(z) =
√−1 h(r) e

√−1 dθ, then

ψd,0(z)∗ = −ψd,0(z) which gives ψd,0(z) ≡ 0. Besides, the condition ψ(ze
√−1 2π

k ) = e
√−1 2π

k ψ(z)

may give ψd,m(ze
√−1 2π

k ) = e
√−1 2π

k ψd,m(z). Consequently,

a(r) e
√−1 (d−m)θ

(
e
√−1 (d−m) 2π

k − e
√−1 2π

k

)
+b(r) e

√−1 (d+m)θ
(
e
√−1 (d+m) 2π

k − e
√−1 2π

k

)
= 0 . (2.9)

Hence a ≡ 0 or b ≡ 0 if e
√−1 (d−m−1) 2π

k 6= 1 or e
√−1 (d+m−1) 2π

k 6= 1. Due to L2[ψd,m] = 0, a(r)
and b(r) satisfy

{
a′′ + 1

r
a′ − (d−m)2

r2 a + (1− S2
d) a− (a + b)S2

d = 0 ,

b′′ + 1
r
b′ − (d+m)2

r2 b + (1− S2
d) b− (a + b)S2

d = 0 .
(2.10)
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This implies a ≡ b ≡ 0 if a ≡ 0 or b ≡ 0. Thus a ≡ b ≡ 0 if e
√−1 (d−m−1) 2π

k 6= 1 or
e
√−1 (d+m−1) 2π

k 6= 1. It is trivial that e
√−1 (d−m−1) 2π

k 6= 1 or e
√−1 (d+m−1) 2π

k 6= 1 if 2(d − 1) 6≡ 0
mod k. Therefore a ≡ b ≡ 0 i.e. ψd,m ≡ 0 if 2(d − 1) 6≡ 0 mod k, and we may complete the
proof of Lemma 2.1.

To study the properties of L2 (or L̂2), we introduce some Sobolev spaces. Let α ∈ (0, 1
2
).

We introduce Hilbert spaces Xα and Yα as follows:

Xα =

{
u = u1 +

√−1 u2 ∈ L2
loc(R2;C)

∣∣∣∣∣
∫

R2

(1 + |x|2+α)(|u1|+ |u2|)2 < +∞
}

equipped with inner product (u, v)Xα =

∫

R2

(1 + |x|2+α)(u1v1 + u2v2)dx, and

Yα =

{
v = v1 +

√−1 v2 ∈ W 2,2
loc (R2;C)

∣∣∣∣∣
∫

R2

|4v|2(1 + |x|2+α)dx +

∫

R2

|v|2
1 + |x|2+α

dx < +∞
}

equipped with inner product (u, v)Yα = (4u,4v)Xα +

∫

R2

u · v
1 + |x|2+α

dx, respectively. Thanks

to the inequality ∫

R2

|h| ≤
(∫

R2

1

(1 + |z|)2+α

) 1
2

‖h‖Xα .

Besides, we see that Xα has a compact embedding to L1(R2). Originally, these spaces are real-
valued function spaces introduced in Chae and Imanuvilor (cf. [5]). Here we generalize Xα, Yα

as complex-valued function spaces, and regard the operator L2 from the space Yα to the space
Xα. We list some properties of Xα and Yα, whose proofs are exactly the same as in [5].

LEMMA 2.2.

(1) Let v ∈ Yα be a harmonic function. Then v =constant.

(2) ∀v ∈ Yα, we have |v(z)| ≤ C1||v||Yα(ln(1 + |z|) + 1), ∀z ∈ R2.

(3) The image of L2 (or L̂2) is closed in Xα ∩ Σ0, where Σ0 ≡ {ψ = ψ(z) ∈ C : (0, ψ) ∈ Σ} .

Now we study the invertibility of L2 (or L̂2) on the space Yα ∩ Σ0.

LEMMA 2.3. For α ∈ (0, 1
2
). Then operator L2 (or L̂2) from the space Yα ∩ Σ0 onto the

space Xα ∩ Σ0 is invertible. Furthermore,

‖ψ‖Yα ≤ C‖L2[ψ]‖Xα , ‖ψ‖Yα ≤ C‖L̂2[ψ]‖Xα (2.11)

PROOF. It suffices to consider the invertibility of L̂2. Then the invertibility of L2 follows
from a trivial transformation. To show the invertibility of L̂2, we claim that (Im(L̂2))

⊥ = {0} .
Suppose ψ ∈ (Im(L̂2))

⊥. Then it is easy to check that L̂2[ψ] = 0, ψ ∈ Xα ∩ Σ0. By Lemma
2.1, we just need to show that ψ is bounded. To this end, we note that since ψ ∈ Σ0, we have
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ψ(0) = e
√−1 2π

k ψ(0) and k ≥ 2 which may give ψ(0) = 0 . Let φ = ψ e
√−1 dθ. Then φ ∈ Xα and

L2[φ] = 0. Hence φ ∈ Yα and

4φ(z) = h(z)/
(
1 + |z|2+α

)1/2
,∀z ∈ R2 ,

where h ∈ L2(R2). Consequently, by Lemma 2.2 and Riesz representation formula, we may
obtain

|φ(z)| ≤ C log(1 + |z|) , ∀z ∈ R2 ,

and
|∂θ φ(z)| ≤ C log(1 + |z|) , ∀z ∈ R2 .

Thus
|ψ(z)| , |∂θψ(z)| ≤ C log(1 + |z|) , ∀z ∈ R2 . (2.12)

The equation L̂2[ψ] = 0, ψ = ψ1 +
√−1ψ2 can be written as

∆ψ1 + (1− 3S2
d)ψ1 − d2

r2
ψ1 − 2d

r2
∂θψ2 = 0 , (2.13)

∆ψ2 + (1− S2
d)ψ2 − d2

r2
ψ2 +

2d

r2
∂θψ1 = 0 . (2.14)

From (2.12) and (2.13), ψ1 satisfies

|∆ψ1 + (1− 3S2
d)ψ1 − d2

r2
ψ1| ≤ C

r2
log r for r = |z| > 1 .

Hence by comparison principle,

|ψ1(z)| ≤ C

1 + |z| . (2.15)

Here we have used the fact that Sd(r) ∼ 1 as r →∞. Similarly, we may have

|∂θψ1(z)| ≤ C

1 + |z| . (2.16)

It remains to show that ψ2 is bounded. Now we can use (2.14) and (2.16) to get

|∆ψ2 + (1− S2
d)ψ2 − d2

r2
ψ2| ≤ C

r2(1 + r)
for r = |z| > 1 .

In fact, ψ2 satisfies

−∆ψ2 = f(z), where f(z) = (1− S2
d −

d2

r2
)ψ2 +

2d

r2
∂θψ1

Since ψ ∈ Σ0, we deduce that f(z) ∈ Xα ∩ Σ0 and
∫
R2 f(z) = 0. Since ψ2(0) = 0, we have

ψ2(z) = ψ2(0) +
1

2π

∫

R2

log
|τ |

|z − τ |f(τ)dτ =
1

2π

∫

R2

log
|τ ||z|
|z − τ |f(τ)dτ (2.17)

from which we obtain that

|ψ2(z)| ≤ C‖f‖Xα < +∞ for z ∈ R2 . (2.18)

Therefore by (2.15) and (2.18), we may complete the proof of Lemma 2.3.
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To study the vortex solutions, we perform the following key transformation:

v = vd(z)e
√−1ψ(z) , vd(z) = Sd(r) e

√−1 dθ , (2.19)

where ψ = ψ1 +
√−1ψ2 and ψj ∈ R , j = 1, 2 . (Here we have assumed that the vortex occurs

at the center.) Now we define

S1[u, ψ] := ∆u− u + u3 + βuS2
de
−2ψ2 ,

S2[u, ψ] := ∆ψ +
2∇vd

vd

· ∇ψ −√−1S2
d(1− e−2ψ2) +

√−1|∇ψ|2 −√−1βu2 .

We also write
S2[u, ψ] = S2[u, 0] + L̃2[ψ] + N [u, ψ] (2.20)

where

L̃2[ψ] = ∆ψ +
2∇vd

vd

∇ψ − 2
√−1S2

dψ2 (2.21)

=

[
∆ψ1 + 2

(
S
′
d(|z|)

Sd(|z|)
z

|z|
)
∇ψ1 − d∇θ · ∇ψ2

]

+
√−1

[
∆ψ2 − 2S2

dψ2 + 2

(
S
′
d

Sd

z

|z|
)
∇ψ2 + d∇θ · ∇ψ1

]
, (2.22)

N [u, ψ] =
√−1|∇ψ|2 −√−1S2

d(1− e−2ψ2 − 2ψ2) ,

where ∇θ = 1
r
(− sin θ, cos θ). Then it is easy to see that solving (1.5) is equivalent to solving

S1[u, ψ] = 0, S2[u, ψ] = 0 . (2.23)

Let ψ = ψ1 +
√−1ψ2, h = h1 +

√−1h2. We may define two norms as follows:

‖ψ‖∗ = sup
z∈R2

[|ψ1|+ (1 + |z|)|∇ψ1|+ (1 + |z|)1+α|ψ2|+ (1 + |z|)1+α|∇ψ2|] , (2.24)

and
‖h‖∗∗ = sup

z∈R2

[(1 + |z|)2+α(|h1|+ |h2|)] .

Then we may show the following key lemma

LEMMA 2.4. For any h ∈ Xα ∩ Σ0 with ‖h‖∗∗ < +∞, there exists a unique ψ̃ ∈ Yα ∩ Σ0

such that
L̃2[ψ] = h (2.25)

Furthermore, we have
‖ψ‖∗ ≤ C‖h‖∗∗ (2.26)
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Proof: Let ĥ = −√−1 vdh and φ̂ = −√−1 vdψ . Then (2.25) is equivalent to

L2[φ̂] = ĥ (2.27)

where ĥ satisfies ĥ ∈ Σ0 and
‖ĥ‖∗∗ ≤ ‖h‖∗∗ < +∞ . (2.28)

Consequently, (2.28) implies that
∫
R2 |ĥ|2(1+ |z|2+α) < +∞ and hence ĥ ∈ Xα∩Σ0. By Lemma

2.3, (2.27) has a unique solution φ. Furthermore, as for (2.17), we obtain

φ̂(z) =
1

2π

∫

R2

log
|τ ||z|
|z − τ | f̂(τ)dτ (2.29)

where |f̂(z)| (1+|z|)2+α ≤ C‖h‖∗∗. From (2.29), we may deduce that |φ̂|+(1+|z|)|∇φ̂| ≤ C‖h‖∗∗
which implies that |ψ|+ (1 + |z|)|∇ψ| ≤ C‖h‖∗∗ i.e. |ψj|+ (1 + |z|)|∇ψj| ≤ C‖h‖∗∗ , j = 1, 2 .

To obtain better estimates for ψ2, we may use the equation for ψ2 and (2.22). Then

∆ψ2 − 2S2
dψ2 + O

(
1

|z| |∇ψ|
)

= O
(‖h‖∗∗ (1 + |z|)−2−α

)
,

which gives

− C ‖h‖∗∗
(1 + |z|)2

≤ −∆ψ2 + 2S2
dψ2 ≤ C ‖h‖∗∗

(1 + |z|)2
.

Hence we may use a barrier and elliptic estimates to get

|ψ2|+ |∇ψ2| ≤ C ‖h‖∗∗
(1 + |z|)1+α

.

Here we have used the fact that Sd(r) ∼ 1 as r →∞. Therefore we may complete the proof of
Lemma 2.4.

3 Approximate Solutions and Error Estimates

In this section, we introduce some approximate solutions and derive some useful estimates.
Let

S[u, ψ] =

(
S1[u, ψ]
S2[u, ψ]

)
.

Let

ξj = le
√−1 2π

k
(j−1), j = 1, ..., k, wj(z) := w(z − ξj),

ul(z) =
k∑

j=1

wj(z),

Then we have

12



LEMMA 3.1. For l large enough, we have
∥∥S1[ul, 0]

∥∥
L2(R2)

+
∥∥S2[ul, 0]

∥∥
∗∗ ≤ C

(|β|l2+α + e−2l sin π
k

)
. (3.1)

PROOF. It is easy to check that

S1[ul, 0] =4ul − ul + u3
l + βul|vd|2

=

( ∑
j

wj(z)

)3

−
∑

j

w3
j + β

∑
j

wjS
2
d

=O

( ∑

i6=j

w2
i wj + |β|

∑
j

|wj|
)

.

Due to ∫

R2

w4
i w

2
j ≤ Ce−2|ξi−ξj | ≤ Ce−4l sin π

k , ∀i 6= j , (3.2)

we may obtain ∥∥S1[ul, 0]
∥∥

L2 ≤
[
e−2l sin π

k + |β|] . (3.3)

Here we have used the fact that ξj’s are vertices of regular k-polygon with side length 2l sin π
k

.
On the other hand, we have

|S2[ul, 0]| = |β|u2
l ≤ C

k∑
j=1

|β|e−2|z−ξj |

and so by (1.21)

‖S2[ul, 0]‖∗∗ ≤ C|β| sup
z∈R2

(
k∑

j=1

|z|2+α e−2|z−ξj |
)
≤ C|β|

k∑
j=1

|ξj|2+α ≤ C|β||l|2+α . (3.4)

Therefore by (3.3) and (3.4), we may obtain (3.1) and complete the proof of Lemma 3.1.

4 Liapunov-Schmidt reduction process

Let X̃ := (L2(R2)×Xα) ∩ Σ, Ỹ := (H2(R2)× Yα) ∩ Σ and L :=

(
L̃1

L̃2

)
: Ỹ → X̃ , where

L̃1[φ] ≡ 4φ − φ + 3u2
l φ and L̃2 is defined by (2.21). To solve (2.23), we first consider the

following linear problem: Given f ∈ L2(R2) ∩ Σ1, find (φ, c) such that




L̃1φ = f + c
∂ul

∂l
, φ ∈ H2(R2) ∩ Σ1,∫

R2

φ
∂ul

∂l
= 0 ,

(4.1)

where Σ1 ≡ {φ = φ(z) ∈ R : (φ, 0) ∈ Σ}.
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LEMMA 4.1. For each f ∈ L2(R2) ∩ Σ1, there exists a unique pair (φ, c) satisfying (4.1)
such that ∥∥φ

∥∥
H2 ≤ C

∥∥f
∥∥

L2 . (4.2)

PROOF. The existence and uniqueness may follow from Fredholm’s alternatives. Now we
prove (4.2) by contradiction. Suppose (4.2) is not true. Then there exist βn, ln ∈ R, φn ∈
H2(R2) ∩ Σ1 , fn ∈ L2(R2) ∩ Σ1 and cn such that βn → 0, ln → +∞ ,

∥∥fn

∥∥
L2 → 0,

∥∥φn

∥∥
H2 = 1 , (4.3)

as n →∞,

L̃1φn = fn + cn
∂ul

∂l
, (4.4)

and ∫

R2

φn
∂ul

∂l
= 0 . (4.5)

Let φ̃n(z) := φn(z + ξ1). Then by (4.4), φ̃n satisfies

4φ̃n(z)− φ̃n(z) + 3w2(z)φ̃n(z)

+3


2

k∑
j=2

w(z)w(z + ξ1 − ξj) +

(
k∑

j=2

w(z + ξ1 − ξj)

)2

 φ̃n(z)

= fn(z + ξ1) + cn

[
− ∂w

∂z1
(z) +

k∑
j=2

∂wj

∂l
(z + ξ1)

]
.

(4.6)

We may multiply (4.4) by
∂ul

∂l
and integrate over the whole space R2. Then by (4.3), it is

obvious that

cn

∫

R2

(
∂ul

∂l

)2

=

∫

R2

(4φn − φn + 3u2
l φn

)∂ul

∂l
−

∫

R2

fn
∂ul

∂l

=

∫

R2

(
4∂ul

∂l
− ∂ul

∂l
+ 3u2

l

∂ul

∂l

)
φn −

∫

R2

fn
∂ul

∂l
n→+∞−−−−−→ 0.

So cn → 0 as n → +∞. Hence by (4.6), as n →∞, φ̃n → φ̃0 which satisfies4φ̃0−φ̃0+3w2φ̃0 = 0

in R2. Thus by [20], φ̃0 =
2∑

j=1

aj
∂w

∂zj

for some constants a1 and a2. Moreover, due to φ̃n(z̄) =

φ̃n(z), we have φ̃0(z̄) = φ̃0(z). Consequently, a2 = 0 and φ̃0 = a1
∂w

∂z1

. On the other hand, by
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(4.5),

0 =

∫

R2

φn
∂ul

∂l

=

∫

R2

φ̃n(z)

[
− ∂w

∂z1

(z) +
k∑

j=2

∂wj

∂l
(z + ξ1)

]

n→+∞−−−−−→ −a1

∫

R2

(
∂w

∂z1

)2

.

Therefore a1 = 0, φ̃0 = 0, and φ̃n → 0 in L2
loc(R2). Then we have 3u2

l φ̃n → 0 in L2 and hence
‖φn‖H2 → 0 which may give a contradiction and complete the proof.

From Lemma 2.4 and 4.1, we may obtain that

LEMMA 4.2. For

(
f1

f2

)
∈ X̃, there exists a unique

((
φ
ψ

)
, c

)
∈ Ỹ × R, such that

L̃

(
φ
ψ

)
=

(
f1

f2

)
+ c

(
∂ul

∂l
0

)
,

∫

R2

φ
∂ul

∂l
= 0. (4.7)

Moreover, we have ‖φ‖H2 + ‖ψ‖∗ ≤ C (‖f1‖L2 + ‖f2‖∗∗).

We may denote A as the inverse operator for Lemma 4.2, i.e. A

(
f1

f2

)
=

(
φ
ψ

)
. Finally,

we have

LEMMA 4.3. For l large satisfying (1.21), there exists a unique

(
φl

ψl

)
∈ Ỹ such that

S[ul + φl, ψl] = c(l)

(
∂ul

∂l
0

)
,

∫

R2

φl
∂ul

∂l
= 0. (4.8)

Furthermore,

‖φl‖H2 + ‖ψl‖∗ ≤ C
(
e−2l sin π

k + |β|l2+α
)
.

PROOF. This may follow from standard contraction mapping principle. We choose (φ, ψ) ∈
B, where

B =
{

(φ, ψ) ∈ Ỹ : ‖φ‖H2 + ‖ψ‖∗ ≤ C
(
e−2l sin π

k + |β|l2+α
)}

,

and then expand

S1[ul + φ, ψ] = S1[ul, 0] + L̃1[φ] + N1[φ, ψ],

S2[ul + φ, ψ] = S2[ul, 0] + L̃2[ψ] + N2[φ, ψ],
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where
N1[φ, ψ] = 3ulφ

2 + φ3 + β
[
φS2

d e−2ψ2 + ul S
2
d

(
e−2ψ2 − 1

)]
, (4.9)

and

N2[φ, ψ] = −√−1 β(2ulφ + φ2) +
√−1 |∇ψ|2 −√−1S2

d(1− e−2ψ2 − 2ψ2) . (4.10)

By (1.21) and (φ, ψ) ∈ B, we have

‖φ‖H2 + ‖ψ‖∗ ≤ |β|1−σ , σ ∈
(

0 ,
1

100

)
,

as β > 0 sufficiently small i.e. l sufficiently large. Moreover, by (4.9), (4.10) and the norms
defined at (2.24), we see that

‖N1‖L2(R2) ≤ C|β|‖φ‖L2 + ‖φ‖2
L2 + |β| , (4.11)

and
‖N2‖∗∗ ≤ C‖ψ‖2

∗ + C|β| . (4.12)

Now we can write (4.8) as

(
φ
ψ

)
= A

(
S1[ul, 0] + N1[φ, ψ]
S2[ul, 0] + N2[φ, ψ]

)
.

Then as for the proof of Proposition 1 in [16], we may use a contraction mapping argument to
obtain the desired result. Here we also need to use (4.11), (4.12), Lemma 3.1, 4.1 and 4.2.

5 Finding zero of c(l)

To prove Theorem 1.1, it is enough to find a zero of c(l) in (4.8). We multiply the first

equation of (4.8) by
∂ul

∂l
and integrate it over the whole space R2. Then we obtain

c(l)

∫

R2

(
∂ul

∂l

)2

=

∫

R2

[4(ul + φl)− (ul + φl) + (ul + φl)
3
]∂ul

∂l
(5.1)

+ β

∫

R2

(ul + φl)|vd + ψl|2∂ul

∂l

= : I1 + I2, (5.2)
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where

I2 =β

∫

R2

ul|vd|2∂ul

∂l
+ β

∫

R2

O (|φl|+ |ul + φl||ψl|)
∣∣∣∣
∂ul

∂l

∣∣∣∣

=β

∫

R2

ulS
2
d

∂ul

∂l
+ O

(
|β|2l2+α + |β|e−2l sin π

k

)

=β

∫

R2

ul

(
1− d2

2r2
+ O

(
1

r4

))2
∂ul

∂l
+ O

(
|β|2l2+α + |β|e−2l sin π

k

)

=β

∫

R2

ul
∂ul

∂l
+ O

(
|β|l−4 + |β|2l2+α + |β|e−2l sin π

k

)
− β

∫

R2

ul
d2

r2

∂ul

∂l
.

Note that
∫

R2

ul
∂ul

∂l
=

∫

R2

k∑
j=1

wj

∑

i 6=j

∂wi

∂l

=O
(
e−2l sin π

k

)
, (5.3)

−β

∫

R2

ul
d2

r2

∂ul

∂l
=β

[∫

R2

w
d2

|z + ξ1|2
∂w

∂z1

+ O
(
e−2l sin π

k

)]

=− c2 βl−3

∫

R2

w2 + O
(
|β|l−5 + |β|e−2l sin π

k

)
, (5.4)

where c2 is a positive constant independent of β and l. So

I2 = −c2 βl−3

∫

R2

w2 + O
(
|β|l−4 + |β|2l2+α + |β|e−2l sin π

k

)
. (5.5)

For I1, we have

I1 =

∫

R2

(4ul − ul + u3
l

)∂ul

∂l
+

∫

R2

(4φl − φl + 3u2
l φl

)∂ul

∂l
+ O

(
|β|2l2+α + |β|e−2l sin π

k

)

=

∫

R2

[( ∑
j

wj

)3

−
∑

j

w3
j

]
∂ul

∂l
+

∫

R2

[
4∂ul

∂l
− ∂ul

∂l
+ 3u2

l

∂ul

∂l

]
φl + O

(
|β|2l2+α + |β|e−2l sin π

k

)

=6k

∫

R2

w2
1w2

(
− ∂w1

∂z1

)
+ O

(
|β|2l2+α + |β|e−2l sin π

k

)

=− 6k

∫

R2

w2(|z − ξ1|)w′(|z − ξ1|)w(|z − ξ2|) z1 − l

|z − ξ1| dz + O
(
|β|2l2+α + |β|e−2l sin π

k

)

=− 6k

∫

R2

w2(|z|)w′(|z|) w(|z + ξ1 − ξ2|) z1

|z| dz + O
(
|β|2l2+α + |β|e−2l sin π

k

)

=c0 · w(|ξ1 − ξ2|) + O
(
|β|2l2+α + |β|e−2l sin π

k

)

=c0

(
2 sin

π

k

)−1/2

· l−1/2e−2l sin π
k + O

(
|β|2l2+α + |β|e−2l sin π

k

)
, (5.6)

17



where c0 is a positive constant. Here we have used the fact that (1.7) holds.
Combining (5.5) and (5.6), we see that

c(l) ≈ c1l
−1/2e−2l sin π

k − c2βl−3 + O
(
βl−5

)
.

Moreover, we may choose l̂β such that

l̂
−1/2
β e−2l̂β sin π

k = βl̂−3
β . (5.7)

Then

l̂β =
1

2 sin π
k

log
1

β
+ c3 log log

1

β
+ c4.

Now we want to choose l such that l ∈ (l̂β − γ, l̂β + γ) and c(l) = 0 for some suitable γ > 0. It
is remarkable that

c
(
l̂β − γ

) ≈ c1

(
l̂β − γ

)−1/2
e−2l̂β sin π

k
+2γ sin π

k − c2β
(
l̂β − γ

)−3
+ O

(
β
(

log
1

β

)−5
)

> 0 ,

if γ is large enough. Similarly, c
(
l̂β + γ

)
< 0 if γ is large enough. Since c(l) is continuous

in l, then by the mean-value theorem, there exists lβ ∈ (l̂β − γ, l̂β + γ) such that c(lβ) = 0.

Consequently, the function

(
ulβ + φlβ

vde
√−1ψlβ

)
=:

(
uβ

vβ

)
is a solution of (1.5). Furthermore, it

is easy to check that (uβ, vβ) satisfies all the properties of Theorem 1.1. Therefore we may
complete the proof of Theorem 1.1.

6 Proof of Theorem 1.2

We first consider problem (1.16) on a ball BR:




∆u− u + u3 + βuS2 = 0, u = u(r), r < R

∆S − d2

r2 S + S(1− S2) + βu2S = 0, S = S(r), r < R
S(0) = 0, S(R) = 1, u(R) = 0, u > 0, 0 < S < 1

(6.1)

Our idea is to find a solution of (6.1), and then let R → +∞. To this end, we consider the
associated energy functional

ER[u, S] =
1

2

∫

BR

(|∇u|2 + u2) +
1

2

∫

BR

(|∇S|2 +
d2

r2
S2) (6.2)

+
1

4

∫

BR

(1− S2)2 − β

2

∫

BR

S2u2 − 1

4

∫

BR

u4 ,

for u ∈ H1
0 (BR) and S ∈ IR ≡ {S ∈ H1(BR) : S(z) = S(|z|), S(0) = 0, S(R) = 1}.

Let the Nehari manifold be

N =

{
(u, S) ∈ H1

0 (BR)× IR, u ≥ 0, u 6≡ 0 :

∫

BR

(|∇u|2 + u2) =

∫

BR

(u4 + βu2S2)

}
.
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Then we consider the following energy minimization problem

cR = inf
(u,S)∈N

ER[u, S] , (6.3)

and we have

LEMMA 6.1. If β < 0, then cR is obtained by some radially symmetric function (uR, SR).
Furthermore, u

′
R(r) < 0 and S

′
R(r) > 0 for r > 0.

Proof: We follow the proof of (1) Theorem 3.3 of [15]. To this end, we define another energy
functional

E ′
R[u, S] =

1

4

∫

BR

(|∇u|2 + u2) +
1

2

∫

BR

(|∇S|2 +
d2

r2
S2) (6.4)

+
1

4

∫

BR

(1− S2)2 − β

4

∫

BR

S2u2

and another solution manifold

N ′ =
{

(u, S) ∈ H1
0 (BR)× IR, u ≥ 0, u 6≡ 0 :

∫

BR

(|∇u|2 + u2) ≤
∫

BR

(u4 + βu2S2)

}
.

We consider another minimization problem:

c′R = inf
(u,S)∈N ′

E ′
R[u, S]. (6.5)

Certainly, we have
c
′
R ≤ cR. (6.6)

Let (un, Sn) be a minimizing sequence of c′R on N ′. Replacing Sn by min(Sn, 1), we may
assume that Sn ≤ 1. We may denote u∗n and S∗n as the Schwartz symmetrization of un and Sn,
respectively. Then (1− Sn)∗ = 1− S∗n. By Theorem 3.4 of [10],

∫

BR

(1− S2
n)u2

n ≤
∫

BR

(1− S2
n)∗(u∗n)2 (6.7)

and hence due to β < 0,

−β

∫

BR

(u∗n)2(S∗n)2 ≤ −β

∫

BR

u2
nS

2
n (6.8)

On the other hand, we also have

∫

BR

(
1

2
(u∗n)2 +

1

2

d2

r2
(S∗n)2 − 1

4
(u∗n)4) =

∫

BR

(
1

2
u2

n +
1

2

d2

r2
S2

n −
1

4
u4

n) ,

∫

BR

(|∇u∗n|2 + |∇S∗n|2) ≤
∫

BR

(|∇un|2 + |∇Sn|2).
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Hence we obtain
E
′
R[u∗n, S∗n] ≤ E

′
R[un, Sn]

and ∫

BR

(|∇u∗n|2 + (u∗n)2) ≤
∫

BR

((u∗n)4 + β(u∗n)2(S∗n)2). (6.9)

Thus we may replace (un, Sn) by its symmetrization (u∗n, S∗n). Since Sn ≤ 1 and H1(BR) is a
compact embedding to L4(BR), we see that (unSn) → (uR, SR) weakly in H1(BR) and strongly
in L4(BR), where (uR, SR) ∈ N ′ attains c

′
R. So c

′
R is attained. If (uR, SR) ∈ (N ′)◦−the interior

of N ′, then (uR, SR) is a local minimizer of E ′
R and hence we have

∆uR − uR + βuRSR = 0, ∀0 < r < R, and uR(R) = 0 ,

which implies uR ≡ 0 since β < 0. This is impossible since from (6.9) and Sobolev embedding,
we infer that

∫
BR

u4
R ≥ C > 0. Therefore (uR, SR) ∈ ∂(N ′) = N and hence

cR ≤ ER[uR, SR] = E
′
R[uR, SR] = c

′
R. (6.10)

Combining (6.6) and (6.10), we conclude that cR is attained by (uR, SR). Then we have the
following equality:

GR[uR, SR] =

∫

BR

(|∇uR|2 + u2
R − βu2

RS2
R − u4

R) = 0 . (6.11)

Hence there exists a Lagrange multiplier λR such that

∇ER + λR∇GR = 0 . (6.12)

Acting (6.12) on (uR, 0), we may obtain
∫

BR

(|∇uR|2 + u2
R − βuRS2

R − u4
R) + 2λR

∫

BR

(|∇uR|2 + u2
R − βu2

RS2
R − 2u4

R) = 0 ,

and hence by (6.11),

−λR

∫

BR

u4
R = 0 , i.e. λR = 0 .

Therefore, we may complete the proof of Lemma 6.1.

Theorem 1.2 is proved by the following lemma

LEMMA 6.2. As R → +∞, (uR, SR) → (u∞, S∞) and (u∞, S∞) is a solution of (1.16).

Proof: Since SR ≤ 1, SR(0) = 0, we first show that uR is uniformly bounded, independent of
R > 1. Actually, it is sufficient to show that

∫
BR

(|∇uR|2 + u2
R) ≤ C, where C is a positive

constant independent of R > 1. Let

GLBR
[S] =

∫

BR

(
1

2
|∇S|2 +

d2

2r2
S2 +

1

4
(1− S2)2

)
.
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It is remarkable that GLBR
may come from the conventional Ginzburg-Landau functional.

From [21], we may set S̄R as the unique minimizer of GLR. Then for any u ∈ H1
0 (BR), there

exists tR such that (
√

tRu, S̄R) ∈ N , where tR is simply given by

tR =

∫
BR

(|∇u|2 + u2 − βS̄2
Ru2)∫

BR
u4

. (6.13)

Thus by Lemma 6.1 and 0 ≤ S̄R < 1,

cR ≤ ER[
√

tRu, S̄R] = GLBR
(S̄R) +

1

4

[∫
BR
|∇u|2 + u2 − βS̄2

Ru2

(
∫

BR
u4)

1
2

]2

≤ GLBR
(S̄R) +

[∫
BR
|∇u|2 + (1− β)u2

(
∫

BR
u4)

1
2

]2

,

for all u ∈ H1
0 (BR). Consequently, due to β < 0,

cR ≤ GLBR
(S̄R) + C0 , (6.14)

where C0 is a positive constant independent of R > 1. Here we have used the fact that

lim
R→∞

inf
u∈H1

0 (BR)

∫
BR
|∇u|2 + (1− β)u2

(
∫

BR
u4)

1
2

< ∞ .

By standard theory of Ginzburg-Landau equation (cf. [1]), we have

GLBR
[SR] ≥ GLBR

[S̄R] . (6.15)

Combining (6.14) and (6.15), we see that

1

2

∫

BR

(|∇uR|2 + u2
R − βS2

Ru2
R)− 1

4

∫

BR

u4
R ≤ C3

and hence by the equation of uR,

∫

BR

(|∇uR|2 + u2
R) ≤ C , (6.16)

from which standard elliptic regularity theory gives that uR ≤ C. Thus we may obtain that
(uR, SR) → (u∞, S∞) which solves ∆u∞ − u∞ + u3

∞ + βu∞S2
∞ = 0. Note that uR(0) ≥ 1 and

hence u∞ 6≡ 0. By the Maximum Principle, u∞ > 0. Similarly, 0 < S∞(r) < 1 for r > 0.
Therefore we may complete the proof of Theorem 1.2.
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7 Proof of Theorem 1.3

In this section, we want to construct S2-valued map to get half-skyrmions by spike-vortex
solutions obtained in Theorem 1.1 and 1.2. For simplicity, we firstly use spike-vortex solu-
tions in Theorem 1.2 to find half-skyrmions. Let (u, v) be the radial spike-vortex solution in
Theorem 1.2. We may define a S2-valued map by

−→n ≡ 1√
u2 + v2

1 + v2
2




v1

v2

u


 =




cos(φ(r)) cos(dθ)
cos(φ(r)) sin(dθ)
sin(φ(r))


 , (7.1)

where v = v1 +
√−1 v2,

cos(φ(r)) =
f(r)√
u2 + f 2

, (7.2)

and

sin(φ(r)) =
u(r)√
u2 + f 2

. (7.3)

Since both u and f are positive everywhere, the function φ is well-defined and single-valued.
The map −→n can be decomposed into

−→n = cos(φ(r))




cos(dθ)
sin(dθ)
0


 + sin(φ(r))




0
0
1


 .

Then it is easy to check that
∫

R2

−→n · (∂x
−→n ∧ ∂y

−→n ) dx dy =

∫

R2

−d

r
φ′(r) cos(φ(r)) dx dy

= −2π d sin(φ(r))|+∞r=0 = 2π d ,

i.e. the topological charge

Q =
1

4π

∫

R2

−→n · (∂x
−→n ∧ ∂y

−→n ) dx dy =
d

2
. (7.4)

Here we have used (7.3) and the fact that u(0) > 0, u(+∞) = f(0) = 0 and f(+∞) = 1.
For the spike-vortex solution (u, v) in Theorem 1.1, since β > 0 sufficiently small, the

associated map −→n has the following form

−→n ≡ 1√
u2 + v2

1 + v2
2




v1

v2

u


 =




cos(φ) cos(dψ)
cos(φ) sin(dψ)
sin(φ)


 , (7.5)

where φ = φ(r, θ) and ψ = ψ(r, θ) satisfying

cos(φ(r, θ)) =
|v|(r, θ)√
u2 + |v|2 , (7.6)
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sin(φ(r, θ)) =
u(r, θ)√
u2 + |v|2 , (7.7)

and ψ = θ + h, where h is a single-valued regular function satisfying h = O(β) as β → 0+.
Here both u and |v| may not have radial symmetry. Due to β > 0, we may apply the standard
maximum principle on the first equation of the system (1.5) i.e. the equation of u. Then the
solution u is positive everywhere so the function φ is well-defined and single-valued.

Now we want to calculate the topological charge Q as for (7.4). By (7.5), it is easy to check
that

−→n · (∂x
−→n ∧ ∂y

−→n ) = −d

r
φr cos φ +

d

r
(φθhr − φrhθ) cos φ .

Hence by (7.6), (7.7) and using integration by part, we may obtain

Q =
1

4π

∫

R2

−→n · (∂x
−→n ∧ ∂y

−→n ) =
d

2
.

Here we have used the fact that u(0) > 0, u(∞) = 0, v(0) = 0 and |v(∞)| = 1. Therefore we
may complete the proof of Theorem 1.3.
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