Orbital stability of bound states of nonlinear Schrodinger
equations with linear and nonlinear lattices

Tai-Chia Lin *, Juncheng Wei fand Wei Yao *

We study the orbital stability and instability of single-spike bound states of critical
semi-classical nonlinear Schrodinger equations (NLS) with linear and nonlinear lattices.
These equations may model an inhomogeneous Bose-Einstein condensate and an opti-
cal beam in a nonlinear lattice. When the linear lattice is switched off, we derive the
asymptotic expansion formulas and obtain necessary conditions for the orbital stability
and instability of single-spike bound states, respectively. When the linear lattice is turned
on, we consider three different cases and obtain the most general theorem on the orbital
stability problem for NLS with linear and nonlinear lattices.

1 Introduction

Nonlinear Schrodinger equations in the presence of the Kerr nonlinearity may describe an
optical beam in a nonlinear lattice and an inhomogeneous Bose-Einstein condensate (BEC)

given by
o

_ZE :DA@D—Vtmp?ﬁ—QWFQﬂ? (11)

forx € RY, N =2and t > 0. Here ¢ = ¢(z,t) € C is the wavefunction, D is the diffraction (or
dispersion) coefficient, and V.4, is the potential of the linear lattice. Besides, g = um(x) ~ a
characterizes the nonlinear lattice, where a denotes the spatially modulated s-wave scattering
length, w is a nonzero constant and m(z) = m(zy,--- ,zy) > 0 is a function depending on
spatial variables (transverse coordinates) xy,--- ,xy (cf. [1], [6]).

Linear and nonlinear lattices, such as photonic structures for laser beams or optical lattices
for atomic BECs, can support stable bright solitons. For instance, V.., the potential of the
linear lattice varying along three spatial variables may stabilize bright solitons in BEC experi-
ments (cf. [7]). When the coefficient g varies along two spatial variables, two-dimensional bright
solitons can also be observed experimentally in two-dimensional nonlinear lattices (cf. [13]).
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Consequently, under the effect of linear and nonlinear lattices, two-dimensional bright soli-
tons must have suitable stability for experimental observations. However, most theoretical
results, e.g., [10] and [11] only focus on orbital (dynamical) stability of one-dimensional bound
states, i.e., steady state bright solitons in one-dimensional nonlinear lattices fulfilling specifi-
cally asymptotic behaviors. Here we study the orbital stability of two-dimensional single-spike
bound states of (1.1) in two-dimensional nonlinear lattices when the coefficient g varies along
two spatial variables. Basically, we shall provide rigorous arguments to show the orbital sta-
bility and instability of single-spike bound states of (1.1) without using any hypothesis on the
asymptotic behavior of nonlinear lattices.

To get single-spike bound states in nonlinear lattices, we may assume the coefficient D > 0
and the s-wave scattering length a, i.e., u is negative and large due to the Feshbach resonance
(cf. [9]). Setting h* = D/(—u), V(z) = Viyap(x)/(—p) and suitable time scale, the equa-
tion (1.1) with negative and large p can be equivalent to a semi-classical nonlinear Schrédinger
equation (NLS) given by

L 0P 2 2 2
—zhazhAw—Vw—l—mhM v, xzeR*t>0, (1.2)
where 0 < h < 1 is a small parameter, V = V(z) is a smooth nonnegative function and
m = m(x) is a smooth positive function. For the spatial dimension N > 1, we may generalize
the equation (1.2) to a NLS having the following form
O

—z’h5 =AY -V +mpPty, zeRY >0, (1.3)

with critical exponent
=1+ N > 1 (l 4)
p N I . .

In particular, when N = 2, the equation (1.3) with (1.4) is exactly same as (1.2).
Single-spike bound states of (1.3) are of the form v (xz,t) = e**/"u(x), where \ is a positive
constant and u = u(x) is a positive solution of the following nonlinear elliptic equation

RPAu—(V+Nu+mu’ =0, uec H(RY), (1.5)

with zero Dirichlet boundary condition, i.e., u(z) — 0 as |x| — co. When V' =0 and m =1,
problem (1.5) admits a unique radially symmetric ground state which is stable for any A > 0 if
p <14+, and unstable for any A > 0if p > 1+ + (cf. [4], [8] and [41]). For V # 0 or m # 1,
there exists uy, a single-spike solution of (1.5), provided both V' and m are bounded and satisfy
another conditions (cf. [20]). Hereafter, we set 1, (z,t) := e/ u;,(z) as a single-spike bound
state of (1.3), where uy, is the single-spike solution of (1.5).

In this paper, we want to study the orbital stability of the bound state 1, for the equa-
tion (1.3) with critical exponent (1.4). One may regard the bound state 1y, as an orbit of (1.3).
From [17], the orbital stability of 1, is defined as follows: For all € > 0, there exists § > 0 such
that if ||10g — up||gr < 0 and ¥ is a solution of (1.3) in some interval [0, ty) with 1|;,—9 = 1, then
(-, t) can be extended to a solution in 0 < ¢ < 0o and supg.; o infser [|¥(-, 1) = (-, s)|| g < €.
Otherwise, the orbit 1), is called orbital unstable.
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The functions V' = V(z) and m = m(z) may play a crucial role on the orbital stability of
Yp. When m = 1 and V is of class (V), and fulfills other conditions in [28]-[29], the orbital
stability and instability of 1y, for the equation (1.3) was established by Lin and Wei [25] if V'
has non-degenerate critical points. Under different conditions, e.g., h = 1 and \ is large, results
of the orbital stability problem can be found in [15]. One may also remark that the orbital
stability problem of NLS with inhomogeneous nonlinearity has been investigated in [5] but only
for the subcritical case, ie., 1 <p <1+ %.

To state our main results, we need to introduce some notations. It is well-known that the
positive solution of

Aw—w+wP =0 in RV,
(1.6)

w(0) = max w(y), w(y) — 0 as ly| — +oo.
yeRN

is radial [16] and unique [24]. We denote the solution and its linearized operator as w = w(r)
and
Lo:=A—1+puw’?, (1.7)

respectively. For the orbital stability of vy, we set
Ly = h*A = (V+ X)) +mpul (1.8)

as the linearized operator of (1.5) with respect to uy, and

h2 1 1

as the energy of u,. Observe that u, may depend on the variable A\. Assume that d()) is
non-degenerate, i.e., d”(\) # 0. Let p(d”) = 1if d” > 0; p(d”) = 0if d” < 0, and n(L;) be the
number of positive eigenvalues of L. According to general theory of orbital stability of bound
states (cf. [17], [18]), vy, is orbital stable if n(L) = p(d”), and orbital unstable if n(L;) — p(d”)
is odd (see page 309 of [18]). It is remarkable that if both V and m are constant and p = 1+ %,
then d”(\) = 0. Consequently, from now on, we consider the critical exponent p = 1 + % and
assume the point zy as a non-degenerate critical point of the function G defined by (cf. [20],
37])

G(z) = [V(z) + \m™?(z), VzeRY, (1.10)

provided V # 0 and m > 0 in RY. When V = 0 in R, 2 is set as a non-degenerate critical
point of the function m.
For simplicity, we firstly switch off the potential V' and obtain the following result.

Theorem 1.1. Let N > 1 be a positive integer, p = 1 + % and the potential V = 0. Assume
the function m = m(x) satisfies

meC*NL>®;  |mY(z)] < Cexp(v|z|), Vo € RN, i=1,23,4, (1.11)

where v and C are positive constants, and m(x) are the i-th derivatives of m(x). Let
Yn(z,t) = ey (z) for x € RN and t > 0, where uy, is a single-spike solution of (1.5)



concentrating at a non-degenerate critical point xo of m(x). Assume
m(zo)A"m(x) < CnalAm(zo)]* + O [NHV%(%)H% — [Am(zo)[*
+Cnam(20)V(Am) (o) - [V2m(zo)] ' V(Am) (o),  (1.12)
where

2(N +2)2 [N wP L (r2w?) dr
0

Cni= = , (1.13)
N2 f N3P+ dr
0
4(N +2) [ PN P dodr
Cna = = , (1.14)
N2 fTN+3wP+1d7‘
0
(N + 2)(er+1wp+1d7’)2
Cns = —= LI : (1.15)
N f rN=Lyyp+1dpr f pN+39p+1dr
0 0
are constants depending only on N. Here &g = ®(r) satisfies
N -1 _ 2N
B + ———) — g + pu? Dy — By —r*uw? =0, r = [z] € (0,00), (1.16)

®o(0) = ®)(0) = 0.

where Lg is defined in (1.7). Then for any XA > 0, ¥y, is orbitally stable if h is sufficiently small
and xqy is a non-degenerate local maximum point of m(x). Furthermore, for any X\ > 0, ¢y, is
orbitally unstable if h is sufficiently small and the number of positive eigenvalues of the Hessian
matriz V?m(xg) is odd.

Remark 1: Theorem 1.1 may include the case that the third order derivatives of the function
m at xy can be nonzero. When N = 1, xy = 0 and the function m satisfies m"(z9) = 0,
(see (C.2) of [10]), the condition (1.12) of Theorem 1.1 is exactly same as the condition (4.14)
of [10]. For N > 2, G.Fibich and X.-P.Wang considered the function m with radial symmetry,
i.e., m = m(r),r = |z| and m”(0) = 0, and studied the orbital stability problem only for
radial perturbations (cf. [12]). Here we study the orbital stability problem for general pertur-
bations including the non-radial perturbations and the case that the function m is not radially
symmetric.

When the potential V' is turned on, we may follow the argument of Theorem 1.1 to obtain

Theorem 1.2. Let N > 1 be a positive integer, p = 1+%. Assume both the potential V =V (z)
and the function m = m(x) satisfy the following conditions: there exist positive constants
and C' such that

Vime C*nL>; [VO(x)], m (z)] < Cexp(rlz]), Vi=1,2, z€RY, (1.17)
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where VO (z), m(z) are the i-th derivatives of V(x),m(z), respectively. Let y(x,t) =
ey () for € RN and t > 0, where uy, is a single-spike solution of (1.5) concentrating at
a non-degenerate critical point xo of the function G defined in (1.10). Then for any X > 0, 1y,

is orbitally unstable if h s sufficiently small and xq is a non-degenerate local minimum point
of G such that VV (xg) # 0.

Theorem 1.3. Under the same hypotheses of Theorem 1.2, assume VV (xg) = 0 and AV (zq) #
0. Let n be the number of negative eigenvalues of the matriz V*G(xg). Then for any X, up
is orbitally stable if h is sufficiently small and z¢ is a non-degenerate local minimum point
of G. Furthermore, for any A > 0, u, is orbitally unstable if h is sufficiently small and

AV (z .
n—1(1+ |Av§m3§\) is even.

Theorem 1.4. Under the same hypotheses of Theorem 1.2, assume VV (xo) =0, AV (z) =0
and (1.11) hold for both V' and m. Let n be the number of negative eigenvalues of the matriz
V2G(z0). Suppose H(xy) > 0, where H(xo) defined in (4.34) involves the i-th derivatives (for
0<1i<4)ofV and m at zo. Then for any X > 0, uy is orbitally stable if h is sufficiently
small and xq is a non-degenerate local minimum point of G. Furthermore, for any X > 0, uy,
is orbitally unstable if n is odd.

Remark 2: Theorem 1.2-1.4 may include all the cases of values VV (z() and AV (x) for the
orbital stability problem of (1.3) with critical exponent (1.4). Theorem 1.3 may generalize the
main result of [25] to the case that the function m is a positive and nonconstant function. As
V' =0, Theorem 1.4 coincides with Theorem 1.1 since

V2G(20) = mi(wo)~ > [mo) V2V (o) — g[V(xo) £ 2] V()]

holds in Theorem 1.4.

The rest of this paper is organized as follows: In Section 2, we switch off the potential V'
and study the properties of u;,. Then we state the proof of Theorem 1.1 in Section 3. Finally,
the potential V' is turned on and we briefly outline the proofs of Theorem 1.2-1.4 in Section 4.
Acknowledgments: The research of the first author is partially supported by a grant from
NCTS and NSC of Taiwan. The research of the second author is partially supported by an
Earmarked Grant from RGC of Hong Kong.

2 Preliminaries
In this section, we study the properties of uy, a single-spike bound state of (1.5) concentrated
at a non-degenerate critical point of G(z) := [V (z)+ ] m~"/?(x) (cf. [20], [37]). Let z), be the
unique local maximum point of u,. So x;, — x¢ as h — 0.
Let v (y) := up(hy + x3,) for all y € RY. Then by (1.5), vy, is a positive solution of
Av — [V(hy + zp) + Av + m(hy 4+ )0 = 0. (2.1)
For notation convenience, we still denote

Ly = A — [V(hy + z3) + | + m(hy + zp,)pop ! (2.2)
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as the linearized operator of the equation (2.1) with respect to the solution v,. As the result
of [37], vj, can be written as v, = w,, + ¢, where w,, is the unique positive solution of

Aw — [V(zp) + Mw+m(zp)w” =0 in RY,
w(0) = maxw(y), w(y)— 0 as |y — +oo, (2:3)
yERN
and
|lonllo — 0 as h— 0. (2.4)
Moreover,
1-N —1/2
wnly) < Clyl Fexp( = V"), vyeRY, (2.5
where V := infgn [V (z) + A]. From (2.3), it is easy to check that
1 _ 1
wmh(y) = [V(ZE}J + /\} Pl m(xh) pilw( V(xh) + A ) ) (26)
where w is the positive solution of (1.6).
For the single-spike solution of (1.5), we recall the following result from [36] and [37]:
Lemma 2.1. Assume that there are positive constants v and C such that
[VV (@), [Vm(z)| < Cexp(ylz]), VaeRY. (2.7)
Then . )
/ [me(hy R §VV(hy + xh)v,%] dy =0 (2.8)

]RN

for 0 < h < hg, where hy is a positive constant depending on v and A.

In the rest of this section, for simplicity, we switch off the potential V', i.e., set V' = 0. Then
by Lemma 2.1, we obtain the uniqueness of u; as follows:

Lemma 2.2. Suppose (2.7) holds, V =0 and xq is a non-degenerate critical point of m. Then
Uy 1S UNLQUE.

Proof. Suppose up,; and w9 are different single-spike solutions of (1.5) concentrating at the
same point xo. Let vy(y) := up1(hy + zo) and ve(y) := upa2(hy + o). Then both v; and vy
satisfy

Av— v+ m(hy +zo)? =0, for y € RY,

and vy, vy — w,, uniformly on RY as h — 0. Due to v; # v,, we may set

~ V1 — VU2
Up ‘= )
o1 = val
and then v;, satisfies
AT, — Nop, + m(xo)pw? 0y + [m(hy + o) — m(zo)|pw? "o, + N () = 0, (2.9)



where N (0;,) = m(hy+zo) [0} —v5 — pw?-1(v1 —v2)] /[|[v1 — v2||so. Hence by the standard elliptic
PDE theorems on the equation (2.9), we may take a subsequence v, — vy, where v, solves

A”J() — ’170 + m(xo)pwgo_l?fo =0.
Consequently, there exist constants c¢;’s such that

N

?}/0 = Z cjﬁijo . (210)

J=1

Let yp, be such that v, (yn) = ||Un]|ec = 1 (the same proof applies if v;(yn) = —1). Then by
the Maximum Principle, we have |y,| < C. On the other hand, as (2.8), we may obtain

/Vm(hy—i—xo) Pdy =0 = /Vm(hy+x0) P dy.

RN RN
Thus
Pt Pt
/Vm(hy + x9) <¥)vhdy = 0. (2.11)
U — U2

Note that forallt=1,--- | N, as h — 0,

N pl _ ptl
om(hy + z9) = h Z Oixm(xo)yi + o(h) , and - v2 = (p+1Dw? +o(1).
— 1= U2

Hence from (2.10) and (2.11), we may obtain

/ [h Z O ( xo)yk] (p+ 1w <Z c;0; wm)dy +o(h)

RN k=1 j=1

N
= —h Z &jm(:co)cj / wijl dy + O(h) .
j=1

RN
Hence by the assumption that V?m(z) is non-degenerate, ¢; =0 for j =1,--- , N, i.e., 9y = 0.
This may contradict to the fact that 1 = v, (ys) — o(yo) for some yo € RY. Therefore, we may
complete the proof of Lemma 2.2. O

By Lemma 2.1, we may simplify the proof of [21] and get a shorter proof of the asymptotic
behavior of x,’s as follows:

Lemma 2.3. Under the same hypotheses of Lemma 2.2,

z, =x9+o0(h) as h—0. (2.12)



Proof. Fix i € {1,---, N} arbitrarily. By Taylor’s expansion of d;m(z) and Vm(zy) = 0, we

obtain
N

om(hy + xp) = Z 0i;m(zo)(hy; + xp; — o) + o(h) + o(|zn — xo))-
j=1

Hence by Lemma 2.1 and v, = w,, + o(1), we have

0= /&m(hy + xp)0l  dy
RN

N
- Z Oiym(xo)(xhj — o 4) /wﬁjldy +o(h) + o(|zn — xo|)

j=1

RN
Here we have used the fact that [ ijgjl dy=0for 7 =1,---,N. Using the assumption that
RN
V2m(zy) is non-degenerate, we obtain (2.12). O

Following the idea of [25], we may use Lemma 2.3 to show the asymptotic behavior of vy, as
follows:

Lemma 2.4. Under the same hypotheses of Lemma 2.2,

Vp = Wy, + h Py +0(h?), as h—0, (2.13)
where ¢o satisfies
LN
Agy — Ao + m(xp)pw? ¢y + 3 Z diym(xo)ysy;wh = 0,and Vy(0) = 0. (2.14)
ij=1

Proof. Let ¢p, = vy, — w,, . Then it is easy to check that |¢,| — 0 uniformly, and ¢, satisfies
Agbh — /\gbh + m(hy + xh)pw§;1¢h + N(gbh) + R(qf)h) =0 s and V¢h(0) = 0, (215)

where
N(6n) = mhy + )| (s, + 6n)" = wh, —puti o).

and
R(¢p) = [m(hy + ) — m(a:'h)] wh .

Note that by Lemma 2.3 and Vm(zy) = 0,

n? &
m(hy -+ .Ih) — m(xh) :hy . VTTL(ZL’}L) -+ 5 Z &-jm(xh)yiyj + O(hQ)
i,7=1
n
== Y Oym(xo)ysy; + o(h?). (2.16)

ij=1



Now we claim that |¢,| < ch? by contradiction. Suppose that h~?||¢p[lec — o0. Let
dn = &1/ ||6nllso. Then @, satisfies

Ay, — Aoy, + m(hy + x)puw? oy, + Non) | RBlén) _ (2.17)
H¢hHoo ”¢hHoo
Note that by (2.16),
R(¢n) h?
c—. 2.18
Torlloo = Tonle (2.18)

Let y;, be such that gh(yh) = thHoo = 1 (the same proof applies if gh(yh) = —1). Then by
(2.17)—(2.18) and the Maximum Principle, we have |y,| < C. On the other hand, by the usual
elliptic regularity theory, we may take a subsequence ¢, — ¢o, where ¢, satisfies

Ay — o + m(mo)pwgo_lg% =0, and Vg (0) =

Hence 50 = 0. This may contradict to the fact that 1 = (Zh(yh) — go(yo) for some 1. Therefore,
we may complete the claim that | ¢y| < ch?.
Now we set ¢y = ¢ — h%da. Then ¢ = O(h?) and satisfies

A(ﬁh,g - )\d)h,Q + m(hy + Ih)pwzh_lth,g + N(Qﬁh,g) + R(gﬁhg) =0 s and ngh’z(O) =0

where
N(¢nz2) = m(hy + zp) [(wmh + 2o + dp2)? — wh — pwh (WP + ¢h,2)} :
and
R(¢n2) = [m(hy +xn) —m(an) — Z dyym( xO)yzy]] wh, +h* [m(hy+:rh) —m(x )} wh Ly,

1]1

Thus as for previous argument, we may have ¢, 2 = o(h?) and complete the proof of Lemma 2.4.
O

As for Proposition 3.1 of [23], one may get two lemmas as follows:

Lemma 2.5. For h small enough, the maps

Lo, ¢ = Ap — [V(xp) + A ¢+ m(zn)pu? '

are uniformly invertible from KL to O, where

xR’

K;h = {¢ c H*(RY) c H*(RY),

N¢aijhdy:()>j:17"' aN
R

th = {qﬁ € L2(RN) <b8ijhdy — O,j — 17... ,N} C L2<RN).

RN



Lemma 2.6. The map
Lyy¢ := Ad — [V (x0) + A ¢ 4+ m(ao)pwl ' ¢
has eigenvalues pj, 5 =1,--- , N 4 2 satisfying
pn>0=pig ="+ = pny1 > fns2 >,
where the kernel of Ly, is spanned by Ojwy,, j =1,---,N.
In this section, our main result is the small eigenvalue estimates of L; given by

Theorem 2.7. Under the same hypotheses of Lemma 2.2, for h small enough, the eigenvalue
problem

Lypn = pnpn (2.19)

has exactly N eigenvalues /ﬂb ,j=1,--- N satisfying

1 1 2 N 1
éﬂlzﬂhzﬂhz'“zﬂh Z§MN+2,

and
— — covj, (up to a subsequence) as h—0, for j=1,--- N, (2.20)

where (11 and [inyo are defined in Lemma 2.6, v;’s are the eigenvalues of the Hessian matrix
V2m(zo) and ¢y = 2m12;0) s a positive constant. Furthermore, the corresponding eigenfunctions

gp?‘l s satisfy

N
Z aij + o(1)] O, +O(R?), j=1,--- N, (2.21)
where a; = (a1j, - - - ,aNj)T is the eigenvector associated with v;, namely,
Vim(xo)a; = vja; . (2.22)

Here o(1) is a small quantity tending to zero and O(1) is a bounded quantity as h goes to zero.

Proof. We may follow the arguments given in Section 5 of [40]. Assume that ||pp|[zz = 1. Tt
is easy to see that pup, — 0 as h — 0, where u; € {pu}, -+, ud}. Then the corresponding
eigenfunctions ¢p’s can be written as

N

Ph = Z a‘]jzaijh + (AOIJ{7 (223)
=1

where ¢y € K. . Hence by (2.19) and (2.23), ¢;; satisfies

N N
At — Xoir + m(zp)pul tor + R(ei) + > @ Lndjws, = pn (Z 3,050y, + wi) :
J= j=1

(2.24)
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where
R(pi) = m(hy + xh)p(vﬁ_l — w;’;l)go,f + [m(hy +xp) — m(xh)}pwﬁzlgpﬁ.
Using (2.16) and Lemma 2.4, we have

Ly0w,, = m(hy + :vh)p(vg_l — wi’;l)@jwmh + [m(hy + xp) — m(xh)}pwg;laijh = O(hQ).
(2.25)

From Lemma 2.5, the map L,, = A—\ +m(mh)pw§;1 is uniformly invertible in the space Kth'
Thus by (2.25) and p;, — 0, we have

N

il < e(h? + lunl) D lail. (2.26)

j=1

To estimate p;, and a)’s, multiplying (2.24) by dyw,, and integrating over RV, we may
obtain

N N
/RN (thoi) Wy, dy + Z aj, /RN (Lp0jwy,) Oxwy, dy = iy, Z a, /]RN 0jWy, Opwy, dy . (2.27)
j=1 j=1

Here we have used the fact that ¢; € K. . Using (2.25), (2.26), s, = o(1) and integration by
parts, we obtain

[ () s = [ tLadws,dy = o(t?), (2.28)
RN RN
and
h2
/ (Ln0jwy,) Opwy, dy = / w?  dydjm(zo) + o(h?), (2.29)
RN P+ 1 RN h

which we have proved in Appendix A. Substituting (2.28) and (2.29) into (2.27), we may obtain

1

N
m N wﬁjldy Z 8jkm(x0)afl = %afb / (kaxh)Qdy + O(l)
R

Jj=1 RN

Since ||@pllz2 = 1, (2.23) implies that a, := (aj,--- ,a )" is bound. Moreover, by (2.26), aj,

J
does not converge to 0. Thus &% — covj for j=1,--- N and a, — a; , where

h2
_ N [on wiHdy _ N
(p+1) Jon [Vws, Pdy — 2m(xo)’
and a; is the eigenvector corresponding to v;. Here we have use the fact that

N
2 +1
v | dy = Pdy
/ |Vw,, |“dy N Qm(xo)/wao Y

which can be proved by Pohozeve identity. The rest of the proof follows from a perturbation
result, similar to page 1473-1474 of [40]. We may omit the details here. O

Co
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3 Proof of Theorem 1.1

In this Section, we firstly study the asymptotic expansion of d”(\) as h — 0, and then
complete the proof of Theorem 1.1. To drive the O(h*) order terms of d”(\)/h”, we need the
following lemma:

Lemma 3.1. Under the same hypotheses of Lemma 2.2,

ry = 0+ P2 + O(R®),  as h—0, (3.1)
where & € RY satisfies
J lyfPwrttdy
2 _ RV
RN
Proof. By Lemma 2.3 and Vm(zy) =0, for alli =1,--- | N, we have
N
om(hy + ) = Z dm(zo) (hy; + xn; — o) + O(h?). (3.3)
j=1

Then by (2.8), (3.3) and Lemma 2.4, we have

0—/0m hy + zp)ol dy

Mz

&jm(a:o) / (hy] + .ZUh’j — {EOJ) [wﬁjl + O(h)] dy -+ O<h2>

1 RN

<.
Il

WE

Gijm(xo) (.’L’hJ’ — .’170,]') / p“dy -+ O(h2>
RN
Here we have used the fact that [ ywb™dy =0 for j =1,--- | N. Thus x; = ¢ 4+ O(h?).
RN
Consequently, we may set x;, = ¢+ h*T),. Then 7;, = O(1) and by Taylor’s formula of d;m(x),
we have

1

<.
Il

N N
h2

j=1 Jik=1
Hence by(2.8), (3.4) and Lemma 2.4, we may obtain

N
0 :h2 Z 8ijm(x0)fh,j / p+1dy + - Z az]km x(]) /yyyszjldy + O(h3)
j=1

RN Jk 1

N
:hQZ&jm(xo)Eh,j/ whtdy + _Zazkkm (o /|y|2 Pildy + O(h?).

Jj=1 RN

12



Here we have used the fact that
fijp+1dy207 vjzla"'7N7

d; .
f yiypwttt = 3 [ |yPwbtldy, Vi k=1,--- N.
RN ]RN

Therefore, we may complete the proof because

Way (y) = AV 4 m(20) "N w (v Ay) .

From Lemma 2.4 and 3.1, we may deduce that

Theorem 3.2. Under the same hypotheses of Lemma 2.2, for h small enough, uy is smooth
on \. Let Ry := % (hy + x3,). Then

Lth — Vp = 0. (35)
and
N .
Ry=Ro+ Y 0w, +h*R + Ry, (3.6)
j=1

where Ry = A‘l(]flvh + 3y - V), ¢ = O(h), R = O(h®) and R, satisfies

ARy — ARy + m(xp)pw? 'Ry — — Z diym(zo)yiyjwh, = 0. (3.7)
zg 1
Furthermore,
J lylPwrtt dy
V2m(zo) (h " es) — —2%2 Tt dyV(Am)(azo), as h—0, (3.8)
RN
where ¢, == (¢}, ,ch)T.

Proof. By Lemma 2.2 and Theorem 2.7, uy, is unique and non-degenerate. Consequently, wy, is
smooth on A and R), satisfies (3.5). Now we decompose Rj, as

N
Ry=Ro+ Y 0wy, +h’Ri+ Ry,
j=1

where R; € K. Then R;; satisfies

N
LyRy; + [LiRo + W*LyRy — vp] + Y _ ¢} Ludjw,, = 0. (3.9)
j=1

13



As for the proof of Theorem 2.7, we have

N
IRE e < c(IZaRo + BLuBs — iz + 3 | 1h?)
j=1
It is easy to check
h
LhRO = VUp — ﬁy Vm(hy + .Th)
Hence by Lemma 2.4, 3.1, (3.7) and (3.11), we obtain

LhRg + thth — Up,

W3 [ 1
-5 [ > Oym(we)a s + 3 > &jkm(a:o)yz-yjyk} wy, +O(h).

ij=1 i k=1

Consequently, by (3.10),
N
IR e < e(B® + > d1h2).
To estimate 67 s, we may multiply (3.9) by aszh and integrate over RY. Then

/ (LhRﬁ)akwxhdy + / [LhRo + thth — Uh] akwxhdy
RN RN
N

+ Z / (Lp0jwy, )Okws, dy = 0.
Hence by (2.29), (3.14) may imply
; C
el < 75 {\ /R (nBi)Okwa,dy| +| | [LuRo+ W2 Loy —vh}akwxhdyﬂ :
Using integration by parts and (2.25), we have

/ (L Rib)Opw,, dy = Ry LyOyw,, dy = || RiF||12O(h?) .
RN

RN

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

Therefore, by (3.12), (3.13), (3.15) and (3.16), we may obtain |¢,| = O(h). Consequently,

by (3.13), Ri- = O(h?®). Thus by (3.16),

/N(LhR,f)akwxhdy = O(R®).
R

Hence by (2.29), (3.12) and (3.17), (3.14) gives

1 .
p+l pdeZaﬂkm z0)(h™'c})
1

zgl 1

14
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Using integration by parts, we obtain

f Yl Oy, dy = — 2% f whHdy,

_ zk5 14+051051+011055 2, pt+l
f Vil yrwl, Oway, dy = — =gy f lyPwh M dy
RN

where § is the Kronecker symbol. Hence by (3.18), |c)| = O(h) for j = 1,---, N. Moreover,
by (3.2), we obtain (3.8) and complete the proof. O

Let us now compute d” (). From (1.9), it is easy to get

d'(\) = %/u%daz

RN

and hence

d"(\) = / uh%dx =Y / wnRdy . (3.19)

RN RN

Using integration by parts and (3.5), we have

1 1 N
/UhRody = /vhxl(p Ut 3y Vop)dy = A (—— — Z> /Uidy =0, (3.20)

RN RN RN

since p =1+ %. Hence, by (3.19) and Theorem 3.2, we have

" N
d h§j> - / v [Ro + " A dyws, + 2R, + Rﬁ] dy
RN 7=l
N
:/ [Z 078 Wy, + h*R; + Rh}d (because /vhROdy = O)
RN =1 RN

N
/ [Z Lha Wy, + h Lth + Lth]d (because Lth = Uh)

RN j=1

N N
_ / [Ro +5 " dojwa, + B*Ry + Rﬂ [Z & Lndjwg, + h*LyRy + LhRﬂ dy.
j=1

RN j=1

Therefore, by (2.25), (3.9) and ¢, = O(h),

d"(\) =
N :/RO [Uh—LhRo} dy + Z Cﬂcﬁ/@kwxh (Lhajwmh)dy

RN Ji:k=1 RN

+ h* / Ri(LpRy)dy + O(R®). (3.21)

RN

15



For the integral [ Ry [vh — LhRO] dy, by (3.11)and using integration by parts, we have
RN

Ro|vp — LpRo|dy = [ A7'( ! vy, 1y - Vuy) iy -Vm(hy + xp)v} |dy
p—1 2\

2
RN RN
LN [hy -Vm(hy + x5) — h? i Oyym(hy + J;h)y'y} v dy
2X2 | 4(N +2) " AR R
RN 3,j=1
Note that by Lemma 2.4, 3.1 and Theorem 3.2, we have
N
hy - Vm(hy + x3) — h? Z iym(hy + )Yy,
ij=1
h4 al
=hy - Vm(zy) — — Z Oijiem(Th)YiY Y — — Z Dijram (Tn) Yy yry + 0(h4)
i,7,k=1 i,5,k,1=1
and
vh = wh + hPpwl gy + O(R?). (3.22)
Hence
N -2 ht = p+1 4
R() |:Uh - LhRo] d =) [ Z az]k:lm(xh)yzyjykyl] wxh dy + O(h )
8(N + 2) 3
BN 0,9,k 0=1
_ 4 p+1 2 4
N+2 /\y! wy " dyA*m(x) + o(h?)
=— h—4x3 (o)™ / [y|* W dyA*m(wo) + o(h*) . (3.23)
8(N +2)2
RN

Here we have used the following identities:

(

f yzprdy = f yzy]ykwp+1dy =0, for all i?.j?k =1, ’N’

RN RN
S yzyjykylwp“dy =0, if y;y;yxy is an odd function on one of its variate ;
RN

Jutery = b [ ittty foralli=1,-- N

f Yi ijgz_ldy = (N+2 f |y|4wp+ldy, for all ¢ % ] ,

\

which can be proved by polar coordinates.
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N
For the sum Y. c)c [ Opws, (LaOjw,, )dy, we may use (2.29) and (3.8) to get
J,k=1 RN

k=1 RY
h4 ) N - -, \
Tt /RN whdy Y (b)) (b~ e)dm(wo) + o(h?)
k=1
2
h* N ( ‘[V ’y‘QwPde) 1
:8N(N+ 2))\_37’1(%0)_7_1 - [ wrtidy V(Am)(x) - [VQW(%)]_ V(Am)(xo) + o(h?).
RN
(3.24)
For the integral h* [ Ry (LyR,)dy, by (3.7), it is obvious that Ry(\~7y) satisfies
RN
1 N N N
AR =R+ puo? R 53 tm(a) ¥ 3 dymizyyr =0, (325
ij=1
Hence
h4/R1(LhR1)dy: h4/R1(LmhR1)dy+O(h6)
RN RN
h4 Ny N 1
:Z)\_gm(xo)_g_ Z aijm(%)aklm(%)/yiyipro_ (yryrw?)dy + O(h®)
ik d=1 O
Rt _N_o 9 2 pr_1/.2 p
=qver )= Amao)* [t Ly () dy
RN
ht - N
+ QN(N—G—Q))\ 3m($0) 2 2||v2m($0)||§/TQIUPCDO(T)dy
RN
—h4 -3 -5-2 2 2 6
_ QNQ(N+2))\ m(xo)” 2 2| Am(zo)] /r wP®q(r)dy + O(h°). (3.26)
RN

17



Here ||V*m(zo)]|3 =

M=

m;;(xo) and we have used the following identities:
1

_ 1 . 2(N - 1)
2 10,2 _ 2 1,2 2
/yprLO (yywP)dy = Nz /r wP Ly~ (r*w?)dy + (N1 /7" wP o (r)dy, (3.27)
RN RN RN

_ 1 _ 2
/ysz—lprol(yJvap)dy_ W/TQWPLol(T2wp)dy— m/rz’wp@o(r)dy, (3.28)
RN RN RN

1

/leyprLol(leypr)dy: m/ﬁvﬂ%(r)dy, (3.29)
RN RN

where @ satisfies (1.16), which we have proved in Appendix B.
Therefore, combining (3.21), (3.23), (3.24) and (3.26), we obtain

d/l(}\)
— T o(h)
=— —h4 )Fgm(xo)fgfl / |ly|[*wP T dy A% m(zg)
8(N + 2)2
RN
BA (f ]y|2wp+1dy)2
-3 _N_1 RN 2 -1
T GO T wridy V(Am)(zo) - [V*m(zo)] V(Am) (o)
RN
h? N
+ m)\_3m(xo)_2_2|Am(xo)|2/|y|2pr51(|y|2wp)dy
RN
+—h4 A3 m(xo) 2 2 [NHVQm(:vO)Hz— yAm(q,-o)ﬂ /yy|2wpq>0(yy|)dy.
2N2(N +2) 2
RN
Consequently,
8(N +2)2m(zg) 2 H2X3
e T gy 4 ) =OnaAm (o) + O (NI m(ro) I} — | Am(ro)l?)
RN

+ Cvgm(o) [V (Am) (o) - [V3m(wo)] "V (Am) (ao)]
— m(w0)A"m(0) + o(h)

where Cy 1, Cn 2, Cy 3 are constants given by (1.13), (1.14), (1.15), respectively.

Now we may prove Theorem 1.1 as follows: Suppose that xy is a non-degenerate local
maximum point of the function m(z), then the Hessian matrix V?m(zq) of m at z, is negative
definite. By Theorem 2.7, we have n(L;) = 1. On the other hand, we have p(d”) = 1. Thus ¢y,
is orbital stable by the orbital stability criteria of [17]-[18]. For orbital instability, we denote
the number of positive eigenvalues of the Hessian matrix V?m(zg) by n. Then by Theorem 2.7,
we obtain n(Ly) = n+ 1. On the other hand, we have p(d”) = 1. Thus by the instability
criteria of [18], we conclude that 1, is orbital unstable if n is odd. This may complete the proof
of Theorem 1.1.
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4 Proof of Theorem 1.2-1.4

In this section, we may follow the argument in Section 2 and 3 to prove Theorem 1.2-1.4.
Let vy (y) := up(hy + ), where wuy, is a single-spike bound state of (1.5) with a unique local
maximum point at x,. Then v, satisfies

Av, — |V(hy + xp) + )\] op +m(hy + ) =0 in RY. (4.1)
Suppose (2.7) hold. By (2.8) and [37], we have
N
m(zo)VV(xy) = 5> [V (z) + A] Vm(zo) , (4.2)

so zo may depend on A. Note that by (4.2), Vm(zo) = 0 if and only if VV'(z() = 0. By direct
computation on the function G,

8Z-jG(x0) == m(xo)_%_l m(mo)(()UV(:vg) + (1 - %)@V(aﬁo)@]m(zo)
N
= 5 V(o) + X dm(xo)]
In particular, if Vm(zq) = 0, then
V3G () = m(xo)_%_l m(z0) V2V (0) — g[V(xo) + Al V2m(x0)} :

Using the identity (2.8), one may follow the arguments of Lemma 2.2-2.4 to get the unique-
ness of u and

xp =x9 +0o(h); (4.3)
vy =Wy, + hoy + h2py + o(h?), (4.4)

where ¢, and ¢, satisfy V@,(0) = Vo(0) =0
Ay — [V (o) + A ¢1 + m(ao)pwh ' d1 — y - VV (o) way + y - Vm(zo)w?, =0, (4.5)

and

N

Mgy = [V{an) + by + m(zn)pul 62 =y TV (0)or = 5 3 05V (zo)yiyve,

1,j=1

L ()P — D2 =0, (46)

+y - Vm(zo)pwh - Yoy + = Z Oiym(wo)yiywh + 5

zgl

Here we have used the hypothesis that z( is a non-degenerate point of the function G. And the
only difference in the proof is that we need to estimate the term

2

RN RN

1 1
—Vm(xo)/vzﬂdy— —VV(xO)/vady,
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to estimate which one may use the following Pohozaev identity (cf. [33])

2 h
/ [—m(hy + xp) + Ty Vm(hy + xh)] o dy

N+2
RN
h
= / [V(hy + ) + A+ LA VV (hy + ZEh)] vidy.
RN

For the small eigenvalue estimates of L;, one may generalize the idea of Theorem 2.7 to get

Theorem 4.1. For h small enough, the eigenvalue problem
Lyppn = pnspn (4.7)

has exactly N eigenvalues ,u{l ,j=1,--- N satisfying

1 1
SHLZ iy Z g > 2 gy > v, (4.8)
and
1 o
T2 T Cvi,  as h—0, forj=1---N, (4.9)
where 1 and pnyo are defined Lemma 2.6, v;’s are the eigenvalues of the Hessian matriz
N
V2G (), and ¢y = —‘T,n((jg))j)\ s a negative constant. Furthermore, the corresponding eigenfunc-
tions gpfl s satisfy
N
Z aZJ awxh—i_hl/)l) +O<h2> ] - 17 7N7 (410)

where each 1; is the solution of

Avi = |Vian) + A+ mlan)put, v

| =y IV +y - Imen)pul, !+ m(e)p(p - Dk 20 e, =0, (411)
and a; = (ay;, -+ ,an;)’ is the eigenvector corresponding to v;, namely,
VQG($0)aj =Vva;. (412)

Remark: To prove it, one may follow the arguments in the proof of Theorem 2.7 and use the
following identity

h2
/a’“wthh (O, + habj)dy = = +2 /wpﬂdyajkG(xo) +o(h?), (4.13)

RN RN
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which replaces (2.29) (see Appendix C). The main difference between Theorem 2.7 and 4.1 is
the solution v; of (4.11) which comes from

LpOiwg, = h| —y - VV (o) +y - Vm(xo)pw?
+ m(zo)p(p — 1)w§;2¢1] diw,, + O(h?). (4.14)

Since the potential function V' is nonzero, then zy may depend on A and the asymptotic
expansion of d”(\) becomes more complicated. Indeed, when m = 1 and AV(zy) # 0, the
result in [25] shows that the effect of potential function V' on d”()) is O(h?). On the other
hand, when V' = 0 and condition (1.12) holds, the effect of m on d”()\) is O(h*) (see Section 3).
Generally, when both m and V' are not constant, we may show

(I) The effect of V' and m on d”(\) is O(1) if VV () # 0 (see Theorem 1.2);

(IT) The effect of V and m on d”()\) is O(h?) if VV (zy) = 0 and AV (xq) # 0 (see Theo-
rem 1.3);

(IT1) The effect of V and m on d”()\) is O(h?) if VV (z¢) = 0, AV (z0) = 0 and some local
condition hold (see Theorem 1.4).

Now we divide three cases to prove these results.

Case I: VV (zq) # 0.

Let Ry, := 8“*’ % (hy + x5). Then (3.5) and (3.20) hold. Hence one may apply the idea of
Theorem 3.2 to get

N
i=1
where as h — 0, ¢, = (¢}, -+, cl) satisfies
N
V2G (o) (hey) — —5m(x0)—%—1vm(x0) , (4.16)
and . .
Ro = [V (x4) + A] *l(p —on+ 5y Von), Ry =0(h). (4.17)

Thus

" N
d /vthdy = /’l)h |:Z C;l (@wxh + hwz) + Ro + R;JL_] dy
i=1

RN
N

/vh Z ch, 8 Wy, + hz/%)dy + O(h) (because /vhROdy = O)
RN

=1

RN

=

=1

— / Ry, Z ¢ Ly, (&'wzh + hlﬁz’)dy + O(h) (because LyR), = Uh)
RN

Mz

N
[Zc (O, + haby) +RO+RL] ¢ L (Bywa, + haby)dy + O(h)
=1

%\

i=1
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Therefore, by (4.11), (4.14), (4.13), (4.16) and (4.17), we obtain
d”()\) _ N2
RN 4(N +2)

(o)~ N2 / W dyVm(zo) - [V2G(x0)] " Vim(zo) £ O(h).  (4.18)
RN

Consequently, if xy is a non-degenerate local minimum point of G, then the Hessian matrix

V2G(zp) is positive definite. By Theorem 4.1, we have n(L;) = 1. On the other hand,

by (4.18), we have p(d”) = 0. Thus we complete the proof of Theorem 1.2 by the orbital

instability criteria of [17]-[18].

Case II: VV (x¢) = 0 and AV (z) # 0.

Firstly, note that in this case, ¢; = 0 and v»; = 0. Then one may apply the idea of Lemma 3.1
and Theorem 3.2 to obtain

xy, =10 + h*x; + O(h*); (4.19)
N .
Ry =Ro+ Y _ c,0jw,, + h*Ri + R, (4.20)
j=1
where x; € RY satisfies
I lylPw?dy
N +2 1 _N | gN
sz(xO)Xl = — W [V(ZBO) + )\:| m(l'o) 2 W V(AV)(-TO)
RN
I lyPwrtidy
1 N—l RN
+ —m(xg)” 2 f wridg V(Am)(xo), (4.21)
RN

R, satisfies
AR, — [V(:L‘h) )\} R1 + m(:vh)pwp_lRl

N
1
+ [V(zn) + A [ Z 0i;V (20)Yiyj W, — 5 Z aijm(xo)yiijzh] =0, (4.22)
2,j=1 i,7=1
Rk = O(h?) and ¢, = O(h) for j =1,--- , N. Moreover, ¢, := (ct,--- ,cl) satisfies
V?G(z9) (R en) = co +0(1), (4.23)
where
Cop = — [V([)’Jo) + )\] _1m )
2 2d
Nez R S lolFwrdy o
v e+ e ¥ | S | v@nta
) [ yIZw”“dy
-1 N_q | Y
+7 [V (xo) + A] " m(zo) > f =vn V(Am)(xo). (4.24)
RN
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Hence

d"(\) = op 4 L
hN :/vthdy:/vh[Ro—l—Zc,’Iajwthrh R1+Rh:|dy

RN RN J=1

N
= / vh[ c{ﬁ-wxh + K2Ry + R,f] dy (because /vhRody = 0)

RN =1 RN
N

/ [ Lh8 Wy, + h®L, Ry + Lth}dy <because LRy, = vh)

RN =t

N N
_ / [Ro +3° oy, + Ry + Rﬂ [Z ¢l Lydiw,, + h*LyRy + LhRﬂ dy..
j=1

BN k=1

Therefore, by (4.11), (4.14) and (4.20), we obtain

d” (A
hgv) /RO [Uh - LhRO dy + Z c’ch/ﬁszth(ﬁ wxh)
RN Ji:k=1
+ b / Ri(LpRy)dy + O(R®). (4.25)

RN
For the integral f Ry [vh — LhRO]dy, by direct computation, we have
RN
_ h
v — LRy = — [Vi(zn) + A" [V(hy ) = Viwn) + 5y VV (hy + xh)]
[V (zn) + A] “ly Vm(hy + ). (4.26)

Thus by (4.4), (4.19) and (2.6), we obtain

2

/RO [on, — Ly Ro|dy = 2h—N [V (z0) + Al 73m(:v0)_% / ly[Pw?dyAV (x) + O(h?). (4.27)

RN RN
N )
For the sum Y c,cf [ Opw,, (LnOjwy, )dy, by (4.11), (4.14) and ¢ = O(h) for j =

Jk=1 RN
1,---, N, we have

N
Z CZLCZ / Ok Wy, (Lhaijh)dy = O(h%). (4.28)
jvkzl RN

Combining (4.27), (4.28) and (4.25), we obtain

d//()\) h2
RN T 2N

W (o) + A o) ¥ / lyPwdy AV (o) + O(h). (4.29)

RN
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Consequently, by (4.29), we have p(d”) = (1 + |AV mo) 7). On the other hand, by Theorem 4.1,
we have n(Ly) = n + 1. Thus we complete the proof of Theorem 1.3 by the orbital stability
and instability criteria of [17]-[18].

Case III: VV(2¢) =0, AV (xy) = 0.

In this case, we shall use (4.24), (4.21) and (4.25) to compute the O(h*) term of d”()\)/hN.
For the integral | Ry [vh — LhRo] dy, by (4.26) and integration by parts, we obtain
RN

/ Ro [vh _ LhRo] dy

RN

=— [V(xn) + A] - / (p i Ut %y - Vop) [V (hy + z1) — V(2s) + gy - VV (hy + x4)] vady

RN

[V + A7 [ (=

1 h
1Uh + §y . Vvh) §y . Vm(hy -+ xh)vﬁdy

RN
1 —2 2 al 2
=3 [V (zn) + Al [3hy -VV(hy + x) + h Z iV (hy + xh)yiyj] v dy
BN ij=1
+ N [V (zn) + Al 2 by Vm(hy + x,) — h? Z Aym(hy + ) yiy; [v0 dy .
8(N + 2)

RN i,j=1
Hence by (4.19), (4.20) and Taylor’s formulas of V' and m, we have

/ Ro [vh _ LhRo} dy

RN

1 _
=2 [V (zn) + A] 2/ [4h2 Z 03V (wo)ysy;w2, + 8h* Z 0V (20)Yiyj Wy, d2

RN 7,7=1 4,7=1

A0S Vileo)rwaggnd, +H S Vigulaosueu?, |y

irik=1 i kl=1
N _ [
T 8(N +2) [V(zn) + ] 2/ [ 3 Z az]klm(xo)yzy]ykyl}w Ydy + o(h?). (4.30)

RN 1,5,k,l=1

N
For the sum Y. c)cf [ Opwy, (Lpdjw,, )dy, by (4.13) and (4.23), we obtain
Jk=1 RN

h4
Z clck / OkWa, (Lydjwy, ) dy = “Ni2 /wp+1dyV2G(xo)c0 -co+o(h*). (4.31)
7,k=1

RN
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For the integral [ Ry(LjR.)dy, by (4.22), R;(——,—) satisfi
or elnegmmj;V 1 (LpRy)dy, by (4.22), 1(m)salses

N
N _
AR — R+ pwP 'R+ [V (zp) + A * m(ay) 1 > 05V (wo)yiyjw

1,j=1

; [V(xn) +A]* (31711)_%_1 Z Oim(xo)yiy;w? = 0.

Hence

/Rl (LuRy)dy = /Rl(Lthl)derO(h?)
:[V(:ch)Jr)\]_sm(:ch)*? Z aijv(xo)vkl(xo)/yiijLol(ykylw)dy

i7j7k7l:1

2

RN
4 N al
= [V@n) +A] mlza) " Y @jv(fco)mkl(ﬂﬁo)/yz‘ijLol(ykylwp)dy
ijd=1 o

+

NN

1,5,k,1=1 RN

As in Section 3, we have used the following identities:

Z@,]V xo)/yzy]wxhdy— /|y|2w dyAV (z¢) =0,

i,j=1 RN RN

N
Zaijv(xo)/yiijxh¢2dy

ij=1 BN

-3

[V(xh) + )\] m(xp)” Z 0i;V (20) Via (o) /yiijLo_l(ykylw)dy

1,5,k 0=1

1
2
RN

1
— 5 [V(l’h) + )\] -2 (ZL’h 7 Z 82_7V xO)mkl('IO) /yzy]wLal(ykylwp)dy7

1,5,k,0=1 RN

‘/zgk(xo L1, f yjykw dy = N f |y|2 dyV(AV)(ZE()) " X1,

1,5,k=1 RN

M= 7=

Vz’jkl(xo) f yiyjyk:ylwach = m f |y|4w§hdyA2V(x0),
,l=1 RN RN

o

%7y

M=

Oijm(zo) [ yiyjykylwgz_l: [fwl M dyA*m(xo)

=1 RN

>

\ i:j: )
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(4.32)

(4.33)

[V (@) + A m(zn) 2~ Z dim( 5Uo)mkl(950)/yiijpLEI(ykyzwp)derO(h2)-



f yXwLy (yiw)dy = 5 f rfwly (rw)dy + sy f r*wdy (r)dy,
f YX-1wly (yNw)dy: # / 7’2@UL0 (r*w)dy — T_A'_Q f r*w®(r)dy
RN

R[V yn—1yYNWLy (Yn—1ynw)dy = xoaay f rw®,(r)dy,

[ dwLly'(wr)dy = & [ r*wLy' (rPw)dy + & f r2wdo(r)dy,
RN RN

[ viwly (Rw?)dy = 5z [ 7’2UJL61(7”2wp)dy Tw f 2wy (r)dy,
RN RN

f yN—lyNwLal(yN—lypr)dy N+2 f r “@0 )dy,

RN

where @y, &, satisfy

P + XD — Dy + puwP 1Py — 2Dy — r?w? =0, r € (0,00),
Po(0) = (I)B(O) =0,

and

Y + XD — Dy + puP P — 2D — 12w =0, r € (0,00),
®,(0) = ¢1(0) =0,

which can be proved as in Appendix B.
Therefore, combining (4.25), (4.30), (4.31) and (4.33), we obtain

Czlll\f(il) +o(h") = Ha(xo) + Hs() + Ha(zo) = H (1), (4.34)
where
3 s [ 2 2
Hj () :m[V(l‘O) —i-)\} m(zg)” 2 /]y\ w4 (|y])dy|| V2V (z0)]l5
3 » “ ) .
)] [V (xo) + A]m(zo)” /!y\ w®(|y|)dy V2V () - V2m(zo)
+ e [Vao) + X (o) ¥ / 2w Ly (lyPu?)dyl Am (o)
+—2N<J$+2> [V (o) + A “m(wo) "% /\y|2wpq>0(\yy)dy|yv2 (0)]|2
B 2N2(]if +2) [V o)+ A] " mao)” /|y|2w’”‘1>o(ly|)dy|Am(a:o)| , (4.35)
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Hafao) =5 [Vizo) 4 0] o) ¥ [ lyPudy ¥ (am)(ao) - x

_ N;H / W dyey - [V2G(0)] eo. (4.36)
Hilwn) =gy Vo) +3) 'm0 ¥ [l udyav(eo)
_ 8(N1+ 2)? [V (wo) + A “m(me) 2! / ly| P dy APm(x) . (4.37)

Consequently, p(d”) = 1 if H(xy) > 0, where H(x() defined in (4.34) involves the i-th deriva-
tives (for 0 < ¢ < 4) of V and m at zo. On the other hand, by Theorem 4.1, we have
n(Ly) = n + 1. Thus we complete the proof of Theorem 1.4 by the orbital stability and
instability criteria of [17]-[18].

5 Appendix A

In this Appendix we will prove (2.29) of Section 2, i.e., we shall prove

h2
+1

/ (Lp0jwy, ) Opwy, dy = / wﬁ“dy(?jkm(xo) + 0(h2) ) (5.1)
RN b RN "

Proof. Note that by Lemma 2.3 and 2.4, we obtain

Lyojw,, = [m(hy +xp) — m(a:h)}pwg;l@ijh +m(hy + xp)p(o? " — wh)djw,,
h? &
=3 Oam (o) ysyipw? " Owy, + WPm(zy)p(p — Dwk >¢20;w,, + o(h?) .

il

Hence we may write the integral fRN (Lp0jwy,) Opwy, dy as follows:

/ (LpOjwy, ) Opw,, dy = I + I + o(h?), (5.2)
RN
where
h &
I =3 Oam(zo) /N Yiyipw? 0wy, Opwy, dy (5.3)
il=1 R
I, =h? /N m(zp)p(p — 1)w§;2¢28ijh8kwxhdy. (5.4)
R

Note that from (2.3), we have
[A - A+ m(xh)pwgzl} DjpWa, + m(zy)p(p — L)wh 20wy, Opwy, = 0. (5.5)
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Hence by (2.14), (5.4) and (5.5), we may use integration by parts to get
I, =— h2/ o [A -2+ m(xh)pwgzl} Ok Wy, dy
RN

= _ h? /RN DjrWy, [A — A+ m(xh)pwggl] Dady

h &
=3 Oam(xo) /RN Yyl Ojpwg, dy
ii=1

h2 N 0 i wP

__ " &-zm(xo)/ Mﬁkwxhdy
2 i1 RN 3y]
h? X

-—3 Oum(xo) /RN yiylpwgzlaijhakwxhdy — h28jkm(a:0) /RN Yrwh, Opwy, dy

il=1

h2 N B h2
iaiey @-lm(a:o)/ yiylpwghlé?ijhakwxhdy + ?@-km(azo)/ ngldy. (5.6)
= RN p RN
Combining (5.2), (5.3) and (5.6), we obtain (5.1). O

6 Appendix B

In this Appendix, we shall prove (3.27), (3.28) and (3.29) of Section 3, i.e., we will prove

B 1 . 2N — 1)
/ Ly (yyu?)dy = 55 / r#w? Lyt (r*wP)dy + NN T2 / r*wP®o(r)dy , (6.1)
RN RN RN
B 1 } 2
/ Y- Ly (yw?)dy = / r*w? Ly (r*wP)dy — NN +2) / rPwP®o(r)dy,  (6.2)
RN RN RN
1
/yN—lyprLal(yN—lypr)dy: m/Tpr®o(r)dy, (6.3)
RN RN

where 7 := |y| and @, satisfies

N -1 _ 2N
f + TCI)() — & + puP TPy — FCI)O —r*wP =0, r € (0,00), (6.4)
B(0) = @4(0) = 0.
Proof. From (6.4), it is easy to check that
y12\7 L1 5 1 2 YN-1YN
Lo CDOT—Q + NLO (rw”) — N(I)O = yyw”,and Lo [CDO 2 ] = yn—1ynw”. (6.5)
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Then using the polar coordinate, we obtain

/ yRwP Lyt (yFwP)dy
RN

2 1
= [t [0 5 — ) + L5t 00

7,72
RN

On_ 1 1
:/ 2 cos? Oy _quw? [@0(7“)%—]“ — —dy(r) + —L_l(rzwp)] dy
]RN

[ cos* Oy sin™ 2 On_1dOn
=2 r2wP®o(r)dy
fSiHN_2 QN_ldHN_l RN
0

[ cos? On_ysin™ 2Oy _1dOn_4 . .

. P, [y + 150 dy
f SiIlN*2 9N—1d‘9N—1 RN

0

3 1 1 1
:—N(N—i- ) /rQwPCI)O(T)dy+ N /rzwp l_NCI)O(T) + NLOI(’F2UJP):| dy
RN

RN
1 _ 2(N -1
:m/ﬂw”Lol(ﬁwp)dy%—m/ﬁwp@)o(r)dy.

RN RN

This completes the proof of (6.1). Similarly, one may obtain (6.2) and (6.3), respectively. [

7 Appendix C

In this Appendix we will prove (4.13) of Section 4, i.e., we shall prove

2
/a’““}thh (O5wz, + s} dy = =57 /wpﬂdyajkG(xo) +o(h?). (7.1)

RN

RN
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Proof. Note that by (4.3), (4.4) and (4.11), we obtain
Ly0;w,, =Ly, 0jw,, + [m(hy +xp) — m(xh)}pwi’h’lajwzh
+m(hy + xp)p(vh " — wh ), — [V(hy +ap) — V(l‘h)} 0wy,

=y Ve, + m(a)p(p — Dl 60—y - V()] Oy,

N
1
+ h? [5 >~ Oum(xy)yiypwt, "+ y - Vm(zy)p(p — Dwb2¢1 + m(xp)p(p — Dwh s
il

+ gmla)ple — 1o~ 2ul; @——Zadv ey Oy, + 0(h?).

and
Lptpj =Ly, b5 + [m(hy + @) — m(xh)}pwlx);le
by + 2)p(of = Wl s — [V + o) = V) |

= — [y Vman)puts ! +mi@)p(p — Dty 261 =y - VV (@) |0,

+ h[y - Vm(ap)pwh 4+ m(zn)p(p — Vw2 —y - VV(%)} ¥y + O(h?).

Hence we may write the integral [ dywy, Ly, (@wxh + hv,bj)dy as follows:
RN

/&szth (@»wrh + hwj)dy = I() + Il + ]2 + O(h2),

N
1
I =h? /N [5 E Oam(n)yiyipw? '+ y - Vm(ay)p(p — Dwk ¢y
R il

1
+ §m(xh)p(p - 1)(p )wp 3¢1 PN Z azlv $h)yzyl:| 0, wxhakwxhdya

I :h2/ m(xn)p(p — )wh - 2@8 Wy, OpWy, dY
RN
Note that from (2.3), we have

[A — (V(xh) + /\) + m(xh)pwg;l] Ojxwy, +m(xp)p(p — 1)w§;28ijh8kwmh =0.
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Hence by (4.6), (7.4) and (7.5), we may use integration by parts to get
=1 [ oa[ A (V)4 2) + mlanput, O, dy
R

=1 [ Oy, [A = (Vi) 4 3) + manpur, oy
RN

N
1
= [ [~y VVienor - 5 > daVlengnn, +y- Vimlenpus, "o,
RN

il=1

N
1 1
+ 5 D7 dumlan)yat, + Smen)p(p — 1w, 262 | O, dy
i,l=1

N
1
=h2/ [ajv(xh)¢l +y-VV(2p)0;01 + 3 Z OaV (xp)yiyi0jwg, + 0V (xh)Yrwa,
RN

il=1

— ym(ap)pwt o1 —y - Vm(zs)p(p — Dwh 2 ¢10;w,, —y - Vm(zy)pwh 10,

N
1 _
S 2 > " dumlan)yypw?,  Owa, — () ypwt,
il=1
1

— sm(@)p(p = 1)(p = 2wt 6105, — mlzn)p(p — 1wt 61001 | dhaws, dy

=—1 - h2/ [y - Vm(xn)pw? "+ m(xy)plp — Dwh 21 —y - VV(ych)] 0;010kw,, dy
RN

+ hz/ [ajV(xh)gbl + 0V (wn) yxwa, — Oym(xy)pwh ' — 8jkm(:z:h)ykw§h} Opwy, dy.
RN

(7.7)
Note that from (4.5), we have
A(0j¢1) — [V (o) + A] 9501 + m(l’o)]?w%laj% +m(zo)p(p — 1)w§;2¢13ijo
—y - VV(20)0jwy, — 0;V (o) Wy, + Y - Vm(xo)pwgo_l@ijo + 0ym(zo)wh =0, (7.8)
and by direct computation,
Lwowwo - (p - 1)m(x0)w§0 ) (7 9)
Lwo(ﬁwxo + %y : Vwmo) = [V(:L‘o) + )‘] Wy, -
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Thus we may use (7.3)-(7.9) and integration by parts to get
I+ 1 + 1

—h? / v ImG@pu !+ m(@pe — Vet 21—y - YV ()| (15— 0,61 ) D, dy
+ h? /RN [@V(xh)@ + 01V (zh)ypws, — @m(mh)pwg;lghl — 8jkm(:ch)ykw§h] Wy, dy
=—n /}RN (%‘ - j¢1> Ly, Yrdy + h? /RN [@-V(mh) - ajm(xh)Pwi);l] G100k Wy, dy
+h? /N [ajkv(ivh)ykwxh - 5jkm($h)ykw§h]akwxhdy

R
:h2/ [ajv(xo)wxo - 3jm(l’0)w50]wkdy - hz/ [ajv(xh)w“ B ajm(wh)wih]akéldy
RN

RN
1 1
I o [ o, = gl o4
1, 1 1
2 / OV @) (V) + )7 e + G V)
1

_ _1m(x0)*18jm(xo)wxo] Ly, <¢k — (9k¢1>dy

1 1
e /RN [éajkv(x())wio ) jkm(xo)ngl]dy +o(h?)
1

_ / [0 @) (Vi) + )\)l(ﬁwxo 5y V)
— ﬁm(mo)lajm(xo)wxo] [&cV(:vo)wZO - (9km($0)w£0] dy

1 1
i [gajkv(xo)wio ol jkm(xo)ngl]dy +o(h?)

=
S

R

== [ = ) V) + N 0V )V (o)

1
- o) OOV (ao)] [ dy
p—1 RN
1 _ 1 N
p—1 2p+1
1
- ) Oyl [ witdy
p—1 RN

+2( ) [V (o) + Al 0,V (o) (o)

1 1

Recall that

1

way(y) = [V(w0) + A] 7 m(0) 7 Tw(+/V(wo) + M)
m(z0)VV (o) = 5 [V(z0) + N Vm(zo)
0,;G () = m(zo)~ ¥ [m(mo)@j‘/(:ﬁo) + (1= X)0,V (wo)dym(zo) — X [V (o) + aijm(xo)] ,

_N_
2
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and the integral identity

2
[V (20) + Al /RN w dy = N—Hm(a:o) /RN whHdy .
Combining (7.2) and (7.10), we obtain (7.1). O
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