POSITIVE SOLUTIONS OF NONLINEAR SCHRÖDINGER EQUATION WITH PEAKS ON A CLIFFORD TORUS

SANJIBAN SANTRA AND JUNCHENG WEI

Abstract. We prove the existence of large energy positive solutions for a stationary nonlinear Schrödinger equation

$$
\Delta u-V(x) u+u^{p}=0 \text { in } \mathbb{R}^{N}
$$

with peaks on a Clifford type torus. Here

$$
\begin{aligned}
V(x)=V\left(r_{1}, r_{2}, \cdots, r_{s}\right) & =1+\frac{1}{\left(a_{1} r_{1}^{m}+a_{2} r_{2}^{m}+a_{3} r_{3}^{m}+\ldots+a_{s} r_{s}^{m}\right)} \\
& +\mathcal{O}\left(\frac{1}{\left(a_{1} r_{1}^{m}+a_{2} r_{2}^{m}+a_{3} r_{3}^{m}+\ldots+a_{s} r_{s}^{m}\right)^{1+\tau}}\right)
\end{aligned}
$$

where $\mathbb{R}^{N}=\mathbb{R}^{N_{1}} \times \mathbb{R}^{N_{2}} \cdots \times \mathbb{R}^{N_{s}}$, with $N_{i} \geq 2$ for all $i=1,2, \ldots s, m>$ $1, \tau>0, r_{i}=\left|x_{i}\right|$. Each r_{i} is a function $r, \phi_{1}, \cdots . \phi_{i-1}$ and is defined by the generalized notion of spherical coordinates. The solutions are obtained by a $\max _{\left(r, \phi_{1}, \cdots \phi_{s-1}\right)}$ or a $\max _{r} \min _{\left(\phi_{1}, \cdots \phi_{s-1}\right)}$ process.

1. Introduction

Positive entire solution of

$$
\begin{equation*}
\Delta u-u+u^{p}=0 \text { on } \mathbb{R}^{N} \tag{1.1}
\end{equation*}
$$

where $1<p<\left(\frac{N+2}{N-2}\right)_{+}$, vanishing at infinity have been studied in many context. This class of problems arises in plasma and condensed-matter physics. For example, if one simulates the interaction-effect among many particles by introducing a nonlinear term, we obtain a nonlinear Schrödinger equation,

$$
-i \varepsilon \frac{\partial \psi}{\partial t}=\varepsilon^{2} \Delta_{x} \psi-Q(x) \psi+|\psi|^{p-1} \psi
$$

where i is an imaginary unit and $p>1$. Making an Ansatz

$$
\psi(x, t)=\exp \left(-\frac{i \lambda t}{\varepsilon}\right) u(x)
$$

one finds that u solves

$$
\begin{equation*}
\varepsilon^{2} \Delta u-V(x) u+u^{p}=0 ; u \in H^{1}\left(\mathbb{R}^{N}\right) \tag{1.2}
\end{equation*}
$$

where $V=Q+\lambda$ is a smooth potential. Let V be a smooth potential which is bounded below by a positive constant. A considerable attention has been paid in recent years to the problem of constructing standing waves in the so-called semiclassical limit of $(1.2) \varepsilon \rightarrow 0$. In the pioneering work [18], Floer and Weinstein constructed positive solutions to (1.2) when $p=3, N=1$, such that the concentration takes place near a given non-degenerate critical point x_{0} of V and the

[^0]solutions are exponentially small outside any neighborhood of x_{0}. This was later extended by Oh [20], [21] for the higher dimensional case. del Pino and Felmer [9] extended the idea for a large class of nonlinearities with V which is only locally Hölder continuous function. Byeon and Tanaka [7] proved that under the optimal conditions of Berestycki-Lions on the nonlinearity, there exists a solution concentrating around the topologically stable critical points of V, which are characterized by mini-max method. In smooth bounded domain the problem (1.2) with Dirichlet and Neumann boundary condition have been studied by many other authors some of them being [1], [3], [6], [10], [11]. Higher dimensional concentrating solutions of (1.2) was studied by Ambrosetti, Malchiodi and Ni in symmetric domain [2], [4]; they consider solutions which concentrate on spheres, i.e. on $(N-1)$ - dimensional manifolds. Also see del Pino, Kowalczyk and Wei [12] in \mathbb{R}^{2} and Esposito et. al. [17] for the Dirichlet case in an annulus. Pacella and Srikanth [22] employed the symmetry of the domain to construct solutions which concentrate on spheres for some singularly perturbed problems.

In this paper, we consider the equation

$$
\begin{equation*}
\Delta u-V(x) u+u^{p}=0, u>0 ; u \in H^{1}\left(\mathbb{R}^{N}\right) \tag{1.3}
\end{equation*}
$$

where $\mathbb{R}^{N}=\mathbb{R}^{N_{1}} \times \mathbb{R}^{N_{2}} \cdots \times \mathbb{R}^{N_{s}}$, where $N_{i} \geq 2$ for all $i=1,2, \ldots s, m>1, r_{i}=\left|x_{i}\right|$. Here $V(x)=V\left(x_{1}, x_{2}, \cdots x_{s}\right)$ with $x_{i} \in \mathbb{R}^{N_{i}}$

$$
\begin{aligned}
V(x)=V\left(r_{1}, r_{2}, \cdots, r_{s}\right) & =1+\frac{1}{\left(a_{1} r_{1}^{m}+a_{2} r_{2}^{m}+a_{3} r_{3}^{m}+\ldots+a_{s} r_{s}^{m}\right)} \\
& +\mathcal{O}\left(\frac{1}{\left(a_{1} r_{1}^{m}+a_{2} r_{2}^{m}+a_{3} r_{3}^{m}+\ldots+a_{s} r_{s}^{m}\right)^{1+\tau}}\right)
\end{aligned}
$$

where $\tau>0, a_{i}>0$ and $a_{i} \neq a_{j}$ for some $i \neq j$. Moreover, r_{i} are given by the generalization of spherical coordinates and defined by

$$
\left\{\begin{align*}
r_{1} & =r \sin \phi_{1} \sin \phi_{2} \cdots \sin \phi_{s-1} \tag{1.5}\\
r_{2} & =r \sin \phi_{1} \sin \phi_{2} \cdots \cos \phi_{s-1} \\
& \ldots \cdots \\
r_{s-1} & =r \sin \phi_{1} \cos \phi_{2} \\
r_{s} & =r \cos \phi_{1}
\end{align*}\right.
$$

where $\phi_{i} \in[0, \pi], i=1,2 \cdots s-2 ; \phi_{s-1}=[0,2 \pi]$. Define the point

$$
\begin{equation*}
P_{j_{1} j_{2} \cdots j_{s}}=\left(P_{j_{1}}, P_{j_{2}}, \cdots P_{j_{s}}\right)=\left(r_{1} e^{\frac{i\left(j_{1}-1\right) \pi}{k}}, r_{2} e^{\frac{i\left(j_{2}-1\right) \pi}{k}}, \cdots, r_{s} e^{\frac{i\left(j_{s}-1\right) \pi}{k}}\right) \tag{1.6}
\end{equation*}
$$

where i denotes the square root of -1 . Hence any point defined by (1.6) is a function of r and ϕ_{i} where $i=1,2, \cdots, s-1$. We are going to construct solutions which has peak at the point $P_{j_{1} j_{2} \cdots j_{s}}$.

We define the approximate solution as:

$$
\begin{equation*}
W_{j_{1} j_{2} \cdots j_{s}}(x)=w\left(x-P_{j_{1} j_{2} \cdots j_{s}}\right) \tag{1.7}
\end{equation*}
$$

where $1 \leq j_{i} \leq k$ for all $1 \leq i \leq s$. Here we identify the Euclidean space $\mathbb{R}^{N_{i}}$ with $\mathbb{C} \times \mathbb{R}^{N_{i}-2}$, and the coordinates of a point $\mathbb{R}^{N_{i}}$ are given by $(z, \overrightarrow{0})$ where $z \in \mathbb{C}$ and $\overrightarrow{0} \in \mathbb{R}^{N_{i}-2}$. Moreover, w is the unique positive entire solution of

$$
\begin{equation*}
\Delta w-w+w^{p}=0 ; w \in H^{1}\left(\mathbb{R}^{N}\right) \tag{1.8}
\end{equation*}
$$

It is well known by [19] that $w(x)=w(|x|)$ and the asymptotic behavior of w at infinity is given by

$$
\left\{\begin{array}{c}
w(x)=A|x|^{-\frac{N-1}{2}} e^{-|x|}\left(1+\mathcal{O}\left(\frac{1}{|x|}\right)\right) \tag{1.9}\\
w^{\prime}(x)=-A|x|^{-\frac{N-1}{2}} e^{-|x|}\left(1+\mathcal{O}\left(\frac{1}{|x|}\right)\right)
\end{array}\right.
$$

for some constant $A>0$. Moreover, w is non-degenerate, that is

$$
\begin{equation*}
\operatorname{Ker}_{H^{1}\left(\mathbb{R}^{N}\right)}\left(\Delta-1+p w^{p-1}\right)=\left\{\frac{\partial w}{\partial x_{1}}, \frac{\partial w}{\partial x_{2}}, \cdots \frac{\partial w}{\partial x_{N}}\right\} \tag{1.10}
\end{equation*}
$$

Theorem 1.1. There exists $k_{0} \in \mathbb{N}$ such that for all $k \geq k_{0}$, there exists $r \in$ $\left[\gamma_{1} k \ln k, \gamma_{2} k \ln k\right]$ and $\phi_{i} \in \mathcal{R}_{i}$ (for the definition of $\mathcal{R}_{i} i=1, \cdots, s-1$ see Lemma 2.1), with

$$
\begin{equation*}
u_{k}(x)=\sum_{j_{1}, j_{2}, \cdots j_{s}=1}^{k} W_{j_{1}, j_{2}, \cdots j_{s}}(x)+\varphi_{k}(x) \tag{1.11}
\end{equation*}
$$

being a solution u_{k} of (1.3) and $\varphi_{k}(x) \rightarrow 0$ as $k \rightarrow \infty$ locally uniformly where $\gamma_{1}>0$ and $\gamma_{2}>0$ are positive constants independent of k.

We recall some previous results. Wei and Yan [23] considered the problem

$$
\begin{equation*}
\Delta u-V(x) u+u^{p}=0, u>0 ; u \in H^{1}\left(\mathbb{R}^{N}\right) \tag{1.12}
\end{equation*}
$$

with symmetric potential

$$
\begin{equation*}
V(x)=V(r)=V_{0}+\frac{a}{r^{m}}+\mathcal{O}\left(\frac{1}{r^{m+\sigma}}\right) \tag{1.13}
\end{equation*}
$$

for some $V_{0}>0, a>0, \sigma>0$ and $m>1$, and proved that (1.12) has infinitely many non-radial solutions. In fact, they proved that (1.12) admits solutions with large number of bumps on a large circle near the infinity. They conjectured that similar result holds for non-symmetric potentials. In this regard, there are two recent papers with different approaches. In [13], del Pino, the second author and Yao used the intermediate Lyapunov-Schmidt reduction method to prove the existence of infinitely many positive solutions to (1.12) for non-symmetric potentials, when $N=2$, and (m, p, σ) satisfies

$$
\begin{equation*}
\min \left\{1, \frac{p-1}{2}\right\} m>2, \sigma>2 \tag{1.14}
\end{equation*}
$$

On the other hand, Devillanova and Solimini [14] used variational methods to show that there are infinitely many positive solutions to (1.12) for non-symmetric potentials, when $N=2$, and $V(x)$ satisfies

$$
\begin{equation*}
\frac{A_{1}}{|x|^{s}} \leq V(x)-V_{\infty} \leq \frac{A_{2}}{|x|}, \text { for } x \text { large and } s<4 \tag{1.15}
\end{equation*}
$$

Moreover, if $V(x)$ tends to V_{∞} from above with a suitable

$$
\begin{equation*}
V(x) \geq V_{\infty}, \lim _{|x| \rightarrow \infty}\left(V(x)-V_{\infty}\right) e^{\eta|x|}=+\infty \text { for some } \eta \in\left(0, \sqrt{V_{\infty}}\right) \tag{1.16}
\end{equation*}
$$

and V satisfies a global condition:

$$
\begin{equation*}
\sup _{x \in \mathbb{R}^{N}}\left\|V(x)-V_{\infty}\right\|_{L^{\frac{N}{2}} B_{1}(x)}<\nu \tag{1.17}
\end{equation*}
$$

where ν is a small positive constant, Cerami, Passaseo and Solimini [8]; Ao and Wei [5] proved that (1.12) admits infinitely many positive solutions by purely variational methods.

Remark 1.1. Theorem 1.1 deals with the anisotropic case. Here we have the following asymptotic expansion $V=V_{\infty}+\frac{a(\theta)}{r^{m}}+\mathcal{O}\left(\frac{1}{r^{m+\tau}}\right)$ where $a(\theta)$ is anisotropic. In this case, even the distribution of spikes is not known.

Here we allow $N \geq 3$ and $m \geq 4$ (comparing with [14]). Our result suggests that the following conjecture should be true:

Conjecture: There are infinitely many positive solutions to (1.12) provided V satisfies

$$
\begin{equation*}
\frac{A_{1}}{|x|^{m_{1}}} \leq V(x)-V_{\infty} \leq \frac{A_{2}}{|x|^{m_{2}}}, \text { for } x \text { large and } m_{1} \geq m_{2}>0 \tag{1.18}
\end{equation*}
$$

Finally, we mention several results on concentrations on spheres. M. del Pino et. al. [15] considered the Yamabe problem

$$
\begin{equation*}
\Delta u+\frac{N(N-2)}{2}|u|^{2^{\star}-2} u=0 ; u \in D^{1,2}\left(\mathbb{R}^{N}\right) \tag{1.19}
\end{equation*}
$$

They construct infinitely many sign-changing solutions for (1.19). The idea of the proof is as follows. Decompose $\mathbb{R}^{N}=\mathbb{C} \times \mathbb{R}^{N-2}$. Then they produce solution of the form

$$
\begin{equation*}
u_{k}(x)=U(x)-\sum_{j=1}^{k} \mu_{k}^{-\frac{N-2}{2}} U\left(\frac{x-\xi_{j}}{\mu_{k}}\right)+o(1) \tag{1.20}
\end{equation*}
$$

where $U(x)=c_{N}\left(\frac{2}{1+|x|^{2}}\right)^{\frac{N-2}{2}}, \mu_{k}=\frac{c_{N}}{k^{2}}$ when $N \geq 4 ; \mu_{k}=\frac{c_{N}}{k^{2}(\log k)^{2}}$ when $N=3$ and $\xi_{j}(k)=\left(e^{\frac{2 j \pi i}{k}}, 0\right) \in \mathbb{C} \times \mathbb{R}^{N-2}$.

In dimension $N \geq 5$, del Pino et. al. [16] obtained a sequences of solutions whose energy concentrates along a two dimensional Clifford torus for the problem

$$
\begin{equation*}
\Delta_{\mathbb{S}^{3}} u+\frac{N(N-2)}{4}\left(1-|u|^{2^{\star}-2}\right) u=0 \text { on } \mathbb{S}^{N} . \tag{1.21}
\end{equation*}
$$

2. PRELIMINARIES

We are given that V satisfies (1.4) and r_{i} satisfies (1.5). Using (1.5) we obtain

$$
\begin{aligned}
& a_{1} r_{1}^{m}+a_{2} r_{2}^{m}+a_{3} r_{3}^{m}+\ldots+a_{s} r_{s}^{m}=r^{m}\left[\operatorname { s i n } ^ { m } \phi _ { 1 } \left[a_{1} \sin ^{m} \phi_{2} \cdots \sin ^{m} \phi_{s-1}\right.\right. \\
+ & \left.\left.a_{2} \sin ^{m} \phi_{2} \cdots \cos ^{m} \phi_{s-1}+\cdots a_{s-1} \cos ^{m} \phi_{2}\right]+a_{s} \cos ^{m} \phi_{1}\right]
\end{aligned}
$$

Let

$$
\begin{equation*}
\mathcal{S}\left(\phi_{1}, \phi_{1}, \cdots \phi_{s-1}\right)=\sin ^{m} \phi_{1} H_{1}\left(\phi_{2}, \phi_{3}, \cdots \phi_{s-1}\right)+a_{s} \cos ^{m} \phi_{1} \tag{2.1}
\end{equation*}
$$

where

$$
\begin{align*}
H_{1}\left(\phi_{2}, \phi_{3}, \cdots \phi_{s-1}\right) & =a_{1} \sin ^{m} \phi_{2} \cdots \sin ^{m} \phi_{s-1} \\
& +a_{2} \sin ^{m} \phi_{2} \cdots \cos ^{m} \phi_{s-1}+\cdots a_{s-1} \cos ^{m} \phi_{2} \\
& =\sin ^{m} \phi_{2} H_{2}\left(\phi_{3}, \cdots \phi_{s-1}\right)+a_{s-1} \cos ^{m} \phi_{2} \tag{2.2}
\end{align*}
$$

For if $i=1,2, \cdots, s-1 ; 0<\phi_{i}<\frac{\pi}{2}$, then $\mathcal{S}\left(\phi_{1}, \cdots \phi_{s-1}\right)$ and $H_{i}\left(\phi_{i+1}, \cdots \phi_{s-1}\right)$ are positive functions.

Now we describe two lemmas which will be crucial for the proof of the main theorem.

Lemma 2.1. Let $g_{0}\left(\phi_{1}\right)=\left[H_{1} \sin ^{m} \phi_{1}+a_{s} \cos ^{m} \phi_{1}\right]$. Then g_{0} attains a maximum at a point $\phi_{1}=\phi_{1,0}=\tan ^{-1}\left(\frac{a_{s}}{H_{1}}\right)^{\frac{1}{m-2}}$ whenever $m<2$ and g_{0} attains a minimum at $\phi_{1,0}=\tan ^{-1}\left(\frac{a_{s}}{H_{1}}\right)^{\frac{1}{m-2}}$ whenever $m>2$.
Proof. Differentiating we obtain $g_{0}^{\prime}\left(\phi_{1}\right)=\frac{1}{2}\left(H_{1} \sin ^{m-2} \phi_{1}-a_{s} \cos ^{m-2} \phi_{1}\right) \sin 2 \phi_{1}$. Hence $g_{0}^{\prime}\left(\phi_{1}\right)=0$ implies that $\phi_{1,0}=\tan ^{-1}\left(\frac{a_{s}}{H_{1}}\right)^{\frac{1}{m-2}}$. Moreover,

$$
g_{0}^{\prime \prime}\left(\phi_{1,0}\right)=\frac{(m-2)}{4}\left(H_{1} \sin ^{m-4} \phi_{1,0}+a_{s} \cos ^{m-4} \phi_{1,0}\right) \sin ^{2} 2 \phi_{1,0}
$$

As a result, $g_{0}^{\prime \prime}\left(\phi_{1,0}\right)<0$ when $m<2$ and $g_{0}^{\prime \prime}\left(\phi_{1,0}\right)>0$ when $m>2$ which implies that g_{0} achieves its maximum at a point $\phi_{1,0}$ and g_{0} achieves its minimum at $\phi_{1,0}$ when $m>2$.

Remark 2.1. Similarly for $i=1,2, \cdots, s-2 ; g_{i}\left(\phi_{i+1}\right)=\left[H_{i+1} \sin ^{m} \phi_{i+1}+\right.$ $\left.a_{s-i} \cos ^{m} \phi_{i+1}\right]$ attains a maximum at $\phi_{i, 0}=\tan ^{-1}\left(\frac{a_{s-i}}{H_{i+1}}\right)^{\frac{1}{m-2}}$ whenever $m<2$ and g_{i} attains a minimum at $\phi_{i, 0}=\tan ^{-1}\left(\frac{a_{s-i}}{H_{i+1}}\right)^{\frac{1}{m-2}}$ whenever $m>2$.
Remark 2.2. Note that when $m=2, g_{0}\left(\phi_{1}\right)=\left[H_{1} \sin ^{2} \phi_{1}+a_{s} \cos ^{2} \phi_{1}\right]$ has a critical point at $\phi_{1}=\frac{\pi}{2}$. But

$$
g_{0}^{\prime \prime}\left(\phi_{1}\right)=2\left[H_{1}-a_{s}\right] \cos 2 \phi_{1}
$$

which implies that g_{0} has a maximum if $H_{1}>a_{s}$ and g_{0} has a minimum if $H_{1}<a_{s}$ at $\phi_{1}=\frac{\pi}{2}$. But $r_{s}=r \cos \phi_{1}$ can be very small when ϕ is close to $\phi_{1}=\pi / 2$. Then the distance between the spikes and the location of the spikes may become $\mathcal{O}(1)$ which in our case breaks down the linear theory. As a result, in the case $m=2$, we cannot use the method in Theorem 1.1.

Lemma 2.2. Let $F(r)=r^{-m}-e^{-\frac{\pi r}{k}}$ where $0<r<+\infty$. Then F attains its maximum at a point $r=\left(\frac{m+1}{\pi}+o(1)\right) k \ln k$.

Proof. In fact, it is easy to check that F has a critical point at $r=\left(\frac{m+1}{\pi}+\right.$ $o(1)) k \ln k$.

Choose a $\delta>0$ small such that $\mathcal{R}_{i}=\left[\phi_{i, 0}-\delta, \phi_{i, 0}+\delta\right]$ with $\phi_{i, 0}-\delta>0$ and $\phi_{i, 0}+\delta<\frac{\pi}{2}$ where $i=1,2 \cdots, s-1$. Let $M>0$ be large and $\chi_{j_{1} j_{2} \cdots j_{s}}$ be a smooth function with compact support such that

$$
\chi_{j_{1} j_{2} \cdots j_{s}}(x)= \begin{cases}1 & \text { if }\left|x-P_{j_{1} j_{2} \cdots j_{s}}\right|<\frac{r}{2 M} \tag{2.3}\\ 0 & \text { if }\left|x-P_{j_{1} j_{2} \cdots j_{s}}\right|>\frac{3 r}{4 M}\end{cases}
$$

and $\operatorname{supp} \chi_{j_{1} j_{2} \cdots j_{s}} \cap \operatorname{supp} \chi_{k_{1} k_{2} \cdots k_{s}}=\emptyset$ whenever $\left(j_{1}, j_{2}, \cdots j_{s}\right) \neq\left(k_{1}, k_{2} \cdots k_{s}\right)$. Now define

$$
Z_{j_{1} j_{2} \cdots j_{s} n}=\chi_{j_{1} j_{2} \cdots j_{s}}(x) \frac{\partial W_{j_{1} j_{2} \cdots j_{s}}}{\partial x_{n}} ; 1 \leq j_{1}, j_{2} \cdots j_{s} \leq k \text { and } 1 \leq n \leq N
$$

Furthermore, define

$$
\begin{equation*}
D=\left\{r: r \in\left[\gamma_{1} k \ln k, \gamma_{2} k \ln k\right]\right\} . \tag{2.4}
\end{equation*}
$$

We are going to construct solutions of (1.3) using the

$$
\max _{\left(r, \phi_{1}, \cdots \phi_{s-1}\right) \in D \times \mathcal{R}_{1} \cdots \times \mathcal{R}_{s-1}} \Psi\left(r, \phi_{1}, \phi_{2}, \cdots \phi_{s-1}\right)
$$

or

$$
\max _{r \in D} \min _{\left(\phi_{1}, \cdots \phi_{s-1}\right) \in \mathcal{R}_{1} \cdots \times \mathcal{R}_{s-1}} \Psi\left(r, \phi_{1}, \phi_{2}, \cdots \phi_{s-1}\right)
$$

where Ψ will be defined in (6.1). If we substitute

$$
u_{k}(x)=\sum_{j_{1} j_{2} \cdots j_{s}=1}^{k} W_{j_{1} j_{2} \cdots j_{s}}(x)+\varphi_{k}(x)
$$

in (1.3), then we can write (1.3) as

$$
\begin{equation*}
S\left[u_{k}\right]=L(\varphi)+E+N(\varphi)=0 \tag{2.5}
\end{equation*}
$$

where

$$
\begin{equation*}
L(\varphi)=\Delta \varphi-\varphi+p\left(\sum_{j_{1} j_{2} \cdots j_{s}=1}^{k} W_{j_{1} j_{2} \cdots j_{s}}\right)^{p-1} \varphi \tag{2.6}
\end{equation*}
$$

the error due to the approximation

$$
\begin{align*}
E & =\left(\sum_{j_{1} j_{2} \cdots j_{s}=1}^{k} W_{j_{1} j_{2} \cdots j_{s}}\right)^{p}-\left(\sum_{j_{1} j_{2} \cdots j_{s}=1}^{k} W_{j_{1} j_{2} \cdots j_{s}}^{p}\right) \\
& -\sum_{j_{1} j_{2} \cdots j_{s}=1}^{k}(V(x)-1) W_{j_{1} j_{2} \cdots j_{s}} \tag{2.7}
\end{align*}
$$

and the remainder

$$
\begin{align*}
N(\varphi) & =\left(\sum_{j_{1} j_{2} \cdots j_{s}=1}^{k} W_{j_{1} j_{2} \cdots j_{s}}+\varphi\right)^{p}-\left(\sum_{j_{1} j_{2} \cdots j_{s}=1}^{k} W_{j_{1} j_{2} \cdots j_{s}}\right)^{p} \\
& -p\left(\sum_{j_{1} j_{2} \cdots j_{s}=1}^{k} W_{j_{1} j_{2} \cdots j_{s}}\right)^{p-1} \varphi+(1-V(x)) \varphi . \tag{2.8}
\end{align*}
$$

Define the norm by

$$
\|\varphi\|_{\star}=\sup _{\mathbb{R}^{N}}\left(\sum_{j_{1} j_{2} \cdots j_{s}=1}^{k} e^{\eta\left|x-P_{j_{1}, j_{2}, \cdots j_{s}}\right|}\right)|\varphi(x)| .
$$

for some $0<\eta<1$.

3. Linear Theory

We first study the model problem

$$
\left\{\begin{array}{l}
L(\varphi)=h+\sum_{n=1}^{N} \sum_{j_{i}, j_{2}, \cdots j_{s}=1}^{k} c_{j_{1} j_{2} \cdots j_{s} n} Z_{j_{1} j_{2} \cdots j_{s} n} \text { in } \mathbb{R}^{N}, \tag{3.1}\\
\int_{\mathbb{R}^{N}} \varphi Z_{j_{1} j_{2} \cdots j_{s} n} d x=0 \text { for } n=1, \cdots N ; 1 \leq j_{i}, j_{2}, \cdots j_{s} \leq k
\end{array}\right.
$$

where h lies in some space. In some sense L is made up of operators $L_{j_{1} j_{2} \cdots j_{s}}$ where

$$
\begin{equation*}
L_{j_{1} j_{2} \cdots j_{s}}(\varphi)=\Delta \varphi-\varphi+p W_{j_{1} j_{2} \cdots j_{s}}^{p-1} \varphi . \tag{3.2}
\end{equation*}
$$

Lemma 3.1. Let h be a function with $\|h\|_{\star}<+\infty$ and assume $\phi_{i} \in \mathcal{R}_{i} ;\left(c_{j_{1} j_{2} \cdots j_{s} n}, \varphi\right)$ is a solution to (3.1). There exists $\eta \in(0,1), C>0$ and $r_{0}>0$ such that for all $r \geq r_{0}$ satisfying (3.1), we have

$$
\begin{equation*}
\|\varphi\|_{\star} \leq C\|h\|_{\star} \tag{3.3}
\end{equation*}
$$

Proof. If possible, let there exists a solution to (3.1) with

$$
\|h\|_{\star} \rightarrow 0,\|\varphi\|_{\star}=1
$$

We claim, that

$$
c_{j_{1} j_{2} \cdots j_{s} n} \rightarrow 0
$$

for all n and $1 \leq j_{i} \leq k, i=1, \cdots s$. First note that

$$
\begin{equation*}
\int_{\mathbb{R}^{N}} Z_{j_{1} j_{2} \cdots j_{s} p} Z_{k_{1} k_{2} \cdots k_{s} q} d x=0 \tag{3.4}
\end{equation*}
$$

if $p \neq q$ or $\left(j_{1}, j_{2} \cdots, j_{s}\right) \neq\left(k_{1}, k_{2} \cdots, k_{s}\right)$. Multiplying (3.1) by $Z_{j_{1} j_{2} \cdots j_{s} n}$ we obtain

$$
\begin{equation*}
\int_{\mathbb{R}^{N}} L(\varphi) Z_{j_{1} j_{2} \cdots j_{s} n}=\int_{\mathbb{R}^{N}} h Z_{j_{1} j_{2} \cdots j_{s} n}+c_{j_{1} j_{2} \cdots j_{s} n} \int_{\mathbb{R}^{N}} Z_{j_{1} j_{2} \cdots j_{s} n}^{2} \tag{3.5}
\end{equation*}
$$

Moreover, there exists a small $\eta>0$ such that

$$
\int_{\mathbb{R}^{N}} Z_{j_{1} j_{2} \cdots j_{s} n}^{2} d x=\int_{\mathbb{R}^{N}}\left(\frac{\partial w}{\partial x_{n}}\right)^{2} d x+\mathcal{O}\left(e^{-(1-\eta) r}\right)
$$

On the other hand

$$
\int_{\mathbb{R}^{N}} h Z_{j_{1} j_{2} \cdots j_{s} n} d x \leq C\|h\|_{\star}
$$

When $p>2$, by the integrating by parts, we obtain

$$
\begin{aligned}
\int_{\mathbb{R}^{N}} L(\varphi) Z_{j_{1} j_{2} \cdots j_{s} n} d x & =\int_{\mathbb{R}^{N}}\left[\Delta \varphi-\varphi+p\left(\sum_{j_{1}, \cdots j_{s}=1}^{k} W_{j_{1} j_{2} \cdots j_{s}}\right)^{p-1} \varphi\right] Z_{j_{1} j_{2} \cdots j_{s} n} \\
& =\int_{\mathbb{R}^{N}}\left[\Delta Z_{j_{1} j_{2} \cdots j_{s} n} \varphi-Z_{j_{1} j_{2} \cdots j_{s} n} \varphi+p\left(\sum_{j_{1} j_{2} \cdots j_{s}=1}^{k} W_{j_{1} j_{2} \cdots j_{s}}\right)^{p-1} Z_{j_{1} j_{2} \cdots j_{s} n} \varphi\right] \\
& =p \int_{\mathbb{R}^{N}}\left[\left(\sum_{j_{1}, j_{2}, \cdots, j_{s}=1}^{k} W_{j_{1} j_{2} \cdots j_{s}}\right)^{p-1}-W_{j_{1} j_{2} \cdots j_{s}}^{p-1}\right] Z_{j_{1} j_{2} \cdots j_{s} n} \varphi \\
& +2 \int_{\mathbb{R}^{N}} \nabla \chi_{j_{1} j_{2} \cdots j_{s}} \nabla \frac{\partial W_{j_{1} j_{2} \cdots j_{s}}}{\partial x_{n}} \varphi d x+\int_{\mathbb{R}^{N}} \Delta \chi_{j_{1} j_{2} \cdots j_{s}} \frac{\partial W_{j_{1} j_{2} \cdots j_{s}}}{\partial x_{n}} \varphi d x \\
& =\mathcal{O}\left(\sum_{\left(j_{1} j_{2} \cdots j_{s}\right) \neq\left(k_{1} k_{2} \cdots k_{s}\right)} e^{\left.-(p-2) \mid P_{j_{1} j_{2} \cdots j_{s}-P_{k_{1} k_{2} \cdots k_{s} \mid}}\right) \int_{\mathbb{R}^{N}} Z_{j_{1} j_{2} \cdots j_{s} n} \varphi}\right. \\
& +2 \int_{\mathbb{R}^{N}} \nabla \chi_{j_{1} j_{2} \cdots j_{s}} \nabla \frac{\partial W_{j_{1} j_{2} \cdots j_{s}}}{\partial x_{n}} \varphi d x+\int_{\mathbb{R}^{N}} \Delta \chi_{j_{1} j_{2} \cdots j_{s}} \frac{\partial W_{j_{1} j_{2} \cdots j_{s}}}{\partial x_{n}} \varphi d x \\
& =\mathcal{O}\left(\sum_{\left(j_{1} j_{2} \cdots j_{s}\right) \neq\left(k_{1} k_{2} \cdots k_{s}\right)} e^{\left.-(p-2) \mid P_{j_{1} j_{2} \cdots j_{s}-P_{k_{1} k_{2} \cdots k_{s} \mid}}\right)\|\varphi\|_{\star}}\right. \\
(3.6) & +\mathcal{O}\left(e^{-(1-\eta) r}\right)\|\varphi\|_{\star \cdot} .
\end{aligned}
$$

When $1<p \leq 2$, we obtain

$$
\begin{aligned}
\int_{\mathbb{R}^{N}} L(\varphi) Z_{j_{1} j_{2} \cdots j_{s} n} d x & =\int_{\mathbb{R}^{N}}\left[\Delta \varphi-\varphi+p\left(\sum_{j_{1}, \cdots j_{s}=1}^{k} W_{j_{1} j_{2} \cdots j_{s}}\right)^{p-1} \varphi\right] Z_{j_{1} j_{2} \cdots j_{s} n} \\
& =\int_{\mathbb{R}^{N}}\left[\Delta Z_{j_{1} j_{2} \cdots j_{s} n} \varphi-Z_{j_{1} j_{2} \cdots j_{s} n} \varphi+p\left(\sum_{j_{1} j_{2} \cdots j_{s}}^{k} W_{j_{1} j_{2} \cdots j_{s}}\right)^{p-1} \varphi Z_{j_{1} j_{2} \cdots j_{s} n}\right] \\
& =p \int_{\mathbb{R}^{N}}\left[\left(\sum_{j_{1} j_{2} \cdots j_{s}}^{k} W_{j_{1} j_{2} \cdots j_{s}}\right)^{p-1}-W_{j_{1} j_{2} \cdots j_{s}}^{p-1}\right] Z_{j_{1} j_{2} \cdots j_{s} n} \varphi \\
& +2 \int_{\mathbb{R}^{N}} \nabla \chi_{j_{1} j_{2} \cdots j_{s}} \nabla \frac{\partial W_{j_{1} j_{2} \cdots j_{s}}}{\partial x_{n}} \varphi d x+\int_{\mathbb{R}^{N}} \Delta \chi_{j_{1} j_{2} \cdots j_{s}} \frac{\partial W_{j_{1} j_{2} \cdots j_{s}}}{\partial x_{n}} \varphi d x \\
& =\mathcal{O}\left(\left(\sum_{\left(j_{1} j_{2} \cdots j_{s}\right) \neq\left(k_{1} k_{2} \cdots k_{s}\right)} W_{j_{1} j_{2} \cdots j_{s}} W_{k_{1} k_{2} \cdots k_{s}}\right)^{\frac{p-1}{2}}\right) \int_{\mathbb{R}^{N}} Z_{j_{1} j_{2} \cdots j_{s} n} \varphi \\
& +\mathcal{O}\left(e^{-(1-\eta) r}\right)\|\varphi\|_{\star} \\
& =\mathcal{O}\left(\sum_{\left(j_{1} j_{2} \cdots j_{s}\right) \neq\left(k_{1} k_{2} \cdots k_{s}\right)} e^{\left.\left.-\frac{p-1}{2} \right\rvert\, P_{j_{1} j_{2} \cdots j_{s}-P_{k_{1} k_{2} \cdots k_{s} \mid} \mid}\right)\|\varphi\|_{\star}}\right. \\
(3.7) & +\mathcal{O}\left(e^{-(1-\eta) r}\right)\|\varphi\|_{\star} .
\end{aligned}
$$

Hence from (3.5) we have

$$
\begin{equation*}
\left|c_{j_{1} j_{2} \cdots j_{s} n}\right| \leq C\left[\|h\|_{\star}+\mathcal{O}\left(e^{-(1-\eta) r}\right)\|\varphi\|_{\star}\right] \tag{3.8}
\end{equation*}
$$

and as a result we obtain

$$
\left|c_{j_{1} j_{2} \cdots j_{s} n}\right| \rightarrow 0 \text { as } r \rightarrow \infty
$$

Now define

$$
\begin{equation*}
R(x)=\sum_{j_{1} j_{2} \cdots j_{s}=1}^{k} e^{-\eta \mid x-P_{j_{1} j_{2} \cdots j_{s} \mid}} \tag{3.9}
\end{equation*}
$$

for some $\eta \in(0,1)$. Then we have

$$
L(R) \geq \frac{1}{2}\left(1-\eta^{2}\right) R ; x \in \mathbb{R}^{N} \backslash \cup_{j_{1} j_{2} \cdots j_{s}}^{k} B_{\delta}\left(P_{j_{1} j_{2} \cdots j_{s}}\right)
$$

for some $\delta>0$ independent k. Hence we can use the barrier as R to obtain

$$
\begin{equation*}
|\varphi(x)| \leq C\left(\|h\|_{\star}+\sum_{j_{1} j_{2} \cdots j_{s}=1}^{k}\|\varphi\|_{L^{\infty}\left(\partial B_{\delta}\left(P_{j_{1} j_{2} \cdots j_{s}}\right)\right)}\right) R(x) \tag{3.10}
\end{equation*}
$$

in $\mathbb{R}^{N} \backslash \cup_{j_{1} j_{2} \cdots j_{s}}^{k} B_{\delta}\left(P_{j_{1} j_{2} \cdots j_{s}}\right)$. Now we prove the main part. If possible, let there be a sequence of $r_{\alpha} \rightarrow+\infty$ with h_{α} and φ_{α} such that

$$
\left\|h_{\alpha}\right\|_{\star} \rightarrow 0,\left\|\varphi_{\alpha}\right\|_{\star}=1
$$

as $\alpha \rightarrow+\infty$. But by (3.8)

$$
\left|c_{j_{1} j_{2} \cdots j_{s} n}^{(\alpha)}\right| \rightarrow 0 \text { as } \alpha \rightarrow \infty
$$

and due to the exponentially decay of $Z_{j_{1} j_{2} \cdots j_{s} n}$ we have

$$
\begin{equation*}
\left\|\sum_{n=1}^{N} \sum_{j_{1} j_{2} \cdots j_{s}=1}^{k} c_{j_{1} j_{2} \cdots j_{s} n}^{(\alpha)} Z_{j_{1} j_{2} \cdots j_{s} n}\right\|_{\star} \rightarrow 0 . \tag{3.11}
\end{equation*}
$$

Hence there exists a point of $P_{j_{1} j_{2} \cdots j_{s}}^{(\alpha)}$ where $P_{j_{1} j_{2} \cdots j_{s}}^{(\alpha)}$ is a function of $r_{\alpha} \in D$ and $\phi_{i, \alpha} \in \mathcal{R}_{i}$ such that

$$
\left\|\varphi_{\alpha}\right\|_{L^{\infty}\left(B_{r}\left(P_{j_{1} j_{2} \cdots j_{s}}^{(\alpha)}\right)\right)} \geq c>0
$$

By the standard elliptic estimate and the Arzela-Ascoli's theorem, φ_{α} converges locally uniformly to φ as $\alpha \rightarrow \infty$ where φ satisfies

$$
\left(\Delta-1+p w^{p-1}\right) \varphi=0 \text { in } \mathbb{R}^{N}
$$

with $|\varphi(x)| \leq c e^{-\eta|x|}$ for some $\eta>0$ and $c>0$. Moreover, note that φ_{α} satisfies the orthogonality condition. Hence we must have

$$
\begin{equation*}
\int_{\mathbb{R}^{N}} \varphi \nabla w d x=0 . \tag{3.12}
\end{equation*}
$$

This implies $\varphi \equiv 0$ as w is non-degenerate, a contradiction.
Lemma 3.2. There exists $\eta \in(0,1), C>0$ such that for all $r \geq r_{0}$ and $\phi_{i} \in \mathcal{R}_{i}$, there exists a unique solution $\left(c_{j_{1} j_{2} \cdots j_{s} n}, \varphi\right)$ satisfying (3.1). Furthermore,

$$
\begin{equation*}
\|\varphi\|_{\star} \leq C\|h\|_{\star} . \tag{3.13}
\end{equation*}
$$

Proof. Define the Sobolev space
$\mathcal{H}=\left\{\varphi \in H^{1}\left(\mathbb{R}^{N}\right): \int_{\mathbb{R}^{N}} \varphi Z_{j_{1} j_{2} \cdots j_{s} n} d x=0 ; n=1, \cdots, N ; 1 \leq j_{i} \leq k, i=1,2, \cdots s\right\}$.
Then (3.1) is expressible as

$$
\begin{equation*}
\varphi+K(\varphi)=\tilde{h} \tag{3.14}
\end{equation*}
$$

where \tilde{h} is defined by duality and $K: \mathcal{H} \rightarrow \mathcal{H}$ is a linear compact operator. Using the Fredholm's alternative, (3.1) has a unique solution for each \tilde{h} which is equivalent
to showing that the equation admit a unique solution for $\tilde{h}=0$ which in turn follows from Lemma 3.1. The estimate (3.13) follows directly from Lemma 3.1. Moreover, if φ is a unique solution of (3.1), we can write $\varphi=A(h)$ and hence from (3.13) we have

$$
\begin{equation*}
\|A(h)\|_{\star} \leq C\|h\|_{\star} \tag{3.15}
\end{equation*}
$$

4. The non-Linear problem

Now we consider a nonlinear projected problem

$$
\left\{\begin{array}{l}
L(\varphi)+E+N(\varphi)=\sum_{n=1}^{N} \sum_{j_{1} j_{2} \cdots j_{s}=1}^{k} c_{j_{1} j_{2} \cdots j_{s} n} Z_{j_{1} j_{2} \cdots j_{s} n} \text { in } \mathbb{R}^{N} \tag{4.1}\\
\int_{\mathbb{R}^{N}} \varphi Z_{j_{1} j_{2} \cdots j_{s} n} d x=0 \text { for } n=1, \cdots N ; 1 \leq j_{1}, j_{2}, \cdots j_{s} \leq k
\end{array}\right.
$$

We are going to show the solvability of (4.1) in $\left(c_{j_{1} j_{2} \cdots j_{s} n}, \varphi\right)$ whenever $r \in D$ and $\phi_{i} \in \mathcal{R}_{i}$ with $i=1,2 \cdots, s-1$.

Lemma 4.1. There exist $r_{0}>0$ large and $C>0$ such that for all $r \geq r_{0}$ and for any $r \in D, \phi_{i} \in \mathcal{R}_{i}$, there exists a unique solution $\left(c_{j_{1} j_{2} \cdots j_{s} n}, \varphi\right)$ of (4.1). Furthermore,

$$
\begin{equation*}
\|\varphi\|_{\star} \leq C r^{-m} \tag{4.2}
\end{equation*}
$$

Proof. Note that φ solves (4.1) if and only if

$$
\begin{equation*}
\varphi=A(-E-N(\varphi)) \tag{4.3}
\end{equation*}
$$

where A is the linear operator introduced in Lemma 3.2. If we define

$$
\begin{equation*}
F(\varphi)=A(-E-N(\varphi)) \tag{4.4}
\end{equation*}
$$

then we are reduced to studying the fixed points of the map F. Define a ball

$$
\begin{equation*}
\mathcal{B}=\left\{\varphi \in \mathcal{H}:\|\varphi\|_{\star} \leq \eta r^{-m}\right\} \tag{4.5}
\end{equation*}
$$

for some $\eta>0$. Now we claim that

$$
\begin{equation*}
\|E\|_{\star} \leq C r^{-m} \tag{4.6}
\end{equation*}
$$

Fix a point $P_{j_{1} j_{2} \cdots j_{s}}$ with $\left|x-P_{j_{1} j_{2} \cdots j_{s}}\right| \leq \frac{r}{2+\sigma}$ where $\sigma>0$ is small number. Then we have

$$
\left|x-P_{k_{1} k_{2} \cdots k_{s}}\right| \geq\left|P_{k_{1} k_{2} \cdots k_{s}}-P_{j_{1} j_{2} \cdots j_{s}}\right|-\frac{r}{2+\sigma} \geq \frac{r}{2}+\frac{r \sigma}{2(2+\sigma)}
$$

whenever $\left|P_{j_{1} j_{2} \cdots j_{s}}-P_{k_{1} k_{2} \cdots k_{s}}\right| \geq r$.
Hence we obtain,

$$
\begin{aligned}
|E| & \leq C W_{j_{1} j_{2} \cdots j_{s}}^{p-1} \sum_{\left(k_{1} k_{2} \cdots k_{s}\right) \neq\left(j_{1} j_{2} \cdots j_{s}\right)} W_{k_{1} k_{2} \cdots k_{s}}+\frac{C}{r^{m} \mathcal{S}\left(\phi_{1}, \phi_{2}, \cdots \phi_{s-1}\right)} \sum_{j_{1} j_{2} \cdots j_{s}=1} W_{j_{1} j_{2} \cdots j_{s}} \\
& \leq C W_{j_{1} j_{2} \cdots j_{s}}^{p-1} \sum_{\left(k_{1} k_{2} \cdots k_{s}\right) \neq\left(j_{1} j_{2} \cdots j_{s}\right)} w\left(x-P_{k_{1} k_{2} \cdots k_{s}}\right)+\frac{C}{r^{m} \mathcal{S}\left(\phi_{1}, \phi_{2}, \cdots \phi_{s-1}\right)} \sum_{j_{1} j_{2} \cdots j_{s}=1} W_{j_{1} j_{2} \cdots j_{s}} \\
& \leq C W_{j_{1} j_{2} \cdots j_{s}}^{p-1} \sum_{\left(k_{1} k_{2} \cdots k_{s}\right) \neq\left(j_{1} j_{2} \cdots j_{s}\right)} e^{-\frac{r}{2}-\frac{r \sigma}{2(2+\sigma)}}+\frac{C}{r^{m} \mathcal{S}\left(\phi_{1}, \phi_{2}, \cdots \phi_{s-1}\right)} \sum_{j_{1} j_{2} \cdots j_{s}=1} W_{j_{1} j_{2} \cdots j_{s}} .
\end{aligned}
$$

In the region $\left|x-P_{j_{1} j_{2} \cdots j_{s}}\right|>\frac{r}{2+\sigma}$, choosing $0<\mu<1$

$$
\begin{aligned}
|E| & \leq C \sum_{j_{1} j_{2} \cdots j_{s}=1} W_{j_{1} j_{2} \cdots j_{s}}^{p}+C \sum_{j_{1} j_{2} \cdots j_{s}=1} W_{j_{1} j_{2} \cdots j_{s}} \\
& \leq C\left(\sum_{j_{1} j_{2} \cdots j_{s}=1} e^{-\mu\left|x-P_{j_{1} j_{2} \cdots j_{s}}\right|}\right) e^{-\frac{(p-\mu) r}{2+\sigma}}+C \sum_{j_{1} j_{2} \cdots j_{s}=1} W_{j_{1} j_{2} \cdots j_{s}} \\
& \leq C\left(\sum_{j_{1} j_{2} \cdots j_{s}=1} e^{-\mu\left|x-P_{j_{1} j_{2} \cdots j_{s} \mid}\right|}\right) e^{-\frac{(p-\mu) r}{2+\sigma}}+C\left(\sum_{j_{1} j_{2} \cdots j_{s}=1}^{k} e^{-\mu\left|x-P_{j_{1} j_{2} \cdots j_{s}}\right|}\right) e^{-\frac{(1-\mu) r}{2+\sigma}} .
\end{aligned}
$$

Hence the result follows. Moreover, for any $\varphi \in \mathcal{B}$ we have

$$
|N(\varphi)| \leq C\left(|\varphi|^{2}+|\varphi|^{p}+r^{-m}|\varphi|\right) .
$$

Hence

$$
\begin{equation*}
\|N(\varphi)\|_{\star} \leq C\left(\|\varphi\|_{\star}^{2}+\|\varphi\|_{\star}^{p}+r^{-m}\|\varphi\|_{\star}\right) . \tag{4.7}
\end{equation*}
$$

Now we need to check whether the map (4.4) is in fact a contraction from \mathcal{B} to \mathcal{B}.
We have

$$
\begin{equation*}
\|F(\varphi)\|_{\star}=\|A(E+N(\varphi))\|_{\star} \leq C\|E\|_{\star}+C\|N(\varphi)\|_{\star} \leq \eta r^{-m} \tag{4.8}
\end{equation*}
$$

Moreover, for any $\varphi_{1}, \varphi_{2} \in \mathcal{B}$

$$
\begin{equation*}
\left\|F\left(\varphi_{1}\right)-F\left(\varphi_{2}\right)\right\|_{\star} \leq C\left\|N\left(\varphi_{1}\right)-N\left(\varphi_{2}\right)\right\|_{\star}=o(1)\left\|\varphi_{1}-\varphi_{2}\right\|_{\star} \tag{4.9}
\end{equation*}
$$

As a consequence of the contraction mapping principle, we obtain the required result.

5. The Reduced Problem

Denote the functional associated to (1.3) by

$$
I(u)=\int_{\mathbb{R}^{N}}\left[\frac{1}{2}|\nabla u|^{2}+\frac{1}{2} V(x) u^{2}-\frac{1}{p+1} u^{p+1}\right] d x .
$$

Lemma 5.1. Then we have
$k^{-s} I\left(\sum_{j_{1} j_{2} \cdots j_{s}=1}^{k} W_{j_{1} j_{2} \cdots j_{s}}\right)=I_{0}+\frac{A}{2 r^{m} \mathcal{S}\left(\phi_{1}, \phi_{2}, \cdots \phi_{s-1}\right)}-\frac{B}{2} e^{-\frac{2 \pi r}{k}}+\mathcal{O}\left(\frac{1}{r^{m+\tau}}\right)$
where $I_{0}=\frac{p-1}{2(p+1)} \int_{\mathbb{R}^{N}} w^{p+1} d x ; A=\int_{\mathbb{R}^{N}} w^{2} d x$ and some constant $B>0$.
Proof. We write

$$
\begin{align*}
I(u) & =\int_{\mathbb{R}^{N}}\left[\frac{1}{2}|\nabla u|^{2}+\frac{1}{2} V(x) u^{2}-\frac{1}{p+1} u^{p+1}\right] d x \\
& =\int_{\mathbb{R}^{N}}\left[\frac{1}{2}\left(|\nabla u|^{2}+u^{2}\right)+\frac{1}{2}(V(x)-1) u^{2}-\frac{1}{p+1} u^{p+1}\right] d x \\
& =\frac{1}{2} \mathcal{A}+\frac{1}{2} \mathcal{B}-\frac{1}{p+1} \mathcal{C} \tag{5.1}
\end{align*}
$$

where $\mathcal{A}=\int_{\mathbb{R}^{N}}\left(|\nabla u|^{2}+u^{2}\right) d x, \mathcal{B}=\int_{\mathbb{R}^{N}}(V(x)-1) u^{2} d x$ and $\mathcal{C}=\int_{\mathbb{R}^{N}} u^{p+1} d x$. Hence we obtain

$$
\begin{aligned}
\mathcal{A} & =\int_{\mathbb{R}^{N}}\left(\left|\nabla\left(\sum_{j_{1} j_{2} \cdots j_{s}=1}^{k} W_{j_{1} j_{2} \cdots j_{s}}\right)\right|^{2}+\left(\sum_{j_{1} j_{2} \cdots j_{s}}^{k} W_{j_{1} j_{2} \cdots j_{s}}\right)^{2}\right) d x \\
& =\sum_{j_{1} j_{2} \cdots j_{s}=1}^{k} \sum_{k_{1} k_{2} \cdots k_{s}=1}^{k} \int_{\mathbb{R}^{N}}\left(W_{j_{1} j_{2} \cdots j_{s}}^{p}\right) W_{k_{1} k_{2} \cdots k_{s}} d x \\
& =k^{s} \int_{\mathbb{R}^{N}} w^{p+1} d x+\sum_{\left(j_{1} j_{2} \cdots j_{s}\right) \neq\left(k_{1} k_{2} \cdots k_{s}\right)} \int_{\mathbb{R}^{N}} w\left(x-\left(P_{j_{1} j_{2} \cdots j_{s}}-P_{k_{1} k_{2} \cdots k_{s}}\right)\right) w^{p}(x) d x .
\end{aligned}
$$

Using (1.4) we obtain

$$
\begin{aligned}
\mathcal{B} & =\int_{\mathbb{R}^{N}}(V(x)-1)\left(\sum_{j_{1} j_{2} \cdots j_{s}=1}^{k} W_{j_{1} j_{2} \cdots j_{s}}\right)^{2} d x \\
& =\int_{\mathbb{R}^{N}}(V(x)-1) W_{j_{1} j_{2} \cdots j_{s}}^{2} d x+\sum_{\left(j_{1} j_{2} \cdots j_{s}\right) \neq\left(k_{1} k_{2} \cdots k_{s}\right)} \int_{\mathbb{R}^{N}}(V(x)-1) W_{k_{1} k_{2} \cdots k_{s}} W_{j_{1} j_{2} \cdots j_{s}} \\
& =\int_{\mathbb{R}^{N}}\left(V\left(x+P_{j_{1} j_{2} \cdots j_{s}}\right)-1\right) w^{2}(x) d x+o\left(e^{-\frac{\pi r}{k}}\right) \\
& =\int_{\mathbb{R}^{N}}\left(V\left(x_{1}+P_{j_{1}}, x_{2}+P_{j_{2}}, \cdots, x_{s}+P_{j_{s}}\right)-1\right) w^{2}(x) d x \\
& =\int_{B_{r / 2}(0)}\left(\frac{1}{a_{1}\left|x_{1}+P_{j_{1}}\right|^{m}+a_{2}\left|x_{2}+P_{j_{2}}\right|^{m}+\cdots+a_{s}\left|x_{s}+P_{j_{s}}\right|^{m}}\right) w^{2}(x) d x \\
& +\mathcal{O}\left(\int_{B_{r / 2}(0)}\left(\frac{1}{a_{1}\left|x_{1}+P_{j_{1}}\right|^{m}+a_{2}\left|x_{2}+P_{j_{2}}\right|^{m}+\cdots+a_{s}\left|x_{s}+P_{j_{s}}\right|^{m}}\right)^{1+\tau} w^{2}(x)\right) d x \\
& +\mathcal{O}\left(e^{-r(1-\eta)}\right)
\end{aligned}
$$

for some $\eta>0$ small. Moreover, for any $\left(x_{1}, x_{2}, \cdots x_{s}\right) \in B_{r / 2}(0)$

$$
\begin{aligned}
& \left|x_{1}+P_{j_{1}}\right|^{m}=\left|P_{j_{1}}\right|^{m}\left(1+\mathcal{O}\left(\frac{\left|x_{1}\right|}{\left|P_{j_{1}}\right|}\right)\right) \\
& \left|x_{2}+P_{j_{2}}\right|^{m}=\left|P_{j_{2}}\right|^{m}\left(1+\mathcal{O}\left(\frac{\left|x_{2}\right|}{\left|P_{j_{2}}\right|}\right)\right)
\end{aligned}
$$

$$
\begin{equation*}
\left|x_{s}+P_{j_{s}}\right|^{m}=\left|P_{j_{s}}\right|^{m}\left(1+\mathcal{O}\left(\frac{\left|x_{s}\right|}{\left|P_{j_{s}}\right|}\right)\right) \tag{5.2}
\end{equation*}
$$

and hence

$$
\begin{aligned}
& a_{1}\left|x_{s}+P_{j_{1}}\right|^{m}+a_{2}\left|x_{2}+P_{j_{2}}\right|^{m}+\cdots+a_{s}\left|x_{s}+P_{j_{s}}\right|^{m} \\
= & a_{1}\left|P_{j_{1}}\right|^{m}\left(1+\mathcal{O}\left(\frac{\left|x_{1}\right|}{\left|P_{j_{1}}\right|}\right)\right)+a_{2}\left|P_{j_{2}}\right|^{m}\left(1+\mathcal{O}\left(\frac{\left|x_{2}\right|}{\left|P_{j_{2}}\right|}\right)\right)+\cdots a_{s}\left|P_{j_{s}}\right|^{m}\left(1+\mathcal{O}\left(\frac{\left|x_{s}\right|}{\left|P_{j_{s}}\right|}\right)\right) \\
= & a_{1}\left|P_{j_{1}}\right|^{m}+a_{2}\left|P_{j_{2}}\right|^{m}+\left.\left.\cdots a_{s}\right|_{j_{s}}\right|^{m} \\
+ & a_{1}\left|P_{j_{1}}\right|^{m} \mathcal{O}\left(\frac{\left|x_{1}\right|}{\left|P_{j_{1}}\right|}\right)+a_{2}\left|P_{j_{2}}\right|^{m} \mathcal{O}\left(\frac{\left|x_{2}\right|}{\left|P_{j_{2}}\right|^{m}}\right) \cdots+a_{s}\left|P_{j_{s}}\right|^{m} \mathcal{O}\left(\frac{\left|x_{s}\right|}{\left|P_{j_{s}}\right|}\right) .
\end{aligned}
$$

As a result we have,

$$
\begin{aligned}
& \left(a_{1}\left|x_{s}+P_{j_{1}}\right|^{m}+a_{2}\left|x_{2}+P_{j_{2}}\right|^{m}+\cdots+a_{s}\left|x_{s}+P_{j_{s}}\right|^{m}\right)^{-1} \\
= & \frac{1}{a_{1}\left|P_{j_{1}}\right|^{m}+a_{2}\left|P_{j_{2}}\right|^{m} \cdots+a_{s}\left|P_{j_{s}}\right|^{m}} \\
\times & \left(1+\mathcal{O}\left(\frac{a_{1}\left|P_{j_{1}}\right|^{m-1}\left|x_{1}\right|+a_{2}\left|P_{j_{2}}\right|^{m-1}\left|x_{2}\right|+\cdots+a_{s}\left|P_{j_{s}}\right|^{m-1}\left|x_{s}\right|}{a_{1}\left|P_{j_{1}}\right|^{m}+a_{2}\left|P_{j_{2}}\right|^{m}+\cdots+a_{s}\left|P_{j_{s}}\right|^{m}}\right)\right) .
\end{aligned}
$$

Hence we have,

$$
\begin{aligned}
& \int_{B_{r / 2}(0)}\left(\frac{1}{a_{1}\left|x_{1}+P_{j_{1}}\right|^{m}+a_{2}\left|x_{2}+P_{j_{2}}\right|^{m}+\cdots a_{s}\left|x_{s}+P_{j_{s}}\right|^{m}}\right) w^{2}(x) d x \\
= & \left(\frac{1}{a_{1}\left|P_{j_{1}}\right|^{m}+a_{2}\left|P_{j_{2}}\right|^{m}+\cdots a_{s}\left|P_{j_{s}}\right|^{m}}\right) \int_{\mathbb{R}^{N}} w^{2} d x \\
+ & \left(\frac{1}{a_{1}\left|P_{j_{1}}\right|^{m}+a_{2}\left|P_{j_{2}}\right|^{m}+\cdots a_{s}\left|P_{j_{s}}\right|^{m}}\right)^{2} \\
\times & \mathcal{O}\left(\int_{\mathbb{R}^{N}}\left(a_{1}\left|P_{j_{1}}\right|^{m-1}\left|x_{1}\right|+a_{2}\left|P_{j_{2}}\right|^{m-1}\left|x_{2}\right| \cdots+a_{s}\left|P_{j_{s}}\right|^{m-1}\left|x_{s}\right|\right) w^{2} d x\right) \\
= & \left(\frac{1}{\mathcal{S}\left(\phi_{1}, \phi_{2}, \cdots \phi_{s-1}\right) r^{m}}\right) \int_{\mathbb{R}^{N}} w^{2} d x+\mathcal{O}\left(\frac{1}{\left(\mathcal{S}\left(\phi_{1}, \cdots, \phi_{s-1}\right)\right)^{2} r^{m+1}}\right) .
\end{aligned}
$$

Moreover, as $p>1$ using the Taylor expansion we obtain,

$$
\begin{aligned}
\mathcal{C} & =\int_{\mathbb{R}^{N}}\left(\sum_{j_{1} j_{2} \cdots j_{s}=1}^{k} W_{j_{1} j_{2} \cdots j_{s}}\right)^{p+1} d x \\
& =\sum_{j_{1} j_{2} \cdots j_{s}=1}^{k} \int_{\mathbb{R}^{N}} W_{j_{1} j_{2} \cdots j_{s}}^{p+1} d x+(p+1) \sum_{\left(k_{1} k_{2} \cdots k_{s}\right) \neq\left(j_{1} j_{2} \cdots j_{s}\right)} \int_{\mathbb{R}^{N}} W_{j_{1} j_{2} \cdots j_{s}}^{p} W_{k_{1} k_{2} \cdots k_{s}} d x \\
& +\mathcal{O}\left(\sum_{\left(j_{1} j_{2} \cdots j_{s}\right) \neq\left(k_{1} k_{2} \cdots k_{s}\right)} \int_{\mathbb{R}^{N}} W_{j_{1} j_{2} \cdots j_{s}}^{p-1} W_{k_{1} k_{2} \cdots k_{s}}^{2} d x\right) \\
& =k^{s} \int_{\mathbb{R}^{N}} w^{p+1} d x+(p+1) \sum_{\left(j_{1} j_{2} \cdots j_{s}\right) \neq\left(k_{1} k_{2} \cdots k_{s}\right)} \int_{\mathbb{R}^{N}} w^{p}(x) w\left(x-\left(P_{j_{1} j_{2} \cdots j_{s}}-P_{k_{1} k_{2} \cdots k_{s}}\right)\right) d x \\
& +\mathcal{O}\left(\sum_{\left(j_{1} j_{2} \cdots j_{s}\right) \neq\left(k_{1} k_{2} \cdots k_{s}\right)} \int_{\mathbb{R}^{N}} w^{p-1}(x) w^{2}\left(x-P_{j_{1} j_{2} \cdots j_{s}}+P_{k_{1} k_{2} \cdots k_{s}}\right) d x\right) .
\end{aligned}
$$

Hence from (5.1) we obtain

$$
\begin{aligned}
I(u) & =\frac{(p-1) k^{s}}{2(p+1)} \int_{\mathbb{R}^{N}} w^{p+1} d x+\left(\frac{k^{s}}{2 \mathcal{S}\left(\phi_{1}, \phi_{2}, \cdots \phi_{s-1}\right) r^{m}}\right) \int_{\mathbb{R}^{N}} w^{2} d x \\
& -\frac{1}{2} \sum_{\left(j_{1} j_{2} \cdots j_{s}\right) \neq\left(k_{1} k_{2} \cdots k_{s}\right)} \int_{\mathbb{R}^{N}} w^{p}(x) w\left(x-\left(P_{j_{1} j_{2} \cdots j_{s}}-P_{k_{1} k_{2} \cdots k_{s}}\right)\right) d x \\
& +\mathcal{O}\left(\sum_{\left(j_{1} j_{2} \cdots j_{s}\right) \neq\left(k_{1} k_{2} \cdots k_{s}\right)} \int_{\mathbb{R}^{N}} w^{p-1}(x) w^{2}\left(x-P_{j_{1} j_{2} \cdots j_{s}}+P_{k_{1} k_{2} \cdots k_{s}}\right) d x\right) \\
5.3) & +\mathcal{O}\left(\frac{k^{s}}{r^{m+\tau}}\right) .
\end{aligned}
$$

Moreover, for $\left(j_{1}, j_{2} \cdots, j_{s}\right) \neq\left(k_{1}, k_{2}, \cdots k_{s}\right)$

$$
\begin{aligned}
& \left|P_{j_{1} j_{2} \cdots j_{s}}-P_{k_{1} k_{2} \cdots k_{s}}\right|^{2} \\
= & 4 r_{1}^{2}\left[\sin ^{2} \frac{\left(j_{1}-k_{1}\right) \pi}{2 k}\right]+4 r_{2}^{2}\left[\sin ^{2} \frac{\left(j_{2}-k_{2}\right) \pi}{2 k}\right]+\cdots+4 r_{s}^{2}\left[\sin ^{2} \frac{\left(j_{s}-k_{s}\right) \pi}{2 k}\right] \\
= & 4 r^{2}\left[\sin ^{2} \frac{\left(j_{1}-k_{1}\right) \pi}{2 k} \sin ^{2} \phi_{1} \sin ^{2} \phi_{2} \cdots \sin ^{2} \phi_{s-1}\right. \\
+ & \left.\sin ^{2} \frac{\left(j_{2}-k_{2}\right) \pi}{2 k} \sin ^{2} \phi_{1} \sin ^{2} \phi_{2} \cdots \cos ^{2} \phi_{s-1}+\cdots+\sin ^{2} \frac{\left(j_{s}-k_{s}\right) \pi}{2 k} \cos ^{2} \phi_{1}\right] .
\end{aligned}
$$

Hence if $\left|P_{j_{1} j_{2} \cdots j_{s}}-P_{k_{1} k_{2} \cdots k_{s}}\right|$ is finite

$$
\begin{equation*}
\left|P_{j_{1} j_{2} \cdots j_{s}}-P_{k_{1} k_{2} \cdots k_{s}}\right| \sim \frac{\pi r}{k} \tag{5.4}
\end{equation*}
$$

as $k \rightarrow \infty$. Moreover, if $\left|P_{j_{1} j_{2} \cdots j_{s}}-P_{k_{1} k_{2} \cdots k_{s}}\right|$ is large, then

$$
\begin{equation*}
\left|P_{j_{1} j_{2} \cdots j_{s}}-P_{k_{1} k_{2} \cdots k_{s}}\right| \sim r^{2} \tag{5.5}
\end{equation*}
$$

and by the exponential decay of w, the contribution due to $\exp \left(-\mid P_{j_{1} j_{2} \cdots j_{s}}-\right.$ $\left.P_{k_{1} k_{2} \cdots k_{s}} \mid\right)$ is a very small term. Furthermore, there exist $B^{\prime}(N, p)>0$ and $\delta>1$ such that

$$
\begin{equation*}
\int_{\mathbb{R}^{N}} w^{p}(x) w(x-a) d x=B^{\prime} \psi(|a|) a \cdot e_{n}+\mathcal{O}\left(e^{-\delta|a|}\right) \tag{5.6}
\end{equation*}
$$

where $\psi(s)=e^{-s} s^{-\frac{N+1}{2}}$ and e_{n} is unit vector with n-th coordinate 1 and the other entries 0 . Hence

$$
\begin{align*}
& \sum_{\left(j_{1} j_{2} \cdots j_{s}\right) \neq\left(k_{1} k_{2} \cdots k_{s}\right)} \int_{\mathbb{R}^{N}} w^{p}(x) w\left(x-\left(P_{j_{1} j_{2} \cdots j_{s}}-P_{k_{1} k_{2} \cdots k_{s}}\right)\right) d x \\
= & k^{s} e^{-\frac{\pi r}{k}}(B+o(1)) . \tag{5.7}
\end{align*}
$$

where B is some positive constant. As a result, we obtain

$$
\begin{aligned}
k^{-s} I(u) & =\frac{(p-1)}{2(p+1)} \int_{\mathbb{R}^{N}} w^{p+1} d x+\left(\frac{A}{2 \mathcal{S}\left(\phi_{1}, \cdots \phi_{s-1}\right) r^{m}}\right) \\
& -\frac{B}{2} e^{-\frac{\pi r}{k}}+\mathcal{O}\left(\frac{1}{r^{m+\tau}}\right)+\mathcal{O}\left(e^{-\frac{2 \pi r}{k}}\right)
\end{aligned}
$$

where $A=\int_{\mathbb{R}^{N}} w^{2} d x$.

6. Max-Procedure or Max-Min Procedure

Define

$$
\begin{equation*}
I\left(\sum_{j_{1} j_{2} \cdots j_{s}=1}^{k} W_{j_{1} j_{2} \cdots j_{s}}+\varphi_{k}\right)=\Psi\left(r, \phi_{1}, \cdots \phi_{s-1}\right) \tag{6.1}
\end{equation*}
$$

Now we are going to maximize $\Psi\left(r, \phi_{1}, \cdots \phi_{s-1}\right)$ with respect to $r \in D$ and $\phi_{i} \in \mathcal{R}_{i}$.
Define the norm on $H^{1}\left(\mathbb{R}^{N}\right)$ as

$$
\|\varphi\|_{H^{1}\left(\mathbb{R}^{N}\right)}=\left(\int_{\mathbb{R}^{N}}\left[|\nabla \varphi|^{2}+V(x) \varphi^{2}\right] d x\right)^{\frac{1}{2}}
$$

First we write
$I\left(\sum_{j_{1} j_{2} \cdots j_{s}=1}^{k} W_{j_{1} j_{2} \cdots j_{s}}+\varphi_{k}\right)=I\left(\sum_{j_{1} j_{2} \cdots j_{s}=1}^{k} W_{j_{1} j_{2} \cdots j_{s}}\right)+\int_{\mathbb{R}^{N}} E(u) \varphi_{k}+\mathcal{O}\left(\left\|\varphi_{k}\right\|_{H^{1}\left(\mathbb{R}^{N}\right)}^{2}\right)$.
Using (4.6) and (3.13) we have

$$
\begin{equation*}
\|E\|_{\star} \leq \eta r^{-m} \text { and }\left\|\varphi_{k}\right\|_{\star} \leq \eta r^{-m} \tag{6.2}
\end{equation*}
$$

which implies

$$
\begin{equation*}
\|E\|_{H^{1}\left(\mathbb{R}^{N}\right)} \leq \eta k^{\frac{s}{2}} r^{-m} \text { and }\left\|\varphi_{k}\right\|_{H^{1}\left(\mathbb{R}^{N}\right)} \leq \eta k^{\frac{s}{2}} r^{-m} \tag{6.3}
\end{equation*}
$$

Hence we have

$$
I\left(\sum_{j_{1} j_{2} \cdots j_{s}=1}^{k} W_{j_{1} j_{2} \cdots j_{s}}+\varphi_{k}\right)=I\left(\sum_{j_{1} j_{2} \cdots j_{s}=1}^{k} W_{j_{1} j_{2} \cdots j_{s}}\right)+\mathcal{O}\left(k^{s} r^{-2 m}\right)
$$

So we can use Lemma 5.1 to obtain

$$
\Psi\left(r, \phi_{1}, \cdots \phi_{s-1}\right)=k^{s}\left[I_{0}+\frac{A}{2 r^{m} \mathcal{S}\left(\phi_{1}, \cdots \phi_{s-1}\right)}-\frac{B}{2} e^{-\frac{\pi r}{k}}+\mathcal{O}\left(\frac{1}{r^{m+\tau}}\right)\right]
$$

Note that if

$$
\begin{equation*}
Z\left(r, \phi_{1}, \cdots \phi_{s-1}\right)=\frac{A}{2 r^{m} \mathcal{S}\left(\phi_{1}, \cdots \phi_{s-1}\right)}-\frac{B}{2} e^{-\frac{\pi r}{k}} \tag{6.4}
\end{equation*}
$$

Using Lemma 2.2, there exists $\left(r_{0}, \phi_{1,0}, \cdots \phi_{s-1,0}\right)$ such that $Z_{r}=Z_{\phi_{1}}=\cdots=$ $Z_{\phi_{s-1}}=0$ and $\max \left\{Z_{r r}, Z_{\phi_{1}, \phi_{1}}, \cdots, Z_{\phi_{s-1}, \phi_{s-1}}\right\}<0$ and all the mixed derivatives are zero at the point $\left(r_{0}, \phi_{1,0}, \cdots \phi_{s-1,0}\right)$. Which implies the Hessian associated to Z is positive definite. Hence $\Psi\left(r, \phi_{1}, \cdots \phi_{s-1}\right)$ attains a maximum at an interior point $\left(r_{0}, \phi_{1,0}, \cdots \phi_{s-1,0}\right) \in D \times \mathcal{R}_{1} \times \mathcal{R}_{2} \cdots \mathcal{R}_{s-1}$.
Furthermore, there exists $\left(r_{0}, \phi_{1,0}, \cdots \phi_{s-1,0}\right)$ such that $Z_{r}=Z_{\phi_{1}}=\cdots=Z_{\phi_{s-1}}=$ $0, Z_{r r}<0$ and $\min \left\{Z_{\phi_{1}, \phi_{1}}, \cdots, Z_{\phi_{s-1}, \phi_{s-1}}\right\}>0$ and all the mixed derivatives are zero at the point $\left(r_{0}, \phi_{1,0}, \cdots \phi_{s-1,0}\right)$. Which implies the Hessian associated to Z has both positive and negative eigenvalues. Hence $\left(r_{0}, \phi_{1,0}, \cdots \phi_{s-1,0}\right) \in$ $D \times \mathcal{R}_{1} \times \mathcal{R}_{2} \cdots \mathcal{R}_{s-1}$ is a saddle point of Ψ. This point is actually a max $-\min$ saddle point.

7. Proof of Theorem 1.1

By section 6 , there exists $k_{0} \in \mathbb{N}$ such that for all $k \geq k_{0}$ there exists a C^{1} map such that for any $r \in D, \phi_{i} \in \mathcal{R}_{i}$ there associates φ_{k} with

$$
\left\{\begin{align*}
S\left[\left(\sum_{j_{1} j_{2} \cdots j_{s}=1}^{k} W_{j_{1} j_{2} \cdots j_{s}}+\varphi_{k}\right)\right] & =\sum_{n=1}^{N} \sum_{j_{1} j_{2} \cdots j_{s}=1}^{k} c_{j_{1} j_{2} \cdots j_{s} n} Z_{j_{1} j_{2} \cdots j_{s} n} \tag{7.1}\\
\int_{\mathbb{R}^{N}} \varphi Z_{j_{1} j_{2} \cdots j_{s} n} d x & =0
\end{align*}\right.
$$

for some constant $c_{j_{1} j_{2} \cdots j_{s} n} \in \mathbb{R}^{k^{s} N}$. Here S is defined in (2.5). We are going to prove Theorem 1.1 by showing that $c_{j_{1} j_{2} \cdots j_{s} n}=0$ for all $1 \leq j_{1}, j_{2}, \cdots, j_{s} \leq k$ and $1 \leq n \leq N$. This will imply

$$
S\left[\left(\sum_{j_{1} j_{2} \cdots j_{s}=1}^{k} W_{j_{1} j_{2} \cdots j_{s}}+\varphi_{k}\right)\right]=0
$$

which will in fact prove that

$$
\sum_{j_{1} j_{2} \cdots j_{s}=1}^{k} W_{j_{1} j_{2} \cdots j_{s}}+\varphi_{k}
$$

is a solution of (1.3). By the previous section, we know that there exists a critical point $\left(r_{0}, \phi_{1,0}, \cdots \phi_{s-1,0}\right)$ of Ψ in $D \times \mathcal{R}_{1} \times \mathcal{R}_{2} \cdots \mathcal{R}_{s-1}$ such that

$$
\Psi\left(r_{0}, \phi_{1,0}, \cdots \phi_{s-1,0}\right)=\max _{\left(r, \phi_{1}, \cdots \phi_{s-1}\right)} \Psi\left(r, \phi_{1,0}, \cdots \phi_{s-1,0}\right)
$$

or

$$
\Psi\left(r_{0}, \phi_{1,0}, \cdots \phi_{s-1,0}\right)=\max _{r} \min _{\left(\phi_{1}, \cdots \phi_{s-1}\right)} \Psi\left(r, \phi_{1,0}, \cdots \phi_{s-1,0}\right) .
$$

Let that point be $P_{j_{1} j_{2} \cdots j_{s}}$ where the maximum or the max - min is attained. Then we must have

$$
\begin{equation*}
\left.D_{P_{j_{1} j_{2} \cdots j_{s} n}}\right|_{P=P_{j_{1} j_{2} \cdots j_{s}}} \Psi=0 \tag{7.2}
\end{equation*}
$$

Choose

$$
\eta_{j_{1} j_{2} \cdots j_{s} n}(x)=\left.\frac{\partial}{\partial P_{j_{1} j_{2} \cdots j_{s} n}}\left(\sum_{j_{1} j_{2} \cdots j_{s}=1}^{k} W_{j_{1} j_{2} \cdots j_{s}}+\varphi_{k}\right)\right|_{P=P_{j_{1} j_{2} \cdots j_{s}}}
$$

then (7.2) reduces to

$$
\begin{aligned}
& \left.\int_{\mathbb{R}^{N}} \nabla u_{k} \nabla \eta_{j_{1} j_{2} \cdots j_{s} n}(x)\right|_{P=P_{j_{1} j_{2} \cdots j_{s}}}+\left.\int_{\mathbb{R}^{N}} V(x) u_{k} \eta_{j_{1} j_{2} \cdots j_{s} n}(x)\right|_{P=P_{j_{1} j_{2} \cdots j_{s}}} \\
- & \left.\int_{\mathbb{R}^{N}} u_{k}^{p} \eta_{j_{1} j_{2} \cdots j_{s} n}(x)\right|_{P=P_{j_{1} j_{2} \cdots j_{s}}}=0
\end{aligned}
$$

As a result, we must have

$$
\begin{equation*}
\left.\sum_{n=1}^{N} \sum_{j_{1} j_{2} \cdots j_{s}=1}^{k} c_{j_{1} j_{2} \cdots j_{s} n} \int_{\mathbb{R}^{N}} Z_{j_{1} j_{2} \cdots j_{s} n} \eta_{k_{1} k_{2} \cdots k_{s} q}\right|_{P=P_{j_{1} j_{2} \cdots j_{s}}}=0 \tag{7.3}
\end{equation*}
$$

where $1 \leq k_{1}, k_{2} \cdots k_{s} \leq k$ and $1 \leq q \leq N$. Note that (7.3) is a homogeneous system of equations. Now we are going to show that (7.3) is a diagonally dominant system. This will allow us to invert the matrix system. Then we can prove that $c_{j_{1} j_{2} \cdots j_{s} n}=0$ for all $1 \leq j_{1}, j_{2}, \cdots, j_{s} \leq k$ and $1 \leq n \leq N$.
From the orthogonality assumption, we have

$$
\begin{equation*}
\int_{\mathbb{R}^{N}} \varphi_{k} Z_{j_{1} j_{2} \cdots j_{s} n} d x=0 \tag{7.4}
\end{equation*}
$$

But this implies that

$$
\begin{align*}
& \left.\int_{\mathbb{R}^{N}} \frac{\partial \varphi_{k}}{\partial P_{k_{1} k_{2} \cdots k_{s} q}} Z_{j_{1} j_{2} \cdots j_{s} n} d x\right|_{P=P_{j_{1} j_{2} \cdots j_{s}}} \\
= & -\left.\int_{\mathbb{R}^{N}} \varphi_{k} \frac{\partial Z_{j_{1} j_{2} \cdots j_{s} n}}{\partial P_{k_{1} k_{2} \cdots k_{s} q}} d x\right|_{P=P_{j_{1} j_{2} \cdots j_{s}}}=0 \tag{7.5}
\end{align*}
$$

whenever $\left(j_{1}, j_{2} \cdots, j_{s}\right) \neq\left(k_{1}, k_{2} \cdots k_{s}\right)$.
Furthermore, when $\left(j_{1}, j_{2} \cdots, j_{s}\right)=\left(k_{1}, k_{2} \cdots k_{s}\right)$
$\left.\int_{\mathbb{R}^{N}} \frac{\partial \varphi_{k}}{\partial P_{j_{1}, j_{2} \cdots, j_{s} q}} Z_{j_{1}, j_{2} \cdots, j_{s} n} d x\right|_{P=P_{j_{1} j_{2} \cdots j_{s}=1}}=-\left.\int_{\mathbb{R}^{N}} \varphi_{k} \frac{\partial Z_{j_{1} j_{2} \cdots j_{s} n}}{\partial P_{j_{1} j_{2} \cdots j_{s} q}} d x\right|_{P=P_{j_{1} j_{2} \cdots j_{s}}}$

$$
\begin{equation*}
\leq C\left\|\varphi_{k}\right\|_{\star}=\mathcal{O}\left(r^{-m}\right) \tag{7.6}
\end{equation*}
$$

Whenever $\left(j_{1}, j_{2} \cdots, j_{s}\right) \neq\left(k_{1}, k_{2} \cdots, k_{s}\right)$ we obtain

$$
\begin{equation*}
\left.\int_{\mathbb{R}^{N}} \frac{\partial W_{j_{1} j_{2} \cdots j_{s}}}{\partial P_{k_{1} k_{2} \cdots k_{s} q}} Z_{j_{1} j_{2} \cdots j_{s} n} d x\right|_{P=P_{j_{1} j_{2} \cdots j_{s}}}=\mathcal{O}\left(e^{-\eta\left|P_{j_{1} j_{2} \cdots j_{s}}-P_{k_{1} k_{2} \cdots k_{s}}\right|}\right) \tag{7.7}
\end{equation*}
$$

But for $\left(j_{1}, j_{2} \cdots, j_{s}\right)=\left(k_{1}, k_{2} \cdots, k_{s}\right)$, we have

$$
\begin{equation*}
\left.\int_{\mathbb{R}^{N}} \frac{\partial W_{j_{1} j_{2} \cdots j_{s}}}{\partial P_{j_{1} j_{2} \cdots j_{s} q}} Z_{j_{1} j_{2} \cdots j_{s} n} d x\right|_{P=P_{j_{1} j_{2} \cdots j_{s}=1}}=\delta_{n q} \int_{\mathbb{R}^{N}} w_{x_{q}}^{2} d x+\mathcal{O}\left(e^{-r}\right) \tag{7.8}
\end{equation*}
$$

where $\delta_{n q}$ is the Kronecker delta function. As a result, the off-diagonal term $\left(j_{1}, j_{2}, \cdots j_{s}, n\right)$ of (7.3) can be written as

$$
\begin{aligned}
\sum_{\left(j_{1}, j_{2} \cdots, j_{s}\right) \neq\left(k_{1}, k_{2} \cdots, k_{s}\right)} \int_{\mathbb{R}^{N}} Z_{j_{1} j_{2} \cdots j_{s} n} \eta_{k_{1} k_{2} \cdots k_{s} q} & +\sum_{\left(j_{1}, j_{2} \cdots, j_{s}\right), n \neq q} \int_{\mathbb{R}^{N}} Z_{j_{1} j_{2} \cdots j_{s} n} \eta_{j_{1} j_{2} \cdots j_{s} q} \\
& =\mathcal{O}\left(r^{-m}\right)=o(1)
\end{aligned}
$$

which is obtained by using (7.5), (7.6) and (7.7).
Acknowledgements: The first author was supported by CONACYT. The second author was supported by NSERC of Canada.

References

[1] A. Ambrosetti, M. Badiale, S. Cingolani; Semiclassical states of nonlinear Schrödinger equations. Arch. Rational Mech. Anal. 140 (1997), no. 3, 285-300.
[2] A. Ambrosetti, A. Malchiodi, W. Ni; Singularly perturbed elliptic equations with symmetry: existence of solutions concentrating on spheres. I. Comm. Math. Phys. 235 (2003), no. 3, 427-466.
[3] A. Ambrosetti, A. Malchiodi, S. Secchi; Multiplicity results for some nonlinear Schrödinger equations with potentials. Arch. Ration. Mech. Anal. 159 (2001), no. 3, 253271.
[4] A. Ambrosetti, A. Malchiodi, W. Ni; Singularly perturbed elliptic equations with symmetry: existence of solutions concentrating on spheres. II. Indiana Univ. Math. J. 53 (2004), no. 2, 297-329.
[5] W. Ao, J. Wer; Infinitely many positive solutions for nonlinear equations with non-symmetric potential, Cal. Var. PDE. to appear.
[6] J. Byeon, Z. WANG; Standing waves with a critical frequency for nonlinear Schrödinger equations. Arch. Ration. Mech. Anal. 165 (2002), no. 4, 295-316.
[7] J. Byeon, K. Tanaka; Semi-classical standing waves for nonlinear Schrödinger equations at structurally stable critical points of the potential. J. Eur. Math. Soc. 15 (2013), no. 5, 1859-1899.
[8] G. Cerami, D. Passaseo, S. Solimini; Infinitely many positive solutions to some scalar field equations with nonsymmetric coefficients. Comm. Pure Appl. Math. 66 (2013), no. 3, 372-413.
[9] M. del Pino, P. Felmer; Local mountain passes for semilinear elliptic problems in unbounded domains. Calc. Var. PDE 4 (1996), no. 2, 121-137.
[10] M. del Pino, P. Felmer; Semi-Classical States for Nonlinear Schrödinger Equations J. Funct. Anal., Vol. 149, no. 01 (1997), 245-265.
[11] M. del Pino, P. Felmer; Multi-peak bound states for nonlinear Schrödinger equations. Ann. Inst. H. Poincare Anal. Non Lineaire 15 (1998), no. 2, 127-149.
[12] M. del Pino, M. Kowalcyzk, J. Wei; Concentration on curves for nonlinear Schrödinger equations. Comm. Pure Appl. Math. 60 (2007), no. 1, 113-146.
[13] M. del Pino, J. Wei, W. Yao; Infinitely many positive solutions for nonlinear Schrodinger equations with non-symmetric potentials. Cal. Var. PDE. 53(2015), no.1-2, 473-523.
[14] G. Devillanova, S. Solimini; Infinitely many positive solutions to some nonsymmetric scalar field equations: the planar case. Cal. Var. PDE. to appear.
[15] M. del Pino, M. Musso, F. Pacard, A. Pistoia; Large energy entire solutions for the Yamabe equation. J. Diff. Equations. 251 (2011), no. 9, 2568-2597.
[16] M. del Pino, M. Musso, F. Pacard, A. Pistoia; Torus action on \mathbb{S}^{N} and sign changing solutions for conformally invariant equations. Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 12, (2013), 209-237.
[17] P. Esposito, G.Mancini, S.Santra, P. Srikanth; Asymptotic behavior of radial solutions for a semilinear elliptic problem on an annulus through Morse index. J. Diff. Equations. 239 (2007), no. 1, 1-15.
[18] A. Floer, A. Weinstein; Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential. J. Funct. Anal. 69 (1986), no. 3, 397-408.
[19] Man Kam Kwong; Uniqueness of positive solutions of $\Delta u-u+u^{p}=0$. Arch. Ration. Mech. Anal. 105 (1989), no. 5, 243-266.
[20] Yong-Geun Oh; On positive multi-bump bound states of nonlinear Schrödinger equations under multiple well potential. Comm. Math. Phys. 131 (1990), no. 2, 223-253.
[21] Yong-Geun OH ; Existence of semiclassical bound states of nonlinear Schrödinger equations with potentials of the class $(V)_{a}$. Comm. PDE 13 (1988), no. 12, 1499-1519.
[22] F. Pacella, P. Srikanth; A reduction method for semilinear elliptic equations and solutions concentrating on spheres. J. Funct. Anal. 266 (2014), no. 11, 6456-6472.
[23] J. Wei, S. Yan; Infinitely many solutions for the nonlinear Schrödinger equations in \mathbb{R}^{N}. Calc. Var. PDE. 37 (2010), no. 3-4, 423-439.
S. Santra, Department of Mathematics, Centro de Investigacióne en Mathematicás, Guanajuato, México

E-mail address: sanjiban@cimat.mx
J. Wei, Department of Mathematics, The University of British Columbia, Vancouver, BC V6T1Z2, Canada

E-mail address: jcwei@math.ubc.ca

[^0]: 2010 Mathematics Subject Classification. Primary 35B08, 35J20; Secondary 35J65.
 Key words and phrases. Blow-up analysis, polynomial nonlinearity, clifford torus.

