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Abstract

We prove that the solution to the SU(3) Toda system
∆u+ 2eu − ev = 0 in R2,

∆v − eu + 2ev = 0 in R2,∫
R2

eu <∞,
∫
R2

ev <∞,

is nondegenerate, i.e., the kernel of the linearized operator is exactly
eight-dimensional.

1 Introduction

Of concern is the nondegeneracy of solutions of the following two-dimensional
SU(3) Toda system

∆u+ 2eu − ev = 0 in R2,

∆v − eu + 2ev = 0 in R2,∫
R2

eu <∞,
∫
R2

ev <∞,
(1)
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where ∆ = ∂2

∂x21
+ ∂2

∂x22
is the usual Euclidean Laplacian in R2. System (1) is

a natural generalization of the Liouville equation

∆u+ eu = 0 in R2,

∫
R2

eu <∞. (2)

The Liouville equation (2) and the Toda system (1) arise in many physical
models and geometrical problems. In Chern-Simons theories, the Liouville
equation is related to Abelian models, while the Toda system is related to
Non-Abelian models. We refer to the books by Dunne [2], Yang [10] for
physical backgrounds. The SU(3) Chern-Simons model has been studied
in many papers. We refer to Jost-Wang [4], Jost-Lin-Wang [3], Li-Li [6],
Malchiodi-Ndiaye [8], Ohtsuka-Suzuki [9] and the references therein.

Using algebraic geometry results, Jost and Wang [5] classified all solu-
tions to (1). More precisely, when N = 2, all solutions to (1) can be written
as follows:

u(z) = log
4
(
a2

1a
2
2 + a2

1|2z + c|2 + a2
2|z2 + 2bz + bc− d|2

)(
a2

1 + a2
2|z + b|2 + |z2 + cz + d|2

)2 , (3)

v(z) = log
16a2

1a
2
2

(
a2

1 + a2
2|z + b|2 + |z2 + cz + d|2

)(
a2

1a
2
2 + a2

1|2z + c|2 + a2
2|z2 + 2bz + bc− d|2

)2 , (4)

where z = x1 + ix2 ∈ C, and a1 > 0, a2 > 0 are real numbers and b =
b1 + ib2 ∈ C, c = c1 + ic2 ∈ C, d = d1 + id2 ∈ C. Note that in the above
representation there are eight parameters (a1, a2, b1, b2, c1, c2, d1, d2) ∈ R8.

In the study of the blow-up behaviors for solutions of SU(3)−Toda sys-
tem, a crucial question is the nondegeneracy of solutions. More precisely,
we need to study the elements in the kernel of the associated linearized
operator, i.e. the following linear system{

∆ϕ1 + 2euϕ1 − evϕ2 = 0 in R2,

∆ϕ2 − euϕ1 + 2evϕ2 = 0 in R2.
(5)

Here (u, v) are solutions to (1) given by (3)-(4). Certainly there are at least
eight-dimensional kernels, since any differentiation of (u, v) with respect to
the eight parameters satisfies (5).

The following theorems shows that the converse is also true, which shows
that the solution (u, v) is nondegenerate.

Theorem 1.1. Let (ϕ1, ϕ2) satisfy (5). Assume that

|ϕ1| ≤ C(1 + |x|)τ , |ϕ2| ≤ C(1 + |x|)τ forx ∈ R2and some τ ∈ (0, 1).
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Then
(
ϕ1

ϕ2

)
belongs to the following linear space

span

{(
∂a1u

∂a1v

)
,

(
∂a2u

∂a2v

)
,

(
∂b1u

∂b1v

)
,

(
∂b2u

∂b2v

)
,

(
∂c1u

∂c1v

)
,

(
∂c2u

∂c2v

)
,

(
∂d1u

∂d1v

)
,

(
∂d2u

∂d2v

)}
.

In the case of nondegeneracy of solutions of Liouville equation (2), the
problem becomes to a single linear equation

∆ϕ+ euϕ = 0 in R2. (6)

Using conformal transformations, one can assume that u is radially sym-
metric. Then one can use the separation of variables to obtain the nonde-
generacy result. See Lemma 2.3 of Chen-Lin [1]. Here we are dealing with
a system. Firstly, we can not find a conformal transformation to transform
any solution (u, v) to radially symmetric solution. Second, even if (u, v) is
radially symmetric, the new system is still too complicated to study. To
overcome these difficulties, we employ the invariants of the system (1). Us-
ing the invariants of (1), we also obtain invariants for (5) and thus prove
Theorem 1.1.

For convenience, the language of complex variable is used in this paper.
We refer z̄ = x1−ix2 to the usual conjugate of z = x1+ix2 ∈ C. In addition,
Uz := ∂zU = 1

2( ∂U∂x1 − i
∂U
∂x2

), Uz̄ := ∂z̄U = 1
2( ∂U∂x1 + i ∂U∂x2 ). Notation C is a

generic constant which may be different from line to line.
We believe that our method may be used to deal with the general case

SU(N + 1). The major problem is how to obtain higher-order invariants as
in Section 2.

2 Invariants of (1)

In this section, we derive some invariants for (1). For more discussions,
we refer to Section 5.5 of the book by Leznov-Saveliev [7].

Let us first define the following transformation in whole C,

U(z, z̄) =
2u

3
+
v

3
− log 4, V (z, z̄) =

u

3
+

2v

3
− log 4. (7)

Note that ∆ = 4∂zz̄. Then the Toda system (1) can be rewritten as
Uzz̄ + e2U−V = 0, in C,
Vzz̄ + e2V−U = 0 in C,∫
R2 e

2U−V <∞,
∫
R2 e

2V−U <∞.
(8)

We prove now some preliminary lemmas.
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Lemma 2.1. We have, in whole C, that

Uzz + Vzz − U2
z − V 2

z + UzVz ≡ 0,

Uz̄z̄ + Vz̄z̄ − U2
z̄ − V 2

z̄ + Uz̄Vz̄ ≡ 0.

Proof. The proof is a straightforward calculation. We only prove the first
identity because the second one can be dealt with similarly.

Let
f(z, z̄) = Uzz + Vzz − U2

z − V 2
z + UzVz.

A straightforward computation and (8) show that in whole C,

Uzzz̄ = −e2U−V (2Uz − Vz), Vzzz̄ = −e2V−U (2Vz − Uz),
(−U2

z )z̄ = 2Uze
2U−V , (−V 2

z )z̄ = 2Vze
2V−U ,

(UzVz)z̄ = −e2U−V Vz − e2V−UUz.

Thus it holds that

fz̄ ≡ 0, and thus fzz̄ ≡ 0 in C.

Since f is smooth and goes to 0 at∞ by (3)–(7), we have that, by Liouville’s
theorem,

f ≡ 0 in C.

The first identity is then concluded.
Simply exchanging z̄ and z in the above proof leads to the second identity.

The proof is then complete.

Lemma 2.2. We have

Uzzz − 3UzUzz + U3
z ≡ 0, Vzzz − 3VzVzz + V 3

z ≡ 0, (9)

Uz̄z̄z̄ − 3Uz̄Uz̄z̄ + U3
z̄ ≡ 0, Vz̄z̄z̄ − 3Vz̄Vz̄z̄ + V 3

z̄ ≡ 0. (10)

Proof. Since the proofs of (9) and (10) are similar, we will only check the
former. For convenience, we denote that

f1(z, z̄) = Uzzz − 3UzUzz + U3
z , f2(z, z̄) = Vzzz − 3VzVzz + V 3

z .

We claim that
f1,z̄ ≡ 0, f2,z̄ ≡ 0.

In fact, a direct calculation gives that

Uzzzz̄ = −(e2U−V )zz = −[e2U−V (2Uz − Vz)]z
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= e2U−V (−4U2
z + 4UzVz − V 2

z − 2Uzz + Vzz),

−3(UzUzz)z̄ = −3Uzz̄Uzz − 3UzUzzz̄ = 3e2U−V Uzz + 3e2U−V Uz(2Uz − Vz)
= e2U−V (3Uzz + 6U2

z − 3UzVz),

and

(U3
z )z̄ = 3U2

zUzz̄ = e2U−V (−3U2
z ).

So we have
f1,z̄ = e2U−V (Uzz + Vzz − U2

z − V 2
z + UzVz).

Then Lemma 2.1 implies that f1,z̄ ≡ 0. Similarly we also have f2,z̄ ≡ 0. The
claim is proved.

Thus we know f1,zz̄ ≡ 0 and so does f2,zz̄. Since f1 → 0 and f2 → 0
as |z| → ∞, again by Liouville’s theorem, we get (9). This concludes the
proof.

3 Proof of the main theorem

In what follows, we discuss the kernel of the corresponding linearized
operator of (8), which is equivalent to (5). All functions and equations
discussed here are defined in the whole plane C. Let φ, ψ be functions
satisfy

φzz̄ + e2U−V (2φ− ψ) = 0, ψzz̄ + e2V−U (2ψ − φ) = 0. (11)

We prove the following proposition, which gives the proof of Theorem 1.1.

Proposition 3.1. Let (φ, ψ) satisfy (11). Assume that

|φ| ≤ C(1 + |z|)τ , |ψ| ≤ C(1 + |z|)τ for some τ ∈ (0, 1). (12)

Then
(
φ
ψ

)
belongs to the following linear space

span

{(
∂a1

U

∂a1V

)
,

(
∂a2

U

∂a2V

)
,

(
∂b1U

∂b1V

)
,

(
∂b2U

∂b2V

)
,

(
∂c1U

∂c1V

)
,

(
∂c2U

∂c2V

)
,

(
∂d1

U

∂d1V

)
,

(
∂d2

U

∂d2V

)}
.

Remark 3.2. Under the assumption (12), we know that all the derivatives
of φ and ψ approach to 0 as |z| goes to ∞. Indeed, if we define that, for
x ∈ R2,

φ̃(x) =
1

8π

∫
R2

log |x− y|e2U(y)−V (y)[2φ(y)− ψ(y)]dy,
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then |φ̃| ≤ C log(1 + |x|) and ∆(φ − φ̃) = 0. Therefore, φ = φ̃ + C. The
potential theory implies that φ’s derivatives vanish at infinity. So do the
derivatives of ψ.

Lemma 3.3. Under the assumption of Proposition 3.1, it holds that

φzz + ψzz − 2Uzφz − 2Vzψz + Uzψz + Vzφz ≡ 0,

φz̄z̄ + ψz̄z̄ − 2Uz̄φz̄ − 2Vz̄ψz̄ + Uz̄ψz̄ + Vz̄φz̄ ≡ 0.

Proof. The proof is similar as that of Lemma 2.1, using Remark 3.2.

Lemma 3.4. Under the assumption of Proposition 3.1, we have

φzzz − 3φzzUz − 3φzUzz + 3U2
z φz ≡ 0,

φz̄z̄z̄ − 3φz̄z̄Uz̄ − 3φz̄Uz̄z̄ + 3U2
z̄ φz̄ ≡ 0,

ψzzz − 3ψzzVz − 3ψzVzz + 3V 2
z ψz ≡ 0,

ψz̄z̄z̄ − 3ψz̄z̄Vz̄ − 3ψz̄Vz̄z̄ + 3V 2
z̄ ψz̄ ≡ 0.

Proof. We only check the first one since the others are similar. By direct
computation, we get, using (8),

φzzzz̄ = −[e2U−V (2φ− ψ)]zz

= −[e2U−V (2Uz − Vz)(2φ− ψ)]z − [e2U−V (2φz − ψz)]z
= −e2U−V (2Uz − Vz)2(2φ− ψ)− e2U−V (2Uzz − Vzz)(2φ− ψ)

− e2U−V 2(2Uz − Vz)(2φz − ψz)− e2U−V (2φzz − ψzz)
= e2U−V (−8U2

z φ+ 4U2
zψ + 8UzVzφ− 4UzVzψ − 2V 2

z φ+ V 2
z ψ − 4Uzzφ

+ 2Uzzψ + 2Vzzφ− Vzzψ − 8Uzφz + 4Uzψz + 4Vzφz − 2Vzψz

− 2φzz + ψzz),

−3(φzzUz)z̄ = 3[e2U−V (2φ− ψ)]zUz + 3e2U−V φzz

= e2U−V (12U2
z φ− 6U2

zψ − 6UzVzφ+ 3UzVzψ + 6Uzφz

− 3Uzψz + 3φzz),

−3(φzUzz)z̄ = e2U−V (6Uzzφ− 3Uzzψ + 6Uzφz − 3Vzφz),

3(U2
z φz)z̄ = e2U−V (−6Uzφz − 6U2

z φ+ 3U2
zψ).
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So it holds that

(φzzz − 3φzzUz − 3φzUzz + 3U2
z φz)z̄

= e2U−V [(Uzz + Vzz − U2
z − V 2

z + UzVz)(2φ− ψ)]

+ e2U−V (φzz + ψzz − 2Uzφz − 2Vzψz + Uzψz + Vzφz).

Then Lemma 2.1, Lemma 3.3 and Remark 3.2 yield that

φzzz − 3φzzUz − 3φzUzz + 3U2
z φz ≡ 0.

The proof is completed.

Proof of Proposition 3.1. Let φ1 = e−Uφ. Since we have easily that

φzzz − 3φzzUz − 3φzUzz + 3U2
z φz = eU

[
φ1,zzz + (Uzzz − 3UzUzz + U3

z )φ1

]
,

using Lemma 2.2 and Lemma 3.4, we have φ1,zzz ≡ 0. Similarly, it also
holds that φ1,z̄z̄z̄ ≡ 0. This implies that

φ1 =
2∑

k,`=0

αk`z
kz̄` (with all αk` ∈ C). (13)

Since φ1 is real, it must hold that

α00, α11, α22 ∈ R and α01 = ᾱ10, α02 = ᾱ20, α12 = ᾱ21.

On the other hand, denote that ψ1 = e−V ψ. Similarly we can also obtain
that

ψ1 =

2∑
k,`=0

βk`z
kz̄` (with all βk` ∈ C), (14)

where βk` satisfy

β00, β11, β22 ∈ R and β01 = β̄10, β02 = β̄20, β12 = β̄21.

Rewriting (11) in the term of φ1 and ψ1, we have

φ1,zz̄ + Uz̄φ1,z + Uzφ1,z̄ + (e2U−V + UzUz̄)φ1 − eUψ1 = 0, (15)

ψ1,zz̄ + Vz̄ψ1,z + Vzψ1,z̄ + (e2V−U + VzVz̄)ψ1 − eV φ1 = 0. (16)

Substituting (13), (14) into (15) and using Mathematica, we find that

β00 =
α11a

2
1 + α00a

2
2 − α10a

2
2b− α01a

2
2b̄+ α11a

2
2|b|2 + α00|c|2 − α10c̄d− α01cd̄+ α11|d|2

22/3 3
√
a21a

2
2

,
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β11 =
2 3
√

2(α22a
2
1 + α00 + a22α22|b|2 − α20d− α02d̄+ α22|d|2)

3
√
a21a

2
2

,

β22 =
α22a

2
2 + α11 − α21c− α12c̄+ α22|c|2

22/3 3
√
a21a

2
2

,

β01 =
3
√

2(α12a
2
1 − α02a

2
2b̄+ α12a

2
2|b|2 + α00c− α10d− α02cd̄+ α12|d|2)

3
√
a21a

2
2

,

β02 = −α02a
2
2 − α12ba

2
2 − α01c+ α02|c|2 + α11d− α12c̄d

22/3 3
√
a21a

2
2

,

β12 =
3
√

2(α22ba
2
2 + α01 − α02c̄− α21d+ α22c̄d)

3
√
a21a

2
2

,

β10 = β̄01, β20 = β̄02, β21 = β̄12.

Finally we insert all the above quantities into (16) again and thus obtain
another relation

α22 =
−α11a

2
1 + α21ca

2
1 + α12c̄a

2
1 − α00a

2
2 + α10a

2
2b+ α01a

2
2b̄− α11a

2
2|b|2

a2
1a

2
2 + |c|2a2

1 + a2
2|b|2|c|2 − a2

2b̄c̄d− a2
2bcd̄+ a2

2|d|2

+
−α20a

2
2bc− α02a

2
2b̄c̄+ α21a

2
2|b|2c+ α12a

2
2|b|2c̄+ α20a

2
2d+ α02a

2
2d̄

a2
1a

2
2 + |c|2a2

1 + a2
2|b|2|c|2 − a2

2b̄c̄d− a2
2bcd̄+ a2

2|d|2

+
−α21a

2
2b̄d− α12a

2
2bd̄

a2
1a

2
2 + |c|2a2

1 + a2
2|b|2|c|2 − a2

2b̄c̄d− a2
2bcd̄+ a2

2|d|2
,

from which we know that φ1 and ψ1 actually depend on 8 real parameters
rather than formally 9. Therefore, the dimension of the space {(φ, ψ)} is
exactly 8. Since it is known that(
∂a1U

∂a1V

)
,

(
∂a2U

∂a2V

)
,

(
∂b1U

∂b1V

)
,

(
∂b2U

∂b2V

)
,

(
∂c1U

∂c1V

)
,

(
∂c2U

∂c2V

)
,

(
∂d1U

∂d1V

)
,

(
∂d2U

∂d2V

)
are linearly independent and satisfy (11), we then complete the proof of
Proposition 3.1.

Finally let
ϕ1 = 2φ− ψ, ϕ2 = 2ψ − φ,

where φ, ψ satisfy (11). It is easy to check that ϕ1, ϕ2 satisfy (5). Thus
Theorem 1.1 is equivalent to Proposition 3.1. Theorem 1.1 is concluded.
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