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Abstract. We consider the following elliptic system with fractional Laplacian

−(−∆)su = uv2, −(−∆)sv = vu2, u, v > 0 on Rn,

where s ∈ (0, 1) and (−∆)s is the s-Lapalcian. We first prove that all positive solutions
must have polynomial bound. Then we use the Almgren monotonicity formula to perform a
blown-down analysis. Finally we use the method of moving planes to prove the uniqueness
of the one dimensional profile, up to translation and scaling.

1. Introduction and main results

In this paper we prove the uniqueness of positive solutions (u, v), up to scaling and trans-
lations, of the following nonlocal elliptic system

−(−∆)su = uv2,−(−∆)sv = vu2, u, v > 0 in R1 (1.1)

where (−∆)s is the s-Laplacian with 0 < s < 1.
When s = 1, problem (1.1) arises as limiting equation in the study of phase separations

in Bose-Einstein system and also in the Lotka-Volterra competition systems. More precisely,
we consider the classical two-component Lotka-Volterra competition systems





−∆u + β1u
3 + βv2u = λ1u in Ω,

−∆v + β2v
3 + βu2v = λ2v in Ω,

u > 0, v > 0 in Ω,
u = 0, v = 0 on ∂Ω ,∫

Ω
u2 = N1,

∫
Ω

v2 = N2 ,

(1.2)

where β1, β2, β > 0 and Ω is a bounded smooth domain in Rn. Solutions of (1.2) can be
regarded as critical points of the energy functional

Eβ(u, v) =

∫

Ω

(|∇u|2 + |∇v|2) +
β1

2
u4 +

β2

2
v4 +

β

2
u2v2 , (1.3)

on the space (u, v) ∈ H1
0 (Ω)×H1

0 (Ω) with constraints
∫

Ω

u2dx = N1,

∫

Ω

v2dx = N2. (1.4)
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Of particular interest is the asymptotic behavior of a family of bounded energy solutions
(uβ, vβ) in the case of strong competition, i.e., when β → +∞, which produces spatial segrega-
tion in the limiting profiles. After suitable scaling and blowing up process (see Berestycki-Lin-
Wei-Zhao [2] and Noris-Tavares-Terracini-Verzini [16]), we arrive at the following nonlinear
elliptic system

∆u = uv2 , ∆v = vu2 , u, v > 0 in Rn . (1.5)

Recently there have been intense studies on the elliptic system (1.5). In [2, 3] the rela-
tionship between system (1.5) and the celebrated Allen-Cahn equation is emphasized. A De
Giorgi’s-type and a Gibbons’-type conjecture for the solutions of (1.5) are formulated. Now
we recall the following results for the system (1.5).

(1) When n = 1, it has been proved that the one-dimensional profile must have linear growth,
and it is reflectionally symmetric, i.e., there exists x0 such that u(x− x0) = v(x0− x), and is
unique, up to translation and scaling. Furthermore this solution is nondegenerate and stable.
See Berestycki-Terracini-Wang-Wei [3] and Berestycki-Lin-Wei-Zhao [2].
(2) When n ≥ 2, all sublinear growth solutions are trivial (Noris-Tavares-Terracini-Verzini
[16]). Furthermore, Almgren’s and Alt-Caffarelli-Friedman monotonicity formulas are derived
(Noris-Tavares-Terracini-Verzini [16]).
(3) When n = 2, the monotonic solution, i.e. (u, v) satisfies

∂u

∂xn

> 0,
∂v

∂xn

< 0, (1.6)

must be one-dimensional (Berestycki-Lin-Wei-Zhao [2]), provided that (u, v) has the following
linear growth

u(x) + v(x) ≤ C(1 + |x|). (1.7)

Same conclusion holds if we consider stable solutions (Berestycki-Terracini-Wang-Wei [3]). It
has also been proved by Farina [11] that the conditions (1.6)-(1.9) can be reduced to

∂u

∂xn

> 0 (1.8)

and

u(x) + v(x) ≤ C(1 + |x|)d, for some positive integer d. (1.9)

The Gibbon’s conjecture has also been solved under the polynomial growth condition (1.9)
(Farina-Soave [12]).

(4) In R2, for each positive integer d there are solutions to (1.5) with polynomial growth of
degree d (Berestycki-Terracini-Wang-Wei [3]). Moreover there are solutions in R2 which are
periodic in one direction and have exponential growth in another direction (Soave-Zilio [19]).

(5) In two recent papers of the first author [25, 26], it is proved that any solution of (1.5)
with linear growth is one dimensional, for any n ≥ 2.

In this paper, we will generalize part of (1) and (2) to the fractional case.
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In [22]-[23], Terracini, Verzini and Zillo initiated the study of competition-diffusion nonlin-
ear systems involving fractional Lapalcian of the form

{
(−∆)sui = fi,β(ui)− βui

∑
j 6=i aiju

2
j , i = 1, ..., k

ui ∈ Hs(Rn)
(1.10)

where n ≥ 1, aij = aji, β is positive and large, and the fractional Lapalcian (−∆)s is defined
as

(−∆)su(x) = cn,spv

∫

Rn

u(x)− u(y)

|x− y|n+2s
dy.

Here cn,s is a constant depending only on n and s.
It is well known that fractional diffusion arises when the Gaussian statistics of the classical

Brownian motion is replaced by a different one, allowing for the Lévy jumps (or flights).
The operator (−∆)s can be seen as the infinitesimal generators of Lévy stable diffusion
process (Applebaum [1]). This operator arises in several areas such as physics, biology and
finance. In particular in population dynamics while the standard Laplacian seems well suited
to describe the diffusion of predators in presence of an abundant prey, when the prey is sparse
observations suggest that fractional Laplacians give a more accurate model (Humphries [9]).
Mathematically (1.10) is a more challenging problem because the operator is of the nonlocal
nature.

In [22, 23, 24], Terracini et. al. derived the corresponding Almgren’s and Alt-Caffarelli-
Friedman’s monotonicity formula and proved that the bounded energy solutions have uniform
Hölder regularity with small Hölder exponent α = α(N, s). As in the standard diffusion case,
a key result to prove is to show that there are no entire solutions to the blown-up limit system

−(−∆)su = uv2, −(−∆)sv = vu2, u, v > 0 in Rn, (1.11)

with small Hölder continuous exponent.

In this paper, we study some basic qualitative behavior of solutions to (1.11), including
(cp. the results (1) and (4) in the classical Laplacian case)

(a) are all one-dimensional solutions unique, up to translation and scaling?
(b) do all solutions have polynomial bounds?

We shall answer both questions affirmatively. To state our results, we consider the Caffarelli-
Silvestre extension of (1.11). Letting a := 1− 2s ∈ (−1, 1), as in [7], we introduce the elliptic
operator

Lav := div (ya∇v) ,

for functions defined on the upper half plane Rn+1
+ . For simplicity of notations, define

∂a
yv := lim

y→0+
ya ∂v

∂y
.

The problem (1.11) is equivalent to the following extension problem
{

Lau = Lav = 0, in Rn+1
+ ,

∂a
yu = uv2, ∂a

yv = vu2 on ∂Rn+1
+ .

(1.12)
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Indeed, solutions of this extension problem, when restricted to ∂Rn+1
+ , can be seen as solutions

of (1.11) in the viscosity sense.
Note that the problem (1.12) is invariant under the scaling (u(z), v(z)) 7→ (λsu(λz), λsv(λz)

and translations in Rn directions. It is also invariant under the involution (u, v) 7→ (v, u).
Our first main result is

Theorem 1.1. When n = 1 and s ∈ (1/4, 1), the positive solution (u, v) of (1.12) is unique
up to a scaling and translation in the x-direction. In particular, there exists a constant T
such that

u(x, y) = v(2T − x, y), in R2
+.

It turns out that many trivial facts in the classical Laplacian case (cp. [2]) become serious
problems in the fractional setting. Hence the proof is quite involved and basically splits into
three steps.

(1) With the help of Almgren monotonicity formula, we perform a blowing down analysis
for solutions of (1.11). Then we classify the blowing down limits. This gives the first
order expansion of (u, v) at infinity.

(2) By establishing some decay estimates, we then use the Fourier mode analysis to get
the next order expansion of (u, v) at infinity. It is in this step we need the technical
assumption s > 1/4.

(3) With the above refined asymptotics of (u, v) at infinity, we can use a refinement of
the moving plane method used in [3] to finish the proof of Theorem 1.1.

In the first step, we also need the following result.

Theorem 1.2. When n ≥ 1, s ∈ (0, 1), the positive solution (u, v) of (1.12) must have at
most polynomial growth: there exists d > 0 such that

u(x, y) + v(x, y) ≤ C(1 + |x|+ |y|)d. (1.13)

Compared to the classical Laplacian case (e.g. solutions with exponential growth as con-
structed in Soave-Zilio [19]), this is quite surprising.

Let us put our results in broader context. The uniqueness for fractional nonlinear ellip-
tic equations is a very challenging problem. The only results known in this direction are
due to Frank-Lenzmann [13] and Frank-Lenzmann-Silvestre [14], in which they proved the
nondegeneracy and uniqueness of radial ground states for the following fractional nonlinear
Schrödinger equation

−(−∆)sQ−Q + Qp = 0, Q > 0, Q ∈ Hs(Rn). (1.14)

Our proof of Theorem 1.1 is completely different from theirs: we make use of the method
of moving planes (as in [3]) to prove uniqueness. To apply the method of moving plane, we
have to know precise asymptotics of the solutions up to high orders. This is achieved by
blown-down analysis and Fourier mode expansions. (The condition that s > 1

4
seems to be

technical only.) In dealing with nonlocal equations some “trivial” facts can become quite
nontrivial. For example, one of “trivial” question is whether or not one dimensional profile
has linear growth. (When s = 1 this is a trivial consequence of Hamiltonian identity. See
[2].) To prove this for the fractional Laplacian case we employ Yau’s gradient estimates. A
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surprising result is that this also gives the polynomial bound for all solutions (Theorem 1.2).
This is in sharp contrast with s = 1 case since there are exponential growth solutions ([19]).

The rest of the paper is organized as follows: In Section 2 we prove Yau’s estimates for
positive s−subharmonic functions from which we prove Theorem 1.2. Sections 3 and 4 contain
the Almgren’s monotonicity formula and the blown-down process to s−harmonic functions.
We prove Theorem 1.1 in Sections 5-8: we first classify the blown-down limit when n = 1
(Section 5). Then we prove the growth bound and decay estimates (Section 6). In order
to apply the method of moving planes we need to obtain refined asymptotics (Section 7).
Finally we apply the method of moving planes to prove the uniqueness result. We list some
basic facts about La−subharmonic functions in the appendix.

Throughout this paper, we take the following notations. z = (x, y) denotes a point in Rn+1
+

where x ∈ Rn and y ∈ R+. In polar coordinates, y = r sin θ where θ ∈ [0, π]. When n = 1,
we also use the notation z = x + iy = (r cos θ, r sin θ). The half ball B+

r (z0) = Br(z0)∩Rn+1
+ ,

the positive part of its boundary ∂+B+
r (z0) = ∂Br(z0) ∩ Rn+1

+ and the flat part ∂0B+
r (z0) =

∂B+
r (z0) \ ∂+B+

r . Moreover, if the center of ball is the origin 0, it will be omitted. We use
C, c and M to denote various constants, which may be different from lines to lines, and ϕ
and ψ to denote functions, which could be different in different sections.

2. Gradient estimate for positive La-harmonic functions and Proof of
Theorem 1.2

In this section we prove the following Yau’s type gradient estimate for positive La-harmonic
functions and use it in combination with an observation due to Markovic [15], to give a
polynomial bound for solutions of (1.12). Regarding Yau’s estimates for harmonic functions
on manifolds, we refer to the book by Schoen-Yau [17].

Theorem 2.1. Let u be a positive La-harmonic function in Rn+1
+ . There exists a constant

C(n) such that
|∇u(x, y)|

u(x, y)
≤ C(n)

y
, in Rn+1

+ .

Proof. Let v := log u, which satisfies

−∆v = |∇v|2 + ay−1 ∂v

∂y
. (2.1)

By a direct calculation we have

1

2
∆|∇v|2 = |∇2v|2 −∇|∇v|2 · ∇v − a

2y

∂

∂y
|∇v|2 +

a

y2

∣∣∣∂v

∂y

∣∣∣
2

. (2.2)

For any z0 = (x0, y0) ∈ Rn+1
+ , let R = y0/3. Take a nonnegative function η ∈ C∞

0 (B2R(z0))
and let w := |∇v|2η. Since w vanishes on ∂B2R(z0), it attains its maximum at an interior
point, say z1.

At z1,
0 = ∇w = η∇|∇v|2 + |∇v|2∇η, (2.3)

0 ≥ ∆w = η∆|∇v|2 + 2∇|∇v|2 · ∇η + |∇v|2∆η. (2.4)



6 K. WANG AND J. WEI

Substituting (2.2) and (2.3) into (2.4) leads to

0 ≥ 2|∇2v|2η + 2|∇v|2∇v · ∇η + ay−1|∇v|2∂η

∂y

+2ay−2

(
∂v

∂y

)2

η − 2|∇v|2η−1|∇η|2 + |∇v|2∆η.

By the Cauchy inequality and (2.1),

|∇2v|2 ≥ 1

n + 1
(∆v)2

=
1

n + 1

(
|∇v|4 + 2ay−1|∇v|2 ∂v

∂y
+

a2

y2

∣∣∣∂v

∂y

∣∣∣
2
)

.

Combining these two inequalities gives

0 ≥ 2

n + 1
|∇v|4η +

4a

(n + 1)y
|∇v|2 ∂v

∂y
η +

2a2

(n + 1)y2

∣∣∣∂v

∂y

∣∣∣
2

η

+2|∇v|2∇v · ∇η + ay−1|∇v|2∂η

∂y
+ 2ay−2

(
∂v

∂y

)2

η

−2|∇v|2η−1|∇η|2 + |∇v|2∆η.

Now take an ϕ ∈ C∞
0 (B2R(z0)), satisfying 0 ≤ ϕ ≤ 1, ϕ ≡ 1 in BR(z0) and |∇ϕ|2 + |∆ϕ| ≤

100R−2. Choose an m ≥ 3 and substitute η = ϕ2m into the above inequality, which results in

|∇v|4ϕ2m ≤ C(n)y−1|∇v|3ϕ2m + C(n)y−2|∇v|2ϕ2m

+C(n,m)ϕ2m−1|∇v|3|∇ϕ|+ C(n,m)ϕ2m−1y−1|∇v|2|∇ϕ|
+C(n,m)ϕ2m−2|∇v|2|∇ϕ|2 + C(n,m)ϕ2m−1|∆ϕ||∇v|2.

Applying the Young inequality to the right hand side, we obtain

|∇v|4ϕ2m ≤ 1

2
|∇v|4ϕ2m

+C(n,m)
(
y−4ϕ2m + ϕ2m−4|∇ϕ|4 + ϕ2m−2y−2|∇ϕ|2 + ϕ2m−2|∆ϕ|2) .

By our assumption on ϕ, and because y−1 ≤ 4R−1 in B2R(z0), this gives

|∇v(z0)|4 ≤ |∇v(z1)|4ϕ(z1)
2m ≤ C(n,m)R−4,

which clearly implies the bound on u−1|∇u|. ¤

A direct consequence of this gradient estimate is a Harnack inequality for positive La-
harmonic functions.

Corollary 2.2. Let u be a positive La-harmonic function in Rn+1
+ . There exists a constant

C(n) such that, for any (x, y) ∈ Rn+1
+ ,

sup
By/2(x,y)

u ≤ C(n) inf
By/2(x,y)

u.



NONLOCAL ELLIPTIC SYSTEM 7

Iterating this Harnack inequality using chains of balls gives an exponential growth bound
on u. However, we can get a more precise estimate using the hyperbolic geometry (as in [15]).

Now we come to the proof of Theorem 1.2. In fact, we have the following polynomial bound
for positive s-subharmonic function on Rn.

Theorem 2.3. Let u ∈ C(Rn+1) be a solution of the problem




Lau = 0, in Rn+1
+ ,

u ≥ 0, on Rn+1
+ ,

∂a
yu ≥ 0, on ∂Rn+1

+ .

There exists a constant C depending only on the dimension n and a such that,

u(x, y) ≤ Cu(0, 1)
(
1 + |x|2 + y2

)C
on Rn+1.

Proof. Step 1. Estimates in {y ≥ 1/2}
As in [15], for any two different points zi = (xi, yi) ∈ Rn+1

+ and a C1 curve γ(t) =
(γ1(t), · · · , γn+1(t)) ⊂ Rn+1

+ , t ∈ [0, 1] connecting them,

log
u(z2)

u(z1)
=

∫ 1

0

∇ log u(γ(t)) · dγ(t)

dt
dt

≤
∫ 1

0

∣∣∣∇ log u(γ(t))
∣∣∣
∣∣∣dγ(t)

dt

∣∣∣dt

≤ C

∫ 1

0

∣∣∣dγ(t)
dt

∣∣∣
γn+1(t)

dt (by Theorem 2.1)

≤ CLengthH(γ).

Here LengthH(γ) is the length of γ with respect to the hyperbolic metric on Rn+1
+ ,

ds2 :=
dx2 + dy2

y2
.

In particular, we can take γ to be the geodesic between z1 and z2. This gives

log
u(z2)

u(z1)
≤ CdistH(z1, z2).

However, we know the distance function distH has the form

distH(z1, z2) = arccosh

(
1 +

|x1 − x2|2 + (y1 − y2)
2

2y1y2

)
.

This then implies that

u(z2)

u(z1)
≤

(
1 +

|x1 − x2|2 + (y1 − y2)
2

2y1y2

)C

. (2.5)
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In particular, for any (x, y) ∈ Rn+1
+ ,

u(x, y) ≤ u(0, 1)

(
1 +

|x|2 + (y − 1)2

2y

)C

.

Hence, in {y ≥ 1/2},
u(x, y) ≤ C

(|x|2 + y2 + 1
)C

. (2.6)

Step 2. Estimates in {0 ≤ y ≤ 1/2}.
The estimates in Step 1 does not give any information near the boundary ∂Rn+1

+ . To get a
growth bound in the part where y is small, we have to use the boundary condition on ∂Rn+1

+ .
This is possible by using the Poisson representation formula.

For every t ∈ (0, 1/2), let P t(x, y) be the Poisson kernel of the elliptic operator ∆ + a(y +
t)−1∂y on Rn+1

+ . Note that when t = 0, this is the usual Poisson kernel for the operator La.
By [7, Section 2.4], modulo a constant,

P 0(x, y) =
y2s

(|x|2 + y2)
n+2s

2

.

From the uniqueness of the Poisson kernel we deduce the following product rule: for y > t,

P 0(x, y + t) =

∫

Rn

P t(x− ξ, y)P 0(ξ, t)dξ. (2.7)

Denote the Fourier transform of P t(x, y) in x by P̂ t(ζ, y). P̂ 0(ζ, y) has the form (modulo
a constant) Φ(y|ζ|), where

Φ(|ζ|) = dn,s

∫

Rn

(
1 + |x|2)−

n+2s
2 e−

√−1x·ζdx.

Here dn,s is a normalization constant.

Since P̂ 0 satisfies

−|ζ|2P̂ 0(ζ, y) +
∂2

∂y2
P̂ 0(ζ, y) +

a

y

∂

∂y
P̂ 0(ζ, y) = 0,

Φ satisfies

Φ′′(t) + at−1Φ′(t)− Φ(t) = 0, in (0, +∞).

By definition and the Lebesgue-Riemann lemma, Φ(0) = 1 and limt→+∞ Φ(t) = 0, where the
decay rate is exponential (by the equation for Φ). Then by a maximum principle argument,
we know Φ(t) > 0 and Φ(t) is decreasing in t.

By (2.7),

P̂ t(ζ, y) =
P̂ 0(ζ, y + t)

P̂ 0(ζ, t)
=

Φ0((y + t)|ζ|)
Φ(t|ζ|) .

Hence there exists a constant C depending only on n and a so that for all t ∈ [0, 1/2],

P t(0, 1− t) =

∫

Rn

Φ(|ζ|)
Φ(t|ζ|)dζ ≥

∫

Rn

Φ(|ζ|)dζ = P 0(0, 1) ≥ 1

C
. (2.8)
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Since P t is a positive solution of

∆P t +
a

y + t

∂P t

∂y
= 0, in Rn+1

+ ,

the gradient estimate Theorem 2.1 holds for P t with the same constant C(n). Then similar
to (2.5), we get

P t(x, 1− t) ≥ P t(0, 1− t)

(
1 +

|x|2
2(1− t)2

)−C

. (2.9)

By the Poisson representation,

u(0, 1) ≥
∫

Rn

P t(−x, 1− t)u(x, t)dx. (2.10)

In fact, for any R > 0, consider the boundary value u(x, t)χ{|x|<R}, and let wr be the solution
of 




Law
r = 0, in B+

r ,

wr = u(x, t)χ{|x|<R}, on ∂0B+
r ,

wr = 0, on ∂+B+
r .

Such wr exists and is unique. By the maximum principle, as r → +∞, they are uniformly
bounded and increase to ∫

{|x|<R}
P t(x− ζ, y)u(ζ, t)dζ.

Here we have used the fact that there is a unique bounded La-harmonic function in Rn+1
+

with boundary value u(x, t)χ{|x|<R}.
By the comparison principle, for each r > 0, wr ≤ u. Thus we have

u(0, 1) ≥
∫

{|x|<R}
P t(−x, 1− t)u(x, t)dx.

Then let R → +∞ we get (2.10).
Substituting (2.8) and (2.9) into (2.10), we see for any t ∈ (0, 1/2),

∫

Rn

u(x, t)

(|x|2 + 1)C
dx ≤ C(n, s)u(0, 1).

Integrating t in [0, 1/2] gives
∫ 1/2

0

∫

Rn

u(x, y)

(|x|2 + 1)C
dxdy ≤ Cu(0, 1). (2.11)

Next we divide the proof into two cases.
Case 1. First assume s ≤ 1/2, hence a ≥ 0 and ya is bounded in {0 ≤ y ≤ 1/2}. For any

x0 ∈ Rn with |x0| > 2, by the co-area formula, we find an r ∈ (1, 2) so that
∫

∂+B+
r (x0,0)

yau ≤
∫

B+
2 (x0,0)\B+

1 (x0,0)

yau(x, y)dxdy
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≤ C
(
1 + |x0|2

)C
∫

(B+
2 (x0,0)\B+

1 (x0,0))∩{0<y<1/2}

u(x, y)

(1 + |x|2)C
dxdy (2.12)

+

∫

(B+
2 (x0,0)\B+

1 (x0,0))∩{y>1/2}
u(x, y)dxdy

≤ Cu(0, 1)
(
1 + |x0|2

)C
,

thanks to (2.6) and (2.11).
Case 2. If s > 1/2, a < 0 and ya is unbounded in {0 ≤ y ≤ 1/2}. Hence the above

argument does not work. Instead, we take two positive constants p, q so that

1 < p <
1

2s− 1
,

1

p
+

1

q
= 1.

By noting that 



Lau
q ≥ 0, in Rn+1

+ ,

uq ≥ 0, on Rn+1
+ ,

∂a
yuq ≥ 0, on ∂Rn+1

+ ,

we can still apply the argument leading to (2.11) to deduce that
∫ 1/2

0

∫

Rn

u(x, y)q

(|x|2 + 1)C
dxdy ≤ Cu(0, 1)q. (2.13)

Then in (2.12), we use the Hölder inequality to get
∫

∂+B+
r (x0,0)

yau

≤
∫

B+
2 (x0,0)\B+

1 (x0,0)

yau(x, y)dxdy

≤
(∫

(B+
2 (x0,0)\B+

1 (x0,0))∩{0<y<1/2}
ypadxdy

) 1
p
(∫

(B+
2 (x0,0)\B+

1 (x0,0))∩{0<y<1/2}
u(x, y)qdxdy

) 1
q

+

∫

(B+
2 (x0,0)\B+

1 (x0,0))∩{y>1/2}
u(x, y)dxdy

≤ C
(
1 + |x0|2

)C
∫

(B+
2 (x0,0)\B+

1 (x0,0))∩{0<y<1/2}

u(x, y)q

(1 + |x|2)C
dxdy (2.14)

+

∫

(B+
2 (x0,0)\B+

1 (x0,0))∩{y>1/2}
u(x, y)dxdy

≤ Cu(0, 1)
(
1 + |x0|2

)C
,

After extending u evenly to Br(x0, 0), u becomes a positive La-subharmonic function,
thanks to its boundary condition on ∂0Rn+1

+ . With the help of (2.12) or (2.14), Lemma A.2



NONLOCAL ELLIPTIC SYSTEM 11

implies that

sup
B1/2(x0,0)

u ≤ C(n, a)

∫

∂Br(x0,0)

yau ≤ Cu(0, 1)
(
1 + |x0|2

)C
.

Together with (2.6), we get a polynomial bound for u as claimed. ¤

3. Almgren monotonicity formula

In this section we present the Almgren monotonicity formula for solutions of (1.12) and
some of its consequences. In the next section these will be used in the blow down analysis.
Throughout this section, (u, v) denotes a solution of (1.12).

We first state a Pohozaev identity for the application below.

Lemma 3.1. For any x ∈ Rn and r > 0,

(n− 1 + a)

∫

B+
r (x,0)

ya
(|∇u|2 + |∇v|2)

= r

∫

∂+B+
r (x,0)

ya
(|∇u|2 + |∇v|2)− 2ya

(∣∣∣∂u

∂r

∣∣∣
2

+
∣∣∣∂v

∂r

∣∣∣
2
)

+r

∫

Sn
r (x,0)

u2v2 − n

∫

∂0B+
r (x,0)

u2v2.

Here Sn
r (x, 0) is the sphere with radius r and center x in Rn.

Proof. This can be proved by multiplying the equation (1.12) by z · ∇u (respectively, z · ∇v)
and integrating by parts on B+

r , cf. [7, Lemma 6.2] and the Pohozaev identity in [22]. ¤

Let

E(r) :=
1

rn−1+a

∫

B+
r

ya
(|∇u|2 + |∇v|2) +

1

rn−1+a

∫

∂0B+
r

u2v2,

H(r) :=
1

rn+a

∫

∂+B+
r

ya
(
u2 + v2

)
,

and N(r) := E(r)/H(r).
We have the following (cf. [22] for the 1/2-Lapalcian case and [23, Proposition 6] for general

s-Laplacian case).

Proposition 3.2 (Almgren monotonicity formula). N(r) is non-decreasing in r > 0.

Proof. Direct calculation using the equation (1.12) shows that

H ′(r) =
2

rn+a

∫

∂+B+
r

ya

(
u
∂u

∂r
+ v

∂v

∂r

)

=
2

rn+1

∫

B+
r

ya
(|∇u|2 + |∇v|2) +

4

rn+a

∫

∂0B+
r

u2v2 (3.1)

=
2E(r)

r
+

2

rn+a

∫

∂0B+
r

u2v2.
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Using Lemma 3.1, we have

E ′(r) =
1

rn−1+a

∫

∂+B+
r

ya

(∣∣∣∂u

∂r

∣∣∣
2

+
∣∣∣∂v

∂r

∣∣∣
2
)

+
1− a

rn+a

∫

∂0B+
r

u2v2. (3.2)

Combining these two, we obtain

1

2

N ′(r)
N(r)

≥
∫

∂+B+
r

ya
(∣∣∂u

∂r

∣∣2 +
∣∣∂v

∂r

∣∣2
)

∫
∂+B+

r
ya

(
u∂u

∂r
+ v ∂v

∂r

) −
∫

∂+B+
r

ya
(
u∂u

∂r
+ v ∂v

∂r

)
∫

∂+B+
r

ya (u2 + v2)
(3.3)

+
1− a

N(r)

∫
∂0B+

r
u2v2

∫
∂+B+

r
ya (u2 + v2)

,

which is nonnegative. ¤

Note that (3.1) also implies that

d

dr
log H(r) =

2N(r)

r
+

2
∫

∂0B+
r

u2v2

∫
∂+B+

r
ya (u2 + v2)

≥ 2N(r)

r
. (3.4)

Combining this with Proposition 3.2 we have

Proposition 3.3. Let (u, v) be a solution of (1.12). If N(R) ≥ d, then for r > R, r−2dH(r)
is nondecreasing in r.

The following result states a doubling property of (u, v).

Proposition 3.4. Let (u, v) be a solution of (1.12) on B+
R . If N(R) ≤ d, then for every

0 < r1 ≤ r2 ≤ R
H(r2)

H(r1)
≤ e

d
1−a

r2d
2

r2d
1

(3.5)

Proof. This is similar to the proof of [3, Proposition 5.2]. Since for all r ∈ (0, R], N(r) ≤ d,
by (3.3) and (3.4) we have

d

dr
log H(r) ≤ 2d

r
+

2
∫

∂0B+
r

u2v2

∫
∂+B+

r
ya (u2 + v2)

≤ 2d

r
+

1

1− a
N ′(r).

Integrating this from r1 to r2, since N(r1) ≥ 0 and N(r2) ≤ d, we get (3.5). ¤

Proposition 3.5. Let (u, v) be a solution of (1.12) on Rn+1
+ . For any d > 0, the following

two conditions are equivalent:

(1) (Polynomial growth) There exists a positive constant C such that

u(x, y) + v(x, y) ≤ C
(
1 + |x|2 + y2

) d
2 . (3.6)

(2) (Upper bound on N(R)) For any R > 0, N(R) ≤ d.
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Proof. Since the even extension of u and v to Rn+1 are La-subharmonic, (2) ⇒ (1) is a direct
consequence of Proposition 3.4 and Lemma A.2.

On the other hand, if we have (3.6), but there exists some R0 > 0 such that N(R0) ≥ d+δ,
where δ > 0. By Proposition 3.3, for all R > R0,

sup
∂+B+

R

(
u2 + v2

) ≥ H(R) ≥ H(R0)

R2d+2δ
0

R2d+2δ,

which clearly contradicts (3.6). In other words, for any R > 0, we must have N(R) ≤ d. ¤

4. Blow down analysis

In this section we perform the blow down analysis for solutions to (1.12). This gives the
asymptotic behavior of these solutions at infinity.

Let (u, v) be a solution of (1.12). By Theorem 2.3 and Proposition 3.5, there exists a
constant d > 0 so that

lim
R→+∞

N(R) := d < +∞.

The existence of this limit is guaranteed by the Almgren monotonicity formula ( Proposition
3.2). Note that for any R < +∞, N(R) ≤ d.

For R → +∞, define

uR(z) := L−1
R u(Rz), vR(z) := L−1

R v(Rz),

where LR is chosen so that ∫

∂+B+
1

ya
(
u2

R + v2
R

)
= 1. (4.1)

(uR, vR) satisfies
{

LauR = LavR = 0, in Rn+1
+ ,

∂a
yuR = κRuRv2

R, ∂a
yvR = κRvRu2

R on ∂Rn+1
+ ,

(4.2)

where κR = L2
RR1−a.

By (4.1),

L2
R = R−n

∫

∂+B+
R

ya
(
u2 + v2

)
.

By the Liouville theorem [23, Propostion 12] (Note that only a growth bound, not the global
Hölder bound, is needed to deduce this Liouville theorem), for some α > 0 small, there exists
a constant Cα such that

L(R) ≥ CαRα. (4.3)

Thus κR → +∞ as R → +∞.
With the bound on N(R) in hand, we can use Proposition 3.4 to deduce that, for any

r > 1,

r−n−a

∫

∂+B+
r

ya
(
u2

R + v2
R

) ≤ r2d.



14 K. WANG AND J. WEI

Since ∂a
yuR ≥ 0 on ∂+Rn+1

+ , its even extension to Rn+1 is La-subharmonic. Thus by Lemma
A.2 we can get a uniform bound from the above integral bound,

sup
B+

r

(uR + vR) ≤ Crd, ∀r > 1.

Then by the uniform Hölder estimate in [23], for some α ∈ (0, s), (uR, vR) are uniformly

bounded in Cα
loc(R

n+1
+ ).

Because N(r; uR, vR) = N(Rr; u, v) ≤ d,∫

B+
r

ya
(|∇uR|2 + |∇vR|2

)
+

∫

∂0B+
r

κRu2
Rv2

R ≤ drn−1+a+2d, ∀r > 1. (4.4)

After passing to a subsequence of R, we can assume that (uR, vR) converges to (u∞, v∞)

weakly in H1,a
loc (Rn+1

+ ), and uniformly in Cα
loc(R

n+1
+ ).

Then for any r > 1, ∫

∂0B+
r

u2
∞v2

∞ = lim
R→+∞

∫

∂0B+
r

u2
Rv2

R

≤ lim
R→+∞

κ−1
R drn−1+a+2d = 0.

Thus u∞v∞ ≡ 0 on ∂Rn+1
+ .

Lemma 4.1. (uR, vR) converges strongly to (u∞, v∞) in H1,a
loc (Rn+1

+ ). κRu2
Rv2

R converges to 0
in L1

loc(∂R2
+).

For a proof see [23, Lemma 4.5] (and the corresponding results in [22] for the 1/2-Lapalcian
case).

Corollary 4.2. For any r > 0,

N(r; u∞, v∞) :=
r
∫

B+
r

ya (|∇u∞|2 + |∇v∞|2)∫
∂+B+

r
ya (u2∞ + v2∞)

≡ d.

Proof. For any fixed r > 0, by Lemma 4.1,∫

B+
r

ya
(|∇u∞|2 + |∇v∞|2

)
= lim

R→+∞

∫

B+
r

ya
(|∇uR|2 + |∇vR|2

)
+

∫

∂0B+
r

κRu2
Rv2

R.

By the uniform convergence of uR and vR, we also have∫

∂+B+
r

ya
(
u2
∞ + v2

∞
)

= lim
R→+∞

∫

∂+B+
r

ya
(
u2

R + v2
R

)
.

Thus
N(r; u∞, v∞) = lim

R→+∞
N(r; uR, vR) = lim

R→+∞
N(Rr; u, v) = d. ¤

For any η ∈ C∞
0 (Rn+1) nonnegative and even in y, multiplying the equation of uR by η and

integrating by parts, we obtain∫

∂Rn+1
+

η∂a
yuRdx =

∫

∂Rn+1
+

ηκRuRv2
Rdx =

∫

Rn+1
+

uRLaη, (4.5)
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which is uniformly bounded as R → +∞. Hence we can assume that (up to a subsequence)
∂a

yuRdx = κRuRv2
Rdx converges to a positive Radon measure µ. On the other hand, passing

to the limit in (4.5) gives µ = ∂a
yu∞dx. Here ∂a

yu∞ ≥ 0 on ∂Rn+1
+ in the weak sense, that is,

∂a
yu∞dx is a positive Radon measure on ∂Rn+1

+ .

Lemma 4.3. The limit (u∞, v∞) satisfies{
Lau∞ = Lav∞ = 0, in Rn+1

+ ,

u∞∂a
yu∞ = v∞∂a

yv∞ = 0 on ∂Rn+1
+ ,

(4.6)

Here the second equation in (4.6) is equivalent to the statement that the support of ∂a
yu∞dx

belongs to {u∞ = 0}.
Proof. The first equation can be directly obtained by passing to the limit in LauR = LavR = 0
and using the uniform convergence of (uR, vR).

To prove the second one, take an arbitrary point z0 = (x0, 0) ∈ {u∞ > 0}. Since u∞
is continuous, we can find an r0 > 0 and δ0 > 0 such that u∞ ≥ 2δ0 in B+

r0
(z0). By the

segregated condition, v∞(z0) = 0. Thus by decreasing r0 if necessary, we can assume that

v∞ ≤ δ0 in B+
r0

(z0).

Then by the uniform convergence of uR and vR, for all R large,

uR ≥ δ0, vR ≤ 2δ0 in B+
r0

(z0).

Thus
∂a

yvR ≥ κRδ2
0vR on ∂0B+

r0
(z0).

By applying Lemma A.3, we obtain

sup
∂0B+

r0/2
(z0)

vR ≤ C(r0, δ0)κ
−1
R .

Then ∂a
yuR = κRuRv2

R is uniformly bounded in Cβ(∂0B+
r0

(z0)) for some β > 0.

Let wR = ya ∂uR

∂y
. It can be directly checked that wR satisfies (see [7, Section 2.3])

div
(
y−a∇wR

)
= 0.

By (4.4), ∫

B+
r0/2

(z0)

y−aw2
R ≤

∫

B+
r0/2

(z0)

ya|∇uR|2

are uniformly bounded. Then by the boundary Hölder estimate ([18]), wR are uniformly

bounded in Cβ(B+
r0/2(z0)). Because wR ≥ 0 on ∂0B+

r0
(z0) and wRuR → 0 in L1(∂0B+

r0
(z0)), by

letting R → +∞ and using the uniform Hölder continuity of uR and wR, we get

∂a
yu∞ = 0 on ∂0B+

r0/2(z0).

In the blow down procedure, we have shown that u∞ ∈ Cα
loc(R

n+1
+ ) for some α > 0. Hence

u∞ is continuous on ∂Rn+1
+ . The above argument also shows that ya∂yu∞ is continuous up

to {u∞ > 0} ∩ ∂Rn+1
+ and ∂a

yu∞ = 0 on {u∞ > 0} ∩ ∂Rn+1
+ . This completes the proof. ¤
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Integrating by parts using (4.6), we get
∫

∂+B+
r

yau∞
∂u∞
∂r

=

∫

B+
r

ya|∇u∞|2,
∫

∂+B+
r

yav∞
∂v∞
∂r

=

∫

B+
r

ya|∇v∞|2, (4.7)

for any ball B+
r .

Let

E∞(r) := r1−n−a

∫

B+
r

ya
(|∇u∞|2 + |∇v∞|2

)
,

H∞(r) := r−n−a

∫

∂+B+
r

ya
(
u2
∞ + v2

∞
)
,

and N∞(r) := E∞(r)/H∞(r).
By (4.7) and calculating as in (3.1), we still have

d

dr
log H∞(r) =

2N∞(r)

r
. (4.8)

Since N∞(r) ≡ d, integrating this and by noting the normalization condition (4.1), which
passes to the limit, gives

H∞(r) ≡ r2d. (4.9)

The following lemma is essentially [23, Propostion 6].

Lemma 4.4. For any r ∈ (0, +∞), H∞(r) > 0 and E∞(r) > 0. Moreover,

1

2

N ′
∞(r)

N∞(r)
≥

∫
∂+B+

r
ya

(∣∣∂u∞
∂r

∣∣2 +
∣∣∂v∞

∂r

∣∣2
)

∫
∂+B+

r
ya

(
u∞ ∂u∞

∂r
+ v∞ ∂v∞

∂r

) −
∫

∂+B+
r

ya
(
u∞ ∂u∞

∂r
+ v∞ ∂v∞

∂r

)
∫

∂+B+
r

ya (u2∞ + v2∞)
≥ 0, (4.10)

in the distributional sense.

Proof. The Pohozaev identity for (uR, vR) reads as

(n− 1 + a)

∫

B+
r

ya
(|∇uR|2 + |∇vR|2

)

= r

∫

∂+B+
r

ya
(|∇uR|2 + |∇vR|2

)− 2ya

(∣∣∣∂uR

∂r

∣∣∣
2

+
∣∣∣∂vR

∂r

∣∣∣
2
)

+r

∫

Sn
r

κRu2
Rv2

R − n

∫

∂0B+
r

κRu2
Rv2

R.

By Lemma 4.1, for all but countable r ∈ (0, +∞), we can pass to the limit in the above
identity, which gives

(n− 1 + a)

∫

B+
r

ya
(|∇u∞|2 + |∇v∞|2

)
(4.11)

= r

∫

∂+B+
r

ya
(|∇u∞|2 + |∇v∞|2

)− 2ya

(∣∣∣∂u∞
∂r

∣∣∣
2

+
∣∣∣∂v∞

∂r

∣∣∣
2
)

.

The following calculation is similar to the proof of Proposition 3.2. ¤
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Lemma 4.5. For any λ > 0,

u∞(λz) = λdu∞(z), v∞(λz) = λdv∞(z).

Proof. By Corollary 4.2, N∞(r) ≡ d. Then by the previous lemma, for a.a. r > 0,
∫

∂+B+
r

ya
(∣∣∂u∞

∂r

∣∣2 +
∣∣∂v∞

∂r

∣∣2
)

∫
∂+B+

r
ya

(
u∞ ∂u∞

∂r
+ v∞ ∂v∞

∂r

) −
∫

∂+B+
r

ya
(
u∞ ∂u∞

∂r
+ v∞ ∂v∞

∂r

)
∫

∂+B+
r

ya (u2∞ + v2∞)
= 0.

By the characterization of the equality case in the Cauchy inequality, there exists a λ(r) > 0,
such that

∂u∞
∂r

= λ(r)u∞,
∂v∞
∂r

= λ(r)v∞ on ∂+B+
r .

Integrating this in r, we then get two functions g(r) defined on (0, +∞) and (ϕ(θ), ψ(θ))
defined on ∂+B+

1 , such that

u∞(r, θ) = g(r)ϕ(θ), v∞(r, θ) = g(r)ψ(θ).

By (4.9), we must have g(r) ≡ rd. ¤
Remark 4.6. By definition, we always have d > 0. In the standard Laplacian case, we
can show that d must be a positive integer (see [3]). However, we do not know if such a
quantization phenomena holds for this problem. For related studies see [22, 23].

5. Classification of the blow down limit in dimension 2

From now on assume n = 1. In the previous section we proved that the blow down limit

u∞(r, θ) = rdϕ(θ), v∞(r, θ) = rdψ(θ),

where the two functions ϕ and ψ are defined on [0, π]. In this section we determine the
explicit form of ϕ and ψ.

5.1. Classification. By denoting

La
θϕ = ϕθθ + a cot θϕθ,

the equation for (ϕ, ψ) reads as



La
θϕ + d(d + a)ϕ = La

θψ + d(d + a)ψ = 0, in (0, π),

ϕ∂a
θ ϕ = ψ∂a

θ ψ = 0, at {0, π},
ϕ(0)ψ(0) = ϕ(π)ψ(π) = 0.

(5.1)

Here ∂a
θ φ(0) = limθ→0 (sin θ)a ϕθ(θ), and we have a similar definition at π.

There are two cases.
Case 1. ϕ(0) 6= 0, ϕ(π) 6= 0.

By this assumption, we have

∂a
θ ϕ(0) = ∂a

θ ϕ(π) = 0. (5.2)

Using the equation for ϕ, we know ϕ is continuous on [0, π]. Thus by our assumption ϕ > 0
on [0, π].
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Multiplying the equation of ϕ by ϕ(θ)−1 (sin θ)a and integrating by parts on [0, π], with the
help of (5.2) we arrive at

−d (d + a)

∫ π

0

(sin θ)a dθ =

∫ π

0

(sin θ)a ϕ′(θ)2

ϕ(θ)2
dθ ≥ 0. (5.3)

On the other hand, multiplying the equation of ϕ by ϕ(θ) (sin θ)a and integrating by parts
on [0, π], we have

d (d + a) =

∫ π

0
(sin θ)a ϕ′(θ)2dθ∫ π

0
(sin θ)a ϕ(θ)2dθ

≥ 0. (5.4)

Combining (5.3) and (5.4), we see

d(d + a) = 0.

Since d > 0, we must have d = −a = 2s − 1. Note that this is only possible when s > 1/2.
This then implies that ϕ is a constant.

In this case we must have ψ(0) = ψ(π) = 0. We claim that ψ ≡ 0. In fact, since v∞ is
homogeneous of degree d = 2s− 1 and La-harmonic in R2

+, by [23, Proposition 7], v∞ ≡ 0 in
R2

+.
We conclude that in this case ϕ is a constant and ψ ≡ 0. Note that this is possible only if

s > 1
2
.

In the subsection below, we shall prove that this is impossible.
Case 2. ϕ(0) 6= 0, ϕ(π) = 0 or ψ(0) = 0, ψ(π) 6= 0.

By this assumption, ∂a
θ ϕ(0) = 0. Hence we can extend ϕ to an even function in [−π, π]. It

satisfies 



La
θϕ + d(d + a)ϕ = 0, in (−π, π),

ϕ > 0, in (−π, π),

ϕ(−π) = ϕ(π) = 0.

In other words, ϕ is the first eigenfunction of La
θ in H1

0 ((−π, π)). Then it can be directly
checked that, up to the multiplication of a positive constant, ϕ(θ) = (cos θ

2
)2s. Similarly,

ψ(θ) = (sin θ
2
)2s. Moreover, d = s in this case.

By Corollary 4.2, either limR→+∞ N(R) = s or limR→+∞ N(R) = 2s− 1 (when s > 1/2).

5.2. Self-segregation. Here we exclude the possibility that the blow down limit (ϕ, ψ) =
(1, 0) when s > 1/2.

Assume the blow down limit (ϕ, ψ) = (1, 0). First we claim that

Lemma 5.1. There exists a constant c > 0 such that

u ≥ c on ∂R2
+.

Proof. Assume that we have a sequence Ri such that u(Ri, 0) → 0. Then necessarily Ri →
∞. Let (uRi

, vRi
) be the blow down sequence defined as before. Then (uRi

, vRi
) converges

to (r2s−1, 0) (modulo a normalization constant) in Cloc(R2
+). However, by our assumption,

because L(Ri) → +∞ (see (4.3)),

uRi
(1, 0) =

u(Ri, 0)

L(Ri)
→ 0,
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which is a contradiction. ¤

By the bound on N(R) and Proposition 3.4, there exists a constant C such that
∫

B+
r

ya
(
u2 + v2

) ≤ Cr2+2(2s−1), ∀ r > 1.

For each r > 1, let

ũ(z) = u(rz), ṽ(z) = v(rz).

Then ṽ satisfies {
Laṽ = 0, in B+

1 ,

∂a
y ṽ = r1−aũ2ṽ ≥ cr1−aṽ, on ∂0B+

1 .

Here we have used the previous lemma which says ũ ≥ c on ∂0B+
1 .

Applying Lemma A.3, we obtain

sup
∂0B+

1/2

ṽ ≤ Cr−1.

Letting r → +∞, we see v ≡ 0 on ∂R2
+.

Now since the growth bound of v is controlled by r2s−1, applying [23, Proposition 7], we
get v ≡ 0 in R2

+.
The equation for u becomes {

Lau = 0, in R2
+,

∂a
yu = 0, on ∂R2

+.

Because the growth bound of u is controlled by r2s−1, applying [23, Corollary 2], u is a
constant. This is a contradiction with the condition on N(R).

5.3. Combining the results in the previous two subsections, we have proved that the blow
down limit must be

u∞ = α+rs(cos
θ

2
)2s, v∞ = α−rs(sin

θ

2
)2s, (5.5)

for two suitable positive constants α+ and α−.
Here we note that, the blow down limit cannot be

u∞ = β+rs(sin
θ

2
)2s, v∞ = β−rs(cos

θ

2
)2s. (5.6)

In other words, only one of the above two limits is possible and the blow down limit must be
unique (the constant a+ and a− will be shown to be independent of the choice of subsequences
Ri → +∞ in the next section). For example, if both these two arise as the blow down limit
(from different subsequence of R → +∞), then we can find a sequence of Ri → +∞ satisfying
u(Ri, 0) = v(Ri, 0). Using these Ri to define the blow down sequence, we get a blow down
limit (u∞, v∞) satisfying u∞(1, 0) = v∞(1, 0). This is a contradiction with the two forms
given above.

Lemma 5.2. α+ = α−.
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This can be proved by the Pohozaev identity for (u∞, v∞), (4.11), where we replace the
ball B+

r by B+
r (t, 0) and let t vary (cf. [21]). We can also use the stationary condition: for

any X ∈ C∞
0 (R2

+,R2) satisfying X2 = 0 on ∂R2
+, we have∫

R2
+

ya
(|∇u∞|2 + |∇v∞|2

)
divX − 2yaDX(∇u∞,∇u∞)

−2yaDX(∇v∞,∇v∞) + aya−1X2
(|∇u∞|2 + |∇v∞|2

)
= 0.

We have proved that the blow down limit (u∞, v∞) satisfies∫

∂+B+
1

yau2
∞ =

∫

∂+B+
1

yav2
∞.

By the analysis in Section 4, for any Ri → +∞, the blowing down sequences (uRi
, vRi

) satisfy

lim
Ri→+∞

∫

∂+B+
1

yau2
Ri

=

∫

∂+B+
1

yau2
∞, lim

Ri→+∞

∫

∂+B+
1

yav2
Ri

=

∫

∂+B+
1

yav2
∞.

By a compactness argument, we get a constant C so that for all R ≥ 1,

1

C
≤

∫
∂+B+

R
yau2

∫
∂+B+

R
yav2

≤ C. (5.7)

6. Growth bound

In this section we prove various growth bound and decay estimates for u and v.

Proposition 6.1 (Upper bound). There exists a constant C so that

u(z) + v(z) ≤ C (1 + |z|)s .

Proof. Because for any r, N(r) ≤ s. Proposition 3.4 implies that

H(r) ≤ H(1)r2s, ∀r > 1.

Then because the even extension of u to R2 is La-subharmonic, by Lemma A.2 we get

sup
Br/2

u ≤ CH(r)1/2 ≤ CH(1)1/2rs. ¤

Because for any R > 0, N(R) ≤ s, the bound on H(r) also gives

Corollary 6.2. For any R > 1,∫

B+
R

ya
(|∇u|2 + |∇v|2) +

∫

∂0B+
R

u2v2 ≤ CR.

Next we give a lower bound for the growth of u and v.

Proposition 6.3 (Lower bound). There exists a constant c such that∫

∂+B+
r

yau2 ≥ cr2,

∫

∂+B+
r

yav2 ≥ cr2, ∀ r > 1. (6.1)

We first present two lemmas needed in the proof of this proposition.
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Lemma 6.4. For any K > 0, there exists an R(K) such that {Kx > y > 0}∩Bc
R(K) ⊂ {u >

v} and {−Kx > y > 0} ∩Bc
R(K) ⊂ {u < v}.

Proof. This is because, there exists a δ(K) > 0 so that for any R ≥ R(K),

sup
B+

1

∣∣uR − αrs

(
cos

θ

2

)2s ∣∣ +
∣∣vR − αrs

(
sin

θ

2

)2s ∣∣ ≤ δ(K),

and

αrs

(
cos

θ

2

)2s

≥ αrs

(
sin

θ

2

)2s

+ δ(K), in {Kx > y > 0} ∩
(
B+

1 \B+
1/2

)
.

These two imply that uR > vR in B+
1 \ B+

1/2. By noting that this holds for any R ≥ R(K),

we complete the proof. ¤
Lemma 6.5. As x → +∞, u(x, 0) → +∞ and v(x, 0) → 0. As x → −∞, v(x, 0) → +∞
and u(x, 0) → 0.

Proof. For any λ > 0 large, let

uλ(x, y) := λ−su(λx, λy), vλ(x, y) := λ−sv(λx, λy).

By the previous lemma and Proposition 6.1,

uλ ≥ vλ, vλ ≤ C on B+
1/2(1, 0).

vλ satisfies {
Lav

λ = 0, in B+
1/2(1, 0),

∂a
yvλ = λ4s

(
uλ

)2
vλ ≥ λ4s

(
vλ

)3
, on ∂0B+

1/2(1, 0).

Then (vλ − λ−
4s
3 )+ satisfies




La(v
λ − λ−

4s
3 )+ ≥ 0, in B+

1/2(1, 0),

∂a
y (vλ − λ−

4s
3 )+ ≥ λ

4s
3 (vλ − λ−

4s
3 )+, on ∂0B+

1/2(1, 0).

By Lemma A.3 we get

sup
∂0B+

1/4
(1,0)

vλ ≤ sup
∂0B+

1/4
(1,0)

(vλ − λ−
4s
3 )+ + λ−

4s
3 ≤ Cλ−

4s
3 .

Rescaling back we get v(λ, 0) ≤ Cλ−s/3 for all λ large.
Next assume that there exists λi → +∞, u(λi, 0) ≤ M for some M > 0. Then by defining

the blow down sequence (uλi , vλi) as before, following the proof of Lemma 5.1 we can get a
contradiction. Indeed, the blow down analysis gives uλi(1, 0) → α for some constant α > 0,
while our assumption and (4.3) implies that

uλi(1, 0) ≤ CMλ−s
i → 0.

This is a contradiction. ¤
Now we can prove Proposition 6.3.
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Proof of Proposition 6.3. By the previous lemma, there exists a constant M∗ such that w1 :=
(u−M∗)+ and w2 := (v−M∗)+ have disjoint supports on ∂R2

+. Both of these two functions
are nonnegative, continuous and La-subharmonic. By assuming M∗ > max{u(0, 0), v(0, 0)},
w1(0, 0) = w2(0, 0) = 0. Moreover, they satisfy

{
wiLawi = 0, in R2

+,

∂a
ywi ≥ 0 on ∂R2

+.

This then implies that for any nonnegative φ ∈ C∞
0 (R2),∫

R2
+

ya∇wi · ∇ (wiφ) = −
∫

∂R2
+

wi∂
a
ywiφ ≤ 0. (6.2)

Then by [23, Proposition 4] (note that here the dimension n = 1 and hence in that proposition
the exponent νACF = s),

J(r) := r−4s

(∫

B+
r

ya |∇w1|2
|z|a

)(∫

B+
r

ya |∇w2|2
|z|a

)

is non-decreasing in r > 0. This then implies the existence of a constant c so that(∫

B+
r

ya |∇w1|2
|z|a

)(∫

B+
r

ya |∇w2|2
|z|a

)
≥ cr4s, ∀ r > R∗. (6.3)

Here we choose R∗ large so that w1 and w2 are not constant in B+
R∗ , which implies

∫

B+
R∗

ya |∇w1|2
|z|a ≥ c,

∫

B+
R∗

ya |∇w2|2
|z|a ≥ c,

where c > 0 is a constant depending on the solution (u, v) and R∗.
Take an η ∈ C∞

0 (B2) such that η ≡ 1 in B1. For any r > 1, let ηr(z) = η(r−1z).
Substituting φ = (ηr)2|z|−a into (6.2) and integrating by parts gives (cf. the derivation of
[23, Eq. (4)]) ∫

B+
r

ya |∇wi|2
|z|a ≤ Cr−2−a

∫

B+
2r\B+

r

yaw2
i . (6.4)

Substituting this into (6.3) leads to∫

B+
2r

ya
(
u2 + v2

) ≥
∫

B+
2r

ya
(
w2

1 + w2
2

) ≥ cr2+a+2s.

Because u2 and v2 are La-subharmonic, by the mean value inequality, this can be trans-
formed to ∫

∂+B+
r

ya
(
u2 + v2

) ≥ cr2, ∀r > 2.

Then by noticing (5.7), we finish the proof. ¤
Remark 6.6. With Proposition 6.1 and Proposition 6.3 in hand, in the blow down analysis
we can choose

uR(z) := R−su(Rz), vR(z) := R−sv(Rz).
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By the blow down analysis, for any Ri → +∞, there exists a subsequence of Ri (still denoted
by Ri) such that

uRi → brs

(
cos

θ

2

)2s

, vRi → brs

(
sin

θ

2

)2s

,

in C(B+
1 ) ∩H1,a(B+

1 ), for some constant b > 0.
We claim that b is independent of the sequence Ri, thus the blow down limit is unique. By

(6.4) and Proposition 6.1,

lim
R→+∞

J(R) < +∞, (6.5)

where the limit exists because J(R) is non-decreasing.
For each R, let wR

1 = (uR − M∗R−s)+ = R−sw1(Rz) and wR
2 = (vR − M∗R−s)+ =

R−sw2(Rz). Then a rescaling gives

J(Ri) =

(∫

B+
1

ya |∇wRi
1 |2

|z|a
)(∫

B+
1

ya |∇wRi
2 |2

|z|a
)

.

For any δ > 0 small, by (6.4),

lim
i→+∞

∫

B+
δ

ya |∇wRi
1 |2

|z|a ≤ C lim
i→+∞

(
sup
B+

2δ

wRi
1

)2

= O(δ2s),

because wRi
1 converges uniformly to brs

(
cos θ

2

)2s
. Using this estimate and the strong conver-

gence of wRi
1 in H1,a(B+

1 ), we obtain

lim
i→+∞

∫

B+
1

ya |∇wRi
1 |2

|z|a = lim
i→+∞

∫

B+
1 \B+

δ

ya |∇wRi
1 |2

|z|a + lim
i→+∞

∫

B+
δ

ya |∇wRi
1 |2

|z|a

= b2

∫

B+
1 \B+

δ

ya |∇rs
(
cos θ

2

)2s |2
|z|a + O(δ2s).

After applying (6.4) to brs
(
cos θ

2

)2s
and letting δ → 0, this gives

lim
i→+∞

∫

B+
1

ya |∇wRi
1 |2

|z|a = C(s)b2,

where C(s) is a constant depending only on s.
Substituting this into (6.5) we get

C(s)2b4 = lim
R→+∞

J(R).

Thus b does not depend on the choice of subsequence Ri.
After a scaling (u(z), v(z)) 7→ (λsu(λz), λsv(λz) with a suitable λ, which leaves the equation

(1.12) invariant, we can assume b = 1. That is, as R → +∞,

R−su(Rz) → rs

(
cos

θ

2

)2s

, R−sv(Rz) → rs

(
sin

θ

2

)2s

.
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By (6.1) and Proposition 6.1, there exist two constants c1, c2 > 0, such that

{u > c1r
s} ∩ ∂+B+

r ∩ {y ≥ c2|x|} 6= ∅.
Since u is positive La-harmonic in R2

+, by applying the Harnack inequality to a chain of balls
(with the number of balls depending only on ε), for any ε > 0, there exists a constant c(ε)
such that

u(z) ≥ c(ε)|z|s, v(z) ≥ c(ε)|z|s in {y ≥ ε|x|}. (6.6)

Lemma 6.7. For any ε, δ > 0, there exists a constant R(ε, δ) such that

v(z) ≤ δ|z|s, in {(x, y) : x ≥ R(ε, δ), 0 ≤ y ≤ ε(x−R(ε, δ))}. (6.7)

Proof. By Proposition 6.1 and Proposition 6.3, in the definition of blow down sequence we
can take

uR(z) = R−su(Rz), vR(z) = R−sv(Rz).

As R → +∞, (uR, vR) converges to (rs(cos θ
2
)2s, rs(sin θ

2
)2s) uniformly in B+

1 . Thus we can
choose an ε depending only on δ so that for all R large, vR ≤ δ in B+

1 ∩ {0 ≤ y ≤ εx+}. ¤
Lemma 6.8. For any ε > 0, there exists a constant c(ε) such that

u(z) ≥ c(ε)|z|s, in {y ≥ εx−}. (6.8)

Proof. In view of (6.6) we only need to give a lower bound in the domain C := {(x, y) : x ≥
R0, 0 ≤ y ≤ ε(x−R0)}, where R0 is large but fixed.

u− v is La-harmonic in C, satisfying the following boundary conditions (thanks to Lemma
6.4) {

u− v ≥ c(ε)|z|s, on {y = ε(x−R0)} ∩ C,
∂a

y (u− v) = uv2 − vu2 ≤ 0, on {y = 0} ∩ ∂C.
We claim that u− v ≥ c(ε,R0)r

s in C.
First, let ψ(θ) be the solution of




− La
θψ = d(d + a)ψ, in {−ε < θ < ε},

ψ > 0, in {−ε < θ < ε},
ψ(−ε) = ψ(ε) = 0.

Here d is determined by

d(d + a) = min

∫ ε

−ε
ψ′(θ)2

∣∣ sin θ
∣∣adθ∫ ε

−ε
ψ(θ)2

∣∣ sin θ
∣∣adθ

,

in the class of functions satisfying ψ(−ε) = ψ(ε) = 0.
This minima can be bounded from below by

c min
η∈C∞0 ((−ε,ε))

∫ ε

−ε
|x|aη′(x)2dx∫ ε

−ε
|x|aη(x)2dx

≥ c

ε2
min

η∈C∞0 ((−1,1))

∫ 1

−1
|x|aη′(x)2dx

∫ 1

−1
|x|aη(x)2dx

≥ c

ε2
.

In particular, if ε is small enough, d > s. Note that φ := rdψ(θ) is a positive La-harmonic
function in the cone {|θ| < 2ε}. Moreover, since ψ is even in θ (by the uniqueness of the first
eigenfunction), φ is even in y.
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For ε sufficiently small, we have got a positive La-harmonic function φ in the cone {|y| ≤
2εx}, satisfying φ ≥ |z|2s in C. Apparently, ∂a

y |z|s = ∂a
yφ = 0 on {y = 0}. Then we can apply

the maximum principle to
u− v − c(ε)|z|s

φ
,

to deduce that it is nonnegative in C. ¤
Proposition 6.9 (Decay estimate). For all x > 0, v(x, 0) ≤ C(1 + x)−3s. For all x < 0,
u(x, 0) ≤ C(1 + |x|)−3s.

Proof. For any λ > 0 large, let

uλ(x, y) := λ−su(λx, λy), vλ(x, y) := λ−sv(λx, λy).

By the previous lemma and Proposition 6.1,

uλ ≥ c, vλ ≤ C in B+
1/2(1, 0).

The equation for vλ is
{

Lav
λ = 0, in B+

1/2(1, 0),

∂a
yvλ = λ4s

(
uλ

)2
vλ ≥ cλ4svλ, on ∂B+

1/2(1, 0).

By Lemma A.3,

vλ(1, 0) ≤ Cλ−4s.

This then gives the estimate for v(λ, 0). ¤
Before proving a similar decay estimate for ∂u

∂x
and ∂v

∂x
, we first give an upper bound for the

gradient of u and v.

Proposition 6.10. There exists a constant C such that,
∣∣∣∂u

∂x
(x, y)

∣∣∣ +
∣∣∣∂v

∂x
(x, y)

∣∣∣ ≤ C(1 + |x|+ |y|)s−1.

∣∣∣ya ∂u

∂y
(x, y)

∣∣∣ +
∣∣∣ya ∂v

∂y
(x, y)

∣∣∣ ≤ C(1 + |x|+ |y|)−s.

Proof. For all λ large, consider (uλ, vλ) introduced in the proof of the previous proposition.
It satisfies {

Lau
λ = Lav

λ = 0, in B+
1 ,

∂a
yuλ = λ4suλ

(
vλ

)2
, ∂a

yvλ = λ4svλ
(
uλ

)2
, on ∂0B+

1 .
(6.9)

By Proposition 6.1, uλ and vλ are uniformly bounded in B+
1 . Then by the gradient estimate

Theorem 2.1,

sup
{y≥|x|/2}∩(B+

1 \B+
1/2

)

|∇uλ|+ |∇vλ| ≤ C.

Rescaling back this gives the claimed estimates in the part {y ≥ |x|/2}. (Note that here ya

is comparable to (|x|+ y)a.)
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Next we consider the part D := {0 ≤ y < x} ∩ (B+
1 \ B+

1/2). Here by differentiating (6.9)

we obtain 



La
∂uλ

∂x
= La

∂vλ

∂x
= 0, in D,

∂a
y

∂uλ

∂x
= λ4s

(
vλ

)2 ∂uλ

∂x
+ 2λ4suλvλ ∂vλ

∂x
, on ∂0D,

∂a
y

∂vλ

∂x
= λ4s

(
uλ

)2 ∂vλ

∂x
+ 2λ4suλvλ ∂uλ

∂x
, on ∂0D.

By Corollary 6.2, ∫

D

ya

(∣∣∣∂uλ

∂x

∣∣∣
2

+
∣∣∣∂vλ

∂x

∣∣∣
2
)
≤ C,

for a constant C independent of λ.
By Proposition 6.9, vλ ≤ Cλ−4s on ∂0D. Thus the coefficient 2λ4suλvλ is uniformly

bounded on ∂0D. Although λ4s
(
uλ

)2
is not uniformly bounded, it has a favorable sign.

Then standard Moser iteration (see for example [20, Theorem 1.2]) gives

sup
{0≤y<x/2}∩(B+

3/4
\B+

2/3
)

∣∣∣∂uλ

∂x

∣∣∣ +
∣∣∣∂vλ

∂x

∣∣∣ ≤ C,

for a constant C independent of λ.
Finally, similar to the proof of Lemma 4.3, we have




L−a

(
ya ∂uλ

∂y

)
= L−a

(
ya ∂vλ

∂y

)
= 0, in D,

ya ∂uλ

∂y
= λ4suλ

(
vλ

)2 ∈ (0, C), on ∂0D,

ya ∂vλ

∂y
= λ4svλ

(
uλ

)2 ∈ (0, C), on ∂0D.

Moreover, by Corollary 6.2,
∫

D

y−a

(∣∣∣ya ∂uλ

∂y

∣∣∣
2

+
∣∣∣ya ∂vλ

∂y

∣∣∣
2
)
≤ C,

for a constant C independent of λ.

Then by applying the Moser iteration to (ya ∂uλ

∂y
− C)+ and (ya ∂uλ

∂y
+ C)−, we see

sup
{0≤y<x/2}∩(B+

3/4
\B+

2/3
)

∣∣∣ya ∂uλ

∂y

∣∣∣ +
∣∣∣ya ∂vλ

∂y

∣∣∣ ≤ C,

for a constant C independent of λ. ¤
Written in polar coordinates, this reads as

Corollary 6.11. There exists a constant C such that,
∣∣∣∂u

∂r
(r, θ)

∣∣∣ +
∣∣∣∂v

∂r
(r, θ)

∣∣∣ ≤ C(1 + r)s−1.



NONLOCAL ELLIPTIC SYSTEM 27

∣∣∣(sin θ)a

r

∂u

∂θ
(r, θ)

∣∣∣ +
∣∣∣(sin θ)a

r

∂v

∂θ
(r, θ)

∣∣∣ ≤ C(1 + r)s−1.

Proof. We have

∂u

∂r
= cos θ

∂u

∂x
+ (sin θ)1−a (sin θ)a ∂u

∂y
,

(sin θ)a

r

∂u

∂θ
(r, θ) = − (sin θ)1+a ∂u

∂x
+ cos θ (sin θ)a ∂u

∂y
.

Since 1 + a > 0 and 1 − a > 0, (sin θ)1−a and (sin θ)1+a are bounded. Then this corollary
follows from the previous proposition. ¤

Finally we give a further decay estimate for ∂v
∂x

and ∂u
∂x

.

Proposition 6.12. For all x > 0,
∣∣ ∂v
∂x

(x, 0)
∣∣ ≤ C(1 + x)−3s−1. For all x < 0,

∣∣∂u
∂x

(x, 0)
∣∣ ≤

C(1 + |x|)−3s−1.

Proof. We use notations introduced in the proof of Proposition 6.9.
By differentiating the equation for vλ, we obtain





La

(
∂vλ

∂x

)

+

≥ 0, in B+
1/2(1, 0),

∂a
y

(
∂vλ

∂x

)

+

≥ λ4s
(
uλ

)2
(

∂vλ

∂x

)

+

− 2λ4suλvλ
∣∣∣∂uλ

∂x

∣∣∣
(

∂vλ

∂x

)

+

, on ∂0B+
1/2(1, 0).

By Proposition 6.9, vλ ≤ Cλ−4s on ∂0B+
1/2(1, 0). By the previous proposition |∂uλ

∂x
| ≤ C in

B+
1/2(1, 0). Lemma 6.8 also implies that uλ ≥ c in B+

1/2(1, 0). Hence on ∂0B+
1/2(1, 0),

∂a
y

(
∂vλ

∂x

)

+

≥ (
cλ4s − C

) (
∂vλ

∂x

)

+

.

Applying Lemma A.3, we get

∂vλ

∂x
(1, 0) ≤ Cλ−4s.

The same estimate holds for the negative part. This then implies the bound for
∣∣ ∂v
∂x

(λ, 0)
∣∣. ¤

7. Refined asymptotics at infinity

In this section we prove a refined asymptotic expansion of the solution (u, v). See Propo-
sition 7.4 below. Here we need s > 1

4
. The refined asymptotic is needed for the method of

moving planes in the next section.
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7.1. Let

x = et cos θ, y = et sin θ, t ∈ R, θ ∈ [0, π]

and

ū(t, θ) = e−stu(et cos θ, et sin θ), v̄(t, θ) = e−stv(et cos θ, et sin θ).

The equation (1.12) can be transformed to the one for (ū, v̄),




ūtt + ūt + s(1− s)ū + La
θ ū = 0, in (−∞, +∞)× (0, π),

v̄tt + v̄t + s(1− s)v̄ + La
θ v̄ = 0, in (−∞, +∞)× (0, π),

lim
θ→0 or π

∂a
θ ū = ±e4stūv̄2, on (−∞, +∞)× {0, π},

lim
θ→0 or π

∂a
θ v̄ = ±e4stv̄ū2, on (−∞, +∞)× {0, π},

(7.1)

where we take the positive sign + at {0} and the negative one − at {π}.
By Proposition 6.1,

0 ≤ ū, v̄ ≤ C, in [1, +∞)× [0, π]. (7.2)

By Proposition 6.9, {
ū ≤ Ce−4st, on [1, +∞)× {π},
v̄ ≤ Ce−4st, on [1, +∞)× {0}. (7.3)

Combining Proposition 6.1 and Proposition 6.9, we also have
{

0 ≤ ∂a
θ ū ≤ Ce−4st, on [1, +∞)× {0}

0 ≥ ∂a
θ v̄ ≥ −Ce−4st, on [1, +∞)× {π}. (7.4)

What we have shown in Remark 6.6 is equivalent to the following statement.

Lemma 7.1. As t → +∞, ū(t, θ) → (cos θ
2
)2s and v̄(t, θ) → (sin θ

2
)2s uniformly in [0, π].

The next task is to get an exact convergence rate.

Proposition 7.2. There exists a constant C so that

∣∣u(r, θ)− rs(cos
θ

2
)2s

∣∣ +
∣∣v(r, θ)− rs(sin

θ

2
)2s

∣∣ ≤ C(1 + r)s−min{1,4s}.

In the following we denote

σ := min{1, 4s}.
Proof. Let φ(t, θ) := ū(t, θ)− (cos θ

2
)2s. There exists a constant M such that





φtt + φt + s(1− s)φ + La
θφ = 0, in [1, +∞)× (0, π),

0 ≤ φ(t, π) ≤ Me−4st,

0 ≤ ∂a
θ φ(t, 0) ≤ Me−4st.

(7.5)

Moreover, |φ| ≤ M in [1, +∞)× [0, π] and it converges to 0 uniformly as t → +∞.
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Let ψ(t, θ) := (φ(t, θ)−Me−4st)+. It satisfies




ψtt + ψt + s(1− s)ψ + La
θψ ≥ −Ce−4st, in [1, +∞)× (0, π),

ψ(t, π) = 0,

∂a
θ ψ(t, 0) ≥ 0.

(7.6)

We still have 0 ≤ ψ ≤ M in [1, +∞)× [0, π], and ψ converges to 0 uniformly as t → +∞.
Define

f(t) :=

∫ π

0

ψ(t, θ)

(
cos

θ

2

)2s

(sin θ)a dθ ≥ 0.

Multiplying (7.6) by
(
cos θ

2

)2s
and integrating on (0, π) with respect to the measure (sin θ)a dθ,

we obtain

f ′′(t) + f ′(t) ≥ f ′′(t) + f ′(t)− ∂a
θ ψ(t, 0) ≥ −Ce−4st. (7.7)

This implies that (
etf ′(t) +

C

1− 4s
e(1−4s)t

)′
≥ 0.

Consequently,

etf ′(t) +
C

1− 4s
e(1−4s)t ≥ ef ′(1) +

C

1− 4s
e1−4s ≥ −C, ∀ t ≥ 1.

In other words,

f ′(t) ≥ −Ce−t − C

1− 4s
e−4st ≥ −Ce−σt on [1, +∞).

This then implies that

f(t)− C

σ
e−σt

is nondecreasing in t. Because

lim
t→+∞

[
f(t)− C

σ
e−σt

]
= 0,

we obtain

f(t) ≤ Ce−σt, ∀ t ∈ [1, +∞).

A similar estimate holds for φ−.
Now we have got, for all t ≥ 1,

∫ π

0

∣∣∣ū(t, θ)−
(

cos
θ

2

)2s ∣∣∣
(

cos
θ

2

)2s

(sin θ)a dθ ≤ Ce−σt.

Then by standard estimates we get, for any h > 0,

sup
θ∈(0,π−h)

∣∣ū(t, θ)−
(

cos
θ

2

)2s ∣∣ ≤ C

h
e−σt.
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Next we extend this bound to (π − h, π). Let

ϕ :=

(
φ−max{C

h
e−σt,Me−4st}

)

+

, on [1, +∞)× [π − h, π].

It satisfies {
ϕtt + ϕt + s(1− s)ϕ + La

θϕ ≥ −Ce−σt, in (1, +∞)× (π − h, π),

ϕ(t, π) = ϕ(t, π − h) = 0.
(7.8)

Let

g(t) :=

∫ π

π−h

ϕ(t, θ)2 (sin θ)a dθ.

We claim that the following Poincare inequality holds.
Claim. There exists a constant c, which is independent of h, so that

∫ π

π−h

(
∂ϕ
∂θ

(t, θ)
)2

(sin θ)a dθ∫ π

π−h
ϕ(t, θ)2 (sin θ)a dθ

≥ c

h2
.

This is because the left hand side can be bounded from below by

c min
η∈C∞0 ((0,h))

∫ h

0
xaη′(x)2dx∫ h

0
xaη(x)2dx

≥ c

h2
min

η∈C∞0 ((0,1))

∫ 1

0
xaη′(x)2dx∫ 1

0
xaη(x)2dx

.

Multiplying (7.8) by ϕ (sin θ)a and integrating on (π − h, π) leads to

g′′(t) + g′(t)− 2
[ c

h2
− s(1− s)

]
g(t) ≥ −Ce−σtg(t)

1
2 ≥ −Ce−2σt − s(1− s)g(t).

Thus

g′′(t) + g′(t)−
[
2c

h2
− 3s(1− s)

]
g(t) ≥ −Ce−2σt.

Now we fix an h small so that
2c

h2
− 3s(1− s) > 4σ2.

Because g(t) → 0 as t → +∞, by the comparison principle,

g(t) ≤ C

(
e−2σt + e−

1+

√
1+4( c

h2−2s(1−s))
2

t

)
≤ Ce−2σt.

Then standard elliptic estimates imply that

sup
[π−h,π]

∣∣∣ū(t, θ)−
(

cos
θ

2

)2s ∣∣∣ ≤ max{C

h
e−σt,Me−4st}+ Ce−σt

≤ Ce−σt.

Coming back to u this gives the claimed estimate. ¤
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7.2. Now consider ūt. By differentiation in t, ūt still satisfies the first equation in (7.1).
Moreover, we have the following boundary conditions. At θ = π, by Proposition 6.9 and
Proposition 6.12,

ūt(t, π) = −se−stu(et, π) + e(1−s)tur(e
t, π) = O(e−4st).

Note that ūt(t, 0) is bounded in t ∈ [1, +∞), which can be deduced from Proposition 6.9
and Proposition 6.10. At θ = 0, because |v̄(t, 0)|+ |v̄t(t, 0)| ≤ Ce−4st,

∂a
θ ūt = 4se4stūv̄2 + e4stv̄2ūt + 2e4stūv̄v̄t

= O(e−4st).

Then as in the proof of the previous subsection, we have

Lemma 7.3. As t → +∞,

sup
θ∈[0,π]

∣∣ūt(t, θ)
∣∣ +

∣∣v̄t(t, θ)
∣∣ ≤ Ce−min{1,4s}t. (7.9)

Proof. For any h > 0, in {h < θ < π − h}, by Proposition 7.2, (7.9) follows by applying
the interior gradient estimates to ū(t, θ) − (cos θ/2)2s and v̄(t, θ) − (sin θ/2)2s. In the part
{0 < θ < h} or {π − h < θ < π}, if we have chosen h sufficiently small, the proof is exactly
the same as in the last part of the proof of Proposition 7.2. ¤

7.3. Now we assume s > 1/4. This implies σ = 1. Here we improve Proposition 7.2 to

Proposition 7.4. There exist two constants α and β so that we have the expansion

u(r, θ) = rs

(
cos

θ

2

)2s

+ αrs−1

(
cos

θ

2

)2s

+ o(rs−1),

v(r, θ) = rs

(
sin

θ

2

)2s

+ βrs−1

(
sin

θ

2

)2s

+ o(rs−1).

Proof. Let

ũ(t, θ) := et

[
ū(t, θ)−

(
cos

θ

2

)2s
]

,

and ṽ be defined similarly.
By Proposition 7.2, ũ is bounded on [1, +∞)× [0, π]. Moreover,

ũt(t, θ) = et

[
ū(t, θ)−

(
cos

θ

2

)2s
]

+ etūt(t, θ),

is also uniformly bounded, thanks to the estimate in Lemma 7.3.
ũ satisfies 




ũtt − ũt + s (1− s) ũ + La
θ ũ = 0, in [1, +∞)× (0, π),∣∣∂a

θ ũ(t, 0)
∣∣ ≤ Me−(4s−1)t,∣∣ũ(t, π)

∣∣ ≤ Me−(4s−1)t.

(7.10)
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Thus for any ti → +∞, we can assume that ũ(ti + t, θ) converges to a limit function ũ∞,
weakly in L2

loc(R× [0, π]). Here ũ∞ satisfies




ũ∞tt − ũ∞t + s(1− s)ũ∞ + La
θ ũ
∞ = 0, in R× (0, π),∣∣ũ∞(t, θ)

∣∣ ≤ C,

ũ∞(t, π) = 0,

∂a
θ ũ∞(t, 0) = 0.

(7.11)

Consider the eigenvalue problem



− La
θψj = λjψj, in (0, π),

ψj(π) = 0,

∂a
θ ψj(0) = 0.

This problem has a sequence of eigenvalues λ1 < λ2 ≤ · · · ≤ λk → +∞, and the corresponding
eigenfunctions are denoted by ψj, which is normalized in L2((0, π), (sin θ)adθ). Here the first
eigenvalue λ1 = s(1 − s) and the corresponding eigenfunction ψ1(θ) = (cos θ

2
)2s (modulo a

constant) is positive in (0, π).
Consider the decomposition

ũ∞(t, θ) =
∞∑

j=1

cj(t)ψj(θ).

Then cj(t) satisfies
c′′j − c′j + [s (1− s)− λj] cj = 0.

Note that |cj(t)| ≤ C for all t. Combined with the above equation, we see cj ≡ 0 for all j ≥ 2,
and c1(t) is a constant.

Now we show that this constant does not depend on the sequence ti → +∞. Let

f(t) :=

∫ π

0

ũ(t, θ)

(
cos

θ

2

)2s

(sin θ)a dθ.

By the bound on ũ and ũt, f(t) and

f ′(t) =

∫ π

0

ũt(t, θ)

(
cos

θ

2

)2s

(sin θ)a dθ

are bounded on [1, +∞). Multiplying the equation in (7.10) by
(
cos θ

2

)2s
(sin θ)a and inte-

grating by parts leads to

f ′′(t)− f ′(t) = −∂a
θ ũ(t, 0)− 2asũ(t, π) = O(e−(4s−1)t).

In particular, f ′′(t) is also bounded on [1, +∞)
For any ti → +∞, we can assume that f(ti + t) converges to a limit f∞(t) in C1

loc(R), which
satisfies

f ′′∞(t)− f ′∞(t) = 0.

Because f∞ is bounded on R, it must be a constant. Thus f ′∞ ≡ 0. This implies that f ′(t) → 0
as t → +∞.
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Now we also have (
e−tf ′(t)

)′
= O(e−4st)

Integrating this on [t, +∞), we obtain
∣∣f ′(t)

∣∣ = O(e−(4s−1)t).

Hence there exists a constant α such that∣∣f(t)− α
∣∣ = O(e−(4s−1)t).

Together with the previous analysis, we see for any t → +∞,

ũ(t, θ) → α

(
cos

θ

2

)2s

,

weakly in L2([0, π]). To improve this to a uniform convergence, we use the method in the
proof of Proposition 7.2 (or standard De Giorgi-Moser iteration). This gives the expansion
of u. ¤
Remark 7.5. This expansion is in consistence with the s = 1 case,

u′′ = uv2, v′′ = vu2, on R.

For this problem, we have the expansion (after a translation and a rescaling)

u(x) = x+ + O(1), v(x) = x− + O(1).

Remark 7.6. We can also estimate the convergence rate of ũ, which is of order O(e−δt).
Hence in the expansion of u, o(rs−1) can be replaced by O(rs−1−δ).

8. Symmetry between u and v

In this section, we prove the following theorem and use it to prove the symmetry between
u and v, as claimed in Theorem 1.1.

Theorem 8.1. Let (ui, vi), i = 1, 2 be two solutions of (1.12). Suppose that they satisfy

ui(r, θ) = rs

(
cos

θ

2

)2s

+ αir
s−1

(
cos

θ

2

)2s

+ o(rs−1), i = 1, 2, (8.1)

vi(r, θ) = rs

(
sin

θ

2

)2s

+ βir
s−1

(
sin

θ

2

)2s

+ o(rs−1), i = 1, 2, (8.2)

for four constants αi, βi, i = 1, 2. If α1 + β1 = α2 + β2, then

u1(x + t0, y) ≡ u2(x, y), v1(x + t0, y) ≡ v2(x, y),

where t0 = 1
s
(α2 − α1) = 1

s
(β1 − β2).

Note that (8.1) and (8.2) imply that

∣∣ui(r, θ)− rs

(
cos

θ

2

)2s ∣∣ +
∣∣vi(r, θ)− rs

(
sin

θ

2

)2s ∣∣ ≤ M (1 + r)s−1 , i = 1, 2, (8.3)

for some constant M > 0.
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For any t ∈ R, let

ut(x, y) := u1(x + t, y), vt(x, y) := v1(x + t, y),

which is still a solution of (1.12).
In the following, it will be helpful to keep the following fact in mind. Because∣∣ut − u2

∣∣ ≤ M (1 + |x|+ |y|)s−1 + M (1 + |x + t|+ |y|)s−1

+
∣∣∣
(√

x2 + y2 + x

2

)s

−
(√

(x + t)2 + y2 + x + t

2

)s ∣∣∣,
∣∣ut − u2

∣∣ → 0 as |z| → ∞. Thus any positive maximum (or negative minima) of ut − u2 is
attained at some point.

The first step is to show that we can start the moving plane from the infinity.

Lemma 8.2. If t is large enough,

ut(x, y) ≥ u2(x, y), vt(x, y) ≤ v2(x, y), on R2
+. (8.4)

Proof. If t is sufficiently large, for x ≥ 0,

ut(x, 0) ≥ (x + t)s −M (x + t)s−1

≥ xs + Mxs−1

≥ u2(x, 0).

Similarly,
vt(x, 0) ≤ v2(x, 0), on (−∞,−C(M)],

where C(M) is a constant depending only on M .
It can be checked directly that for t large,

ut(x, 0) ≥ u2(x, 0), on [−C(M), 0].

In fact, for x ∈ [−C(M), 0], limt→+∞ ut(x, 0) = +∞ uniformly (see Lemma 6.5), while u2(x, 0)
has an upper bound here.

Then by noting that



La

(
ut − u2

)
= 0, in R2

+,∣∣ut(z)− u2(z)
∣∣ → 0, as |z| ∈ R2

+, z →∞,

ut(x, 0)− u2(x, 0) ≥ 0, on [−C(M), +∞)

∂a
y

(
ut(x, 0)− u2(x, 0)

) ≤ v2(x, 0)2
(
ut(x, 0)− u2(x, 0)

)
on (−∞,−C(M)),

we can apply the maximum principle to deduce that

ut ≥ u2, in R2
+.

In fact, if inf(ut − u2) < 0, this minima is attained at some point. Because ut − u2 is La-
harmonic, the strong maximum principle implies that this point is on the boundary, say
(x0, 0). Clearly x0 ≤ −C(M). Then

0 ≤ ∂a
y

(
ut − u2

)
(x0, 0) ≤ v2(x, 0)2

(
ut(x, 0)− u2(x, 0)

)
< 0.
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This is a contradiction.
The same reasoning using




La

(
vt − v2

)
= 0, in R2

+,∣∣vt(z)− v2(z)
∣∣ → 0, as z ∈ R2

+, z →∞,

∂a
y

(
vt(x, 0)− v2(x, 0)

) ≥ ut(x, 0)2
(
vt(x, 0)− v2(x, 0)

)
on ∂R2

+,

gives

vt ≤ v2, on R2
+. ¤

Now we can define t0 to be

min{t : ∀s > t, us(x, y) ≥ u2(x, y), vs(x, y) ≤ v2(x, y), on R2
+}. (8.5)

By continuity, ut0 ≥ u2, vt0 ≤ v2.
We want to prove that t0 = 1

s
(α2 − α1). Indeed, if this is true, we have ut0 ≥ u2 and

vt0 ≤ v2. Then we can slide from the left, by the same reasoning this procedure must stop at
t0. Thus we also have ut0 ≤ u2 and vt0 ≥ v2. Consequently ut0 ≡ u2 and vt0 ≡ v2.

Now assume t0 > 1
s
(α2 − α1). We will get a contradiction from this assumption. Let

δ0 = st0 − (α2 − α1) > 0. By (8.1) and (8.2),

ut0(x, 0) = xs + (a1 + st0) xs−1 + o(xs−1), as x → +∞.

vt0(x, 0) = |x|s + (b1 − st0) |x|s−1 + o(|x|s−1), as x → −∞.

Comparing with u2 and v2 respectively, we get a constant T0 such that

ut0(x, 0) ≥ u2(x, 0) +
δ0

2
xs−1, if x ≥ T0, (8.6)

and

vt0(x, 0) ≤ v2(x, 0)− δ0

2
|x|s−1, if x ≤ −T0. (8.7)

By (8.1), perhaps after choosing a larger T0, for all t satisfying |t| ≤ 2|t0| we have

∣∣ut(x, 0)− xs − (a1 + st) xs−1
∣∣ ≤ δ0

8
xs−1, if x ≥ T0.

Thus there exists an ε1 > 0 such that, for all t ∈ [t0 − ε1, t0],

ut(x, 0) ≥ ut0(x, 0)− δ0

4
xs−1, if x ≥ T0.

Combining this with (8.6), we see for these t,

ut(x, 0) ≥ u2(x, 0), if x ≥ T0, (8.8)

and similarly
vt(x, 0) ≤ v2(x, 0), if x ≤ −T0, (8.9)

By the strong maximum principle, ut0 > u2 and vt0 < v2 strictly. In fact, if there exists a
point z0 ∈ R2

+ such that ut0(z0) = u2(z0), then the strong maximum principle implies that
ut0 ≡ u2, which contradicts (8.6).

Next, by continuity we can find an ε2 > 0 so that for all t ∈ [t0 − ε2, t0],

ut(x, 0) ≥ u2(x, 0), vt(x, 0) ≤ v2(x, 0), for x ∈ [−T0, T0].
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Combined with (8.8) and (8.9), by choosing ε := min{ε1, ε2}, we see for all t ∈ [t0 − ε, t0],

ut(x, 0)− u2(x, 0) ≥ 0, in [−T0, +∞),

vt(x, 0)− v2(x, 0) ≤ 0, in (−∞, T0].

Then arguing as in the proof of Lemma 8.2, we know for all t ∈ [t0 − ε, t0],

ut ≥ u2, vt ≤ v2, in R2
+.

However, this contradicts the definition of t0. Thus the assumption t0 > 1
s
(a2 − a1) cannot

be true.

Proof of Theorem 1.1: symmetry between u and v. We first prove the symmetry between u
and v. Given a solution (u, v) of (1.12), let (u1(x, y), v1(x, y)) = (u(x, y), v(x, y)) and
(u2(x, y), v2(x, y)) = (v(−x, y), u(−x, y)).

By Proposition 7.4, after a scaling, we have the expansion




u1(r, θ) = u(r, θ) = rs(cos
θ

2
)2s + αrs−1(cos

θ

2
)2s + o(rs−1),

v1(r, θ) = v(r, θ) = rs(sin
θ

2
)2s + βrs−1(sin

θ

2
)2s + o(rs−1).

(8.10)

Hence 



u2(r, θ) = rs(cos
θ

2
)2s + βrs−1(cos

θ

2
)2s + o(rs−1),

v2(r, θ) = rs(sin
θ

2
)2s + αrs−1(sin

θ

2
)2s + o(rs−1).

Thus we can apply Theorem 8.1 to get a constant T such that

u(x + 2T, y) = v(−x, y), v(x + 2T, y) = u(−x, y).

That is, u and v are symmetric with respect to the line {x = T}. ¤

Corollary 8.3. For any solution (u, v) of (1.12), ∂u
∂x

> 0 and ∂v
∂x

< 0 on R2
+.

Proof. Let
ut(x, y) := u(x + t), vt(x, y) := v(x + t, y).

As in the above argument, we know for any t ≥ 0,

ut ≥ u, vt ≤ v, on R2
+.

Thus ∂u
∂x
≥ 0 and ∂v

∂x
≤ 0.

Next, by noting that




La
∂u

∂x
= La

∂v

∂x
= 0, in R2

+,

∂a
y

∂u

∂x
= v2∂u

∂x
+ 2uv

∂v

∂x
, on ∂R2

+,

∂a
y

∂v

∂x
= u2 ∂v

∂x
+ 2uv

∂u

∂x
, on ∂R2

+,

we can use the strong maximum principle to conclude the proof. ¤
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9. Uniqueness

In this section, we prove the uniqueness of solutions to (1.12), thus complete the proof of
Theorem 1.1. We follow the main ideas of [3].

Before going into the proof, we present a technical lemma on a barrier function.

Lemma 9.1. There exists a function g(x) ≥ 1 on R, satisfying

(−∆)s g(x)

g(x)
≥ c|x|−2s, as x → −∞,

(−∆)s g(x)

g(x)
≥ −C, as x → +∞.

Proof. Let f be the solution to the Allen-Cahn equation{
Laf = 0, in R2

+,

∂a
yf =

(
f 2 − 1

)
f, on ∂R2

+.
(9.1)

By the main result in [7], we can take f to satisfy

lim
x→±∞

f(x, 0) = ∓1,
∂f

∂x
< 0. (9.2)

Moreover, by [7, Theorem 2.7], we have the decay estimate

c|x|−2s ≤ 1− f(x, 0) ≤ C|x|−2s, as x → −∞.

Then g = f + 2 satisfies all of the required properties. ¤
Let (ui, vi), i = 1, 2, be two solutions of (1.12). By what we have proved in the previous

section, the following expansion holds:




ui(r, θ) = rs(cos
θ

2
)2s + αir

s−1(cos
θ

2
)2s + o(rs−1),

vi(r, θ) = rs(sin
θ

2
)2s + αir

s−1(sin
θ

2
)2s + o(rs−1).

(9.3)

Here αi, i = 1, 2 are two constants.
If α1 = α2, Lemma 8.1 implies that u1 ≡ u2, v1 ≡ v2 and we are done. Hence we assume,

without loss of generality, that α1 > α2. Denote

t0 :=
1

s
(α1 − α2) > 0.

Define (ut, vt) as in the previous section. As before, we can show that for all t ≥ t0,

ut > u2, vt < v2, on R2
+.

Since (ut, vt) has the expansion{
ut(x, 0) = xs + (α1 + st) xs−1 + o(xs−1), as x → +∞,

vt(x, 0) = |x|s + (α1 − st) |x|s−1 + o(|x|s−1), as x → −∞,
(9.4)

for any t < t0, if −x is large enough, vt(x, 0) > v2(x, 0).
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Lemma 9.2. For any t < t0, infR2
+
(ut − u2) < 0.

Proof. Assume by the contrary, for some t < t0, ut ≥ u on R2
+. Then as in the proof of Lemma

8.2 we can apply the maximum principle to deduce that vt ≤ v2. This is a contradiction. ¤

For t < t0, let

w̃t
1 := ut − u2, w̃t

2 := v2 − vt.

They satisfy 



Law̃
t
1 = Law̃

t
2 = 0, in R2

+,

∂a
y w̃t

1 =
(
vt

)2
w̃t

1 − u2

(
v2 + vt

)
w̃t

2, on ∂R2
+,

∂a
y w̃t

2 = u2
2w̃

t
2 − vt

(
u2 + ut

)
w̃t

1, on ∂R2
+.

Then define

wt
1 :=

w̃t
1

g
, wt

2 :=
w̃t

2

g
.

They satisfy 



Law
t
1 + 2ya∇g

g
∇wt

1 = Law
t
2 + 2ya∇g

g
∇wt

2 = 0, in R2
+,

∂a
ywt

1 =

[
−∂a

yg

g
+

(
vt

)2
]

wt
1 − u2

(
v2 + vt

)
wt

2, on ∂R2
+,

∂a
ywt

2 =

[
−∂a

yg

g
+ u2

2

]
wt

2 − vt
(
u2 + ut

)
wt

1, on ∂R2
+.

(9.5)

Previous discussion has shown that, for any t < t0,

inf
R2

+

wt
1 < 0 and inf

R2
+

wt
2 < 0.

By the strong maximum principle using the first equation in (9.5), these two infimum are
attained at two points of the form (xi,t, 0), i = 1, 2.

Because ut0 > u2 and vt0 < v2 on ∂R2
+, we must have

lim
t→t0

|xi,t| = ∞, i = 1, 2. (9.6)

Lemma 9.3. As t → t0, x1,t → −∞.

Proof. Since α1 + st0 > α2, by the expansion (9.4), there exist two constants R0 > 0 large
and ε∗ small, so that for any t ∈ [t0 − ε∗, t0],

ut(x, 0) ≥ u2(x, 0), for x ∈ [R0, +∞).

Next by continuity, for any R > 0, there exists an ε(R) > 0 so that, if t ∈ [t0 − ε(R), t0],
then

ut(x, 0) ≥ u2(x, 0), for x ∈ [−R, R0].

Thus if t ≥ t0 −min{ε∗, ε(R)}, x1,t < −R. ¤
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Because ∂a
ywt

1(x1,t) ≥ 0, we have

wt
1(x1,t, 0) ≥ u2(x1,t, 0) (v2(x1,t, 0) + vt(x1,t, 0))

−∂a
y g

g
(x1,t, 0) + vt(x1,t, 0)2

wt
2(x1,t, 0). (9.7)

Similarly,

wt
2(x2,t, 0) ≥ vt(x2,t, 0) (u2(x2,t, 0) + ut(x2,t, 0))

−∂a
y g

g
(x2,t, 0) + u2(x2,t, 0)2

wt
1(x1,t, 0). (9.8)

By definition, wt
1(x2,t, 0) ≥ wt

1(x1,t, 0) and wt
2(x1,t, 0) ≥ wt

2(x2,t, 0). Combining this fact with
(9.7) and (9.8), and noting that wt

1(x1,t, 0) < 0, we must have

u2(x1,t, 0) (v2(x1,t, 0) + vt(x1,t, 0))

−∂a
y g

g
(x1,t, 0) + vt(x1,t, 0)2

× vt(x2,t, 0) (u2(x2,t, 0) + ut(x2,t, 0))

−∂a
y g

g
(x2,t, 0) + u2(x2,t, 0)2

> 1. (9.9)

By Proposition 6.1 and Proposition 6.9,{
u2(x1,t, 0)

(
v2(x1,t, 0) + vt(x1,t, 0)

) ≤ C|x1,t|−2s,

vt(x2,t, 0)
(
u2(x2,t, 0) + ut(x2,t, 0)

) ≤ C|x1,t|−2s.
(9.10)

Since x1,t → −∞, by Lemma 6.8 and Lemma 9.1,

−∂a
yg

g
(x1,t, 0) + vt(x1,t, 0)2 ≥ vt(x1,t, 0)2 ≥ c|x1,t|2s (9.11)

Hence,
u2(x1,t, 0) (v2(x1,t, 0) + vt(x1,t, 0))

−∂a
y g

g
(x1,t, 0) + vt(x1,t, 0)2

→ 0, as t → t0. (9.12)

Next, if x2,t → −∞, by Lemma 9.1,

−∂a
yg

g
(x2,t, 0) + u2(x2,t, 0)2 ≥ −∂a

yg

g
(x2,t, 0) ≥ c|x2,t|−2s.

Together with (9.10), this implies the existence of a constant C such that, as t → t0,

vt(x2,t, 0) (u2(x2,t, 0) + ut(x2,t, 0))

−∂a
y g

g
(x2,t, 0) + u2(x2,t, 0)2

≤ C. (9.13)

If x2,t → +∞, by Lemma 6.8 and Lemma 9.1,

−∂a
yg

g
(x2,t, 0) + u2(x2,t, 0)2 ≥ −C + u2(x2,t, 0)2 ≥ c|x2,t|2s (9.14)

Hence,
vt(x2,t, 0) (u2(x2,t, 0) + ut(x2,t, 0))

−∂a
y g

g
(x2,t, 0) + u2(x2,t, 0)2

→ 0, as t → t0. (9.15)

Combining (9.12) and (9.13) (or (9.15)), we get a contradiction with (9.9).
In conclusion, the assumption α1 6= α2 cannot be true. By using Theorem 8.1, we complete

the proof of Theorem 1.1.
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Appendix A. Basic Facts about La-subharmonic functions

In this appendix we present several basic facts about La-subharmonic functions, which are
used in this paper.

The first is a mean value inequality for La-subharmonic function.

Lemma A.1. Let u be a La-subharmonic function in Br ⊂ Rn+1 (centered at the origin),
then

u(0) ≤ C(n, a)r−n−1−a

∫

Br

yau.

Here C(n, a) is a constant depending only on n and a.

Proof. Direct calculation gives

d

dr

(
r−n−a

∫

∂Br

yau

)
= r−n−a

∫

∂Br

ya ∂u

∂r

= r−n−a

∫

Br

div (ya∇u)

≥ 0.

Thus r−n−a
∫

∂Br
yau is non-decreasing in r. Integrating this in r shows that r−n−1−a

∫
Br

yau
is also non-decreasing in r. ¤

By standard Moser’s iteration we also have the following super bound

Lemma A.2. Let u be a La-subharmonic function in Br ⊂ Rn+1 (centered at the origin),
then

sup
Br/2

u ≤ C(n, a)

(
r−n−1−a

∫

Br

yau2

) 1
2

.

Here C(n, a) is a constant depending only on n and a.

Lemma A.3. Let M > 0 be fixed. Any v ∈ H1(B+
1 ) ∩ C(B+

1 ) nonnegative solution to
{

Lav ≥ 0, in B+
1 ,

∂a
yv ≥ Mv on ∂0B+

1 ,

satisfies

sup
∂0B+

1/2

v ≤ C(n)

M

∫

B+
1

yav.

Proof. This is essentially [23, Lemma 3.5]. We only need to note that, since

∂a
yv ≥ 0 on ∂0B+

1 ,

the even extension of v to B1 is La-subharmonic (cf. [7, Lemma 4.1]). Then by Lemma A.2,

sup
B+

2/3

v ≤ C(n)

∫

B+
1

yav. ¤
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