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Abstract. We consider the following nonlinear Neumann problem:
∆u− µu+ uq = 0 in Ω,

u > 0 in Ω,
∂u
∂ν

= 0 on ∂Ω,

where Ω ⊂ Rn is a smooth and bounded domain, µ > 0 and ν denotes the
outward unit normal vector of Ω. Lin and Ni (1986) conjectured that when

q = n+2
n−2

, for µ small, all solutions are constants. We show that this conjecture

is false for general domain in n = 4, 6.

1. Introduction

In this paper we consider the following nonlinear Neumann elliptic problem:{
∆u− µu+ uq = 0, u > 0 in Ω,
∂u
∂ν = 0 on ∂Ω.

(1.1)

where 1 < q < +∞, µ > 0 and Ω is a smooth and bounded domain in Rn, n = 4, 6.
Eq.(1.1) arises in many branches of the applied sciences. For example, it can be

viewed as a steady-state equation for the shadow system of the Gierer-Meinhardt
system in mathematical biology [11], [16], or for parabolic equation in chemotaxis,
e.g. Keller-Segel model [14].

Eq.(1.1) enjoys at least one solution, namely the constant solution u ≡ µ
1
q−1 . In

a series of seminal work, Lin-Ni-Takagi [14] and Ni-Takagi [17] got interest in the
potential existence of non-constant solution to Eq.(1.1). In particular, it is proved
in [14],[17] that for µ large, the least energy solution concentrate at the boundary
point of maximum mean curvature. In the subcritical case 1 < q < 2∗ − 1, we can
use the well-known result due to Gidas-Spruck [10] to prove that for small positive
µ, the constant solution is the only solution. This uniqueness result incited Lin and
Ni to raise the following conjecture, the extension of this result to the critical case
q = 2∗ − 1.

Lin-Ni’s Conjecture [13]. For µ small and q = n+2
n−2 , problem (1.1) admits only

the constant solution.

We recall below the main results towards proving or disproving Lin-Ni’s conjec-
ture. Adimurthi-Yadava [1]-[2] and Budd-Knapp-Peletier [4] first considered the
following problem  ∆u− µu+ u

n+2
n−2 = 0 in BR(0),

u > 0 in BR(0),
∂u
∂ν = 0 on ∂BR(0).

(1.2)

They proved the following result
1
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Theorem A. ([1]-[4]) For µ sufficiently small,
(1) if n=3 or n ≥ 7, problem (1.2) admits only the constant solution;
(2) if n=4, 5 or 6, problem (1.2) admits a nonconstant solution.

The proof of Theorem A relies on the radial symmetry of the domain. In the
asymmetric case, the complete answer is not known yet, but there are a few results.
In the general three-dimension domain case, Zhu [26] proved

Theorem B. ([25],[26]) The conjecture is true if n = 3 (q = 5) and Ω is convex.

Zhu’s proof relies on a priori estimate. Later, Wei-Xu [25] gave a direct proof for
Theorem B by using the integration by parts only. In comparison with the strong
convexity condition assumed on the domain. Recently, under the assumption on
the bound of the energy and a weaker convexity condition (mean convex domains)
Druet-Robert-Wei [9] showed the following result:

Theorem C. ([9]) Let Ω be a smooth bounded domain of Rn, n = 3 or n ≥ 7.
Assume that H(x) > 0 for all x ∈ ∂Ω, where H(x) is the mean curvature of x, x ∈
∂Ω. Then for all µ > 0, there exists µ0(Ω,Λ) > 0 such that for all µ ∈ (0, µ0(Ω,Λ))
and for any u ∈ C2(Ω), we have that

−∆u+ µu = n(n− 2)u2∗−1 in Ω
u > 0 in Ω
∂νu = 0 on ∂Ω∫

Ω
u2∗dx ≤ Λ

⇒ u ≡ (
µ

n(n− 2)
)
n−2
4 .

It should be mentioned that the assumption of the bounded energy is necessary
in obtaining Theorem C. Without this technical assumption, it was proved that the
solutions to (1.1) may accumulate with infinite energy when the mean curvature is
negative somewhere (see Wang-Wei-Yan [21]). More precisely, Wang-Wei-Yan gave
a negative answer to Lin-Ni’s conjecture in all dimensions (n ≥ 3) for non-convex
domain by assuming that Ω is a smooth and bounded domain satisfying the follow-
ing conditions:

(H1) y ∈ Ω if and only if (y1, y2, y3, · · · ,−yi, · · · , yn) ∈ Ω, ∀i = 3, · · · , n.
(H2) If (r, 0, y′′) ∈ Ω, then (r cos θ, r sin θ, y′′) ∈ Ω, ∀θ ∈ (0, 2π), where y′′ =
(y3, · · · , yn).
(H3) Let T := ∂Ω∩{y3 = · · · = yn = 0}. There exists a connected component Γ of
T such that H(x) ≡ γ < 0, ∀x ∈ Γ.

Theorem D. ([21]) Suppose n ≥ 3, q = n+2
n−2 and Ω is a bounded smooth domain

satisfying (H1)-(H3). Let µ be any fixed positive number. Then problem (1.1) has
infinitely many positive solutions, whose energy can be made arbitrarily large.

Wang-Wei-Yan [22] also gave a negative answer to Lin-Ni’s conjecture in some
convex domain including the balls for n ≥ 4.

Theorem E. ([22]) Suppose n ≥ 4, q = n+2
n−2 and Ω satisfies (H1)-(H2). Let µ

be any fixed positive number. Then problem (1.1) has infinitely many positive
solutions, whose energy can be made arbitrarily large.

Theorem A-E reveal that Lin-Ni’s conjecture depends very sensitively not only
on the dimension, but also on the shape of the domain. A natural question is: what
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about the general domains? Inspired by the result of Theorem A. We expect to
give a negative answer to the case n = 4, 5, 6. The only approach in this direction
is given by Rey-Wei [19]. They disproved the conjecture in the five-dimensional
case by establishing a nontrivial solution which blows up at K interior points in Ω
provided µ is sufficiently small.

The purpose of this paper is to establish a result similar to (2) of Theorem A
in general four, and six-dimensional domains by establishing a nontrivial solution
which blows up at a single point in Ω provided µ is sufficiently small. Namely, we
consider the problem

∆u− µu+ u
n+2
n−2 = 0 in Ω, u > 0 in Ω,

∂u

∂ν
= 0 on ∂Ω, (1.3)

where n = 4, 6 and Ω is a smooth bounded domain in Rn and µ > 0 very small.
Our main result is stated as follows

Main Theorem. For problem (1.3) in n = 4, 6, there exists µ0 > 0 such that for
all 0 < µ < µ0, equation (1.3) possesses a nontrivial solution which blows up at an
interior point of Ω.

In order to make this statement more precise, we introduce the following nota-
tion. Let G(x,Q) be the Green’s function defined as

∆xG(x,Q) + δQ −
1

|Ω|
= 0 in Ω,

∂G

∂ν
= 0 on ∂Ω,

∫
Ω

G(x,Q)dx = 0. (1.4)

We decompose
G(x,Q) = K(|x−Q|)−H(x,Q),

where

K(r) =
1

cnrn−2
, cn = (n− 2)|Sn−1|, (1.5)

is the fundamental solution of the Laplacian operator in Rn(|Sn−1| denotes the area
of the unit sphere), n = 4, 6.

For the reason of normalization, we consider the following equation:

∆u− µu+ n(n− 2)u
n+2
n−2 = 0, u > 0 in Ω,

∂u

∂ν
= 0 on ∂Ω. (1.6)

We recall that, according to [5], the functions

UΛ,Q = (
Λ

Λ2 + |x−Q|2
)
n−2
2 , Λ > 0, Q ∈ Rn, (1.7)

are the only solutions to the problem

−∆u = n(n− 2)u
n+2
n−2 , u > 0 in Rn. (1.8)

Our main result can be stated precisely as follows:

Theorem 1.1. Let Ω be any smooth bounded domain in Rn.
(1). For n = 4, there exists µ1 > 0 such that for 0 < µ < µ1, problem (1.6) has

a nontrivial solution
uµ = U

e
− c1
µ2 Λ,Qµ

+O(µ−1e
− c1
µ2 ),

where c1 is some constant depending on the domain, to be determined later, Λ will
be some generic constant. The point Qµ depends on the domain and parameter Λ,
and will be given in Section 6.
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(2). For n = 6, there exists µ2 > 0 such that for 0 < µ < µ2, problem (1.6) has
a nontrivial solution

uµ = UµΛ,Qµ +O(µ),

where Λ→ Λ0, and Λ0 > 0 is some generic constant. The point Qµ depends on the
domain and parameter Λ, and will be given in Section 6.

We set

Ωε := Ω/ε = {z|εz ∈ Ω}, (1.9)

and

µ =

{
( c1
− ln ε )

1
2 , n = 4,

ε , n = 6.
(1.10)

Through the transformation u(x) 7−→ ε−
n−2
2 u(x/ε), (1.6) yields the rescaled

problem we will work with

∆u− µε2u+ n(n− 2)u
n+2
n−2 = 0, u > 0 in Ωε,

∂u

∂ν
= 0 on Ωε. (1.11)

We set

Sε[u] := −∆u+ µε2u− n(n− 2)u
n+2
n−2

+ , u+ = max(u, 0), (1.12)

and introduced the following functional

Jε[u] :=
1

2

∫
Ωε

|∇u|2 +
1

2
µε2

∫
Ωε

u2 − (n− 2)2

2

∫
Ωε

|u|
2n
n−2 , u ∈ H1(Ωε). (1.13)

The paper is organized as follows: In Section 2, we construct suitable approx-
imated bubble solution W, and list their properties. In Section 3, we solve the
linearized problem at W in a finite-codimensional space. Then, in Section 4, we are
able to solve the nonlinear problem in that space. In section 5, we study the re-
maining finite-dimensional problem and solve it in Section 6, finding critical points
of the reduced energy functional. Some numerical results may be found in the last
Section.

2. Approximate bubble solutions

In this section, we construct suitable approximate solution, in the neighborhood
of which solutions in Theorem 1.1 will be found.

Let ε be as defined in (1.10). For any Q ∈ Ω with d(Q/ε, ∂Ωε) large, UΛ,Q/ε

in (1.7) provides an approximate solution of (1.11). Because of the appearance
of the additional linear term µε2u, we need to add an extra term to get a better
approximation. To this end, for n = 4, we consider the following equation

∆Ψ̄ + U1,0 = 0 in R4, Ψ̄(0) = 1. (2.1)

Then

Ψ̄(|y|) = −1

2
ln |y|+ I +O

( 1

|y|

)
, Ψ̄

′
= − 1

2|y|

(
1 +O

( ln(1 + |y|)
|y|2

))
as |y| → ∞,

(2.2)
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where I is a constant. Let

ΨΛ,Q =
Λ

2
ln

1

Λε
+ ΛΨ̄(

y −Q
Λ

). (2.3)

Then
∆ΨΛ,Q + UΛ,Q = 0.

Note that we have

|ΨΛ,Q(y)|, |∂ΛΨΛ,Q(y)| ≤ C
∣∣∣ ln 1

ε(1 + |y −Q|)

∣∣∣, |∂QiΨΛ,Q(y)| ≤ C

1 + |y −Q|
.

(2.4)
For n = 6, let Ψ(|y|) be the radial solution of

∆Ψ + U1,0 = 0 in Rn, Ψ→ 0 as |y| → +∞. (2.5)

Then, it is easy to check that

Ψ(y) =
1

4|y|2
(1 +O(

1

|y|2
)) as |y| → +∞. (2.6)

For Q ∈ Ωε, we set

ΨΛ,Q(y) = Ψ(
y −Q

Λ
).

Then
∆ΨΛ,Q(y) + UΛ,Q = 0 in R6.

It is easy to check that

|ΨΛ,Q(y)|, |∂ΛΨΛ,Q(y)| ≤ C

(1 + |y −Q|)2
, |∂QiΨΛ,Q(y)| ≤ C

(1 + |y −Q|)3
. (2.7)

In order to obtain approximate solutions which satisfy the boundary condition,
we need an extra correction term. For this purpose, we define

ÛΛ,Q/ε(z) = −ΨΛ,Q/ε(z)− cnµ−1εn−4Λ
n−2
2 H(εz,Q) +Rε,Λ,Q(z)χ(εz), (2.8)

where Rε,Λ,Q is defined by ∆Rε,Λ,Q − ε2Rε,Λ,Q = 0 in Ωε and

µε2 ∂Rε,Λ,Q
∂ν

= − ∂

∂ν

[
UΛ,Q/ε − µε2ΨΛ,Q/ε − cnεn−2Λ

n−2
2 H(εz,Q)

]
on ∂Ωε, (2.9)

where χ(x) is a smooth cut-off function in Ω such that χ(x) = 1 for d(x, ∂Ω) <
δ/4 and χ(x) = 0 for d(x, ∂Ω) > δ/2.

We notice (2.2) and (2.6), an expansion of UΛ,Q/ε and the definition of H imply

that the normal derivative of Rε,Q is of order εn−3 on the boundary of Ωε, from
which we deduce 1∣∣Rε,Λ,Q∣∣+

∣∣ε−1∇zRε,Λ,Q
∣∣+
∣∣ε−2∇2

zRε,Λ,Q
∣∣ ≤ {CΛ, n = 4,

Cε2, n = 6.
(2.10)

A similar estimate also holds for the derivatives of Rε,Λ,Q with respect to Λ, Q.
Now we are able to define the approximate bubble solutions. Since it is differ-

ent in analyzing between the case n = 4 and the case n = 6, we will tact them
respectively in the following. For n = 4, let

Λ4,1 ≤ Λ ≤ Λ4,2, Q ∈Mδ4 := {x ∈ Ω| d(x, ∂Ω) > δ4}, (2.11)

1For n = 4, the parameter Λ is located in a range that depends on ε. Therefore, we have
to take Λ into consideration, and we note that each component on the right hand side of (2.9)

exactly carry Λ as a factor.
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where Λ4,1 = exp(− 1
2 )εβ , Λ4,2 = exp(− 1

2 )ε−β , β is a small constant with a generic
constant δ4, to be determined later. In viewing of the rescaling, we write

Q̄ =
1

ε
Q,

and we define our approximate solutions as

Wε,Λ,Q = UΛ,Q̄ + µε2ÛΛ,Q̄ +
c4Λ

|Ω|
µ−1ε2. (2.12)

For n = 6, let √
|Ω|
c6

(
1

96
− Λ6ε

2
3 ) ≤Λ ≤

√
|Ω|
c6

(
1

96
+ Λ6ε

2
3 ),

Q ∈Mδ6 := {x ∈ Ω| d(x, ∂Ω) > δ6},
1

48
− η6ε

1
3 ≤η ≤ 1

48
+ η6ε

1
3 , (2.13)

where Λ6 and η6 are some constants that may depend on the domain, δ6 is a small
constant, which is determined later. Our approximate solution for n = 6 is the
following

Wε,Λ,Q,η = UΛ,Q̄ + µε2ÛΛ,Q̄ + ηµ−1ε4. (2.14)

Remark: We want to mention more for the setting of η in the case n = 6. For the
case n = 4, we just set η to cancel the Laplacian of H(x,Q), which makes the error
of the approximate solution small enough to control. While, in the case n = 6, we
can not proceed in the same way. Furthermore, if we simply set η to be the solution
of the quadratic equation

24η2 − η + c6Λ2/(|Ω|) = 0.

It could make the error small, However, we shall fail in getting the a-priori estimate
because of the parameter we obtained in the reduced problem. This is the main
difficulty in studying the Lin-Ni problem for n = 6.

For convenience, in the following, we write W, U, Û , R, and Ψ instead of Wε,Λ,Q,

Uε,Q̄, ÛΛ,Q̄, Rε,Λ,Q and ΨΛ,Q̄ respectively in the following. By construction, the
normal derivative of W vanishes on the boundary of Ωε, and W satisfies

−∆W + µε2W =

{
8U3 + µ2ε4Û − µε2∆(Rε,Λ,Qχ), n = 4,

24U2 + µ2ε4Û − µε2∆(Rε,Λ,Qχ) + ε6(η − c6Λ2

|Ω| ), n = 6.

(2.15)

We note that W depends smoothly on Λ, Q̄. Setting, for z ∈ Ωε,

〈z − Q̄〉 = (1 + |z − Q̄|2)
1
2 .

A simple computation shows

|W (z)| ≤
{
C(ε2(− ln ε)

1
2 + 〈z − Q̄〉−2), n = 4,

C(ε3 + 〈z − Q̄〉−4), n = 6,
(2.16)

|DΛW (z)| ≤
{
C(ε2(− ln ε)

1
2 + 〈z − Q̄〉−2), n = 4,

C〈z − Q̄〉−4, n = 6,
(2.17)
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|DQ̄W (z)| ≤
{
C(〈z − Q̄〉−3), n = 4,
C(〈z − Q̄〉−5), n = 6,

(2.18)

and

|DηW (z)| = O(ε3), n = 6. (2.19)

According to the choice of W, we have the following error and energy estimates,
we leave the proof in Section 7.

Lemma 2.1. For n = 4, we have∣∣Sε[W ](z)
∣∣ ≤ C

(
〈z − Q̄〉−4ε2(− ln ε)

1
2 + 〈z − Q̄〉−2ε4(− ln ε)

)
+ C

(( ε4

(− ln ε)
1
2

+
ε4

(− ln ε)
| ln(

1

ε(1 + |z − Q̄|)
)|
)
Λ
)
, (2.20)

∣∣DΛSε[W ](z)
∣∣ ≤ C

(
〈z − Q̄〉−4ε2(− ln ε)

1
2 + 〈z − Q̄〉−2ε4(− ln ε)

+
ε4

(− ln ε)
1
2

+
ε4

(− ln ε)
| ln(

1

ε(1 + |z − Q̄|)
)|
)
, (2.21)

∣∣DQ̄Sε[W ](z)
∣∣ ≤ C

(
〈z − Q̄〉−5ε2(− ln ε)

1
2 + 〈z − Q̄〉−3ε4(− ln ε)

+ 〈z − Q̄〉−1 ε4

(− ln ε)

)
, (2.22)

and

Jε[W ] = 2

∫
R4

U4
1,0 +

c4Λ2

4
ε2(

c1
− ln ε

)
1
2 ln

1

Λε
− c24Λ2

2|Ω|
ε2(

c1
− ln ε

)−
1
2

+
1

2
c24Λ2ε2H(Q,Q) +O

(
ε2
( c1
− ln ε

) 1
2 Λ2

)
+O(ε4(− ln ε)2). (2.23)

For n = 6, we have

Sε[W ](z) = −ε6
(
24η2 − η +

c6Λ2

|Ω|
)

+O(1)ε3〈z − Q̄〉−4, (2.24)

∣∣DΛSε[W ](z)
∣∣ = O(1)

(
〈z − Q̄〉−4ε3 + ε6

)
, (2.25)

∣∣DηSε[W ](z)
∣∣ = O(1)

(
〈z − Q̄〉−4ε3 + ε6 1

3

)
, (2.26)∣∣DQ̄Sε[W ](z)

∣∣ ≤ C〈z − Q̄〉−5ε3, (2.27)

and

Jε[W ] = 4

∫
R6

U3
1,0 +

(1

2
η2|Ω| − c6ηΛ2 +

1

48
c6Λ2 − 8η3|Ω|

)
ε3 +

1

2
c26Λ4ε4H(Q,Q)

+
1

2

(
η − c6Λ2

|Ω|
)
ε4

∫
Ω

Λ2

|x−Q|4
+O(ε5). (2.28)
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3. Finite-Dimensional Reduction

According to our general strategy, we first consider the linearized problem at
W, and we solve it in a finite-codimensional space, i.e., the orthogonal space to
the finite-dimensional subspace generated by the derivatives of W with respect
to the parameters Λ and Q̄i in the case n = 4, and the orthogonal space to the
finite-dimensional subspace generated by the derivatives of W with respect to the
parameters Λ, Q̄i and η in the case n = 6. Equipping H1(Ωε) with the scalar
product

(u, v)ε =

∫
Ωε

(∇u · ∇v + µε2uv). (3.1)

For the case n = 4. Orthogonality to the functions

Y0 =
∂W

∂Λ
, Yi =

∂W

∂Q̄i
, 1 ≤ i ≤ 4, (3.2)

in that space is equivalent to the orthogonality in L2(Ωε), equipped with the usual
scalar product 〈·, ·〉, to the functions Zi, 0 ≤ i ≤ 4, defined as{

Z0 = −∆∂W
∂Λ + µε2 ∂W

∂Λ ,

Zi = −∆ ∂W
∂Q̄i

+ µε2 ∂W
∂Q̄i

, 1 ≤ i ≤ 4.
(3.3)

Straightforward computations provide us with the estimate:

|Zi(z)| ≤ C(ε4 + 〈z − Q̄〉−6). (3.4)

Then, we consider the following problem: given h, finding a solution φ which
satisfies 

−∆φ+ µε2φ− 24W 2φ = h+ Σ4
i=0ciZi in Ωε,

∂φ
∂ν = 0 on ∂Ωε,

〈Zi, φ〉 = 0, 0 ≤ i ≤ 4,

(3.5)

for some numbers ci.
While for the case n = 6. Orthogonality to the functions

Y0 =
∂W

∂Λ
, Yi =

∂W

∂Q̄i
, 1 ≤ i ≤ 6, Y7 =

∂W

∂η
, (3.6)

in that space is equivalent to the orthogonality in L2(Ωε), equipped with the usual
scalar product 〈·, ·〉, to the functions Zi, 0 ≤ i ≤ 7, defined as

Z0 = −∆∂W
∂Λ + µε2 ∂W

∂Λ ,

Zi = −∆ ∂W
∂Q̄i

+ µε2 ∂W
∂Q̄i

, 1 ≤ i ≤ 6,

Z7 = −∆∂W
∂η + µε2 ∂W

∂η .

(3.7)

Direct computations provide us the following estimate:

|Zi(z)| ≤ C(ε6 + 〈z − Q̄〉−8), 0 ≤ i ≤ 6, Z7(z) = O(ε6). (3.8)

Then, we consider the following problem: given h, finding a solution φ which
satisfies 

−∆φ+ µε2φ− 48Wφ = h+ Σ7
i=0diZi in Ωε,

∂φ
∂ν = 0 on ∂Ωε,

〈Zi, φ〉 = 0, 0 ≤ i ≤ 7,

(3.9)
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for some numbers di.
Existence and uniqueness of φ will follow from an inversion procedure in suitable

weighted function space. To this end, we define{
‖φ‖∗ = ‖〈z − Q̄〉φ(z)‖∞, ‖f‖∗∗ = ε−3(− ln ε)

1
2 |f |+ ‖〈z − Q̄〉3f(z)‖∞, n = 4,

‖φ‖∗∗∗ = ‖〈z − Q̄〉2φ(z)‖∞, ‖f‖∗∗∗∗ = ‖〈z − Q̄〉4f(z)‖∞, n = 6,

(3.10)
where ‖f‖∞ = maxz∈Ωε |f(z)| and f = |Ωε|−1

∫
Ωε
f(z)dz denotes the average of f

in Ωε.
Before stating an existence result for φ in (3.5) and (3.9), we need the following

lemma:

Lemma 3.1. Let u and f satisfy

−∆u = f,
∂u

∂ν
= 0, ū = f̄ = 0.

Then

|u(x)| ≤ C
∫

Ωε

|f(y)|
|x− y|n−2

dy. (3.11)

Proof. The proof is similar to Lemma 3.1 in [19], we omit it here. �

As a consequence, we have

Corollary 3.2. For n = 4, suppose u and f satisfy

−∆u+ µε2u = f in Ωε,
∂u

∂ν
= 0 on ∂Ωε.

Then
‖u‖∗ ≤ C‖f‖∗∗. (3.12)

For n = 6, suppose u and f satisfy

−∆u+ cµε2u = f in Ωε,
∂u

∂ν
= 0 on ∂Ωε, u = f = 0,

where c is an arbitrary constant. Then

‖u‖∗∗∗ ≤ C‖f‖∗∗∗∗. (3.13)

Proof. For n = 4, integrating the equation yields f̄ = µε2ū. We may rewrite the
original equation as

∆(u− ū) = µε2(u− ū)− (f − f̄).

With the help of Lemma 3.1, we get

|u(y)− ū| ≤ Cµε2

∫
Ωε

|u(x)− ū|
|x− y|2

dx+ C

∫
Ωε

|f(x)− f̄ |
|x− y|2

dx.

Since

〈y − Q̄〉
∫
R4

1

|x− y|2
〈x− Q̄〉−3dx <∞,

we obtain

‖〈y − Q̄〉|u− ū|‖∞ ≤ Cµε2‖〈y − Q̄〉3|u− ū|‖∞ + C‖〈y − Q̄〉3|f − f̄ |‖∞
≤ Cµ‖〈y − Q̄〉|u− ū|‖∞ + C‖〈y − Q̄〉3|f − f̄ |‖∞,

which gives
‖〈y − Q̄〉|u− ū|‖∞ ≤ C‖〈y − Q̄〉3|f − f̄ |‖∞,
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whence

‖〈y − Q̄〉u‖∞ ≤ C‖〈y − Q̄〉‖∞|ū|+ Cε−3|f̄ |+ ‖〈y − Q̄〉3f‖∞ ≤ C‖f‖∗∗.

Hence we finish the proof of the case n = 4.
For n = 6, by the help of Lemma 3.1,

|〈y − Q̄〉2u| ≤ C
∫

Ωε

〈y − Q̄〉2(|µε2u|+ |f |)
|x− y|4

dx ≤ C(|µ ln ε|‖u‖∗∗∗ + ‖f‖∗∗∗∗),

where we used some similar estimates appeared in n = 4. From the above inequality,
we obtain ‖u‖∗∗∗ ≤ ‖f‖∗∗∗∗. Hence we finish the proof. �

We now state the main result in this section

Proposition 3.3. There exists ε0 > 0 and a constant C > 0, independent of
ε, Λ, Q satisfying (2.11) and independent of ε, η, Λ, Q satisfying (2.13), such
that for all 0 < ε < ε0 and all h ∈ L∞(Ωε), problem (3.5) and (3.9) has a unique so-
lution φ = Lε(h). Furthermore, for equation (3.5) and (3.9), we have the following
estimates,

‖Lε(h)‖∗ ≤ C‖h‖∗∗, |ci| ≤ C‖h‖∗∗ for 0 ≤ i ≤ 4,

‖Lε(h)‖∗∗∗ ≤ C‖h‖∗∗∗∗, |di| ≤ C‖h‖∗∗∗∗ for 0 ≤ i ≤ 6. (3.14)

Moreover, the map Lε(h) is C1 with respect to Λ, Q̄ of the L∞∗ -norm in n = 4 and
with respect to Λ, Q̄, η of the L∞∗∗∗-norm in n = 6, i.e.,

‖D(Λ,Q̄)Lε(h)‖∗ ≤ C‖h‖∗∗ in n = 4, ‖D(η,Λ,Q̄)Lε(h)‖∗∗∗ ≤ Cε−1‖h‖∗∗∗∗ in n = 6.

(3.15)

The argument goes the same as the Proposition 3.1 in [19], for convenience of
the reader, we list the proof here. First, we need the following Lemma

Lemma 3.4. For n = 4, assume that φε solves (3.5) for h = hε. If ‖hε‖∗∗ goes to
zero as ε goes to zero, so does ‖φε‖∗. While for n = 6, assume that φε solves (3.9)
for h = hε. If ‖hε‖∗∗∗∗ goes to zero as ε goes to zero, so does ‖φε‖∗∗∗.

Proof. We prove this lemma by contradiction. First we consider for the case n = 4,
let ‖φε‖∗ = 1. Multiplying the first equation in (3.5) by Yj and integrating in Ωε
we find ∑

i

ci〈Zi, Yj〉 = 〈−∆Yj + µε2Yj − 24W 2Yj , φε〉 − 〈hε, Yj〉.

We can easily get the following equalities from the definition of Zi, Yj

〈Z0, Y0〉 = ‖Y0‖2ε = γ0 + o(1),

〈Zi, Yi〉 = ‖Yi‖2ε = γ1 + o(1), 1 ≤ i ≤ 4, (3.16)

where γ0, γ1 are strictly positive constants, and

〈Zi, Yj〉 = o(1), i 6= j. (3.17)

On the other hand, in view of the definition of Yj and W , straightforward compu-
tations yield

〈−∆Yj + µε2Yj − 24W 2Yj , φε〉 = o(‖φε‖∗)
and

〈hε, Yj〉 = O(‖hε‖∗∗).
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Consequently, inverting the quasi diagonal linear system solved by the ci’s we find

ci = O(‖hε‖∗∗) + o(‖φε‖∗). (3.18)

In particular, ci = o(1) as ε goes to zero.
Since ‖φε‖∗ = 1, elliptic theory shows that along some subsequence, the functions

φε,0 = φε(y − Q̄) converge uniformly in any compact subset of R4 to a nontrivial
solution of

−∆φ0 = 24U2
Λ,0φ0.

A bootstrap argument (see e.g.Proposition 2.2 of [23]) implies |φ0(y)| ≤ C(1+|y|)−2.
As consequence, φ0 can be written as

φ0 = α0
∂UΛ,0

∂Λ
+
∑
i

αi
∂UΛ,0

∂yi

(see [18]). On the other hand, equalities 〈Zi, φε〉 = 0 yield∫
R4

−∆
∂UΛ,0

∂Λ
φ0 =

∫
R4

U2
Λ,0

∂UΛ,0

∂Λ
φ0 = 0,∫

R4

−∆
∂UΛ,0

∂yi
φ0 =

∫
R4

U2
Λ,0

∂UΛ,0

∂yi
φ0 = 0, 1 ≤ i ≤ 4.

As we also have∫
R4

∣∣∣∇∂UΛ,0

∂Λ

∣∣∣2 = γ0 > 0,

∫
R4

∣∣∣∇∂UΛ,0

∂yi

∣∣∣2 = γ1 > 0, 1 ≤ i ≤ 4,

and ∫
R4

∇∂UΛ,0

∂Λ
∇∂UΛ,0

∂yi
=

∫
R4

∇∂UΛ,0

∂yi
∇∂UΛ,0

∂yj
= 0, i 6= j,

the α′is solve a homogeneous quasi diagonal linear system, yielding αi = 0, 0 ≤ i ≤
4, and φ0 = 0. So φε(z − Q̄) → 0 in C1

loc(Ωε). Next, we will show ‖φε‖∗ = o(1) by
using the equation (3.5).

Using (3.5) and Corollary 3.2, we have

‖φε‖∗ ≤ C(‖W 2φε‖∗∗ + ‖h‖∗∗ +
∑
i

|ci|‖Zi‖∗∗). (3.19)

Then we estimate the right hand side of (3.19) term by term. By the help of (2.16),
we deduce that

|〈z − Q̄〉3W 2φε| ≤ Cε4(− ln ε)〈z − Q̄〉2‖φε‖∗ + 〈z − Q̄〉−1|φε|. (3.20)

Since ‖φε‖∗ = 1, the first term on the right hand side of (3.20) is dominated by
ε2(− ln ε). The last term goes uniformly to zero in any ball BR(Q̄), and is dominated
by 〈z − Q̄〉−2‖φε‖∗ = 〈z − Q̄〉−2, which, through the choice of R, can be made as
small as possible in Ωε\BR(Q̄). Consequently,

|〈z − Q̄〉3W 2φε| = o(1) (3.21)

as ε goes to zero, uniformly in Ωε. On the other hand, we can also get

ε−3(− ln ε)
1
2W 2φε ≤ Cε(− ln ε)

1
2

∫
Ωε

(〈z − Q̄〉−4 + ε4(− ln ε))|φε|

≤ Cε(− ln ε)
1
2

∫
Ωε

(〈z − Q̄〉−5 + ε4(− ln ε)〈z − Q̄〉−1)‖φε‖∗

= o(1).



12 JUNCHENG WEI, BIN XU, AND WEN YANG

Finally, we obtain
‖W 2φε‖∗∗ = o(1).

In view of the formula (3.4), we have

〈z − Q̄〉3|Zi| ≤ C(〈z − Q̄〉3ε4(
1

− ln ε
) + 〈z − Q̄〉−3) = O(1).

and

ε−3(− ln ε)
1
2Zi ≤ Cε(− ln ε)

1
2

∫
Ωε

|〈z − Q̄〉−6 + ε4|dx = o(1).

Hence, ‖Zi‖∗∗ = O(1). Therefore, we have

‖φε‖∗ ≤ C(‖W 2φε‖∗∗ + ‖h‖∗∗ +
∑
i

|ci|‖Zi‖∗∗) = o(1), (3.22)

which contradicts our assumption that ‖φε‖∗ = 1.

For n = 6. We still assume that ‖φε‖∗∗∗ = 1. Using the similar arguments in
previous case, we obtain the following

di = O(‖h‖∗∗∗∗) + o(‖φ‖∗∗∗) for 0 ≤ i ≤ 6, d7 = O(ε−2‖h‖∗∗∗∗) +O(ε−1‖φ‖∗∗∗).
(3.23)

and φε(z − Q̄) → 0 in C1
loc(Ωε). Next, we will show ‖φε‖∗∗∗ = o(1) by using the

equation (3.9). At first, we write the equation (3.9) into the following

−∆φε + µε2(1− 48η)φε = h+
∑
i

diZi + 48Uφε + 48ε3Ûφε. (3.24)

Since
∫

Ωε
φ = 0, as a result, we can find the integral for both sides of (3.24) in Ωε

are 0. Using Corollary 3.2 again, we have

‖φε‖∗∗∗ ≤ C(‖(U + ε3Û)φε‖∗∗∗∗ + ‖h‖∗∗∗∗ +
∑
i

|di|‖Zi‖∗∗∗∗). (3.25)

From the formula of U and Û , it is not difficult to show

U + ε3Û ≤ C〈z − Q̄〉−4.

Similar to the case n = 4, we could show ‖〈z−Q̄〉−4φε‖∗∗∗∗ = o(1), ‖Zi‖∗∗∗∗ = O(1)
for 0 ≤ i ≤ 6 and ‖Z7‖∗∗∗∗ = O(ε2). Therefore, by the above facts and (3.23), we
conclude

‖φε‖∗∗∗ ≤ o(1) + C‖h‖∗∗∗∗ + o(1)‖φε‖∗∗∗ = o(1)

which contradicts the previous assumption that ‖φε‖∗∗∗ = 1. Hence, we finish the
proof. �

Proof of Proposition 3.3. Since the proof of the case n = 4 and n = 6 are almost
the same, we only give the proof for the former one. We set

H = {φ ∈ H1(Ωε) | 〈Zi, φ〉 = 0, 0 ≤ i ≤ 4},
equipped with the scalar product (·, ·)ε. Problem (3.5) is equivalent to find φ ∈ H
such that

(φ, θ)ε = 〈24W 2φ+ h, θ〉, ∀θ ∈ H,
that is

φ = Tε(φ) + h̃, (3.26)

where h̃ depends on h linearly, and Tε is a compact operator in H. Fredholm’s
alternative ensures the existence of a unique solution, provided that the kernel of
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Id − Tε is reduced to 0. We notice that any φε ∈ Ker(Id − Tε) solves (3.5) with
h = 0. Thus, we deduce from Lemma 3.4 that ‖φε‖∗ = o(1) as ε goes to zero. As
Ker(Id−Tε) is a vector space and is {0}. The inequalities (3.14) follow from Lemma
3.4 and (3.18). This completes the proof of the first part of Proposition 3.3.

The smoothness of Lε with respect to Λ and Q̄ is a consequence of the smoothness
of Tε and h̃, which occur in the implicit definition (3.26) of φ ≡ Lε(h), with respect
to these variables. Inequality (3.15) is obtained by differentiating (3.5), writing the
derivatives of φ with respect Λ and Q̄ as linear combinations of the Zi’s and an
orthogonal part, and estimating each term by using the first part of the proposition,
one can see [6],[12] for detailed computations. 2

4. Finite-dimensional reduction:a nonlinear problem

In this section, we turn our attention to the nonlinear problem, which we solve
in the finite-dimensional subspace orthogonal to the Zi. Let Sε[u] be as defined at
(1.12). Then (1.11) is equivalent to

Sε[u] = 0 in Ωε, u+ 6= 0,
∂u

∂ν
= 0 on ∂Ωε. (4.1)

Indeed, if u satisfies (4.1), the Maximal Principle ensures that u > 0 in Ωε and
(1.12) is satisfied. Observing that

Sε[W + φ] = −∆(W + φ) + µε2(W + φ)− n(n− 2)(W + φ)
n+2
n−2

may be written as

Sε[W + φ] = −∆φ+ µε2φ− n(n+ 2)W
4

n−2φ+Rε − n(n− 2)Nε(φ) (4.2)

with

Nε(φ) = (W + φ)
n+2
n−2 −W

n+2
n−2 − n+ 2

n− 2
W

4
n−2φ (4.3)

and

Rε = Sε[W ] = −∆W + µε2W − n(n− 2)W
n+2
n−2 . (4.4)

From Lemma 2.1 we get{
‖Rε‖∗∗ ≤ CεΛ + ε2(− ln ε)

1
2 , ‖D(Λ,Q̄)R

ε‖∗∗ ≤ Cε, n = 4,

‖Rε‖∗∗∗∗ ≤ Cε2 2
3 , ‖D(Λ,Q̄,η)R

ε‖∗∗∗∗ ≤ Cε2, n = 6.
(4.5)

We now consider the following nonlinear problem: finding φ such that, for some
numbers ci,

−∆(W + φ) + µε2(W + φ)− 8(W + φ)3 =
∑
i ciZi in Ωε,

∂φ
∂ν = 0 on ∂Ωε,

〈Zi, φ〉 = 0, 0 ≤ i ≤ 4

(4.6)

for n = 4, and finding φ such that, for some numbers di,
−∆(W + φ) + µε2(W + φ)− 24(W + φ)2 =

∑
i diZi in Ωε,

∂φ
∂ν = 0 on ∂Ωε,

〈Zi, φ〉 = 0, 0 ≤ i ≤ 7

(4.7)
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for n = 6. The first equation in (4.6) and (4.7) can be also written as

−∆φ+ µε2φ− 24W 2φ = 8Nε(φ)−Rε +
∑
i

ciZi,

−∆φ+ µε2φ− 48Wφ = 24Nε(φ)−Rε +
∑
i

diZi. (4.8)

In order to employ the contraction mapping theorem to prove that (4.6) and (4.7)
are uniquely solvable in the set where ‖φ‖∗ and ‖φ‖∗∗∗ are small respectively, we
need to estimate Nε in the following lemma.

Lemma 4.1. There exists ε1 > 0, independent of Λ, Q̄, η and C independent of
ε,Λ, Q̄, η such that for ε ≤ ε1 and

‖φ‖∗ ≤ CεΛ for n = 4, ‖φ‖∗∗∗ ≤ Cε2 2
3 for n = 6.

Then,

‖Nε(φ)‖∗∗ ≤ CεΛ‖φ‖∗ for n = 4, ‖Nε(φ)‖∗∗∗∗ ≤ Cε‖φ‖∗∗∗ for n = 6. (4.9)

For

‖φi‖∗ ≤ CεΛ for n = 4, ‖φi‖∗∗∗ ≤ Cε2 2
3 for n = 6, i = 1, 2.

Then,

‖Nε(φ1)−Nε(φ2)‖∗∗ ≤ CεΛ‖φ1 − φ2‖∗ for n = 4,

‖Nε(φ1)−Nε(φ2)‖∗∗∗∗ ≤ Cε‖φ1 − φ2‖∗∗∗ for n = 6. (4.10)

Proof. Since the proof of these two cases are similar, we only consider n = 4 here.
From (4.3), we see

|Nε(φ)| ≤ C(Wφ2 + |φ|3). (4.11)

Using (2.15), we gain

ε−3(− ln ε)
1
2Wφ2 + |φ|3 = ε(− ln ε)

1
2

∫
Ωε

(Wφ2 + |φ|3),

where the integration term on the right hand side of the above equality can be
estimated as∣∣Wφ2 + |φ|3

∣∣ ≤ C
((
〈z − Q̄〉−2 + ε2(− ln ε)

1
2

)
|φ|2 + |φ|3

)
≤ C

((
〈z − Q̄〉−4 + ε2(− ln ε)

1
2 〈z − Q̄〉−2

)
‖φ‖2∗ + 〈z − Q̄〉−3‖φ‖3∗

)
≤ C

((
ε〈z − Q̄〉−4 + ε3(− ln ε)

1
2 〈z − Q̄〉−2

)
Λ
)
‖φ‖∗.

As a consequence,

ε−3(− ln ε)
1
2Wφ2 + |φ|3 ≤ Cε2(− ln ε)

3
2 Λ‖φ‖∗ ≤ CεΛ‖φ‖∗.

On the other hand,

‖〈z − Q̄〉3(Wφ2 + |φ|3)‖∞ ≤ CεΛ‖φ‖∗.
Thus, (4.9) follows. Concerning (4.10), we write

Nε(φ1)−Nε(φ2) = ∂ϑNε(ϑ)(φ1 − φ2)

for some ϑ = xφ1 + (1− x)φ2, x ∈ [0, 1]. From

∂ϑNε(ϑ) = 3[(W + ϑ)2 −W 2],



ON LIN-NI’S CONJECTURE IN GENERAL DOMAIN, N=4, 6. 15

we deduce that
∂ϑNε(ϑ) ≤ C(|W ||ϑ|+ ϑ2) (4.12)

and the proof of (4.10) is similar to the previous one. �

Proposition 4.2. For the case n = 4, there exists C, independent of ε and Λ, Q
satisfying (2.11), such that for small ε problem (4.6) has a unique solution φ =
φ(Λ, Q̄, ε) with

‖φ‖∗ ≤ CεΛ. (4.13)

Moreover, (Λ, Q̄)→ φ(Λ, Q̄, ε) is C1 with respect to the ∗-norm, and

‖D(Λ,Q̄)φ‖∗ ≤ Cε. (4.14)

For the case n = 6, there exists C, independent of ε and Λ, η, Q satisfying (2.13),
such that for small ε problem (4.7) has a unique solution φ = φ(Λ, η, Q̄, ε) with

‖φ‖∗∗∗ ≤ Cε
8
3 . (4.15)

Moreover, (Λ, η, Q̄)→ φ(Λ, η, Q̄, ε) is C1 with respect to the ∗ ∗ ∗-norm, and

‖D(Λ,η,Q̄)φ‖∗∗∗ ≤ Cε
5
3 . (4.16)

Proof. We only give the proof of n = 4, the other case can be argued similarly. In
the same spirit of [6], we consider the map Aε from F={φ ∈ H1(Ωε)|‖φ‖∗ ≤ C

′
εΛ}

to H1(Ωε) defined as
Aε(φ) = Lε(8Nε(φ) +Rε).

Here C
′

is a large number, to be determined later, and Lε is given by Proposition
3.3. We note that finding a solution φ to problem (4.6) is equivalent to finding a
fixed point of Aε. On the one hand, we have for φ ∈ F , using (4.5), Proposition 3.3
and Lemma 4.1,

‖Aε(φ)‖∗ ≤ 8‖Lε(Nε(φ))||∗ + ‖Lε(Rε)‖∗ ≤ C1(‖Nε(φ)‖∗∗ + εΛ)

≤ C2C
′
ε2Λ + C1εΛ ≤ C

′
εΛ

for C
′

= 2C1 and ε small enough, implying that Aε sends F into itself. On the
other hand, Aε is a contraction. Indeed, for φ1 and φ2 in F , we write

‖Aε(φ1)−Aε(φ2)‖∗ ≤ C‖Nε(φ1)−Nε(φ2)‖∗∗ ≤ CεΛ‖φ1 − φ2‖∗ ≤
1

2
‖φ1 − φ2‖∗

for ε small enough. The contraction Mapping Theorem implies that Aε has a
unique fixed point in F , that is, problem (4.6) has a unique solution φ such that

‖φ‖∗ ≤ C
′
εΛ.

In order to prove that (Λ, Q̄) → φ(Λ, Q̄) is C1, we remark that if we set for
ψ ∈ F,

B(Λ, Q̄, ψ) ≡ ψ − Lε(8Nε(ψ) +Rε),

then φ is defined as
B(Λ, Q̄, φ) = 0. (4.17)

We have
∂ψB(Λ, Q̄, ψ)[θ] = θ − 8Lε(θ(∂ψNε)(ψ)).

Using Proposition 3.3 and (4.12) we write

‖Lε(θ(∂ψNε)(ψ))‖∗ ≤ C‖θ(∂ψNε)(ψ)‖∗∗ ≤ ‖〈z − Q̄〉−1(∂ψNε)(ψ)‖∗∗‖θ‖∗
≤ C‖〈z − Q̄〉−1(W+|ψ|+ |ψ|2)‖∗∗‖θ‖∗.
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Using (2.16), (3.10) and ψ ∈ F , we obtain

‖Lε(θ(∂ψNε)(ψ))‖∗ ≤ Cε‖θ‖∗.

Consequently, ∂ψB(Λ, Q̄, φ) is invertible with uniformly bounded inverse. Then the
fact that (Λ, Q̄) 7→ φ(Λ, Q̄) is C1 follows from the fact that (Λ, Q̄, ψ) 7→ Lε(Nε(ψ))
is C1 and the implicit function theorem.

Finally, let us consider (4.14). Differentiating (4.17) with respect to Λ, we find

∂Λφ = (∂ψB(Λ, ξ, φ))−1
(

(∂ΛLε)(Nε(φ)) + Lε((∂ΛNε)(φ)) + Lε(∂ΛR
ε)
)
.

Then by Proposition 3.3,

‖∂Λφ‖∗ ≤ C(‖Nε(φ)‖∗∗ + ‖(∂ΛNε)(φ)‖∗∗ + ‖∂ΛR
ε‖∗∗).

From Lemma 4.1 and (4.13), we know that ‖Nε(φ)‖∗∗ ≤ Cε2. Concerning the next
term, we notice that according to the definition of Nε,

|∂ΛNε(φ)| = 3φ2|∂ΛW |.

Note that

|∂ΛW (z)| ≤ C(〈z − Q̄〉−2 + ε2(− ln ε)
1
2 ),

we have

‖∂ΛNε(φ)‖∗∗ ≤ Cε.

Finally, using (4.5), we obtain

‖∂Λφ‖∗ ≤ Cε.

The derivative of φ with respect to Q̄ may be estimated in the same way. This
concludes the proof. �

5. Finite-dimensional reduction: reduced energy

Let us define a reduced energy functional as

Iε(Λ, Q) ≡ Jε[WΛ,Q̄ + φε,Λ,Q̄] (5.1)

for n = 4 and

Iε(Λ, η,Q) ≡ Jε[WΛ,η,Q̄ + φε,Λ,η,Q̄] (5.2)

for n = 6. We have

Proposition 5.1. The function u = WΛ,Q̄ +φε,Λ,Q̄ is a solution to problem (1.11)

for n = 4 if and only if (Λ, Q̄) is a critical point of Iε. The function u = WΛ,η,Q̄ +

φε,Λ,η,Q̄ is a solution to problem (1.11) for n = 6 if and only if (Λ, η, Q̄) is a critical
point of Iε.

Proof. Here we only give the proof for the case n = 6, the other case can be proved
in the same way. We notice that u = W +φ being a solution of (1.11) is equivalent
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to being a critical point of Jε, which is also equivalent to the vanish of the di’s in
(4.7) or, in view of

〈Z0, Y0〉 = ‖Y0‖2ε = γ0 + o(1),

〈Zi, Yi〉 = ‖Yi‖2ε = γ1 + o(1), 1 ≤ i ≤ 6,

〈Z7, Y7〉 = ‖Y7‖2ε = γ2ε
3, (5.3)

where γ0, γ1, γ2 are strictly positive constants, and

〈Zi, Yj〉 = o(1), i 6= j, 0 ≤ i, j ≤ 6, 〈Zi, Yj〉 = O(ε3), i 6= j, i = 7 or j = 7. (5.4)

We have

J ′ε[W + φ][Yi] = 0, 0 ≤ i ≤ 7. (5.5)

On the other hand, we deduce from (5.2) that I ′ε(Λ, η,Q) = 0 is equivalent to the
cancellation of J ′ε(W + φ) applied to the derivative of W + φ with respect to Λ, η
and Q̄. By the definition of Yi’s and Proposition 4.2, we have

∂(W + φ)

∂Λ
= Y0 + y0,

∂(W + φ)

∂Q̄i
= Yi + yi, 1 ≤ i ≤ 6,

∂(W + φ)

∂η
= Y7 + y7

with ‖yi‖∗∗∗ = O(ε2), 0 ≤ i ≤ 7. We write

−∆(W + φ) + µε2(W + φ)− 24(W + φ)2 =

7∑
j=0

αjZj

and denote aij = 〈yi, Zj〉. Since J ′ε[W +φ][θ] = 0 for 〈θ, Zi〉 = (θ, Yi)ε = 0, 0 ≤ i ≤
7, it turns out that I ′ε(Λ, η, Q̄) = 0 is equivalent to

([bij ] + [aij ])[αj ] = 0,

where bij = 〈Yi, Zj〉. Using the estimate ‖yi‖∗∗∗ = O(ε2) and the expression of
Zi, Yi, 0 ≤ i ≤ 7, we directly obtain

b00 = γ0 + o(1), bii = γ1 + o(1) for 1 ≤ i ≤ 6, b77 = γ2ε
3,

bij = o(1) for 0 ≤ i 6= j ≤ 6, bij = O(ε3) for i = 7 or j = 7, i 6= j,

aij = O(ε2) for 0 ≤ i ≤ 7, 0 ≤ j ≤ 6, ai7 = O(ε4) for 0 ≤ i ≤ 7.

Then it is easy to see the matrix [bij + aij ] is invertible by the above estimates of
each components, hence αi = 0. We see that I ′ε(Λ, η, Q̄) = 0 means exactly that
(5.5) is satisfied. �

With Proposition 5.1, it remains to find critical points of Iε. First, we establish
an expansion of Iε.

Proposition 5.2. In the case n = 4, for ε sufficiently small, we have

Iε(Λ, η,Q) = Jε[W ] + ε2
( c1
− ln ε

) 1
2σε,4(Λ, Q) (5.6)

where σε,4 = O(Λ2) + o(1) and DΛ(σε,4) = O(Λ) + o(1) as ε goes to 0, uniformly
with respect to Λ, Q satisfying (2.11).

In the case n = 6, for ε sufficiently small, we have

Iε(Λ, η,Q) = Jε[W ] + ε4σε,6(Λ, η,Q) (5.7)

where σε,6 = o(1) and DΛ,η(σε,6) = o(1) as ε goes to 0, uniformly with respect to
Λ, η, Q satisfying (2.13).
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Proof. We only consider the case n = 4 here, the case n = 6 can be argued similarly
with minor changes. In view of (5.1), a Taylor expansion and the fact that J ′ε[W +
φ][φ] = 0 yield

Iε(Λ, Q)− Jε[W ] =Jε[W + φ]− Jε[W ] = −
∫ 1

0

J ′′ε (W + tφ)[φ, φ](t)dt

=−
∫ 1

0

(

∫
Ωε

(|∇φ|2 + µε2φ2 − 24(W + tφ)2φ2))tdt,

whence

Iε(Λ, Q)− Jε[W ]

= −
∫ 1

0

(
8

∫
Ωε

(Nε(φ)φ+ 3[W 2 − (W + tφ)2]φ2)
)
tdt−

∫
Ωε

Rεφ. (5.8)

The first term on the right hand side of (5.8) can be estimated as∣∣∣ ∫
Ωε

Nε(φ)φ
∣∣∣ ≤ C ∫

Ωε

|φ|4 + |Wφ3| = O(ε4 ln ε).

Similarly, for the second term on the right hand side of (5.8), we obtain∣∣∣ ∫
Ωε

[W 2 − (W + tφ)2]φ2
∣∣∣ ≤ C ∫

Ωε

|φ|4 + |Wφ3| = O(ε4 ln ε).

Concerning the last one, recalling

|Rε|∗ = |Sε[W ]| =O
(
ε4(− ln ε)〈z − Q̄〉−2 + ε2(− ln ε)

1
2 〈z − Q̄〉−4

)
+O(Λ)

( ε4

(− ln ε)
| ln 1

ε(1 + |z − Q̄|)
|+ ε4

(− ln ε)

)
uniformly in Ωε. A simple computation shows that∣∣∣ ∫

Ωε

Rεφ
∣∣∣ = O

(
ε2(− ln ε)

1
2 Λ2 + ε3(− ln ε)

1
2

)
,

where we used ‖φ‖∗ = O(εΛ). This concludes the proof of the first part of Propo-
sition (5.6).

An estimate for the derivatives with respect to Λ is established exactly in the
same way, differentiating the right side in (5.8) and estimating each term separately,
using (4.3), (4.5) and Lemma 2.1. �

6. Proof of Theorem 1.1

In this section, we prove the existence of a critical point of Iε(Λ, Q) and Iε(Λ, η,Q),
and then prove Theorem 1.1 by Proposition 5.1. According to Proposition 5.2 and
Lemma 2.1. Setting

Kε(Λ, Q) =
Iε(Λ, Q)− 2

∫
Rn U

4

(− ln ε
c1

)
1
2 ε2

(6.1)
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and

Kε(Λ, η,Q) =
Iε(Λ, η,Q)− 4

∫
Rn U

3

ε3
(6.2)

Then, we have when n = 4,

Kε(Λ, Q) =
1

4
c4Λ2 ln

1

Λε
(
c1
− ln ε

)− c24Λ2

2|Ω|
+

1

2
c24Λ2H(Q,Q)(

c1
− ln ε

)
1
2

+O
( Λ2

− ln ε
+ ε
)
, (6.3)

and when n = 6,

Kε(Λ, η,Q) =
(1

2
η2|Ω| − c6Λ2η +

1

48
c6Λ2 − 8η3|Ω|

)
+

1

2
c26Λ4H(Q,Q)ε

+
1

2

(
η − c6Λ2

|Ω|
)
ε

∫
Ω

Λ2

|x−Q|4
+ o(ε). (6.4)

Then we begin to consider Kε(Λ, Q), finding its critical points with respect to
Λ, Q, and Kε(Λ, η,Q) with its critical points with respect to the parameters Λ, η,Q.

First, we consider Kε(Λ, Q) for n = 4. For the setting of the parameters Λ, Q,
we see that Λ, Q are located on a compact set, we can obtain a maximal value of
Kε(Λ, Q). We claim that:

Claim: The maximal point of Kε(Λ, Q) with respect to Λ, Q can not happen on
the boundary of the parameters.

If we can prove this claim, then we could obtain an interior critical point of
Kε(Λ, Q). Before proving the claim, we first consider

Fε(Λ) =
1

4
c4Λ2 ln

1

Λε
(
c1
− ln ε

)− c24Λ2

2|Ω|
.

Note that

∂

∂Λ
[Fε(Λ)] =

1

2
c4Λ ln

1

Λε
(
c1
− ln ε

)− 1

4
c4Λ(

c1
− ln ε

)− c24Λ

|Ω|
,

Choosing c1 = 2c4
|Ω| , we could obtain that there exists

Λ∗ = exp(−1

2
) ∈ (exp(−1

2
)εβ , exp(−1

2
)ε−β)

with some proper fixed constant β ∈ (0, 1
3 ), such that

∂

∂Λ
Fε |Λ=Λ∗= 0.

It can be also found that such Λ∗ provides the maximal value of Fε(Λ) in [Λ4,1,Λ4,2],
where Λ4,1 = exp(− 1

2 )εβ ,Λ4,2 = exp(− 1
2 )ε−β . In order to prove the claim, we need

to take Λ into consideration for the expansion of the energy, going through the first
part of the Appendix, we have

Kε(Λ, Q) =
1

4
c4Λ2 ln

1

Λε
(
c1
− ln ε

)− c24Λ2

2|Ω|
+

1

2
c24Λ2H(Q,Q)(

c1
− ln ε

)
1
2

+O(
Λ2

− ln ε
+ ε).
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Now, we come back to prove the claim, choosing Λ = Λ∗ and Q = p. (Here p
refers to the point where H(Q,Q) obtain its maximal value, it is possible to find
such a point. Indeed, we notice a fact H(Q,Q) → −∞ as d(Q, ∂Ω) → 0 see [19]
and references therein for a proof of this fact. Therefore we could find such p.)

First, we prove that the maximal value can not happen on ∂Mδ4 . We choose
δ4 such that ω1 < max∂Mδ4

H < ω2 for some proper constant ω1, ω2 sufficiently

negative, then we fixed Mδ4 . It is easy to see that Kε(Λ, Q) < Kε(Λ, p), where Q
lies on the boundary of Mδ4 and Λ ∈ (Λ4,1,Λ4,2). For Λ = Λ4,1 or Λ4,2, we go to
the arguments below. Therefore, we prove that the maximal point can not lie on
the boundary of Mδ4 × [Λ4,1,Λ4,2].

Next, we show Kε(Λ
∗, p) > Kε(Λ4,2, Q). It is easy to see that

Fε[Λ4,2] ≤ cε−2β ,

where c < 0. Then we can find c1 < 0 such that Kε(Λ4,2, Q) ≤ c1ε
−2β for any

Q ∈ Mδ4 , since the other terms compared to ε−2β are higher order term. On the
other hand, for the choice of Λ∗, p, we see that Kε(Λ

∗, p) = O(1). Therefore, we
prove that Kε(Λ

∗, p) > Kε(Λ4,2, Q) for any Q ∈Mδ4 .
It remains to prove that the maximal value can not happen at Λ = Λ4,1. We

choose Λ = εβ/2, Q = p, direct computation yields.

Kε(ε
β/2, p) =

βc24ε
β

4|Ω|
(1 + o(1)), Kε(Λ4,1, Q) =

βc24ε
2β

2|Ω|
(1 + o(1)).

It is to see Kε(ε
β/2, p) > Kε(Λ4,1, Q) for any Q ∈Mδ4 when ε is sufficiently small.

Hence, we finish the proof of the claim. In other words, we could obtain an interior
maximal point in [Λ4,1,Λ4,2]×Mδ4 . Therefore, we show the existence of the critical
points of Kε(Λ, Q) with respect to Λ, Q.

For n = 6. We set η = 1
48 + aε

1
3 , c6Λ2

|Ω| = 1
96 + bε

2
3 , then

Kε(a, b,Q) := Kε(Λ, η,Q) =
1

6912
|Ω|+

[
F (Q)− (8a3 + ab)|Ω|

]
ε+ o(ε), (6.5)

where

F (x) =
|Ω|

18432

(
|Ω|H(x, x) +

1

c6

∫
Ω

1

|x− y|4
dy
)
,

−η6 ≤ a ≤ η6 and −Λ6 ≤ b ≤ Λ6.
We set C0 = F (p0), p0 refers to the point where F (x) obtains its maximal value.

Indeed, we have H(Q,Q) → −∞ as d(Q, ∂Ω) → 0 and I(x) =
∫

Ω
1

|x−y|4 dy is

uniformly bounded in Ω. Hence, we can always find such point p0. Let us introduce
another five constants Ci, i = 1, 2, 3, 4, 5, with C2 < C1 < C0, 0 < C3 < C4 < η6

and 0 < C3 < C5 < Λ6, the value of these five constants will be determined later.
We set

Σ0 =
{
− C4 ≤ a ≤ C4, −C5 ≤ b ≤ C5, Q ∈ NC2

}
, (6.6)

where NCi = {q : F (q) > Ci}, i = 1, 2 and δ6 is chosen such that NC2
⊂Mδ6 .

We also define

B = {(a, b,Q) | (a, b) ∈ BC3(0), Q ∈ NC1}, B0 = {(a, b) | (a, b) ∈ BC3(0)}× ∂NC1 ,
(6.7)

where Br(0) := {0 ≤ a2 + b2 ≤ r}.
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It is trivial to see that B0 ⊂ B ⊂ Σ0, B is compact. Let Γ be the class of
continuous functions ϕ : B → Σ0 with the property that ϕ(y) = y, y = (a, b,Q) for
all y ∈ B0. Define the min-max value c as

c = min
ϕ∈Γ

max
y∈B

Kε(ϕ(y)).

We now show that c defines a critical value. To this end, we just have to verify the
following conditions

(T1) maxy∈B0
Kε(ϕ(y)) < c, ∀ϕ ∈ Γ,

(T2) For all y ∈ ∂Σ0 such that Kε(y) = c, there exists a vector τy tangent to
∂Σ0 at y such that

∂τyKε(y) 6= 0.

Suppose (T1) and (T2) hold. Then standard deformation argument ensures that
the min-max value c is a (topologically nontrivial) critical value for Kε(Λ, η,Q) in
Σ0. (Similar notion has been introduced in [7] for degenerate critical points of mean
curvature.)

To check (T1) and (T2), we define ϕ(y) = ϕ(a, b,Q) = (ϕa, ϕb, ϕQ) where
(ϕa, ϕb) ∈ [−C4, C4]× [−C5, C5] and ϕQ ∈ NC2 .

For any ϕ ∈ Γ and Q ∈ NC2
, the map Q→ ϕQ(a, b,Q) is a continuous function

from NC1
to NC2

such that ϕQ(a, b,Q) = Q for Q ∈ ∂NC1
. Let D be the smallest

ball which contain NC1
, we extend ϕQ to a continuous function ϕ̃Q from D to D

where ϕ̃(Q) is defined as follows:

ϕ̃Q(x) = ϕ(x), x ∈ NC1
, ϕ̃Q(x) = Id, x ∈ D \ NC1

.

Then we claim there exists Q′ ∈ D such that ϕ̃Q(Q′) = p0. Otherwise
ϕ̃Q−p0
|ϕ̃Q−p0|

provides a continuous map from D to S5, which is impossible in algebraic topology.
Hence, there exists Q′ ∈ D such that ϕ̃Q(Q′) = p0. By the definition of ϕ̃, we can
further conclude Q′ ∈ NC1

. Whence

max
y∈B

Kε(ϕ(y)) ≥ Kε(ϕa(a, b,Q′), ϕb(a, b,Q
′), p0)

≥ 1

6912
|Ω|+ (C0 − C6|Ω|)ε+ o(ε), (6.8)

where C6 = 8C3
4+C4C5 which stands for the maximal value of 8a3+ab in [−C4, C4]×

[−C5, C5]. As a consequence

c ≥ 1

6912
|Ω|+ (C0 − C6|Ω|)ε+ o(ε). (6.9)

For (a, b,Q) ∈ B0, we have F (ϕQ(a, b,Q)) = C1. So we have

Kε(a, b,Q) ≤ 1

6912
|Ω|+ (C1 + C7|Ω|)ε+ o(ε), (6.10)

where C7 = max(a,b)∈BC3
(0) 8a3 + ab < 8C3

3 + C2
3 .

If we choose C0−C1 > 8C3
4+C4C5+8C3

3+C2
3 > C6+C7. Then maxy∈B0

Kε(ϕ(y)) <
c holds. So (T1) is verified.

To verify (T2), we observe that

∂Σ0 =: {a, b,Q | a = −C4 or a = C4 or b = −C5 or b = C5 or Q ∈ ∂NC2
}.

Since C4, C5 are arbitrary, we choose 0 < 24C2
4 < C5. Then on a = −C4 or a = C4,

we choose τy = ∂
∂b , on b = −C5 or b = C5, we choose τy = ∂

∂a . By our setting on
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C4, C5, we could show ∂τyKε(y) 6= 0. It only remains to consider the case Q ∈ ∂NC2
.

If Q ∈ ∂NC2 , then

Kε(a, b,Q) ≤ 1

6912
|Ω|+ (C2 + C7|Ω|)ε+ o(ε), (6.11)

which is obviously less than c for C2 < C1. So (T2) is also verified.
In conclusion, we proved that for ε sufficiently small, c is a critical value, i.e.,

a critical point (a, b,Q) ∈ Σ0 of Kε exists. Which means Kε indeed has critical
points respect to Λ, η,Q in (2.13).

Proof of Theorem 1.1. For n = 4, we proved that for ε small enough, Iε has
a critical point (Λε, Qε). Let uε = WΛε,Q̄ε,ε. Then uε is a nontrivial solution to
problem (1.12) for n = 4. The strong maximal principle shows uε > 0 in Ωε. Let
uµ = ε−1uε(x/ε). By our construction, uµ has all the properties stated in Theorem
1.1.

For n = 6, we proved that for ε small enough, Iε has a critical point (Λε, ηε, Qε).
Let uε = WΛε,ηε,Q̄ε,ε. Then uε is a nontrivial solution to problem (1.12) for n = 6.

The strong maximal principle shows uε > 0 in Ωε. Let uµ = ε−2uε(x/ε). By our
construction, uµ has all the properties stated in Theorem 1.1. �

7. Appendix A: Proof of Lemma 2.1

We divide the proof into two parts. First, we study the case n = 4. From the
definition of W, (2.10) and (2.15), we know that

Sε[W ] =−∆W + µε2W − 8W 3

= 8U3 + ε4
( c1
− ln ε

)
Û − ε2

( c1
− ln ε

) 1
2 ∆(Rε,Λ,Qχ)− 8W 3

= O
(
ε4(− ln ε)〈z − Q̄〉−2 + ε2(− ln ε)

1
2 〈z − Q̄〉−4

)
+O(Λ)

( ε4

(− ln ε)

∣∣ ln 1

ε(1 + |z − Q̄|)
∣∣+

ε4

(− ln ε)
1
2

)
.

The estimates for DΛSε[W ] and DQ̄Sε[W ] can be computed in the same way.
We now turn to the proof of the energy estimate (2.23). From (2.15) and (2.16)

we deduce that∫
Ωε

|∇W |2 + ε2
( c1
− ln ε

) 1
2

∫
Ωε

W 2 =8

∫
Ωε

U3W + ε4
( c1
− ln ε

) ∫
Ωε

ÛW

− ε2
( c1
− ln ε

) 1
2

∫
Ωε

∆(Rχ)W. (7.1)

Concerning the first term on the right hand side of (7.1), we have∫
Ωε

U3W =

∫
Ωε

U4 + ε2
( c1
− ln ε

) 1
2

∫
Ωε

ÛU3 +
c4Λ

|Ω|
ε2
( c1
− ln ε

)− 1
2

∫
Ωε

U3. (7.2)

We note that ∫
Ωε

U4 =

∫
R4

U4
1,0 +O(ε4),

∫
Ωε

U3 =
c4Λ

8
+O(ε2).
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Then, we get∫
Ωε

U3W =

∫
R4

U4
1,0 +

c24Λ2

8|Ω|
ε2
( c1
− ln ε

)− 1
2 + ε2

( c1
− ln ε

) 1
2

∫
Ωε

ÛU3 +O
(
ε4
( c1
− ln ε

)− 1
2
)
,

for the third term on the right hand side of the above equality, we have∫
Ωε

ÛU3 =−
∫

Ωε

ΨU3 − c4Λ
( c1
− ln ε

)− 1
2

∫
Ωε

H(x,Q)U3 +

∫
Ωε

(Rχ)U3

=− c4Λ2

16
ln

1

Λε
− c24Λ2

8

( c1
− ln ε

)− 1
2H(Q,Q) +O(Λ2).

Hence, we have∫
Ωε

U3W =

∫
R4

U4
1,0 +

c24Λ2

8|Ω|
ε2
( c1
− ln ε

)− 1
2 − c4Λ2

16
ln

1

Λε
ε2
( c1
− ln ε

) 1
2

− c24Λ2

8
ε2H(Q,Q) +O

(
ε2
( c1
− ln ε

) 1
2 Λ2 + ε4

( c1
− ln ε

)− 1
2
)
. (7.3)

For the second term on the right hand side of (7.1)∫
Ωε

ÛW =

∫
Ωε

ÛU + ε2
( c1
− ln ε

) 1
2

∫
Ωε

Û2 +
c4Λ

|Ω|
ε2
( c1
− ln ε

)− 1
2

∫
Ωε

Û .

By noting that∫
Ωε

ÛU = O
(
ε−2
( c1
− ln ε

)− 1
2 Λ2

)
,

∫
Ωε

Û2 = O
(
ε−4(− ln ε)Λ2

)
,∫

Ωε

Û = ε−4(
c1
− ln ε

)−
1
2

∫
Ω

Λ

|x−Q|2
+O(ε−4Λ),

where we used
∫

Ω
G(x,Q) = 0. Then, we obtain

ε4(
c1
− ln ε

)

∫
Ωε

ÛW =
c4Λ2

|Ω|
ε2

∫
Ω

1

|x−Q|2
+O

(
ε2
( c1
− ln ε

) 1
2 Λ2

)
. (7.4)

For the last term on the right hand side of (7.1),∫
Ωε

∆(Rχ)W =ε2(
c1
− ln ε

)−
1
2
c4Λ

|Ω|

∫
Ωε

∆(Rχ) +O(Λ2)

=ε2(
c1
− ln ε

)−
1
2
c4Λ

|Ω|

∫
∂Ωε

∂(Rχ)

∂ν
+O(Λ2)

=
( c1
− ln ε

)−1 c4Λ

|Ω|

∫
∂Ωε

∂(U − ε2( c1
− ln ε )

1
2 Ψ− c4Λε2H)

∂ν
+O(Λ2)

=
( c1
− ln ε

)−1 c4Λ

|Ω|

∫
Ωε

∆
(
U − ε2

( c1
− ln ε

) 1
2 Ψ− c4Λε2H

)
+O(Λ2)

=
( c1
− ln ε

)−1 c4Λ

|Ω|

∫
Ωε

(
− 8U3 + ε2

( c1
− ln ε

) 1
2U + c4Λε4 1

|Ω|
)

+O(Λ2)

=
( c1
− ln ε

)− 1
2
c4Λ2

|Ω|

∫
Ω

1

(ε2Λ2 + |x−Q|2)
+O(Λ2 + ε2(− ln ε)). (7.5)
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(7.3)-(7.5) implies

1

2

∫
Ωε

(
|∇W |2 + ε2(

c1
− ln ε

)
1
2W 2

)
=4

∫
R4

U4
1,0 + ε2(

c1
− ln ε

)−
1
2
c24Λ2

2|Ω|
− c24Λ2

2
H(Q,Q)ε2

− c4Λ2

4
ε2(

c1
− ln ε

)
1
2 ln

1

Λε
+O(ε2(

c1
− ln ε

)
1
2 Λ2)

+O
(
ε4
( c1
− ln ε

)− 1
2
)
. (7.6)

At last, we compute the term
∫

Ωε
W 4.∫

Ωε

W 4 =

∫
Ωε

U4 + 4ε2
( c1
− ln ε

) 1
2

∫
Ωε

U3Û + 4ε2
( c1
− ln ε

)− 1
2
c4Λ

|Ω|

∫
Ωε

U3

+O
(
ε4
( c1
− ln ε

)−2)
=

∫
R4

U4
1,0 −

c4Λ2

4
ε2
( c1
− ln ε

) 1
2 ln

1

Λε
− c24Λ2

2
ε2H(Q,Q)

+
c24Λ2

2|Ω|
ε2
( c1
− ln ε

)− 1
2 +O

(
ε2
( c1
− ln ε

) 1
2 Λ2

)
+O

(
ε4
( c1
− ln ε

)−2)
. (7.7)

Combining (7.6) and (7.7), we obtain

Jε[W ] =
1

2

∫
Ωε

|∇W |2 +
µε2

2

∫
Ωε

W 2 − 2

∫
Ωε

W 4

=2

∫
R4

U4
1,0 +

c4Λ2

4
ε2
( c1
− ln ε

) 1
2 ln

1

Λε
− c24Λ2

2|Ω|
ε2
( c1
− ln ε

)− 1
2

+
1

2
c24Λ2ε2H(Q,Q) +O

(
ε2
( c1
− ln ε

) 1
2 Λ2

)
+O(ε4(− ln ε)2). (7.8)

In the end of this section, we prove (2.24)-(2.28). From the definition of W ,
(2.10) and (2.15), we know that

Sε[W ] =−∆W + ε3W − 24W 2

= 24U2 + ε6Û − ε3∆(Rχ) + ε6
(
η − c6Λ2

|Ω|
)
− 24U2 − 24η2ε6 +O

(
ε3〈z − Q̄〉−4

)
= − ε6

(
24η2 − η +

c6Λ2

|Ω|
)

+O
(
ε3〈z − Q̄〉−4

)
= O

(
〈z − Q̄〉−3 2

3 ε3
)
.

The estimates for DΛSε[W ], DQ̄Sε[W ] and DηSε[W ] can be derived in the same
way. Now we are in the position to compute the energy. From (2.15) and (2.16),
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we deduce that∫
Ωε

|∇W |2 + ε3

∫
Ωε

W 2 =

∫
Ωε

(−∆W + ε3W )W

=

∫
Ωε

(
24U2 + ε6Û − ε3∆(Rχ) + ε6

(
η − c6Λ2

|Ω|
))
W. (7.9)

Concerning the first term on the right hand side of (7.9), we have∫
Ωε

U2W =

∫
Ωε

U3 + ε3

∫
Ωε

ÛU2 + ηε3

∫
Ωε

U2

=

∫
R6

U3
1,0 +

1

24
c6ηΛ2ε3 − ε3

∫
Ωε

U2Ψ− c6Λ2ε4

∫
Ωε

U2H +O(ε5)

=

∫
R6

U3
1,0 +

1

24
c6ηΛ2ε3 − 1

24
c26Λ4ε4H(Q,Q)− 1

576
c6Λ2ε3 +O(ε5).

(7.10)

For the second, third and fourth term on the right hand side of (7.9), following
the similar steps as we did in case n = 4.

ε6

∫
Ωε

ÛW = ε6

∫
Ωε

Û(U + ε3Û + ηε3) = −ηΛ2ε4

∫
Ω

1

|x−Q|4
+O(ε5), (7.11)

−ε3

∫
Ωε

∆(Rχ)W = ε3η

∫
Ωε

∆(U − ε3Ψ− c6ε4Λ2H) +O(ε5) = ε6η

∫
Ωε

U +O(ε5)

= ηΛ2ε4

∫
Ω

1

|x−Q|4
+O(ε5), (7.12)

and

ε6
(
η − c6Λ2

|Ω|
) ∫

Ωε

W =
(
η2|Ω| − c6ηΛ2

)
ε3 +

(
η − c6Λ2

|Ω|
)
ε4

∫
Ω

Λ2

|x−Q|4
+O(ε5).

(7.13)

(7.10)-(7.13) implies

1

2

∫
Ωε

|∇W |2 +
ε3

2

∫
Ωε

W 2 =12

∫
R6

U3
1,0 +

(1

2
η2|Ω| − 1

48
c6Λ2

)
ε3 − c26Λ4

2
H(Q,Q)ε4

+
1

2
(η − c6Λ2

|Ω|
)ε4

∫
Ω

Λ2

|x−Q|4
+O(ε5). (7.14)

Then,∫
Ωε

W 3 =

∫
R6

U3
1,0 + 3ε3

∫
Ωε

U2Û + 3ε3

∫
Ωε

U2η + 3ε6

∫
Ωε

Uη2 + 3ε9

∫
Ωε

Ûη2

+ ε9

∫
Ωε

η3 +O(ε5)

=

∫
R6

U3
1,0 +

1

8
c6ηΛ2ε3 − 1

192
c6Λ2ε3 + η3|Ω|ε3 − 1

8
c26Λ4H(Q,Q)ε4

+O(ε5). (7.15)



26 JUNCHENG WEI, BIN XU, AND WEN YANG

Combining (7.14)-(7.15), we gain the energy

Jε[W ] = 4

∫
R6

U3
1,0 +

(1

2
η2|Ω| − c6ηΛ2 +

1

48
c6Λ2 − 8η3|Ω|

)
ε3 +

1

2
c26Λ4H(Q,Q)ε4

+
1

2

(
η − c6Λ2

|Ω|
)
ε4

∫
Ω

Λ2

|x−Q|4
+O(ε5). (7.16)

Hence, we finish the whole proof of Lemma 2.1. �
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