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Abstract

We consider the following singularly perturbed elliptic problem

ε24ũ +
(
ũ− a(ỹ)

)
(1− ũ2) = 0 in Ω,

∂ũ

∂ν
= 0 on ∂Ω,

where Ω is a bounded domain in R2 with smooth boundary, −1 < a(ỹ) < 1, ε is a small

parameter, ν denotes the outward normal of ∂Ω. Assume that Γ = { ỹ ∈ Ω : a(ỹ) = 0 } is

a simple closed and smooth curve contained in Ω in such a way that Γ separates Ω into two

disjoint components Ω+ = { ỹ ∈ Ω : a(ỹ) < 0 } and Ω− = { ỹ ∈ Ω : a(ỹ) > 0 } and ∂a
∂ν0

> 0 on

Γ, where ν0 is the outer normal of Ω+, pointing to the interior of Ω−. For any fixed integer

N = 2m+1 ≥ 3, we will show the existence of a clustered solution uε with N -transition layers

near Γ with mutual distance O(ε| log ε|), provided that ε stays away from a discrete set of

values at which resonance occurs. Moreover, uε approaches 1 in Ω− and −1 in Ω+. Central

to our analysis is the solvability of a Toda system.

1 Introduction

Let Ω be a bounded and smooth domain in R2. In gradient theory of phase transition it is common

to seek for critical points in H1(Ω) of an energy of the form

Jε(ũ) =
ε

2

∫
Ω

|∇ũ|2 +
1
ε

∫
Ω

W (ỹ, ũ) (1.1)
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where W (ỹ, ·) is a double-well potential with exactly two strict local minimizers at ũ = −1 and

ũ = +1, which as well correspond to trivial local minimizers of Jε in H1(Ω). For simplicity of

exposition we shall restrict ourselves to a potential of the form

W (ỹ, u) =
∫ u

−1

(s2 − 1)
(
s− a(ỹ)

)
ds, (1.2)

for a smooth function a(ỹ) with

−1 < a(ỹ) < 1 for all ỹ ∈ Ω̄.

Critical points of Jε correspond to solutions of the problem

ε24ũ +
(
ũ− a(ỹ)

)
(1− ũ2) = 0 in Ω,

∂ũ

∂ν
= 0 on ∂Ω, (1.3)

where ε is a small parameter, ν denotes the outward normal of ∂Ω. Function ũ represents a

continuous realization of the phase present in a material confined to the region Ω at the point x

which, except for a narrow region, is expected to take values close to +1 or −1. Of interest are of

course non-trivial steady state configurations in which the antiphases coexist.

The case a ≡ 0 corresponds to the standard Allen-Cahn equation [6]

ε24ũ + ũ(1− ũ2) = 0 in Ω,
∂ũ

∂ν
= 0 on ∂Ω, (1.4)

for which extensive literature on transition layer solution is available, see for instance [4, 9, 23, 27,

28, 31, 32, 33, 34, 35, 37, 38, 39, 40, 43], and the references therein for these and related issues.

In this paper, we consider the inhomogeneous Allen-Cahn equation, i.e, problem (1.3). Let us

assume that Γ = { ỹ ∈ Ω : a(ỹ) = 0 } is a simple, closed and smooth curve in Ω which separates

the domain into two disjoint components

Ω = Ω− ∪ Γ ∪ Ω+ (1.5)

such that

a(ỹ) < 0 in Ω+, a(ỹ) > 0 in Ω−,
∂a

∂ν0
> 0 on Γ, (1.6)

where ν0 is the outer normal of Ω+, pointing to the interior of Ω−. Observe in particular that for

the potential (1.2), we have

W (ỹ,−1) < W (ỹ, 1) in Ω−, W (ỹ,+1) < W (ỹ,−1) in Ω+.

Thus, if one consider a global minimizer uε for Jε, which exists by standard arguments, it should

be such that its value want to minimize W (ỹ, u), namely, uε should intuitively achieve as ε→ 0,

uε → −1 in Ω− uε → +1 in Ω+. (1.7)
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A solution uε to problem (1.3) with these properties was constructed, and precisely described,

by Fife and Greenlee[22] via matching asymptotic and bifurcation arguments. Super-subsolutions

were later used by Angenent, Mallet-Paret and Peletier in the one dimensional case (see [7]) for

construction and classification of stable solutions. Radial solutions were found variationally by

Alikakos and Simpson in [5]. These results were extended by del Pino in [12] for general (even non

smooth) interfaces in any dimension, and further constructions have been done recently by Dancer

and Yan [11] and Do Nascimento [18]. In particular, it was proved in [11] that solutions with the

asymptotic behavior like (1.7) are typically minimizer of Jε. Related results can be found in [1, 2].

On the other hand, a solution exhibiting a transition layer in the opposite direction, namely

uε → +1 in Ω− and uε → −1 in Ω+ as ε→ 0, (1.8)

has been believed to exist for many years. Hale and Sakamoto [25] established the existence of this

type of solution in the one-dimensional case, while this was done for the radial case in [13], see

also [10]. The layer with the asymptotics in (1.8) in this scalar problem is meaningful in describing

pattern-formation for reaction-diffusion systems such as Gierer-Meinhardt with saturation, see

[13, 21, 36, 41] and the references therein.

Recently this problem has been completely solved by del Pino-Kowalczyk-Wei [15] (in the two

dimensional domain case) and Mahmoudi-Malchiodi-Wei [30] (in the higher dimensional case).

More precisely, defining

λ∗ =
1

3π2

∫
R
H2
x dx

[∫
Γ

√
∂a

∂ν0

]2

, (1.9)

where H(x) is the unique heteroclinic solution of

H
′′

+H −H3 = 0 in R, H(0) = 0, H(±∞) = ±1, (1.10)

in [15], M. del Pino, M. Kowalczyk and J. Wei proved the existence of a transition layer solution

Hε in the opposite direction, namely,

Theorem 1.1. Given c > 0, there exists ε0 > 0 such that for all ε < ε0 satisfying the gap condition∣∣∣j2ε− λ∗
∣∣∣ ≥ c√ε for all j ∈ N, (1.11)

problem (1.3) has a solution Hε satisfying

Hε → +1 in Ω−, Hε → −1 in Ω+ as ε→ 0. (1.12)

Moreover, the layer will approach the curve Γ as ε→ 0.
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We will extend Theorem 1.1 and prove the following main result for the existence of clustering

transition layers in this paper. Let ` = |Γ| denote the total length of Γ. We consider natural

parameterization γ(θ) of Γ with positive orientation, where θ denotes arclength parameter measured

from a fixed point of Γ. Points ỹ, which are δ0−close Γ for sufficiently small δ0, can be represented

in the form

ỹ = γ(θ) + t ν0(θ), |t| < δ0, θ ∈ [0, `), (1.13)

where the map ỹ 7→ (t, θ) is a local diffeomorphism. By slight abuse of notation we denote a(t, θ)

to actually mean a(ỹ) for ỹ in (1.13). The main theorem reads

Theorem 1.2. For any fixed integer N = 2m + 1 ≥ 3, there exists a sequence (εl)l approaching

0+ such that problem (1.3) has a clustered solution uεl with N -phase transition layers with mutual

distance O(εl| log εl|). Moreover, uεl approaches 1 in Ω− and −1 in Ω+. Near Γ, uεl has the form

uεl ∼
N∑
n=1

H

(
t− εlen(θ)

εl

)
,

where t is the sign distance to the curve Γ along the normal direction ν0 and θ denotes arclength

parameter measured from a fixed point of Γ. The functions en’s satisfy

‖en‖∞ ≤ C| log εl|2, min
1≤n≤N−1

(en+1 − en) >
√

2
2
| log εl|.

More precisely,

en = (−1)n+1f + fn with f(θ) =
k(θ)√

2 at(0, θ)
,

where k(θ) denotes the curvature of Γ. All functions fn, n = 1, . . . , N solve the Toda system, for

n = 1, . . . , N,

ε2
l γ0f

′′
n + εl (−1)n+1 α1(θ) fn − γ1

[
e−
(
fn−fn−1+βn

)
− e−

(
fn+1−fn+βn+1

) ]
= 0 in (0, `), (1.14)

f ′n(0) = f ′n(`), fn(0) = fn(`), (1.15)

for two universal constant γ0, γ1 > 0 and α1(θ) = 4
3at(0, θ) > 0, with the conventions βn =

2(−1)nf, f0 = −∞, fN+1 =∞.

Remark 1: In [11], under the condition that a = a(r), a(r0) = 0, a
′
(r0) 6= 0, Dancer and Yan

showed the existence of solutions with N = 2m+ 1 interfaces, provided that ε is small. Therefore

they proved Theorem 1.2 in the radial case. Due to resonance phenomenon, for the non-radial

case here we only show the existence of clustered solutions for a sequence of ε, rather than a whole

interval (0, ε0) with ε0 small. Even worse than that, due to the role of the nonhomogeneous term

a(ỹ) played in the interaction between mutual neighboring interfaces, we can not give an explicit

gap condition for the parameter ε like (1.11) as in Theorem 1.1.
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Remark 2: As the method for Allen-Chan model in [16] and [17], we use a kind of Toda system

to describe the interaction of neighboring interfaces. The reader can also refer [44] for existence

of solutions exhibiting interaction of single transition layer and a downward spike.

Remark 3: Theorem 1.1 may be extended to higher dimensional case, as in Mahmoudi-Malchiodi-

Wei [30]. But the computations and the proofs will be quite involved. The main technical part is

to study the anologue Jacobi-Toda system (1.14) on manifolds.

Now, we detail the resonance phenomenon and the interaction between mutual neighboring

interfaces, which are characterized by system (1.14)-(1.15). Take an approximate solution f̂ =

(f̂1, · · · , f̂N ) to the system (1.14)-(1.15) by

f̂n =
(
n− (m+ 1)

)
ρε + f̄n, n = 1, · · · , N, with e−

√
2 ρε = εα1(θ)ρε,

and f̄ = (f̄1, · · · , f̄N ) solves the following nonlinear algebraic system

δ2(−1)n+1α1(θ)f̄n − γ1e
−
√

2
(
f̄n−f̄n−1+βn

)
+ γ1e

−
√

2
(
f̄n+1−f̄n+βn+1

)
= (−1)n

(
n− (m+ 1)

)
,

with n running from 1 to N , where f̄0 = −∞, f̄N+1 = ∞. After some simple algebraic computa-

tions, we then linearize the nonlinear system at f̂ = (f̂1, · · · , f̂N ). Finally, we need to deal with

the solvability theory for the following operators (c.f. (7.38) and (7.39))

Liε = κ
(
ε γ0

d2

dθ2
+ α1

)
+ λεi

(
α1 + σε

)
, i = 1, 2, · · · , N − 1,

LNε = κ
(
ε γ0

d2

dθ2
+ α1

)
+ λεN

(
α1 + σε

)
,

with suitable boundary conditions, where we have denoted

λεi > c > 0, i = 1, 2, · · · , N − 1, λεN = − (N − 1)κ
N(α+ σε)

,

κ =
1

√
2

2

(
log 1

ε − log log 1
ε

) , σε = O(
1

log 1
ε

).

In fact as for the solvability theory of the operator LNε , we consider the following eigenvalue problem

ε γ0 Θ
′′

+
1
N
α1(θ)Θ = −Λα1(θ) Θ in (0, `), Θ(0) = Θ(`), Θ′(0) = Θ′(`), (1.16)

where have denoted

α1(θ) =
4
3
at(0, θ) > 0, γ0 =

∫
R
H2
x dx =

2
√

2
3

> 0. (1.17)

It’s well known that (1.16) has a sequence of different eigenvalues Λε1 < Λε2 < · · · with corresponding

eigenfunctions Θε
1, Θε

2, · · · . It is obvious that Λε1 < 0 because α1 and γ0 are positive. If ε is small

then we have, as j →∞,

Λεj =
4π2

`20
(j2ε− 1

N
λ∗) + O(

ε

j2
), (1.18)
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where we use the definition of λ∗ in (1.9). As a direct consequence, for all small ε and large j we

have the following spectral gap estimates

|Λεj+1 − Λεj | > C
√
ε, (1.19)

where C is a positive constant independent of ε. Under a similar gap condition like (1.11), we also

have the following spectral gap estimate for critical eigenvalues(close to zero)

|Λεj | > c
√
ε, j = 1, 2, · · · . (1.20)

The validity of the estimate in (1.18) and (1.19) can be proved as the arguments in Lemma 2.1.

The resonance character of this type also appeared in [15] for the case N = 1. However, it is

more complicated to get an explicit gap condition for uniform solvability theory of the operators

Liε, i = 1, 2, · · · , N − 1. For more details, the reader can refer to Lemma 7.3.

The remaining part of this paper is devoted to the complete proof of Theorem 1.2. The

organization is as follows: In Section 2, after setting up the problem in stretched variables (x, z),

we introduce a local approximate solution by
N∑
j=1

(−1)j+1H
(
x− ej(εz)

)
+O(ε),

in which the parameters ej ’s are used to characterize the locations of the phase transition layers. In

Section 3, a gluing procedure reduces the nonlinear problem to a projected problem on the infinite

strip S, (c.f.(2.6)), while in Section 4 and Section 5, we show that the projected problem has a

unique solution for given parameters e1, · · · , eN in a chosen region. The final step is to adjust the

parameters e1, · · · , eN which is equivalent to solving a nonlocal, nonlinear coupled second order

system of differential equations for the functions e1, · · · , eN with suitable boundary conditions,

which is equivalent to the Toda system (1.14)-(1.15). This is done in Section 6 and Section 7.

Acknowledgment. The first author is supported by an Earmarked Grant from RGC of Hong

Kong and a Direct Grant from CUHK. The second author is also supported by a Grant(NO.

10571121) from National Natural Science Foundation of China and another Grant(NO. 5010509)

from Natural Science Foundation of Guangdong Province. Part of this work was done when the

second author visited the department of Mathematics, the Chinese University of Hong Kong: he

is very grateful to the institution for the kind hospitality.

2 Local formulation of the problem

Addition to some preliminaries, the main object is to formulate the problem in local coordinates

and construct local approximate solution.
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2.1 Preliminaries

As a preliminary, we consider the following eigenvalue problem

ε γ0 Θ
′′

+ α1(θ)Θ = −Λα1(θ) Θ in (0, `), Θ(0) = Θ(`), Θ′(0) = Θ′(`). (2.1)

All critical eigenvalues (the eigenvalues whose absolute value is close to zero) of the geometric

eigenvalue problem (2.1) have good estimates as follows.

Lemma 2.1. For all small ε satisfies the gap condition (1.11), we have the following spectral gap

estimates of the geometric problem (2.1): there exist two positive constants C (independent of ε)

and Nε ∈ N with Nε →∞ as ε→ 0, such that

Λεi ≤ −C
√
ε, for all i = 1, 2, · · · , Nε,

Λεi ≥ C
√
ε, for all i = Nε + 1, Nε + 2, · · · .

Proof. By the following Liouville transformation, for details see Chapter X, Theorem 6 in [8]

`0 =
∫ `

0

√
α1(θ)/

(
γ0

)
d θ, t =

π

`0

∫ θ

0

√
α1(θ)/

(
γ0

)
d θ, t ∈ [0, π),

e(t) = Θ(θ)
(
γ0 α0

)1/4

, q(t) =
γ0`

2
0α
′′

1

4π2α2
1

− 5γ0`
2
0(α

′

1)2

16π2α3
1

,

the eigenvalue Λ satisfies the following eigenvalue problem

−e
′′
− q(t) e =

`20
π2 ε

(1 + Λ) e in (0, π), e(0) = e(π), e
′
(0) = e

′
(π).

Now consider the following auxiliary eigenvalue problem

−y
′′
− q(t)y = ξ y, 0 < t < π, y(0) = y(π), y

′
(0) = y

′
(π).

The result in [29] shows that, as n→∞

√
ξn = 2n + O(

1
n3

).

Hence, if ε is small then we have, as n→∞,

Λεn =
4π2

`20
(n2ε− λ∗) + O(

ε

n2
), (2.2)

where we use the definition of λ∗ in (1.9). The last formula together with the gap condition (1.11)

implies the estimates in the lemma.

We finally recall the following theorem due to T. Kato([26]), which will be fundamental for us

to obtain invertibility of the linearized problem in the last section.
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Theorem 2.2. Let T (ε) be a differentiable family of operators from a Hilbert space X into itself,

where ε belongs to an interval containing 0. Let T (0) be a self-adjoint operator of the form Identity−

Compact and let σ(0) = σ0 6= 1 be an eigenvalue of T (0). Then the eigenvalue σ(ε) is differentiable

at 0 with respect to ε. The derivative of σ is given by

∂σ

∂ε
=
{

eigenvalues ofPσ0 ◦
∂T

∂ε
(0) ◦ Pσ0

}
,

where Pσ0 : X → Xσ0 denotes the projection onto the σ0−eigenspace Xσ0 of T (0).

2.2 Local coordinate and first approximate solution

Let ` = |Γ| denote the total length of Γ. We consider natural parameterization γ(θ) of Γ with

positive orientation, where θ denotes arclength parameter measured from a fixed point of Γ. Let

ν0(θ) denote the outer unit normal to Γ, pointing to the interior of Ω−. Points ỹ, which are

δ0−close Γ for sufficiently small δ0, can be represented in the form

ỹ = γ(θ) + t ν0(θ), |t| < δ0, θ ∈ [0, `), (2.3)

where the map ỹ 7→ (t, θ) is a local diffeomorphism. By slight abuse of notation we denote a(t, θ)

to actually mean a(ỹ) for ỹ in (2.3). In this coordinate, near Γ the metric can be parameterized as

gt,θ = dt2 + (1 + kt)2dθ2,

and the Laplacian operator is

4t,θ =
∂2

∂t2
+

1
(1 + kt)2

∂2

∂θ2
+

k

1 + kt

∂

∂t
− k

′
t

(1 + kt)3

∂

∂θ
,

where k(θ) is the curvature of Γ.

We begin with the formulation of the problem in some suitable coordinates. Stretching variable

ỹ = εy and setting Ωε = Ω/ε, let us consider the scaling u(y) = ũ(εy), then problem (1.3) is thus

equivalent to

∆yu +
(
u− a(εy)

)
(1− u2) = 0 in Ωε,

∂u

∂νy
= 0 on ∂Ωε. (2.4)

We also set up new coordinate (x, z) near Γε = Γ/ε in Ωε,

ε y = γ(εz) + ε x ν0(εz), |x| < δ0/(20ε), z ∈ [0, `/ε), (2.5)

and then the metric and Laplacian operator can be written as

gx,z = dx2 +
(

1 + εkx
)2dz2,

4x,z =
∂2

∂x2
+

1
[1 + εkx]2

∂2

∂z2
+

ε k

1 + εkx

∂

∂x
− ε2 k

′
x

[1 + εkx]3
∂

∂z
.
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Now, let S represent the strip as, formulated in (x, z) coordinate in R2,

S =
{

(x, z) : x ∈ R, 0 ≤ z ≤ `

ε

}
. (2.6)

Near Γε, the first equation in (2.4) can be written as a problem on the whole strip S by the form

Υ(u) ≡ uxx + uzz + B3(u) + B4(u) + B5(u) + F (u) = 0, (2.7)

where

B3(u) = εk(εz)ux − ε2k2(εz)xux, (2.8)

B4(u) = −
[
εat(0, εz)x+

1
2
ε2 att(0, εz)x2

]
(1− u2), (2.9)

B5(u) = B0(u) − ε3 a4(0, εz)x3(1− u2), (2.10)

with B0(u) represents all terms of order ε3 in the term 4x,zu and a4 is bounded smooth function.

Here and in what follows we also denote

F (u) ≡ u − u3.

To define the approximate solution we recall some basic properties of the heteroclinic solution

H(x) = tanh
(
x√
2

)
to (1.10) in the following.

H(x) = 1 − A0 e
−
√

2 |x| + O
(
e−2
√

2 |x|), x > 1, (2.11)

H(x) = −1 + A0 e
−
√

2 |x| + O
(
e−2
√

2 |x|), x < −1, (2.12)

H
′
(x) =

√
2A0 e

−
√

2 |x| + O
(
e−2
√

2 |x|), |x| > 1, (2.13)

where A0 is a universal constant. It is trivial to derive that

1−H2(x) =
√

2Hx(x),
∫

R
(1−H2)Hx dx =

√
2
∫

R
H2
x dx =

4
3
. (2.14)

For a fixed odd integer N = 2m+ 1 ≥ 3, we assume that the location of the N phase transition

layers are characterized by periodic functions x = ej(εz), 1 ≤ j ≤ N in the coordinate (x, z).

These functions can be defined as the following

ej : (0, `)→ R, (2.15)

||ej ||H2(0,`) < C | log ε|2, (2.16)

ej+1(ζ)− ej(ζ) >
√

2
2
| log ε| −

√
2

2
log | log ε|. (2.17)

For convenience of the notation we will also set

e0(ζ) = −δ0/ε− e1(ζ) and eN+1(ζ) = δ0/ε− eN (ζ).
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Set

Hj(x, z) ≡ (−1)j+1H
(
x− ej(εz)

)
,

and define the first approximate solution to (2.7) by

u0(x, z) ≡
N∑
j=1

Hj(x, z).

Our first goal is to compute the error of approximation in a δ0/ε neighborhood of Γε, namely

the quantities

E0 ≡ Υ(u0)

= u0,xx + u0,zz + B3(u0) + B4(u0) + B5(u0) + F (u0), (2.18)

where

u0,xx + u0,zz =
N∑
j=1

Hj,xx − ε2
N∑
j=1

e
′′

j Hj,x + ε2
N∑
j=1

(e
′

j )
2Hj,xx,

B3(u0) = εk

N∑
j=1

Hj,x − ε2k2
N∑
j=1

(x− ej)Hj,x − ε2k2
N∑
j=1

ej Hj,x.

We now turn to computing other nonlinear terms in E0. For every fixed n, 1 ≤ n ≤ N , we

consider the following set

An =

{
(x, z) ∈

(
−δ0
ε
,
δ0
ε

)
×
(
0,
`

ε

) ∣∣∣∣∣ en−1(εz) + en(εz)
2

≤ x ≤ en(εz) + en+1(εz)
2

}
.

For (x, z) ∈ An, we write

F (u0) = F (Hn) + F
′
(Hn)(u0 −Hn) +

1
2
F
′′
(Hn)(u0 −Hn)2 + max

j 6=n
O(e−3

√
2 |ej−x|)

=
N∑
j=1

F (Hj) + F
′
(Hn)(u0 −Hn) −

∑
j 6=n

F (Hj) +
1
2
F
′′
(Hn)(u0 −Hn)2

+ max
j 6=n

O(e−3
√

2 |ej−x|).

As the computations in [16], we obtain, for (x, z) ∈ An, n = 1, . . . , N

F (u0) =
N∑
j=1

F (Hj) +
1
2
F
′′
(Hn)(u0 −Hn)2 + 3

[
1−H2

n

]
(u0 −Hn)

− 1
2

∑
j 6=n

F
′′
(σnj)(σnj −Hj)2 + max

j 6=n
O(e−3

√
2 |ej−x|).

In the above formula, we define σnj as follows. If n is even, σnj = (−1)j for j < n and σnj =

(−1)j+1 for j > n. If n is odd, σnj = (−1)j+1 for j < n and σnj = (−1)j for j > n.
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Also, it is derived that, for (x, z) ∈ An, n = 1, . . . , N

B4(u0) = − εat x
N∑
j=1

[
1 −

(
Hj

)2 ] + εat x
∑
j 6=n

(
1 −

(
Hj

)2 )

+ εat x
[ (
u0

)2 −H2
n

]
− 1

2
ε2 att

N∑
j=1

(x− ej)2(1−H2
j )

− 1
2
ε2 att

N∑
j=1

e2
j (1−H2

j ) − ε2 att

N∑
j=1

(x− ej) ej(1−H2
j )

+
1
2
ε2 att x

2
∑
j 6=n

(1−H2
j ) +

1
2
ε2att x

2
[ (
u0

)2 −H2
n

]
.

Substitute (2.14) to above formula, it follows then for (x, z) ∈ An, n = 1, . . . , N :

E0 = εk

N∑
j=1

Hj,x −
√

2 εat
N∑
j=1

ej (−1)j+1Hj,x −
√

2 εat
N∑
j=1

(x− ej) (−1)j+1Hj,x

−
√

2
2
ε2 att

N∑
j=1

(x− ej)2 (−1)j+1Hj,x −
√

2
2
ε2 att

N∑
j=1

e2
j (−1)j+1Hj,x − ε2k2

N∑
j=1

ej Hj,x

+
√

2 εat x
∑
j 6=n

(−1)j+1Hj,x + εat x
[ (
u0

)2 −H2
n

]
+

1
2
ε2att x

2
[ (
u0

)2 −H2
n

]

−
√

2 ε2 att

N∑
j=1

(x− ej) ej (−1)j+1Hj,x +
√

2
2
ε2 att x

2
∑
j 6=n

(−1)j+1Hj,x

− ε2k2
N∑
j=1

(x− ej)Hj,x − ε2
N∑
j=1

e
′′

j Hj,x + ε2
N∑
j=1

(e
′

j )
2Hj,xx + 3

[
1−H2

n

]
(u0 −Hn)

+
1
2
F
′′
(Hn)(u0 −Hn)2 − 1

2
F
′′
(σnj)(σnj −Hj)2 + max

j 6=n
O(e−3

√
2 |ej−x|) + O(ε3)

≡ E01 + E02,

where

E01(x, z) = εk

N∑
j=1

Hj,x −
√

2 εat
N∑
j=1

ej (−1)j+1Hj,x −
√

2 εat
N∑
j=1

(x− ej) (−1)j+1Hj,x, (2.19)

E02 = E0 − E01. (2.20)

From the above expression for E0 we see that, given the sizes for en’s in (2.15)-(2.17) and the

properties of the function H in (2.11), denoting by χAn(x, z) the characteristic function of the set

An, we have

E0(x, z) = E01 + 3
N∑
n=1

χAn

[
1−H2

n

]
(u0 −Hn)

+
N∑
n=1

χAn

[
O(ε2| log ε|2)e−

√
2 |en−x| + O(1) max

j 6=n
e−2

√
2 |ej−x|

]
+ O(ε3).
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For further application, the evaluation of the first approximation is of importance. Using the

condition (2.15)-(2.17), a tedious computation implies,∥∥∥E01

∥∥∥
L2(Sδ0/ε)

= O(ε
1
2 | log ε|q),

∥∥∥E02

∥∥∥
L2(Sδ0/ε)

= O(ε
3
2 | log ε|q),

where

Sδ0/ε = {−δ0/ε < x < δ0/ε, 0 < z < 1/ε}.

The discrepancy between the order of the components E01 and E02 in the error E1 makes it

necessary to improve the original approximation u0 and eliminate the O(ε)-part E01 of the error.

In the language of formal asymptotic expansions one can say that we need to find a correction

layer expansion of our solution, which will be done in the next subsection.

2.3 Improvement of approximate solution

We now want to construct a further approximation to a solution which eliminates the terms of

order ε in the error E0. Firstly, we take ej as the form

ej = (−1)j+1 f + fj , f(θ) =
k(θ)√

2 at(0, θ)
. (2.21)

From the properties of ej ’s in (2.15)-(2.17), the unknown functions fj ’s should be defined as the

following

fj : (0, `)→ R, (2.22)

||fj ||H2(0,`) < C | log ε|2, (2.23)

fj+1(ζ)− fj(ζ) >
√

2
2
| log ε| −

√
2

2
log | log ε|. (2.24)

For convenience of the notations we will also set

f0(ζ) = −δ0/ε− f1(ζ) and fN+1(ζ) = δ0/ε− fN (ζ),

f ≡ (f1, · · · , fN ) with f1, · · · , fN satisfying (2.22)− (2.24).

Secondly, since ∫
R
xH2

x dx = 0, (2.25)

it is well known that there exists a unique solution(odd) to the following problem

Ψxx + F
′
(H)Ψ = xHx in R, Ψ(±∞) = 0,

∫
R

ΨHx dx = 0. (2.26)

Therefore, we can define our correction layer by

φ∗(x, z) ≡ ε

N∑
j=1

φ∗j (x, z), φ∗j (x, z) = (−1)j+1
√

2 at(0, εz)Ψ(x− ej),

12



and take the basic approximation to a solution to the problem near the curve Γε by

u1 = u0 + φ∗.

The new error can be computed as the following

E1 = E0 + φ∗xx + φ∗zz + F
′
(u0)φ∗ + B3(φ∗)

+B4(u0 + φ∗) − B4(u0) + B5(u0 + φ∗) − B5(u0) + N(φ∗),

where

B3(φ∗) =
√

2 ε2 k at

N∑
j=1

(−1)j+1 Ψx + O(ε3),

N(φ∗) = − 3u0

(
φ∗
)2 − (φ∗)3.

We compute two main components of E1 in the sequel. The first term is the following

φ∗xx + φ∗zz + F
′
(u0)φ∗

= ε

N∑
j=1

[
φ∗j,xx + φ∗j,zz + F

′
(Hj)φ∗j

]
− 3 ε

N∑
j=1

[ (
u0)2 −H2

j

]
φ∗j

=
√

2 ε at(0, εz)
N∑
j=1

(x− ej) (−1)j+1Hj,x − 3 ε
N∑
j=1

[
u2

0 −H2
j

]
φ∗j + O(ε3).

The other term is in the sequel

B4(u0 + φ∗)−B4(u0)

= 2
√

2 ε2 a2
t

N∑
j=1

(x− ej)H(x− ej)Ψ(x− ej) + 2
√

2 ε2 a2
t

N∑
j=1

x (u0 −Hj)φ∗j

+ 2
√

2 ε2 a2
t

N∑
j=1

ej H(x− ej)Ψ(x− ej) + O(ε3).

Therefore, the following lemma is readily checked, which implies that φ∗ is the right correction

layer as we just stated in previous subsection.

Lemma 2.3. With the notation of the previous subsection we have

E1 ≡ Υ(u1)

= E02 −
√

2 εat
N∑
j=1

fj (−1)j+1Hj,x + 2
√

2 ε2 a2
t

N∑
j=1

(x− ej)H(x− ej)Ψ(x− ej)

− 3 ε
N∑
j=1

(
u2

0 −H2
j

)
φ∗j + 2

√
2 ε2 a2

t

N∑
j=1

x (u0 −Hj)φ∗j − 3u0

(
φ∗
)2 − (φ∗)3

+ 2
√

2 ε2 a2
t

N∑
j=1

ej H(x− ej)Ψ(x− ej) +
√

2 ε2 k at

N∑
j=1

(−1)j+1 Ψx

≡ E02 + E11 + E12,
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where we have denoted

E11 = −
√

2 ε at
N∑
j=1

fj(−1)j+1Hj,x, E12 = E1 − E02 − E11.

Moreover, we have the following estimate

∥∥E11

∥∥
L2(S)

≤ C ε1/2| log ε|2,
∥∥E02 + E12

∥∥
L2(S)

≤ C ε3/2| log ε|2. (2.27)

Locally and formally, we set up the full problem in the form Υ(u1 + φ) = 0, which takes the

form near the curve Γε,

Υ(u1 + φ) = L1(φ) + B8(φ) + E1 + N1(φ) = 0, (2.28)

where

L1(φ) = φxx + φzz +
(

1− 3(u1)2
)
φ, (2.29)

B8(φ) = B3(φ) + B0(u) +
[
ε 2at(0, εz)x+ ε2 att(0, εz)x2 + ε3 2a4(0, εz)x3

]
u1 φ, (2.30)

N1(φ) = φ3 + 3u1φ
2 +

[
ε2at(0, εz)x+ ε2 att(0, εz)x2 + ε32a4(0, εz)x3

]
φ2. (2.31)

3 The gluing procedure

In this section, we use a gluing technique (as in [14]) to reduce the global problem in Ωε to a

nonlinear projected problem in the infinite strip S defined in (2.6).

Let δ < δ0/100 be a fixed number, where δ0 is a constant defined in (2.3). We consider a smooth

cut-off function ηδ(t) where t ∈ R+ such that ηδ(t) = 1 for 0 ≤ t ≤ δ and η(t) = 0 for t > 2δ.

Set ηεδ(x) = ηδ(ε|x|), where x is the normal coordinate to Γε. Let u1(x, z) denote the approximate

solution constructed near the curve Γε in the coordinate (x, z), which was introduced in (2.5). We

define our global approximation on Ωε to be simply

W (y) =

 ηε3δ(x)
[
u1 + 1

]
− 1, for x < 0,

ηε3δ(x)
[
u1 − 1

]
+ 1, for x > 0.

For u = W + φ̂ where φ̂ globally defined in Ωε, denote

S(u) = 4yu +
(
u− a(εy)

)
(1− u2) in Ωε.

Then u satisfies (2.4) if and only if

L̃(φ̂) = −Ẽ + Ñ(φ̂) in Ωε,
∂

∂νy
φ̂ = − ∂

∂νy
W = 0 on ∂Ωε, (3.1)
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where

L̃(φ̂) = 4yφ̂ +
[
1− 3W 2 + 2a(εy)W

]
φ̂,

Ñ(φ̂) = (φ̂)3 + 3W (φ̂)2 − a(εy)(φ̂)2, Ẽ = S(W ).

We further separate φ̂ in the following form

φ̂ = ηε3δφ+ ψ

where, in the coordinate (x, z) in (2.5), we assume that φ is defined in the whole strip S. Obviously,

(3.1) is equivalent to the following problem

ηε3δ

[
4yφ +

(
1− 3W 2

)
φ + 2a(εy)W φ

]
= ηεδ

[
Ñ(ηε3δφ+ ψ)− Ẽ − 3(1−W 2)ψ

]
, (3.2)

4yψ − 2(1− aW )ψ + 3(1− ηεδ)(1−W 2)ψ = − ε2(4yηε3δ)φ − 2ε(∇yηε3δ)(∇yφ)

+ (1− ηεδ)Ñ(ηε3δφ+ ψ) − (1− ηεδ)Ẽ, (3.3)

where ψ, defined in Ωε, is required to satisfy the homogeneous Neumann boundary condition. For

further references, we write the following estimates. From Lemma 2.3

ηεδẼ = ηεδE11 + ηεδ(E1 − E11) (3.4)

with the validity of estimates∥∥ηεδE11

∥∥
L2(Ωε)

≤ C ε1/2| log ε|2,
∥∥ηεδ(E1 − E11)

∥∥
L2(Ωε)

≤ C ε3/2| log ε|2. (3.5)

A trivial computation gives that

‖(1− ηεδ)Ẽ‖L∞(Ωε) = ‖Ẽ‖L∞(Ωε∩{|x|>δ/ε}) ≤ Ce−
√

2
2 δ/ε. (3.6)

The key observation is that, after solving (3.3), the problem can be transformed to the following

nonlinear problem involving the parameter ψ

L̃(φ) = ηεδ

[
Ñ(ηε3δφ+ ψ)− Ẽ − 3(1−W 2)ψ

]
. (3.7)

Observe that the operator L̃ in Ωε may be taken as any compatible extension outside the 6δ/ε-

neighborhood of Γε in the strip S.

First, we solve, given a small φ, problem (3.3) for ψ. Assume now that φ satisfies the following

decay property ∣∣∇φ(y)
∣∣+
∣∣φ(y)

∣∣ ≤ e−γ/ε if |x| > δ/ε, (3.8)

for certain constant γ > 0. The solvability can be done in the following way. Let us observe that

1 −W 2 is exponentially small for |x| > δ/ε, where x is the normal coordinate to Γε. From the

expression of W and the fact that |a(εy)| < 1, we get

min
y∈Ω̄ε

2
[

1− a(εy)W
]
> 0.
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Then the problem

4yψ − 2(1− aW )ψ + 3(1− ηεδ)(1−W 2)ψ = h in Ωε,
∂ψ

∂ν
= 0 on ∂Ωε,

has a unique bounded solution ψ whenever ||h||∞ ≤ +∞. Moreover,

||ψ||∞ ≤ C||h||∞.

Since Ñ is power-like with power greater than one, a direct application of contraction mapping

principle yields that (3.3) has a unique (small) solution ψ = ψ(φ) with

||ψ(φ)||L∞ ≤ Cε
[
||φ||L∞(|x|>δ/ε) + ||∇φ||L∞(|x|>δ/ε) + e−δ/ε

]
, (3.9)

where |x| > δ/ε denotes the complement in Ωε of δ/ε-neighborhood of Γε. Moreover, the nonlinear

operator ψ satisfies a Lipschitz condition of the form

||ψ(φ1)− ψ(φ2)||L∞ ≤ Cε
[
||φ1 − φ2||L∞(|x|>δ/ε) + ||∇φ1 −∇φ2||L∞(|x|>δ/ε)

]
. (3.10)

Therefore, from the above discussion, the full problem has been reduced to solving the following

(nonlocal) problem in the infinite strip S

L(φ) = ηεδ

[
Ñ
(
ηε3δφ+ ψ(φ)

)
− Ẽ − 3(1−W 2)ψ(φ)

]
, (3.11)

for φ ∈ H2(S) satisfying condition (3.8). Here L denotes a linear operator that coincides with L̃

on the region |x| < 8δ/ε. The definitions of this operator can be showed as follows. The operator

L̃ for |x| < 8δ/ε is given in coordinate (y1, y2) by the formula

4yφ +
(

1− 3(u1)2
)
φ + 2a(εy)u1 φ. (3.12)

We extend it for functions φ defined in the strip S in terms of (x, z) as the following

L(φ) = φxx + φzz +
(

1− 3(u1)2
)
φ + ηε10δB8(φ), (3.13)

where B8 is the operator defined in (2.30), in which all derivatives and variables are expressed in

the coordinate (x, z).

Rather than solving problem (3.11), we deal with the following projected problem: given f =

(f1, . . . , fN ) satisfying (2.22)-(2.24), finding functions φ ∈ H2(S), c = (c1, . . . , cN ) with cj ∈

L2(0, `/ε) such that

L(φ) = N2(φ) − E2 +
N∑
j=1

cj(z)χj(x, z)Hj,x in S, (3.14)

φ(x, 0) = φ(x, `/ε), φz(x, 0) = φz(x, `/ε), x ∈ R, (3.15)∫
R
φ(x, z)χj(x, z)Hj,x dx = 0, 0 < z < `/ε, j = 1, . . . , N, (3.16)
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where N2(φ) = ηεδÑ
(
φ+ ψ(φ)

)
− 3ηεδ(1−W 2)ψ(φ), E2 = ηεδẼ. The smooth cut-off functions are

defined by

χj(x, z) = ηba

(x− fj(εz)
log 1

ε

)
, where a =

√
2

26 − 1
27

, b =
√

2
27 − 1

28
, ηba(t) =

1, |t| < a

0, |t| > b,

(3.17)

We notice that with this choice χjχi ≡ 0, for i 6= j, provided that ε is taken sufficiently small.

In Proposition 5.1, we will prove that this problem has a unique solution φ whose norm is

controlled by the L2-norm of E12. Moreover, φ will satisfies (3.8). After this has been done,

our task is to choose suitable parameters fj ’s, possessing all properties in (2.22)-(2.24), such that

the function c is identically zero. It is equivalent to solving a nonlocal, nonlinear second order

differential equation for the unknown f under periodic boundary conditions, which will be shown

in section 7.

4 Linear Theory

This section will be devoted to the resolution of the basic linear theory for the operator L defined

in (3.13). Given functions h ∈ L2(S), we consider the problem of finding φ ∈ H2(S) such that for

certain functions cj ∈ L2(0, 1), j = 1, . . . , N, we have

L(φ) = h +
N∑
j=1

cj(z)χj(x, z)Hj,x in S, (4.18)

φ(x, 0) = φ(x, `/ε), φz(x, 0) = φz(x, `/ε), x ∈ R, (4.19)∫ ∞
−∞

φ(x, z)Hj,x(x, z)χj(x, z)dx = 0, 0 < z < `/ε, j = 1, . . . , N. (4.20)

Our main result in this section is the following.

Proposition 4.1. There exists a constant C > 0, independent of ε and uniform for the parameters

f in (2.22)-(2.24) such that for all small ε problem (4.18)-(4.20) has a solution (c, φ) = Tf (h),

which defines a linear operator of its arguments and satisfies the estimate

‖φ‖H2(S) ≤ C ‖h‖L2(S).

For the proof of Proposition 4.1, we need the validity of the existence result for a simpler

problem. Let us define the linear operator

L0(φ) = φxx + φzz + (1− 3H2)φ,
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and consider the problem: given h ∈ L2(S), finding functions φ ∈ H2(S) and c ∈ L2(0, `/ε) to

L0(φ) = h + c(z)χ(x)Hx in S, (4.21)

φ(x, 0) = φ(x, `/ε), φz(x, 0) = φz(x, `/ε), x ∈ R, (4.22)∫
R
φ(x, z)Hx(x)χ(x) dx = 0, 0 < z <

`

ε
, (4.23)

where χ(x) = ηba(x) and ηba is the function in (3.17).

Lemma 4.2. Problem (4.21)-(4.23) possesses a unique solution, denoted by (c, φ) = T0(h). More-

over, we have

||cHx||L2(S) ≤ C ‖h‖L2(S),

‖φ‖H2(S) ≤ C ‖h‖L2(S).

Proof. We will first prove an apriori estimate for (4.21)-(4.23). To this end let φ be a solution

of (4.21)-(4.23). We observe that for the purpose of the a priori estimate we can assume that c ≡ 0

in (4.21). Let us consider Fourier series decompositions for h and φ of the form

φ(x, z) =
∞∑
k=0

φk(x)e ikεz, h(x, z) =
∞∑
k=0

hk(x)e ikεz.

Then we have the validity of the equations

− k2ε2φk + L0(φk) = hk, x ∈ R, (4.24)

and conditions ∫
R
φkHxχ(x) dx = 0, (4.25)

for all k. We have denoted here

L0(φk) = φk,xx + F ′(H(x))φk.

Let us consider the bilinear form in H1(R) associated to the operator L0, namely

B(ψ,ψ) =
∫

R

[
|ψx|2 − F ′(H)|ψ|2

]
dx .

Since (4.25) holds uniformly in k we conclude that

C[‖φk‖2L2(R) + ‖φk,x‖2L2(R)] ≤ B(φk, φk) (4.26)

for a constant C > 0 independent of k. Using this fact and equation (4.24) we find the estimate

(1 + k4ε4)‖φk‖2L2(R) + ‖φk,x‖2L2(R) ≤ C‖hk‖2L2(R).
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In particular, we see from (4.24) that φk satisfies an equation of the form

φk,xx − 2φk = h̃k, x ∈ R.

where ‖h̃k‖L2(R) ≤ C‖hk‖L2(R). Hence it follows that additionally we have the estimate

‖φk,xx‖2L2(R) ≤ C‖hk‖2L2(R). (4.27)

Adding up estimates (4.26), (4.27) in k we conclude that

‖D2φ‖2L2(S) + ‖Dφ‖2L2(S) + ‖φ‖2L2(S) ≤ C‖h‖2L2(S), (4.28)

which ends the proof in the case c ≡ 0. To prove the general case we multiply equation (4.21) by

Hxχ(x) and use (4.23). This yields:

c(z)
∫

R
H2
xχ

2(x) dx =
∫

R
L0(φ)Hxχdx−

∫
R
hHxχdx

=
∫

R
(Hxχxx + 2Hxxχx)φ dx−

∫
R
hHxχdx,

hence

‖cHx‖L2(S) ≤ Cεµ‖φ‖L2(S) + C‖h‖L2(S), (4.29)

where µ ∈ (0, 1). Taking ε sufficiently small and using (4.28) we get the required a priori estimates

in the general case.

The existence part of the Lemma follows from standard Fredholm alternative argument. The

proof is completed.

In order to apply the previous result to the resolution of the full problem (4.18)-(4.20), we

define first the operator (c.f. (3.13)) for a fixed number j

Lj(φ) = L(φ) = φxx + φzz +
(

1− 3(Hj)2
)
φ + ηε6δB8(φ),

and consider the following problem

Lj(φ) = h + cj(z)χj(x, z)Hj,x in S, (4.30)

φ(x, 0) = φ(x, `/ε), φz(x, 0) = φz(x, `/ε), x ∈ R, (4.31)∫
R
φ(x, z)χj(x, z)Hj,x dx = 0, 0 < z <

`

ε
. (4.32)

We have

Lemma 4.3. Problem (4.30)-(4.32) possesses a unique solution (cj , φ). Moreover,

||cj Hj,x||L2(S) ≤ C ‖h‖L2(S),

‖φ‖H2(S) ≤ C ‖h‖L2(S).
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Proof. We recall that Hj = (−1)j+1H
(
x− ej(εz)

)
defined in S and denote below

ξ̃(x, z) = ξ
(
x+ ej(εz), z

)
.

Direct computation gives that problem (4.30)-(4.32) is equivalent to

φ̃xx + φ̃zz +
(
1− 3H2

)
φ̃+ B̃0(φ̃) + B̃1(φ̃) = h̃ + cj(z)χ(x)Hx in S,

φ̃(x, 0) = φ̃(x, `/ε), φ̃z(x, 0) = φ̃z(x, `/ε), x ∈ R, (4.33)∫
R
χ(x)φ̃Hx dx = 0, 0 < z <

`

ε
,

where

B̃0(φ̃) = ε2
(
e′j(εz)

)2

φ̃xx − ε2 e′′j (εz) φ̃x − 2εe′(εz) φ̃xz.

In the above, B̃1 is the operator transformed from ηε6δB8 in (2.30) under the changing of variable.

Direct computations will show that the linear operators B̃0 and B̃1 are small in the sense that

‖B̃1(φ̃) + B̃0(φ̃)‖L2(S) ≤ o(1) ‖φ̃‖H2(S),

with o(1)→ 0 as ε→ 0. This problem is then equivalent to the fixed point linear problem

φ̃ = T0

(
h̃+ B̃0(φ) + B̃1(φ̃)

)
,

where T0 is the linear operator defined by Lemma 4.2. From this, unique solvability of the problem

and the desired estimate immediately follow.

Proof of Proposition 4.1. We will first define some cut-off functions that will be important in

the sequel. As before, let ηba(s) be a smooth function with ηba(s) = 1 for |s| < a and = 0 for |s| > b,

where 0 < a < b < 1. Recall that ej = (−1)j+1f + fj . Then, with R = log 1
ε , and Xj = x− ej(εz)

we set

ηj(x, z) = ηba

( |Xj |
R

)
, a =

√
2

27 − 1
28

, b =
√

2
28 − 1

29
, (4.34)

(c.f. (3.17)). We search for a solution of φ = T (h) to problem (4.18)-(4.20) in the form

φ = ψ +
N∑
j=1

ηj φ̄j . (4.35)

From the definition of the functions ηj and χj , we have

ηjχj = χj , χj∇ηj = χj∆ηj = 0. (4.36)

We will denote

χ̄ = 1−
N∑
j=1

ηj .
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It is readily checked that φ given by (4.35) solves problem (4.18)-(4.20) if the functions φ̄j , j =

1, · · · , N , satisfy the following linear system of equations, for j = 1, · · · , N ,

Lj(φ̄j) = ηj
(
h− ψ + 3u2

1ψ
)

+ χj cj(εz)Hj,x + 3ηj
(
u2

1 −H2
j

)
φ̄j in S, (4.37)

φ̄j(x, 0) = φ̄j(x, `/ε), φ̄j,z(x, 0) = φ̄j,z(x, `/ε), x ∈ R, (4.38)∫
R

(
φ̄j + χjψ)Hj,xχj dx = 0, 0 < z <

`

ε
, (4.39)

and the function ψ satisfies

ψxx + ψzz + χ̄
(
1− 3u2

1

)
ψ = χ̄h+

N∑
j=1

(1− ηj) cj(εz)Hj,x −
N∑
j=1

(
2∇ηj · ∇φ̄j + φ̄j∆ηj

)
, (4.40)

ψ(x, 0) = ψ(x, `/ε), ψz(x, 0) = ψz(x, `/ε), −∞ < x <∞. (4.41)

In order to solve this system we will set up a fixed point argument. Observe that the orthogonality

condition in (4.39) is satisfied for φ̄j +χjψ rather than φ̄j , hence it is convenient to introduce new

variable φ̃j = φ̄j + χjψ. Then combining (4.37) and (4.40) we get the following system for φ̃j

Lj(φ̃j) = ηj
(
h− ψ + 3W 2ψ

)
+ χj cj(εz)Hj,x + 3ηj

(
W 2 −H2

j

)
φ̄j

+ χjLj(ψ) + ψ∆χj + 2∇ψ · ∇gχj , in S,

φ̃j(x, 0) = φ̃j(x, `/ε), φ̃j,z(x, 0) = φ̃j,z(x, `/ε), x ∈ R,∫
R
φ̃jHj,xχj dx = 0, 0 < z <

`

ε
,

(4.42)

To solve (4.42) we assume that functions Φ̄j , j = 1, · · · , N , and Ψ̃ are given. First we replace

φ̄j , ψ by Φ̄j , Ψ̃ on the right hand sides of (4.42) and solve (4.42) for each φ̄j , j = 1, . . . , N , using

Lemma 4.3. We get the following estimates, for all j = 1, · · · , N

‖φ̄j‖H2(S) ≤ C
[
‖h‖L2(S) + ‖Ψ̃‖H2(S)

]
+ o(1)

N∑
j=1

‖Φ̄j‖H2(S), (4.43)

as ε → 0. Given Ψ̃ we can now find functions φ̄j = φ̄j(Ψ̃) which solve (4.42) by a fixed point

argument. Next, we can now solve (4.40) for ψ which in addition satisfies

‖ψ‖H2(S) ≤ C‖h‖L2(S) +
C

R

N∑
j=1

‖Φ̄j(Ψ̃)‖H2(S), R = log
1
ε
. (4.44)

Combining this with (4.43), taking ε small, and applying a fixed point argument again we get

finally a solution to (4.40). This ends the proof.

5 Solving the Nonlinear Intermediate Problem

In this section we have the following theorem for the resolution of problem (3.14)-(3.16).
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Proposition 5.1. There exist numbers D > 0, τ > 0 such that for all sufficiently small ε and all

f satisfying (2.22)-(2.24) problem (3.14)-(3.16) has a unique solution φ = φ(f) which satisfies

‖φ‖H2(S) ≤ Dε
3
2 | log ε|2,

‖φ‖L∞(|x|>δ/ε) + ‖∇φ‖L∞(|x|>δ/ε) ≤ e−τδ/ε.

Besides φ is a Lipschitz function of f , and for given f1, f2 : (0, `)→ RN such that:

‖f1 − f2‖H2(0,`) ≤
| log ε|

212
, (5.1)

it holds

‖φ(f1)− φ(f2)‖H2(S) ≤ Cε| log ε|q‖f1 − f2‖H2(0,`). (5.2)

Proof. A first elementary, but crucial observation is the following: there holds E1 = ηεδẼ = E2;

Moreover, the term

ηεδE11 = −
√

2 ε ηεδat
N∑
j=1

fj (−1)j+1Hj,x,

in the decomposition of E2 can be absorbed in that term
∑N
j=1 χj cj Hj,x. Let Tf be the operator

defined by Proposition 4.1. Given f in (2.22)-(2.24), the equation (3.14)-(3.16) is equivalent to the

fixed point problem for φ(f):

φ(f) = Tf

(
h
)
≡ A(φ, f), (5.3)

with

h = −ηεδ
(
E02(f) + E12(f)

)
+ N2

(
φ(f)

)
. (5.4)

In the sequel we will not emphasize the dependence on f whenever it is not necessary.

We will define now the region where contraction mapping principle applies. From the estimates

in Lemma 2.3, the terms E02 and E12 are of order O(ε3/2| log ε|2). Hence, we consider the following

closed, bounded subset of H2(S):

B =

φ ∈ H2(S)

∣∣∣∣∣∣∣
‖φ‖H2(S) ≤ Dε

3
2 | log ε|2,

‖φ‖L∞(|x|>δ/ε) + ‖∇φ‖L∞(|x|>δ/ε) ≤ e−τδ/ε

 ,

and claim that there are constants D, τ > 0 such that the map A defined in (5.3) is a contraction

from B into itself, uniform with respect to f . Given φ̃ ∈ B we denote φ = A(φ̃, f) and then have

the following estimates. Firstly, (3.9) and Lemma 2.3 imply that for φ̃ ∈ B∣∣∣∣∣∣−ηεδ(E02(f) + E12(f)
)

+ N2(φ̃)
∣∣∣∣∣∣
L2(S)

≤ C0ε
3/2| log ε|2 + C‖φ̃‖2H2(S) + e−γδ/ε (5.5)

+Cε1/4
[
‖φ̃‖L∞(|x|>δ/ε) + ‖∇φ̃‖L∞(|x|>δ/ε)

]
,
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with some γ > 0. Secondly, the exponential decay of the basic approximate solution u1 outside

the region: {|x| > δ0/ε} and the fact that F ′(W ) = −1 +O(e−γ|x|) for some constant γ > 0 imply

‖A(φ̃, f)‖L∞(|x|>δ/ε) + ‖∇A(φ̃, f)‖L∞(|x|>δ/ε)

≤ Ce−γδ/ε + Cδ
[
‖φ̃‖L∞(|x|>δ/ε) + ‖∇φ̃‖L∞(|x|>δ/ε)

]
. (5.6)

From (5.5)–(5.6) we get that A indeed applies B into itself provided that D is chosen sufficiently

large and τ sufficiently small.

Let us analyze the Lipschitz character of the nonlinear operator involved in A for functions in

the subset B, namely ηεδÑ
(
ηε3δφ+ ψ(φ)

)
. For φ1, φ2 ∈ B we have, using (3.9) and (3.10):∥∥∥ ηεδÑ(ηε3δφ1 + ψ(φ1)

)
− ηεδÑ

(
ηε3δφ2 + ψ(φ2)

) ∥∥∥
L2(S)

≤ C
[
ε3/2| log ε|2 + e−γ0δ/ε

] {
‖φ1 − φ2‖L2(S) (5.7)

+ ε1/4‖φ1 − φ2‖L∞(|x|>δ/ε) + ε1/4‖∇(φ1 − φ2)‖L∞(|x|>δ/ε)

}
.

Using this one can show that A is a contraction map in B and thus show the existence of the fixed

point.

We will now analyze the dependence of the solution φ found above as a fixed point of the

mapping Tf on the parameter f . We will denote φ = φ(f) whenever convenient. We will consider

periodic functions f1, f2 : (0, `)→ RN , such that (5.1) holds. A tedious but straightforward analysis

of all terms involved in the differential operator and in the error yield that the operator Tf (φ) is

continuous with respect to f . Indeed, indicating now the dependence on f , let us make the following

decomposition:

Lf1(φ(f1) )− Lf2(φ(f2) ) = Lf1

(
φ(f1)− φ(f2)

)
+
[
F ′(u1(f1))− F ′(u1(f2))

]
φ(f2).

Above, and in what follows fn = fn(εz). We will denote

φ̄ = φ(f1) − φ(f2) +
N∑
j=1

Hj,x(f1)χj(f1)∫
R
Hj,x(f1)χj(f1) dx

∫
R
φ(f2)Hj,x(f1)χj(f1) dx.

With these notation we have that φ̄ satisfies:

Lf1 φ̄ = A
(
f1, f2, φ(f1), φ(f2)

)
+

N∑
j=1

c̄jHj,x(f1),∫
R
φ̄Hj,x(f1)χj(f1) dx = 0,

(5.8)

where

c̄j = cj(f1)χj(f1)− cj(f2)χj(f2),
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and

A
(
f1, f2, φ(f1), φ(f2)

)
= −L̃f1

{
N∑
j=1

Hj,x(f1)χj(f1)∫
R
Hj,x(f1)χj(f1) dx

∫
R
φ(f2)

[
Hj,x(f1)χj(f1)−Hj,x(f2)χj(f2)

]
dx

}
(5.9)

+
[
F ′(W (f1))− F ′(W (f2))

]
φ(f2)−

N∑
j=1

cj(f2)χj(f2)
[
Hj,x(f2)−Hj,x(f1)

]
+ h(f1) − h(f2),

with h(fn) defined in (5.4). Using these decompositions one can estimate ‖φ(f1)− φ(f2)‖H2(S) by

employing the theory developed in the previous section.

In fact, observe that by Proposition 4.1 we only need to estimate ‖A‖L2(S). For instance we

have: ∥∥∥[F ′(W (f1))− F ′(W (f2))
]
φ(f2)

∥∥∥
L2(S)

≤ Cε−1/2‖f1 − f2‖L2(S)‖φ(f2)‖L2(S). (5.10)

To estimate the L2 norm of the first term in (5.9) we fix a j and denote:

h =
Hj,x(f1)χj(f1)∫

R
Hj,x(f1)χj(f1) dx

, g =
∫

R
φ(f2)

[
Hj,x(f1)χj(f1)−Hj,x(f2)χj(f2)

]
dx.

Then,

‖L̃f1(hg)‖L2(S) ≤ C sup
z∈(0,`/ε)

|g| · ‖L̃f1(h)‖H2(S) + C sup
z∈(0,`/ε)

|gz| · ‖∇h‖H2(S)

+ C‖hL̃f1(g)‖L2(S). (5.11)

We have:

|g| =
∫
|x|≤C| log ε|

|φ(f2)||Hj,x(f1)χj(f1)−Hj,x(f2)χj(f2)|dx

≤ Cε−1/2| log ε|1/2‖φ(f2)‖H2(S)‖f1 − f2‖H2(0,`).

Using the fact that Hxxx + F ′(H)Hx = 0 and that suppχ′j(f1) ⊂ {|x − f1j | >
√

2
4 | log |ε|} we can

estimate:

‖L̃f1(h)‖H2(S) ≤ C.

Furthermore,

|gzz|2 ≤ C| log ε|
∫
|x|≤C| log ε|

|φzz(f2)|2|Hj,x(f1)χj(f1)−Hj,x(f2)χj(f2)|2dx

+ C| log ε|
∫
|x|≤C| log ε|

|φz(f2)|2|[Hj,x(f1)χj(f1)−Hj,x(f2)χj(f2)]z|2dx

+ C| log ε|
∫
|x|≤C| log ε|

|φ(f2)|2|[Hj,x(f1)χj(f1)−Hj,x(f2)χj(f2)]zz|2dx

≤ C| log ε|(I + II + III).
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We have:

I + II ≤ C‖f1 − f2‖2H2(0,`)

∫
|x|≤C| log ε|

(|φzz(f2)|2 + |φz(f2)|2)dx,

III ≤ C(|f1,zz − f2,zz|2 + |f1,z − f2,z|2) sup
z∈(0,`/ε)

∫
|x|≤C| log ε|

|φ(f2)|2dx

+ C(|f2,zz|2 + |f2,z|2)‖f1 − f2‖2H2(0,`) sup
z∈(0,`/ε)

∫
|x|≤C| log ε|

|φ(f2)|2dx

≤ C(|f1,zz − f2,zz|2 + (|f1,z − f2,z|2)‖φ(f2)‖2H2(S)

+ C(|f2,zz|2 + |f2,z|2)‖f1 − f2‖2H2(0,`)‖φ(f2)‖2H2(S).

Similar estimate, but depending only on the first derivatives in z of fn, φ(f2), holds for gz. Using

these estimates we conclude from (5.11) that

‖L̃f1(hg)‖L2(S) ≤ Cε−1/2| log ε|q‖φ(f2)‖H2(S)‖f1 − f2‖H2(0,`). (5.12)

We will now estimate:

‖h(f1)− h(f2)‖L2(S) ≤ ‖ηεδ(Ẽ(f1)− Ẽ(f2))‖L2(S)

+ ‖ηεδ [Ñ(ηε3δφ(f1) + ψ(f1))− Ñ(ηε3δφ(f2) + ψ(f2))‖L2(S)

+ 3‖ηεδ [(1−W 2(f1))ψ(f1)− (1−W 2(f2))ψ(f2)]‖L2(S).

(5.13)

Using the equation satisfied by ψ(fn), n = 1, 2 we find:

‖ηεδ(Ẽ(f1)− Ẽ(f2))‖L2(S) ≤ Cε3/2| log ε|q‖f1 − f2‖H2(S),

‖ψ(f1)− ψ(f2)‖H2(S) ≤ Cε‖φ(f1)− φ(f2)‖H2(S) + Cε3/2| log ε|q‖f1 − f2‖H2(S).

Then we get that:

‖h(f1)− h(f2)‖L2(S) ≤ Cε‖φ(f1)− φ(f2)‖H2(S) + Cε3/2| log ε|q‖f1 − f2‖H2(S). (5.14)

Term involving cj(f2) in (5.9) can be estimated in a similar way. In summary we obtain:

‖φ̄‖H2(S) ≤ Cε| log ε|q‖f1 − f2‖H2(0,`) + Cε‖φ(f1)− φ(f2)‖H2(S)

≤ Cε| log ε|q‖f1 − f2‖H2(0,`) + Cε‖φ̄‖H2(S) + Cε‖φ̄− φ(f1) + φ(f2)‖H2(S).
(5.15)

Since

‖φ̄− φ(f1) + φ(f2)‖H2(S) ≤ Cε| log ε|q‖f1 − f2‖H2(0,`),

estimate (5.2) follows from (5.15). This ends the proof.

Clearly Proposition 5.1 and the gluing procedure yield a solution to our original problem (1.3)

if we can find f in (2.22)-(2.24) such that

c(f) = 0. (5.16)
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As we will see this leads to a system of N nonlinear ODE’s. We carry out this argument and solve

the nonlinear system in the next two sections.

6 The projection on Hn,x and the Toda System

It is easy to see that the identities (5.16) is equivalent to the following equations∫ ∞
∞

[
L(φ) + ηεδẼ − N2(φ)

]
Hn,x dx = 0, n = 1, ..., N. (6.1)

Hence, it is crucial to get estimates of all terms in (6.1), which will be carried out in the sequel.

Make notations

S =
{
x ∈ R : (x, z) ∈ S

}
, Sn =

{
x ∈ R : (x, z) ∈ An

}
,

and consider for each n, (n = 1, · · · , N), the following integrals∫
S
ηεδ Ẽ(x, z)H ′(x− en(εz)) dx =

{∫
Sn

+
∫
S\Sn

}
ηεδ Ẽ(x, z)H ′(x− en(εz)) dx

≡ En1(εz) + En2(εz).

Note that in An, η
ε
δẼ(x, z) = E1(x, z), we begin with

En1(εz) =
∫
Sn

[
E02 + (E11 + E12)

]
H ′(x− en) dx

≡ I0 + I1.

From the computations of section 6 in [16], we get the estimates for some terms in I0 as follows

I01 ≡
∫
Sn

[
− ε2

N∑
j=1

e
′′

j Hj,x + ε2
N∑
j=1

(e
′

j )
2Hj,xx + 3

(
1−H2

n

)
(u0 −Hn)

]
H ′(x− en) dx

+
∫
Sn

[ 1
2
F
′′
(Hn)(u0 −Hn)2 − 1

2
F
′′
(σnj)(σnj −Hj)2

]
H ′(x− en) dx

= (−1)n
[
ε2 γ0 e

′′

n − γ1 e
−
√

2 (en−en−1) + γ1 e
−
√

2 (en+1−en)
]

+O(ε3)
N∑
j=1

[
e
′
+ (e′j)

2 + e
′′ ]

+ ε1/2 max
j 6=n

O(e−
√

2 |ej−en|),

where we define

γ0 =
∫

R
H2
x dx =

2
√

2
3
, γ1 = 3A0

∫
R

(1−H2)Hx e
−
√

2 x dx.
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Obviously, we obtain

I02 ≡ −
√

2
2
ε2 att

∫
Sn

N∑
j=1

e2
j H

′
(x− ej)H ′(x− en) dx − ε2k2

∫
Sn

N∑
j=1

ej Hj,xH
′(x− en) dx

−
√

2
2
ε2 att

∫
Sn

N∑
j=1

(x− ej)2H
′
(x− ej)H ′(x− en) dx

= − 2
3
ε2 att(0, εz) e2

n + (−1)nε2 γ0 k
2(εz) en + ε2 att(0, εz) γ2 + ε1/2 max

j 6=n
O(e−

√
2 |ej−en|),

where

γ2 = −
√

2
2

∫
R
x2H2

x dx.

Using the facts that the function H
′
(x) is even, the conditions in (2.15)-(2.17) and the asymptotic

expansion of H in (2.11), one carries out the estimates for other terms in I0 and gets

I03 ≡ I0 − I01 − I02

= − ε2 att ej

∫
Sn

N∑
j=1

(x− ej)(1−H2
j )H ′(x− en) dx

+ εat

∫
Sn
x
∑
j 6=n

(
1 −

(
Hj

)2 )
H ′(x− en) dx + εat

∫
Sn
x
[ (
u0

)2 −H2
n

]
H ′(x− en) dx

− 1
2
ε2 att

∫
Sn

∑
j 6=n

x2(1−H2
j )H ′(x− en) dx

+
1
2
ε2att

∫
Sn
x2
[ (
u0

)2 −H2
n

]
H ′(x− en) dx− ε2k2

∫
Sn

N∑
j=1

(x− ej)Hj,xH
′(x− en) dx

= O(ε3)
N∑
j=1

[
e
′
+ (e′j)

2 + e
′′ ]

+ ε1/2 max
j 6=n

O(e−
√

2 |ej−en|).

Hence,

I0 = (−1)n
[
ε2 γ0 e

′′

n − γ1 e
−
√

2 (en−en−1) + γ1 e
−
√

2 (en+1−en) + ε2 γ0 k
2(εz) en

]
− 2

3
ε2 att(0, εz) e2

n + ε2 att(0, εz) γ2 + O(ε3)
N∑
j=1

[
e
′
+ (e′j)

2 + e
′′ ]

+ ε1/2 max
j 6=n

O(e−
√

2 |ej−en|).
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Similarly, we obtain the estimates for the components in I1

I11 ≡ −
√

2 ε at
∫
Sn

N∑
j=1

H ′(x− ej) fj H ′(x− en) dx

+
√

2 ε2kat

∫
Sn

N∑
j=1

(−1)j+1 Ψx(x− ej)H ′(x− en) dx

+ 2
√

2 ε2a2
t

∫
Sn

N∑
j=1

ej H(x− ej)Ψ(x− ej)H ′(x− en) dx

= − 4
3
ε at(0, εz)fn + ε2 a2

t (0, εz) γ3 en + (−1)n+1ε2 k(εz) at(0, εz) γ4 + O(ε2)
N∑
j=1

fj ,

where

γ3 = 2
√

2
∫

R
H ΨH

′
dx, γ4 =

√
2
∫

R
ΨxH

′
dx.

Using the facts that the functions H
′
(x) and φ∗(x, z) are even, we can derive

I12 ≡ − 3 ε
∫
Sn

N∑
j=1

[ (
u0

)2 −H2
j

]
φ∗j H

′(x− en) dx

+ 2
√

2 ε2 a2
t

∫
Sn

N∑
j=1

(x− ej)H(x− ej) Ψ(x− ej)H ′(x− en) dx

+ 2
√

2 ε2at

∫
Sn

N∑
j=1

x(u0 −Hj)φ∗j H
′(x− en) dx

−
∫
Sn

[
3u0

(
φ∗
)2 +

(
φ∗
)3 ]

H ′(x− en) dx

= O(ε3)at(0, εz) + O(ε2)
N∑
j=1

fj ,

Thus, we finish the estimate of I1.

To compute En2(εz), recall that for (x, z) ∈ Sδ/ε \An,

H ′(x− en) = max
j 6=n

O(e−
1
2 |ej−en|),

and that ηεδẼ(x, z) = ηεδE1(x, z). Thus we can estimate

En2(εz) = εmax
j 6=n

O(e−|ej−en|) +O(ε1/2)
2∑
i=1

Ii.

Gathering the above estimates, we get the following, for n = 1, . . . , N∫
S
ηεδ Ẽ(x, z)H ′(x− en(εz)) dx = (−1)n

[
ε2 γ0 e

′′

n − γ1 e
−
√

2 (en−en−1) + γ1 e
−
√

2 (en+1−en)
]

+ (−1)nε2 γ0 k
2(εz) en −

2
3
ε2 att(0, εz) e2

n + ε2 att(0, εz) γ2

− 4
3
ε at(0, εz)fn + ε2 a2

t (0, εz) γ3 en

+ (−1)n+1ε2 k(εz)at(0, εz)γ4 + Pn(εz). (6.2)
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For further references we observe that

||Pn||L2(0,1) ≤ Cε3/2, n = 1, · · · , N. (6.3)

Continuing with other two terms involved in (6.1), using the quadratic nature of the nonlinear

term N2(φ) and Proposition 5.1, we get for

Qn(εz) ≡
∫
S
N2(φ)H ′(x− en(εz)) dx

a similar estimate

||Qn||L2(0,1) ≤ Cε3/2, n = 1, · · · , N. (6.4)

We point out that, by Proposition 5.1, Qn is a continuous function of the parameters f.

The last term in (6.1) can be written as

Vn(εz) ≡
∫
S
L(φ)H ′(x− en(εz)) dx

=
∫
S
φzzH

′(x− en(εz)) dx+
∫
S
ηε10δ B8(φ)H ′(x− en(εz)) dx

+
∫
S
φ
[
H ′′′(x− en(εz)) + F

′
(W )H ′(x− en(εz))

]
dx.

A similar estimate holds

||Vn||L2(0,1) ≤ Cε3/2, n = 1, · · · , N. (6.5)

In fact, the proof is very straightforward. For example, using the orthogonality conditions we can

get

V1
n(εz) ≡

∫
S
φzzH

′(x− en(εz)) dx

= ε2

∫
S
φ
[
e
′′

nH
′′(x− en(εz))− (e

′

n)2H ′′′(x− en(εz))
]

dx

+ 2εe
′

n

∫
S
φzH

′′(x− en(εz)) dx

The estimate for V1
n follows from Proposition 5.1. Moreover, it also depends continuously on the

parameters f.

Now, from above discussion, for θ = εz, by the notations of

Mn(θ, f, f
′
, f
′′
) ≡ Pn +Qn + Vn, α1(θ) =

4
3
at(0, θ), α3(θ) =

2
3
att(0, θ), (6.6)

α2,n(θ) = − γ0 k
2(θ)− (−1)na2

t (0, εz)γ3, α4,n(θ) = − (−1)nγ2 att(0, θ)− γ4 k(θ) at(0, θ), (6.7)

we draw a conclusion as the following proposition:
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Proposition 6.1. For the validity of (5.16), there should hold the following equations,

ε2 γ0 e
′′
n − γ1 e

−
√

2 (en−en−1) + γ1 e
−
√

2 (en+1−en) + (−1)n+1 ε α1(θ) fn

− ε2 α2,n(θ) en − (−1)n ε2 α3(θ) e2
n = ε2 α4,n(θ) + Mn, n = 1, . . . , N.

Moreover, Mn can be decomposed in the following way

Mn(θ, f, f
′
, f
′′
) =Mn1(θ, f, f

′
, f
′′
) + Mn2(θ, f, f

′
).

where Mn1 and Mn2 are continuous of their arguments. Function Mn1 satisfies the following

properties, for n = 1, · · · , N

∣∣∣∣Mn1(θ, f, f
′
, f
′′
)
∣∣∣∣
L2(0,1)

≤ Cε3/2,∣∣∣∣Mn1(θ, f, f
′
, f
′′
)−Mn1(θ, f1, f

′

1, f
′′

1 )
∣∣∣∣
L2(0,1)

≤ Cε3/2 | log ε|q ||f− f1||H2(0,1).

Function Mn2 satisfies the following estimates for n = 1, · · · , N

∣∣∣∣Mn2(θ, f, f
′
)
∣∣∣∣
L2(0,1)

≤ Cε3/2.

We omit the proof of this proposition. In fact, careful examining of all terms will lead the

decomposition of the operator Mn and the properties of its components Mn1 and Mn2.

7 Location and interaction of clustered Layers

Recall that N = 2m+ 1 is a fixed odd integer as in Theorem 1.2. Define the operators by

L∗n(fn) ≡ ε2 γ0 f
′′
n + ε (−1)n+1 α1(θ) fn − γ1 e

−
√

2
(
fn−fn−1+βn

)
+ γ1 e

−
√

2
(
fn+1−fn+βn+1

)
− ε2 α5,n(θ) fn − ε2 (−1)n α3(θ) f2

n,

where α5,n and βn are given by

α5,n(θ) = α2,n(θ) + 2α3(θ)f(θ), βn = 2(−1)n+1f,

with f is the function defined in (2.21). α1 is a positive function defined in (6.6). Using the fact

en = fn + (−1)n+1f and Proposition 6.1, after obvious algebra, we have to deal with the following

system, with n running from 1 to N

L∗n(fn) = ε2 α6,n + Mn, f ′n(`) = f ′n(0), fn(`) = fn(0), (7.1)

where f0 = −∞, fN+1 =∞ and the function α6,n is defined by

α6,n(θ) = α4,n(θ) − γ0(−1)n+1f
′′
(θ) + (−1)n+1α2,n(θ)f(θ) + (−1)nα3(θ)f2(θ).
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7.1 Solvability of Toda System

Before solving the above system (7.1), we study a simpler problem in this subsection. Consider

the following Toda system for n = 1, · · · , N

ε2 γ0 f
′′
n + ε (−1)n+1 α1(θ) fn − γ1 e

−
√

2
(
fn−fn−1+βn

)
+ γ1 e

−
√

2
(
fn+1−fn+βn+1

)
= ε3/2hn, (7.2)

f ′n(`) = f ′n(0), fn(`) = fn(0), (7.3)

where f0 = −∞, fN+1 =∞. We have the following solvability theory.

Proposition 7.1. For given h = (h1, · · · , hN ) ∈ L2(0, `), there exists a sequence (εl)l approaching

0 such that problem (7.2)-(7.3) admits a solution f = (f1, · · · , fN ) with the form:

fn(θ) =
(
n− (m− 1)

)
ρεl(θ) + f̄n(θ) + f̌n(θ), n = 1, . . . , N, (7.4)

where ρεl(θ) satisfies

e−
√

2 ρεl = εlα1(θ)ρεl , (7.5)

and in particular

ρεl(θ) =
1√
2

log
1
εl
− 1√

2
log log

1
εl
− 1√

2
log

α1(θ)
2

+O
( log log 1

εl

log 1
εl

)
.

Functions f̄1, · · · , f̄N , defined by Lemma 7.2, do not depend on h and satisfy

f̄n(θ) = O(1), n = 1, 2, · · · , N.

Finally, for functions f̌1, · · · , f̌N , we have

‖f̌n‖L2(0,`) ≤ C ‖h‖L2(0,`), n = 1, 2, · · · , N.

Moreover, if h ∈ H2(0, `), then

εl
| log εl|

||f̌
′′
||L2(0,`) +

√
εl

| log εl|
||f̌
′
||L2(0,`) + ||f̌ ||L∞(0,`) ≤ C

[
log

1
εl

]−1/2

||h||H2(0,`).

Proof. We divide the proof into three steps.

Step 1: Recall that α1(θ) > 0. Let us define positive functions ρε(θ) and δ(θ) by

e−
√

2 ρε = εα1(θ)ρε, (7.6)

δ−2(θ) = α1(θ)ρε(θ) =
α1(θ)√

2

[
log

1
ε
− log log

1
ε

+ O(1)
]
. (7.7)

Then multiplying equation (7.2) by δ2 and setting

fn =
(
n− (m+ 1)

)
ρε + f̂n, n = 1, · · · , N,
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we get an equivalent system, for n = 1, 2, · · · , N

δ2
(
ε γ0 f̂

′′

n + (−1)n+1 α1(θ) f̂n
)
− γ1 e

−
√

2
(
f̂n−f̂n−1+βn

)
+ γ1 e

−
√

2
(
f̂n+1−f̂n+βn+1

)
= δ2 ε1/2hn + ε δ2 γ0

(
n− (m+ 1)

)
ρ
′′

ε + (−1)n
(
n− (m+ 1)

)
, (7.8)

f̂ ′n(`) = f̂ ′n(0), f̂n(`) = f̂n(0), (7.9)

where f̂0 = −∞, f̂N+1 =∞.

Step 2: For the full resolution of the system (7.8)-(7.9), we now want to cancel the terms of O(1)

in right hand side of (7.8) at first. To this end, we give a lemma as follows

Lemma 7.2. There exists a solution f̄ = (f̄1, · · · , f̄N ) to the following nonlinear algebraic system

δ2(−1)n+1α1(θ)f̄n − γ1e
−
√

2
(
f̄n−f̄n−1+βn

)
+ γ1e

−
√

2
(
f̄n+1−f̄n+βn+1

)
= (−1)n

(
n− (m+ 1)

)
, (7.10)

with n running from 1 to N , where f̄0 = −∞, f̄N+1 =∞.

Proof. By setting

a0 = aN = 0, an = γ1 e
−
√

2
(
f0
n+1−f

0
n+βn+1

)
, n = 1, · · · , N − 1, (7.11)

we look for a solution of (7.10) in the form f̄n = f0
n + f̃n, where an satisfy the following system of

equations:

MX = C (7.12)

where we have defined

M(N−1)×N =



1 0 0 · · · 0 0

−1 1 0 · · · 0 0

0 −1 1 · · · 0 0
...

. . . . . .
...

0 0 0 · · · 1 0

0 0 0 · · · −1 1

0 0 0 · · · 0 −1


, X =



a1

a2

...

a2m−1

a2m


, C =



m

−(m− 1)
...

0
...

m− 1

−m


.

Obviously, the system (7.12) can be uniquely solved for the unknown variables an. In fact, we have

that an, n = 1, 2, · · · , 2m, are positive constants with expression as

an = aN−n =
n∑
j=1

(−1)j+1(m+ 1− j) > 0 for all n = 1, · · · ,m. (7.13)
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By (7.11), for n = 1, · · · ,m,m+ 2, · · · , N , functions f0
n can be written as

f0
n(θ) =

√
2

2
log

m∏
i=n

ai −
√

2
2

(m+ 1− n) log γ1

+ (−1)m
[
(−1)m+n−1 + 1

]
f(θ) + f0

m+1(θ), n = 1, 2, · · · ,m,

f0
n(θ) = −

√
2

2
log

n−1∏
i=m+1

ai −
√

2
2

(n−m− 1) log γ1

+ (−1)m
[
(−1)m+n + 1

]
f(θ) + f0

m+1(θ), n = m+ 2,m+ 3, · · · , N.

Hence all functions f0
n, n = 1, · · · , N , can be uniquely determined provided that we set

f0
m+1(θ) = 4(−1)mf(θ).

Moreover, there holds
N∑
n=1

(−1)n+1 f0
n = 0. (7.14)

Then functions f̃n, n = 1, 2, · · · , N , satisfy:

δ2(−1)n+1 α1(θ) f̃n − an−1

[
e−
√

2
(
f̃n−f̃n−1

)
− 1

]
+ an

[
e−
√

2
(
f̃n+1−f̃n

)
− 1

]
= − δ2 (−1)n+1 α1(θ) f0

n, (7.15)

where f̃0 = −∞, f̃N+1 =∞.

Notice that the right hand of (7.15) is of order O(δ2) now. This however is not enough to

solve our nonlinear problem since there is a term of the same order in front of the linear part of

the operator. Thus we need to find one more term in the expansion of f̃n to cancel the terms

δ2 (−1)n+1α1 f
0
n, n = 1, 2, · · · , N . To this end let f̃n = ḟn + f1

n where f1
n, n = 1, . . . , N , solve the

following system of equations:

√
2 Af1 = α h̃ with α = δ2α1(θ), (7.16)

where

A =



a1 −a1 0 0 · · · 0 0 0 0

−a1 (a1 + a2) −a2 0 · · · 0 0 0 0
...

. . .
...

0 0 0 0 · · · 0 −a2m−1 (a2m−1 + a2m) −a2m

0 0 0 0 · · · 0 0 −a2m a2m


, (7.17)
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and

J(α) =



α 0 · · · 0 0

0 −α · · · 0 0
. . .

0 0 · · · −α 0

0 0 · · · 0 α


, f1 =


f1

1

...

f1
N

 , h̃ =



f0
1

−f0
2

...

−f0
2m

f0
N


. (7.18)

The matrix A has only one zero eigenvalue with corresponding eigenvector (1, 1, · · · , 1)T . The

system (7.16) can be solved due to the formula (7.14). It is easy to derive that the term f1 is small

in the order of O(| log ε|−1).

Now, ḟn, n = 1, · · · , N , solve the following nonlinear system of equations,

δ2(−1)n+1 α1(θ) ḟn +
√

2 an−1

(
ḟn − ḟn−1

)
−
√

2 an
(
ḟn+1 − ḟn

)
= − δ2 (−1)n+1 α1 f

1
n + N̄n(ḟ , f1), (7.19)

where N̄n, n = 1, · · · , N , are given by

N̄n(ḟ , f1) = an−1

[
e−
√

2 (ḟn−ḟn−1+f1
n−f

1
n−1) − 1 +

√
2 (ḟn − ḟn−1) +

√
2 (f1

n − f1
n−1)

]
− an

[
e−
√

2 (ḟn+1−ḟn+f1
n+1−f

1
n) − 1 +

√
2 (ḟn+1 − ḟn) +

√
2 (f1

n+1 − f1
n)
]
,

and ḟ0 = −∞, ḟN+1 = ∞. In order to use fixed point argument to solve (7.19), we consider the

following system of equations:

(√
2A + J

)
f = αh with α = δ2α1(θ), (7.20)

where the matrix J is defined in (7.18). The system (7.20) has a uniformly (with respect to ε)

bounded solution due to the following fact:

det
(√

2A + J(α)
)

= (−1)m αN + · · · +
(

ΠN
j=1

√
2 aj

)
α.

We claim that problem (7.19) can be solved by a contraction mapping principle in the set

X =

{
‖ḟ‖L2(0,`) ≤

1(
log 1

ε

)1+σ

}
with small constant σ > 0.

In fact, from the smallness of f1 in X, we have

‖N̄(ḟ , f1)‖L2(0,`) ≤
C

| log ε|1+2σ
.

The result of Lemma 7.2 follows by a straightforward argument.
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Step 3: We turn to the solvability of the system (7.8)-(7.9). By setting

f̂n = f̄n + f̌n, bn(θ) = γ1 e
−
√

2
(
f̄n+1−f̄n+βn+1

)
, n = 1, 2, · · · , N, (7.21)

where f̄n = f0
n+f1

n+ḟn, n = 1, · · · , N , satisfy the system (7.10), then all functions f̌n, n = 1, · · · , N ,

solve the following nonlinear system of equations,

δ2
(
ε γ0 f̌

′′

n + (−1)n+1 α1(θ) f̌n
)

+
√

2 bn−1

(
f̌n − f̌n−1

)
−
√

2 bn
(
f̌n+1 − f̌n

)
= δ2 ε1/2hn + ε δ2 γ0

(
n− (m+ 1)

)
ρ
′′

ε − δ2 ε γ0 (f̄n)
′′

+ Nn
(
f̌ , f̄
)
, (7.22)

f̌ ′n(`) = f̌ ′n(0), f̌n(`) = f̌n(0), (7.23)

where Nn, n = 1, · · · , N , are given by

Nn
(
f̌ , f̄
)

= bn−1

[
e−
√

2 (f̌n−f̌n−1) − 1 +
√

2 (f̌n − f̌n−1)
]

− bn

[
e−
√

2 (f̌n+1−f̌n) − 1 +
√

2 (f̌n+1 − f̌n)
]
,

(7.24)

and f̌0 = −∞, f̌N+1 =∞.

For the purpose of using a fixed point argument to solve (7.22)-(7.23) we also need the following

solvability theory for a linear system of differential equations

Lemma 7.3. Consider the following system

δ2
(
ε γ0 v

′′

n + (−1)n+1 α1(θ) vn
)

+
√

2 bn−1

(
vn − vn−1

)
−
√

2 bn
(
vn+1 − vn

)
= gn, (7.25)

v′n(`) = v′n(0), vn(`) = vn(0). (7.26)

There exists a sequence (εl)l such that problem (7.25)-(7.26) has a unique solution v = v(g) and

‖v‖L2(0,`) ≤ C
√

1/εl log
1
εl
‖g‖L2(0,`), (7.27)

where v = (v1, · · · , vN )T and g = (g1, · · · , gN )T . Moreover, if g ∈ H2(0, `) then

εl
| log εl|

||v
′′
||L2(0,`) +

√
εl

| log εl|
||v
′
||L2(0,`) + ||v||L∞(0,`) ≤ C

√
1
ε

log
1
εl
||g||H2(0,`). (7.28)

Proof. We will denote:

δ−2(θ)
√

2
2

(
log 1

ε − log log 1
ε

) = α1(θ) + σε(θ). (7.29)

By (7.7) we have

σε(θ) = O
( 1

log 1
ε

)
. (7.30)

Multiplying (7.25) by α1 + σε, we need to solve the following system

κ
(
ε γ0

d2

dθ2
+ α1

)
v +

(
α1 + σε

)[√
2B− 2Kδ2α1

]
v =

(
α1 + σε

)
g, (7.31)
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where we have denoted κ as the form

κ =
1

√
2

2

(
log 1

ε − log log 1
ε

) , (7.32)

and K is a diagonal N ×N−matrix with explicit form as

K = diag(0, 1, 0, 1, · · · , 0, 1, 0). (7.33)

In the above, we also defined the matrix B as

B =



b1 −b1 0 0 · · · 0 0 0 0

−b1 (b1 + b2) −b2 0 · · · 0 0 0 0
...

. . .
...

0 0 0 0 · · · 0 −b2m−1 (b2m−1 + b2m) −b2m
0 0 0 0 · · · 0 0 −b2m b2m


.

Note that for the entries in A and B, we have the relations (c.f. (7.11) and (7.21))

bn = γ1 e
−
√

2
(
f̄n+1−f̄n+βn+1

)
= an

(
1 +O

( 1
log 1

ε

))
. (7.34)

For decomposition of system (7.31), we analyze the properties of the matrix
√

2B− 2Kδ2α1 at

first. For the symmetric matrix A defined in (7.17), using elementary matrix operations it is easy

to prove that there exists an invertible matrix Q such that

QAQT = diag(a1, a2, · · · , aN−1, 0).

Since a1, · · · , aN−1 are positive constants defined in (7.13), we assume that all eigenvalues of the

matrix A are {
λ1, · · · , λN−1, λN

}
with λ1, · · · , λN−1 > 0, λN = 0.

Similarly, using elementary matrix operations it is easy to prove that there exists an invertible

matrix Q̂ such that

Q̂
[√

2B− 2Kδ2α1

]
Q̂T = diag

(√
2 a1 +O(δ2),

√
2 a2 +O(δ2), · · · ,

√
2 aN−1 +O(δ2), O(δ2)

)
.

We also assume that all eigenvalues of the matrix
√

2B− 2Kδ2α1 are
{
λε1, · · · , λεN−1, λ

ε
N

}
. From

the formulas (7.7) and (7.34), we have

λεi = λi +O
( 1

log 1
ε

)
, i = 1, 2, · · · , N − 1. (7.35)

Since the N -th eigenvalue, with associated eigenvector (1, · · · , 1), of B is zero, we can prove that

λεN = − 2m
2m+ 1

δ2 α1. (7.36)
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Moreover, since
√

2B − 2Kδ2α1 is a symmetric matrix, there exists another invertible matrix P

such that

P
(√

2B− 2Kδ2α1

)
P−1 = diag(λε1, · · · , λεN ).

Now, after setting two new vectors

u = (u1, · · · , uN )T = Pv, g = (g1, · · · , gN )T =
(
α1 + σε

)
Pg,

system (7.31) is equivalent to the following system with suitable periodic boundary conditions,

κ
(
ε γ0

d2

dθ2
u + α1u

)
+ κ ε γ0P

d2P−1

dθ
u + 2κ ε γ0P

dP−1

dθ
u

+ diag(λε1, · · · , λεN )
(
α1 + σε

)
u = g. (7.37)

Hence, we need to consider the systems, as follows, with suitable periodic boundary conditions.

One describes the location of the center of mass of N−interfaces as

κ
(
ε γ0

d2

dθ2
uN + α1uN

)
+ λεN

(
α1 + σε

)
uN = gN , (7.38)

and the other relate to the balance of mutual interaction of N -interfaces as

κ
(
ε γ0

d2

dθ2
ui + α1ui

)
+ λεi

(
α1 + σε

)
ui = gi, i = 1, 2, · · · , N − 1. (7.39)

Firstly, using formulas (7.29), (7.32) and (7.36), problem (7.38) read as

ε γ0
d2

dθ2
uN +

α1

2m+ 1
uN =

1
κ

gN , (7.40)

with suitable periodic boundary conditions, which can be solved by the following claim.

Claim 1: If g ∈ L2(0, `) then for all small ε satisfying the gap condition: given c > 0, there exists

ε0 > 0 such that for all ε < ε0 satisfying the gap condition∣∣∣j2ε− λ∗
N

∣∣∣ ≥ c√ε for all j ∈ N, (7.41)

there is a unique solution uN ∈ H2(0, `) to problem (7.40) which satisfies

ε||uN
′′
||L2(0,`) + ||uN ||L∞(0,`) ≤ Cε−1/2 log

1
ε
||gN ||H2(0,`).

Moreover, if gN ∈ H2(0, `) then

ε||uN
′′
||L2(0,`) + ||uN ||L∞(0,`) ≤ C log

1
ε
||gN ||H2(0,`).

For proof of this Claim, the reader can refer to Lemma 8.1 in [15].

Secondly, for the solvability theory of equations in (7.39), define linear operators by

Liε = κ
(
ε γ0

d2

dθ2
+ α1

)
+ λεi

(
α1 + σε

)
, i = 1, 2, · · · , N − 1.
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Claim 2: There exists a sequence (εl)l such that Liεl , i = 1, 2, · · · , N − 1 is invertible and∣∣∣∣∣∣(Liεl)−1
∣∣∣∣∣∣
L2(0,`)→H1(0,`)

≤ C
√
εl
√
κl
, i = 1, 2, · · · , N. (7.42)

To characterize Morse indices of above operators, first of all, for any fixed i ∈ {1, 2, · · · , N − 1}

we give an asymptotic estimate on the number N i
ε of negative eigenvalues of the operator Liε.

Denote its eigenvalues (τ iε,j)j with corresponding eigenfunctions (ψiε,j)j , in non-decreasing order

and counting them with multiplicity. From the Courant-Fisher characterization we can write τ iε,j

in two different ways:

−τ iε,j = sup
M∈Mj

inf
u∈M,u6=0

∫
uLiεu∫
α1u2

, (7.43)

−τ iε,j = inf
M∈Mj−1

sup
u⊥M,u6=0

∫
uLiεu∫
α1u2

. (7.44)

Here Mj (resp. Mj−1) represents the family of j dimensional (resp. j − 1 dimensional) subspaces

of H2(0, `), and the symbol ⊥ denotes orthogonality with respect to the L2 scalar product with

positive weight function α1.

By (Λεj)j , (Θ
ε
j)j we will denote, respectively, the set of eigenvalues and eigenfunctions of the

following eigenvalue problem: (c.f. (2.1))

ε γ0
d2

dθ2
Θ + α1Θ = −Λα1 Θ in (0, `), Θ(0) = Θ(`), Θ′(0) = Θ′(`).

As we proved in (2.2), if ε is small then we have, as j →∞,

Λεj =
4π2

`20
(j2ε− λ∗) + O(

ε

j2
). (7.45)

From the asymptotic formula in (7.45) and the forma in (7.43), one derives

N i
ε ≥

(
C + o(1)

)
(εκ)−1/2, (7.46)

where C is a fixed constant independent of ε. To prove a similar upper bound, we choose j to be

the first index such that κΛεj − λεi > |σε|. Then from the formula in (7.45) we find that

j =
(
C + o(1)

)
(εκ)−1/2,

with the same C as in (7.46). Define Mj−1 = span{Θε
l : l = 1, 2, · · · , j − 1}. For an arbitrary

function u ∈ H2 and u ⊥Mj , we can write

u =
∑
l≥j

βlΘε
l .

Plugging this u into (7.44) and using the formula (7.45), we also have

N i
ε ≤

(
C + o(1)

)
(εκ)−1/2. (7.47)
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Hence we get that

N i
ε ∼ C(εκ)−1/2 as ε→ 0, i = 1, 2, · · · , N − 1. (7.48)

For further arguments, we now compute the derivatives of τ iε,j (order o(
√
εκ)) with respect to

ε. Differentiating with respect to ε the equation ||ψiε,j || = 1, we find that

d
dε
||ψiε,j || = 0⇒

(dψiε,j
dε

, ψiε,j

)
= 0, (7.49)

where (·, ·) denotes the scalar product with weight function α1. On the other hand, by T. Kato’s

Theorem 2.2 differentiating the following equation with respect to ε

κ
(
ε γ0

d2

dθ2
+ α1

)
ψiε,j + λεi

(
α1 + σε

)
ψiε,j = −τ iε,j α1 ψ

i
ε,j , (7.50)

we obtain

dκ
dε
(
εγ0

d2

dθ2
+ α1

)
ψiε,j + κγ0

d2

dθ2
ψiε,j + κ

(
εγ0

d2

dθ2
+ α1

)dψiε,j
dε

+
dλεi
dε
(
α1 + σε

)
ψiε,j

+λεi
dσε

dε
ψiε,j + λεi

(
α1 + σε

)dψiε,j
dε

=
dτ iε,j
dε

α1ψ
i
ε,j + τ iε,jα1

dψiε,j
dε

.

Multiplying above equation by ψiε,j , integrating by parts and using (7.49), one gets

dτ iε,j
dε

∣∣∣
τε,j=0

=
λi
ε

(
1 + o(1)

)
> 0. (7.51)

Next, for l ∈ N, we choose εl in such a way that εlκl = 2−l with κl defined as in (7.32). Then

from (7.48) it follows that

N i
εl+1
−N i

εl
∼ C

[
2(l+1)/2 − 2l/2

]
= C

(√
2− 1

)(
εlκl

)−1/2
. (7.52)

By the formula (7.51), the eigenvalue of Liε bounded in absolute value by o(
√
εκ) are decreasing

in ε. Equivalently, by the last equation, the number of eigenvalues which become negative, when

ε decreases from εl to εl+1, is of order
(
εlκl

)−1/2. We define

z1
l =

{
ε ∈ (εl+1, εl) : kerLiε 6= ∅, i = 1, 2, · · · , N − 1

}
, (7.53)

z2
l =

{
ε ∈ (εl+1, εl) : ε does not satisfies (7.41)

}
, (7.54)

ẑl = (εl+1, εl) \ (z1
l ∪z2

l ). (7.55)

By (7.52) and the monotonicity (in ε) of the small eigenvalues, it follows that card(zl) < C
(
εlκl

)−1/2.

Whence there exists an interval (al, bl) such that

(al, bl) ⊂ ẑl, |bl − al| ≥
meas(ẑl)

card(z1
l ∪z2

l )
≥ C−1(εl)3/2√κl. (7.56)
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Hence, by setting εlκl = (al + bl)/2 and using (7.51), we conclude that Liεl , i = 1, 2, · · · , N − 1 is

invertible and ∣∣∣∣∣∣(Liεl)−1
∣∣∣∣∣∣
L2(0,`)→H1(0,`)

≤ C
√
εl
√
κl
, i = 1, 2, · · · , N − 1. (7.57)

This completes the proof of Claim 2.

As a consequence of the last two claims and an obvious contraction mapping theory, the solution

to (7.37) exists and satisfies

‖u‖L2(0,`) ≤ C
√

1/εl log
1
εl
‖g‖L2(0,`). (7.58)

From (7.58) by a standard argument one can show

1
1
εl

log 1
εl

‖u
′′
‖L2(0,`) +

1√
1
εl

log 1
εl

‖u
′
‖L2(0,`) + ‖u‖L2(0,`) ≤ C

√
1/εl log

1
εl
‖g‖L2(0,`).

The estimates (7.27) and (7.28) are also a direct consequence.

By using Lemma 7.3, let v = (v1, · · · , vn) be the solution to the problem (7.25)-(7.26) with

right hand side replaced by the following term

δ2 ε1/2hn + ε δ2 γ0

(
n− (m+ 1)

)
ρ
′′

ε − δ2 ε γ0 (f̄n)
′′
.

Then problem (7.22)-(7.23) can be solved by a contraction mapping principle in the set

X =

 f̌ ∈ H2(0, 1)

∣∣∣∣∣∣ 1√
1
ε log 1

ε

‖f̌
′
‖L2(0,`) + ‖f̌‖L2(0,`) ≤ ε1/2+σ

 .

In fact, in X we have

‖N(f̂ , f̄)‖L2(0,`) ≤ ε1+2σ.

Now, the result follows by a straightforward argument using Lemma 7.3. The proof of the Propo-

sition 7.1 is complete.

7.2 Proof of Theorem 1.2

In the final part of this section, we solve the system (7.1), which will give a proof of Theorem 1.2.

Proof of Theorem 1.1: Define

D =
{

f ∈ H2(0, 1)
∣∣∣ ‖f‖H2(0,1) ≤ D| log ε|%

}
with small constant 0 < % < 1 and for given f̈ ∈ D, we can set for n = 1, · · · , N

ε3/2hn(f) ≡ ε2 α6,n(θ) + Mn1(f , f
′
, f
′′
) + ε2 α5,n(θ) fn + ε2 (−1)n α3(θ) f 2

n + Mn2(f̈ , f̈
′
).
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For any f3, we can use Proposition 7.1 to get

f4 = T̃1

(
ε3/2h1(f3), · · · , ε3/2hN (f3)

)
.

Whence, by the fact that Mn1 are contractions on D, making use of the theory developed in

Proposition 7.1 and the Contraction Mapping theorem, we find f for a fixed f̈ in D. This way we

define a mapping as

Z(f̈) = (f),

and the solution of our problem is simply a fixed point of Z. Continuity of Mn2 with respect to

its parameters and a standard regularity arguments allows us to conclude that Z is compact as

mapping from H1(0, 1) into itself. The Schauder Theorem applies to yield the existence of a fixed

point of Z as required. This ends the proof of Theorem 1.2.
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