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Abstract. We prove some Liouville type results for stable solutions to the biharmonic problem
∆2u = uq, u > 0 in Rn where 1 < q < ∞. For example, for n ≥ 5, we show that there are no

stable classical solution in Rn when n+4
n−4

< q ≤
(
n−8
n

)−1

+
.

1. Introduction

Consider classical solutions to the following biharmonic equation

(1.1) ∆2u = uq, u > 0 in Rn

where n ≥ 5 and q > 1. Define

(1.2) Λu(φ) :=

∫
Rn
|∆φ|2dx− q

∫
Rn
uq−1φ2dx, ∀ φ ∈ H2(Rn).

The Morse index of a classical solution to (1.1), ind(u) is defined as the maximal dimension of

all subspaces of ERn := H2(Rn) such that Λu(φ) < 0 in ERn \ {0}. Similarly, we consider also

classical solutions ∆2u = uq on a proper domain Ω 6= Rn, and define its Morse index with

Λu,Ω(φ) :=

∫
Ω
|∆φ|2dx− q

∫
Ω
uq−1φ2dx, ∀ φ ∈ EΩ := H2

0 (Ω).(1.3)

A solution u is said stable if Λu(φ) ≥ 0 for any test function φ ∈ EΩ. Clearly, u is stable if and

only if its Morse index is equal to zero.

In this paper, we prove the following classification results.

Theorem 1.1. Let n ≥ 5.

(i) For n ≤ 8 and any 1 < q <∞, the equation (1.1) has no stable solution.
(ii) For n ≥ 9, there exists εn > 0 such that for any 1 < q < n

n−8 + εn, the equation (1.1)
has no stable solution.

In the second order case, the finite Morse index solutions to the corresponding nonlinear

problem

(1.4) ∆u+ |u|q−1u = 0 in Rn, q > 1

have been completely classified by Farina [4]. One main result of [4] is that nontrivial finite

Morse index solutions to (1.4) exist if and only if q ≥ pJL and n ≥ 11, or q = n+2
n−2 and n ≥ 3.

Here pJL is the so-called Joseph-Lundgren exponent, see [8].
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In the fourth order case, the nonexistence of positive solutions to (1.1) are showed if q < n+4
n−4 ,

and all entire solutions are classified if q = n+4
n−4 , see [12, 19]. More precisely, when q = n+4

n−4 and

n ≥ 5, any classical solution to (1.1) is in the form

ũ(x) =
cnλ

n−4
2

(1 + λ2|x− x0|2)
n−4
2

, with x0 ∈ Rn, λ > 0.

It was proved by Rozenblum (see [11, 15]) that when n ≥ 5, the number of negative eigenvalues

with multiplicity for the operator (∆2 − V ) is bounded by

Cn

∫
Rn
|V (x)|

n
4 dx.

Using this, it is easy to check that ũ is a finite Morse index solution of (1.1) with the critical

exponent.

So our results concern essentially the supercritical case, n ≥ 5 and q > n+4
n−4 . As far as we

know, there are no results on the classification of entire solutions to (1.1) with finite Morse index

and supercritical exponent q. Therefore Theorem 1.1 is a first step towards the understanding

of stable solutions of fourth order problems. We note that only recently the radially symmetric

solutions to (1.1) are studied in [5, 6, 9]. The radial entire solutions are shown to have the

layer structure if and only if q ≥ p4
JL and n ≥ 13 where p4

JL stands for the corresponding

Joseph-Lundgren exponent to ∆2 (see [5, 6]). Theorem 1.1 classifies stable solutions to (1.1)

in dimensions n ≤ 8 and shows the nonexistence of stable solution for some special cases with

n ≥ 9. There is still a big gap to fill in towards a complete classification.

Our proof borrows crucially an idea from Cowan-Esposito-Ghoussoub [2], who proved the

regularity of extremal solutions for fourth order problems in bounded domains. They made a

key observation by using a nice result of Souplet [18]. Here we also rely crucially on some results

of Souplet [18]. The key argument is to use two different test functions: the first one is u itself,

and the other one is v = −∆u. We believe that further exploration of this idea may help to give

the complete classification of stable solutions to (1.1).

At the end, we show some classification results on the half space or compactness results for

stable solutions to ∆2u = λ(u+ 1)p on bounded domain (see section 3).
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2. Proof of Theorem 1.1

We organize our proof into three steps.

• Step 1. Non existence of stable solution with 1 < q <
(
n−8
n

)−1

+
.

• Step 2. Non existence of stable solution with q = n
n−8 for n ≥ 9.

• Step 3. Non existence of stable solution with q slightly larger than n
n−8 with n ≥ 9.
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2.1. Step 1. According to Theorem 3.1 of [19], v := −∆u > 0 in Rn since q > 1. Rewrite then

(1.1) as a system

(2.1) ∆u+ v = 0, ∆v + uq = 0, u > 0, v > 0 in Rn.

We recall several crucial estimates. First, following the idea in [13, 18], we have

Lemma 2.1. If there exists a stable positive solution to (1.1) or (2.1), there exists a bounded
stable positive solution u to (1.1) such that v = −∆u is also bounded in Rn.

We can prove this lemma by contradiction and proceed exactly as for Theorem 4.3 in [13] (see

also Remark 1.1 in [18]). Indeed, if no bounded stable positive solution exists for (2.1), we have

the estimate u(x) ≤ Cn,qd(x, ∂Ω)−α for any stable solution ∆2u = uq in Ω 6= Rn, here α = 4
q−1

and Cn,q depends only on n and q > 1. Therefore no stable entire solution to (1.1) could exist

in Rn, which contradicts the hypothesis.

The main reason for the estimate u(x) ≤ Cn,qd(x, ∂Ω)−α comes from the following fact: The

scaling argument used in [13] does not affect the stability of solutions. Let uλ(x) := λαu(λx+x0)

with λ > 0, x0 ∈ Ω, there hold ∆2uλ = uqλ in Ωλ and

Λuλ,Ωλ(φ) = λ4−nΛu,Ω(ψ) where Ωλ =
Ω− x0

λ
, ψ(y) = φ

(
y − x0

λ

)
.

Let α = 4
q−1 . By Lemma 2.4 of [18], for any solution of (2.1), there exists C > 0 such that

(2.2)

∫
BR

udx ≤ CRn−α,
∫
BR

uqdx ≤ CRn−qα, ∀ R > 0.

Here and in the following, BR stands for the ball of radius R centered at the origin. Another

important estimate is the following comparison between u and v (see Lemma 2.7 in [18]):

(2.3) As u is bounded, v2 ≥ 2

q + 1
uq+1 in Rn.

We need also the following identities:

Lemma 2.2. For any ξ, η ∈ C4(Rn), we have

∆ξ∆(ξη2)− [∆(ξη)]2 = −4(∇ξ · ∇η)2 − ξ2(∆η)2 + 2ξ∆ξ|∇η|2 − 4ξ∆η∇ξ · ∇η.

and

Lemma 2.3. For any ξ ∈ C4(Rn) and η ∈ C∞0 (Rn), there hold∫
Rn

(∆2ξ)ξη2dx =

∫
Rn

[∆(ξη)]2 dx+

∫
Rn

[
−4(∇ξ · ∇η)2 + 2ξ∆ξ|∇η|2

]
dx

+

∫
Rn
ξ2
[
2∇(∆η) · ∇η + (∆η)2

]
dx,

(2.4)

(2.5)

∫
Rn
|∇ξ|2|∇η|2dx =

∫
Rn

[
ξ(−∆ξ)|∇η|2 +

1

2
ξ2∆(|∇η|2)

]
dx.

Proof. The proof of Lemma 2.2 is done by direct verification. The equality (2.5) follows from

1

2
∆(ξ2) = ξ∆ξ + |∇ξ|2.
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On the other hand, a simple integration by parts yields

2

∫
Rn
ξ∇ξ · ∇η∆ηdx = −

∫
Rn
ξ2div (∆η∇η) dx

= −
∫
Rn
ξ2
[
(∆η)2 +∇η · ∇(∆η)

]
dx.

(2.6)

By Lemma 2.2,∫
Rn

(∆2ξ)ξη2dx =

∫
Rn

∆ξ∆
(
ξη2
)
dx

=

∫
Rn

[∆(ξη)]2 dx− 4

∫
Rn

(∇ξ · ∇η)2dx−
∫
Rn

[
ξ2(∆η)2 + 2ξ∆ξ|∇η|2

]
dx

− 4

∫
Rn
ξ∇ξ · ∇η∆ηdx

The equality (2.4) is straightforward using (2.6). �

From (2.4) and (1.1), for any η ∈ C∞0 (Rn), there holds∫
Rn

[∆(uη)]2dx−
∫
Rn
uq−1(uη)2dx

= 4

∫
Rn

(∇u∇η)2dx− 2

∫
Rn
u∆u|∇η|2dx−

∫
Rn
u2
[
2∇(∆η) · ∇η + (∆η)2

]
dx.

In the following, we denote C, C ′ as various generic positive constants which are independent

on u, they could be changed from one line to another. Using stability condition Λu(φ) ≥ 0 with

φ = uη, we obtain the following estimate.∫
Rn

[
(∆(uη))2 + uq+1η2

]
dx

≤ C
∫
Rn

[
|∇u|2|∇η|2 + u|∆u||∇η|2 + u2|∇ (∆η) · ∇η|+ u2(∆η)2

]
dx.

(2.7)

Moreover, as

∆(uη) = −vη + 2∇u · ∇η + u∆η,

by (2.7) and Young’s inequality (recalling that v = −∆u > 0 in Rn),∫
Rn

[
v2η2 + uq+1η2

]
dx ≤ C

∫
Rn

[
uv|∇η|2 + |∇u|2|∇η|2 + u2|∇ (∆η) · ∇η|+ u2(∆η)2

]
dx.

Applying (2.5) with ξ = u, we obtain∫
Rn

[
(v2η2 + uq+1η2

]
dx

≤ C
∫
Rn
uv|∇η|2dx+ C

∫
Rn
u2
[
|∇(∆η) · ∇η|+

∣∣∆ (|∇η|2)∣∣+ (∆η)2
]
dx.

(2.8)

Take η = ϕm with m > 2, it follows that∫
Rn
uv|∇η|2dx = m2

∫
Rn
uvϕ2(m−1)|∇ϕ|2dx

≤ 1

2C

∫
Rn

(vϕm)2dx+ C

∫
Rn
u2ϕ2(m−2)|∇ϕ|4dx.

Now let us choose ϕ1 a cut-off function verifying 0 ≤ ϕ1 ≤ 1, ϕ1 = 1 for |x| < 1 and ϕ1 = 0 for

|x| > 2. Substituting the above inequality into (2.8) with ϕ = ϕ1(x/R) for R > 0 and η = ϕm,
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we arrive at

(2.9)

∫
Rn

(vϕm)2dx+

∫
Rn
uq+1ϕ2mdx ≤ CR−4

∫
Rn
u2ϕ2(m−2)dx.

We claim:

(2.10)

∫
BR

u2dx ≤ CRn−2α, ∀ R > 0.

When q > 2, the above estimate follows from Hölder’s inequality using (2.2) while for q = 2, it

is just the second estimate in (2.2). If q ∈ (1, 2), fix m > 2
q−1 , by Hölder’s inequality and (2.9),

we obtain ∫
Rn
u2ϕ2(m−2)dx ≤

(∫
Rn
uqϕ

2m− 4
q−1dx

)q−1(∫
Rn
uq+1ϕ2mdx

)2−q

≤ C
(∫

B2R

uqdx

)q−1(
R−4

∫
Rn
u2ϕ2(m−2)dx

)2−q
,

hence ∫
Rn
u2ϕ2(m−2)dx ≤ CR−

4(2−q)
q−1

∫
B2R

uqdx.

Using (2.2), there holds∫
BR

u2dx ≤
∫
Rn
u2ϕ2(m−2)dx ≤ CR−

4(2−q)
q−1

∫
B2R

uqdx ≤ C ′Rn−qαR−
4(2−q)
q−1 = C ′Rn−2α,

so the claim (2.10) is proved. Combining (2.9) and (2.10),

(2.11)

∫
Rn

(
v2 + uq+1

)
ϕ2mdx ≤ CRn−4−2α.

Next we make use of the stability condition again, but this time with the test function φ = vη.

By equations (2.1), we have

(2.12) ∆2v = −∆(uq) = quq−1v − q(q − 1)uq−2|∇u|2.

Multiplying (2.12) by vη2, similarly as for (2.7), by (2.4) and (2.5),

0 ≤
∫
Rn

[
(∆(vη))2 − quq−1(vη)2

]
dx

≤ − q(q − 1)

∫
Rn
uq−2|∇u|2vη2dx+ C

∫
Rn
v|∆v||∇η|2dx

+ C

∫
Rn
v2
[
|∇(∆η) · ∇η|+

∣∣∆ (|∇η|2)∣∣+ |∆η|2
]
dx

≤ − q(q − 1)

∫
Rn
uq−2|∇u|2vη2dx

+ C

∫
Rn
vuq|∇η|2dx+ C

∫
Rn
v2
[
|∇(∆η) · ∇η|+

∣∣∆ (|∇η|2)∣∣+ |∆η|2
]
dx.

Hence ∫
Rn
uq−2|∇u|2vη2dx

≤ C
∫
Rn
vuq|∇η|2dx+ C

∫
Rn
v2
[
|∇(∆η) · ∇η|+

∣∣∆ (|∇η|2)∣∣+ |∆η|2
]
dx.

(2.13)
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Furthermore, for any C1 function H, integration by parts yields

(2.14)

∫
Rn
H(u)(−∆u)η2dx =

∫
Rn
H ′(u)|∇u|2η2dx+

∫
Rn
H(u)∇u · ∇(η2)dx.

Following an idea of Cowan-Esposito-Ghoussoub [2], set H(u) = u
3q−1

2 , then∫
Rn
u

3q−1
2 vη2dx ≤ C

∫
Rn
u

3q−3
2 |∇u|2η2dx+ C

∫
Rn
u

3q+1
2

∣∣∆(η2)
∣∣ dx.

Recall that v ≥ Cu
q+1
2 , we conclude, using (2.13) and (2.14),∫

Rn
u2qη2dx ≤ C

∫
Rn
u

3q−1
2 vη2dx

≤ C
∫
Rn
u

3q−3
2 |∇u|2η2dx+ C

∫
Rn
u

3q+1
2

∣∣∆(η2)
∣∣ dx

≤ C
∫
Rn
uq−2|∇u|2vη2dx+ C

∫
Rn
vuq

∣∣∆(η2)
∣∣ dx

≤ C
∫
Rn
vuq
(
|∇η|2 +

∣∣∆(η2)
∣∣ )dx

+ C

∫
Rn
v2
[
|∇(∆η) · ∇η|+

∣∣∆ (|∇η|2)∣∣+ |∆η|2
]
dx.

(2.15)

As before, let η = ϕm with large m and ϕ = ϕ1(x/R) for R > 0. Similarly to the derivation

of inequality (2.9), we get from (2.15) and (2.11),

(2.16)

∫
Rn

(uqϕm)2dx ≤ CR−4

∫
B2R\BR

v2dx ≤ CRn−8−2α.

If 1 < q <
(
n−8
n

)−1

+
, n− 8− 2α < 0. So when u is stable, letting R→∞, we deduce u ≡ 0 in

Rn by (2.16). This proves the nonexistence of stable solution to (1.1) for 1 < q <
(
n−8
n

)−1

+
.

2.2. Step 2. Here we show the nonexistence of stable solutions with q = n
n−8 for n ≥ 9. Our

proof is based on the nonexistence of fast decay solutions with supercritical exponent.

Proposition 2.4. Let n ≥ 5, q > n+4
n−4 and α = 4

q−1 . Then the system (2.1) has no classical

solution verifying

u(x) = o
(
|x|−α

)
, v(x) = o

(
|x|−2−α) as |x| → ∞.(2.17)

Proof. Suppose that such a solution u exists. Let w be the Emden-Fowler transformation of

u, i.e. w(t, σ) = rαu(rσ) for any t = ln r ∈ R, and σ ∈ Sn−1 the standard unit sphere of Rn.

Direct calculation yields

r2+α∆u = wtt + (n− 2− 2α)wt − α(n− 2− α)w + ∆Sn−1w

where ∆Sn−1 denotes the Laplace-Beltrami operator on Sn−1. Applying again this formula,

wq = r4+αuq = r4+α∆2u = wtttt +K3wttt +K2wtt +K1wt +K0w

+ ∆2
Sn−1w + 2∆Sn−1wtt +K5∆Sn−1wt +K6∆Sn−1w

(2.18)

where Ki are constants depending on α and n, for example

K5 = K3 = (2n− 8− 4α), K6 = −
[
(α+ 2)(n− 4− α) + α(n− 2− α)

]
.

In particular, we have (see [6] for Ki, 0 ≤ i ≤ 4)

K1 < 0, K3 = K5 > 0, ∀ n ≥ 5, q >
n+ 4

n− 4
.(2.19)
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Set

E(w) =

∫
Sn−1

(
wq+1

q + 1
− K0

2
w2 − K2

2
w2
t −K3wttwt +

w2
tt

2
− wtttwt

)
dσ

+

∫
Sn−1

(
K6

2
|∇Sn−1w|2 + |∇Sn−1wt|2 −

1

2
|∆Sn−1w|2

)
dσ.

Multiplying the equation (2.18) with wt, we get from (2.19)

d

dt
E(w)(t) =

∫
Sn−1

(
K1w

2
t −K5 |∇Sn−1wt|2 −K3w

2
tt

)
dσ ≤ 0.

By the decay conditions (2.17),

−∆u = v, −∆v = uq = o
(
|x|−4−α) as |x| → ∞.

The standard elliptic estimates imply then

lim
|x|→+∞

|x|k+α|∇ku(x)| = 0, for 1 ≤ k ≤ 4 so that lim
t→∞
‖w(t, ·)‖C3(Sn−1) = 0.(2.20)

Therefore limt→∞E(w) = 0. We have also limt→−∞E(w) = 0 because u is regular at the origin.

Finally we conclude ∫
R

∫
Sn−1

(
K1w

2
t −K5 |∇Sn−1wt|2 −K3w

2
tt

)
dσdt = 0.

So wt ≡ 0, hence w ≡ 0 as limt→−∞w = 0, but this contradicts the positivity of u. �

Back to Theorem 1.1. Suppose that u is a stable solution of (1.1), we may assume again u is

bounded, recall (2.11) and (2.16).

(2.21)

∫
BR

v2dx ≤ CRn−4−2α,

∫
BR

u2qdx ≤ CRn−8−2α, ∀ R > 0.

Applying now the Sobolev embedding of H2,

‖v‖2Lp∗ (BR) ≤ C(n)
(
‖∆v‖2L2(BR) +R−4‖v‖2L2(BR)

)
, where p∗ =

2n

n− 4
.

Combining with (2.21), there exists C > 0 such that for any R > 0,

‖v‖2Lp∗ (BR) ≤ CR
n−8−2α.(2.22)

As q = n
n−8 , we have n− 8− 2α = 0. The above estimate means just∫

Rn
v

2n
n−4dx <∞.(2.23)

Now we are ready to prove the fast decay of u and v. Instead to use the Harnack argument in

[16] (see [4]), let us recall a special case of Theorem 4.4 in [10]: For any p ∈ [2,∞), there exists

ε(p) > 0 such that if ∆w + ρw = 0 in B2 with ‖ρ‖
L
n
2 (B2)

≤ ε(p), we have

(2.24) ‖w‖Lp(B1) ≤ C‖w‖L2(B2)

where the constant C depending only on p and n.

Let x0 ∈ Rn with |x0| > 4R0 and R = |x0|
4 , consider the function w(y) = v(x0 +Ry). Then w

satisfies ∆w + ρw = 0 where

ρ(y) = R2u
q

v
(x0 +Ry).
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Using (2.3), 0 < ρ(y) ≤ CR2u
q−1
2 (x0 +Ry) ≤ C ′R2v

q−1
q+1 (x0 +Ry). As q = n

n−8 , n
2+α = q−1

q+1×
n
2 =

p∗. Therefore, by (2.23)∫
B2

|ρ|
n
2 dx ≤ C

∫
B2

Rnvp∗(x0 +Ry)dy = C

∫
B2R(x0)

vp∗dx→ 0, when |x0| → ∞.

From (2.24) and Hölder’s inequality, we derive that for any p ≥ 2, as |x0| → ∞,

‖v‖Lp(BR(x0)) = R
n
p ‖w‖Lp(B1) ≤ CR

n
p ‖w‖L2(B2) ≤ C ′R

n
p ‖w‖Lp∗ (B2)

≤ C ′R
n
p
− n
p∗ ‖v‖Lp∗ (B2R(x0))

= o
(
R
−2−α+n

p

)
.

(2.25)

Using classical elliptic estimates (see Theorem 8.17 of [7]), there exists C > 0 such that

(2.26) sup
BR

2
(x0)

v ≤ C
[
R−

n
2 ‖v‖L2(BR(x0)) +R‖∆v‖Ln(BR(x0))

]
.

It is clear that q̃ = 2nq
q+1 ≥ 2 and |∆v|n = unq ≤ Cvq̃. Thanks to (2.25), when |x0| → ∞,

R‖∆v‖Ln(BR(x0)) ≤ CR‖v‖
q̃
n

Lq̃(BR(x0))
= o

(
R

1+
(
−2−α+n

q̃

)
q̃
n

)
= o

(
R−2−α) .

Substituting the above estimate into (2.26), applying (2.25) with p = 2, we conclude then

v(x) = o
(
|x|−2−α) as |x| → ∞.

We get also u(x) = o (|x|−α) at infinity by (2.3), hence the decay estimate (2.17) holds, we reach

then a contradiction seeing Proposition 2.4.

2.3. Step 3. Here we will prove that no stable solution exists for exponent q slightly higher

than n
n−8 if n ≥ 9. The main idea is a blow up argument.

Suppose that the claim (ii) of Theorem 1.1 does not hold, there exist then a sequence δj > 0,

δj → 0 and a sequence of stable solutions uj to (1.1) with qj = n
n−8 + δj . Lemma 2.1 permits to

assume that uj and vj = −∆uj are bounded in Rn. Choose λj > 0 such that

1

‖vj‖∞
= λ

4
qj−1

+2

j .

Let ũj(x) = λ
4

qj−1

j uj(λjx), so ∆2ũj = ũ
qj
j , ṽj := −∆ũj satisfies ‖ṽj‖∞ = 1. Up to a translation,

we assume also ṽj(0) ∈ (1
2 , 1]. Using (2.3) to ũj , we have also ‖ũj‖∞ ≤ C.

By standard elliptic theory, there is a subsequence still denoted by ũj which tends to a

bounded nonnegative function u∗ in Ckloc(Rn) for any k ∈ N, so ∆2u∗ = u
n
n−8
∗ in Rn. As uj are

stable, it is easy to see that u∗ is stable (taking the limit in (1.2) with ũj and qj). Finally, since

−∆u∗ ≥ 0 in Rn and −∆u∗(0) = lim ṽj(0) > 0, u∗ is nontrivial, hence positive in Rn. This is

impossible by the previous step, the claim (ii) is then proved. �
8



3. Some applications

As we have mentioned yet, the nonexistence result of entire stable solution yields immediately

(with blow-up and scaling argument as in [13, 18])

Corollary 3.1. Assume that Ω is a proper subdomain of Rn and u is a classical, positive and
stable solution of ∆2u = uq in Ω where 1 < q <∞ if n ≤ 8; or 1 < q < n

n−8 + εn if n ≥ 9 with
εn in Theorem 1.1. Then

u(x) ≤ Cn,qd(x, ∂Ω)−α, |∆u(x)| ≤ Cn,qd(x, ∂Ω)−α−2 where α =
4

q − 1
,

the constant C depends only on q and n.

Consider now

(3.1)

 ∆2u = uq in Rn+ = R+ × Rn−1, n ≥ 2
u > 0,−∆u > 0 in Rn+
u = −∆u = 0 on {0} × Rn−1.

The following result is due to Dancer (Theorem 2 in [3], see also Theorem 10 in [17]).

Lemma 3.2. Suppose that u is a classical solution of (3.1) such that u and −∆u are bounded
in Rn+, then ∂x1u > 0 and −∂x1∆u > 0 in Rn+.

Therefore, under the condition of this lemma, w(y) = limx1→∞ u(x1, y) exists for all y ∈ Rn−1

and ∆2w = wp in Rn−1. It is not difficult to see that if w is unstable, then ind(u) is infinite.

Indeed, let ψ ∈ C∞0 (Rn−1) verify Λw,Rn−1(ψ) < 0, we choose ζ ∈ C∞(R), supp(ζ) ⊂ [1, 2] and

denote φR(x) = ζ(x1/R)ψ(x̃) where x̃ = (x2, . . . , xn) and R > 0. Obviously φR ∈ C∞0 (Rn).

By the locally uniform convergence w.r.t. x̃ of u to w when x1 → ∞, we check readily that

Λu(φR) < 0 for R large enough, and similarly Λu (φR(x+ µe1)) < 0 for any a > 0. Therefore,

taking a suitable sequence µk → ∞ with R fixed, we observe easily that ind(u) = ∞. In other

words, if ind(u) <∞, then w must be stable. This enable us the following classification result.

Theorem 3.3. Let u be a classical solution of (3.1) with n ≥ 2. Assume moreover u and −∆u
are bounded. Then ind(u) = ∞, when q > 1 and n ≤ 9; or 1 < q < n−1

n−9 + εn−1 and n ≥ 10.
Here εk > 0 are given by Theorem 1.1.

Finally, Consider the bounded domain situation with polynomial growth:

(Pλ)

{
∆2u = λ(u+ 1)q in a bounded smooth domain Ω ⊂ Rn, n ≥ 1
u = ∆u = 0 on ∂Ω.

It is well known that there exists a critical value λ∗ > 0 depending on q > 1 and Ω such that

• If λ ∈ (0, λ∗), (Pλ) has a minimal and classical solution which is stable;

• If λ = λ∗, a unique weak solution, called the extremal solution u∗ exists for (Pλ∗);

• No weak solution of (Pλ) exists whenever λ > λ∗.

In the same spirit of Corollary 3.1, we can prove

Theorem 3.4. There exists ε̃n > 0 such that the extremal solution u∗, the unique solution of
(Pλ∗) is bounded provided that

n ≤ 8, q > 1 or n ≥ 9, 1 < q <
n

n− 8
+ ε̃n.

9



Here we need just to consider stable minimal solutions uλ to (Pλ) since u∗ = limλ→λ∗ uλ, so

the conclusion comes from contradiction with (ii) of Theorem 1.1 or Theorem 3.3, whenever the

blow up occurs, we omit the detail. The case 1 < q <
(
n−8
n

)−1

+
was proved in [2] by different

approach.
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