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Synopsis

Using a nonlocal nematic potential, we generalize the Doi theory for nematic polymers to include
distortional elasticity. We derive an evolution equation for the configuration tensor and a
constitutive equation for a nonlocal stress tensor which is consistent with the long-range order in
nematic polymers. One of the interesting effects of distortional elasticity is the appearance of a
mean-field torque on the molecules as they are forced away by flow from their preferred orientation.
This torque gives rise to an antisymmetric part of the stress tensor. With a few molecular
parameters, the complete system of equations is capable, we believe, of describing the evolution of
the texture and the dynamics of disclinations in flowing nematic polymers. Thus, for the first time,
a suitable platform for exploring complex flows of nematic polymers is established. In the limit of
weak flows and small distortions, the theory properly reduces to the Leslie–Ericksen theory. The
Leslie viscosities are derived in terms of molecular parameters. ©2000 The Society of Rheology.
@S0148-6055~00!00705-7#

I. INTRODUCTION

The prevalent theory for the flow and rheology of nematic polymers is the Doi theory
@Doi ~1981!; Doi and Edwards~1986!#, which is based on a statistical mechanical de-
scription of the orientation of a suspension of rigid rod-like molecules. The Doi theory
takes into account the effects of flow, Brownian motion, and intermolecular forces on the
molecular orientation distribution. Thus, it gives a good representation of themolecular
viscoelasticity. However, it does not include the so-calleddistortional elasticity, which
represents the crystalline characteristic of these materials. Since there is no elastic penalty
for spatial distortion, the Doi theory is valid only in the limit of spatial homogeneity. It is
especially noteworthy that spatial distortion of nematics often takes the form of orienta-
tional defects known as disclinations, which are perhaps the most spectacular and sig-
nificant feature of polymeric and small-molecule nematics. If distortional elasticity is
neglected, one may use the Doi theory to simulate inhomogeneous flows but the discli-
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nation dynamics thus obtained is unrealistic. For instance, Feng and Leal~1997!; Feng
and Leal~1999! and Fenget al. ~1998! showed that the Doi theory predicts the formation
of disclinations due to inhomogeneous director tumbling. However, they are constantly
annihilated and reformed. Without distortional elasticity, nothing anchors the disclina-
tions and leads to a steady-state network of disclinations, which seems to arise in reality
@Marrucci and Greco~1992!#.

For small-moleculeliquid crystals~SMLCs!, distortional elasticity has been formu-
lated in the limit of weak distortion and is known as Frank elasticity. This is one ingre-
dient of the Leslie–Ericksen~LE! theory, a phenomenological theory for the flow of
SMLCs @de Gennes and Prost~1993!#. An underlying assumption in the LE theory is that
a SMLC has a short relaxation time so that the molecular orientation distribution always
retains its uniaxial equilibrium ‘‘shape,’’ even while the axis of symmetry is rotated by
flow. Thus, the orientational configuration is completely described by a constant order
parameter and a unit vector—the directorn—which indicates the axis of symmetry. For
liquid-crystalline polymers~LCPs!, the orientation distribution may be distorted by flow
into a nonuniaxial configuration. Thus, the LE theory in general does not apply to LCPs.

Apparently we need a theory that encompasses both the molecular viscoelasticity and
the distortional elasticity. Several attempts have been made at such a theory. Ericksen
~1991! allowed the order parameter to be a variable but still required the orientation
distribution to be uniaxial. Farhoudi and Rey~1993! replaced the director vector by a
second-order tensor and fashioned a tensor theory after the LE theory. Edwards and Beris
~1989! gave an ad hoc generalization of the Frank elasticity in tensorial form. These
authors later developed a Hamiltonian formalism that leads to theories for SMLCs and
LCPs resembling the LE and Doi theories@Edwardset al. ~1990!; Beris and Edwards
~1994!#. More recently, Tsuji and Rey~1997! added distortional elasticity, via the
Landau–de Gennes free energy, to the kinetic equation of the Doi theory but did not give
a stress tensor. All these approaches are phenomenological in nature, and the resulting
theories are unsatisfactory in one way or another. First, they invariably contain a large
number of unknown parameters which in general cannot be determined rationally. As
pointed out by Greco and Marrucci~1992! and Greco~1996!, this causes conceptual
difficulties when dealing with spatial distortions, especially the severe distortions near
defects. Second, the use of the Landau–de Gennes energy expansion is unjustified in
these theories. de Gennes~1969! proposed the energy expansion expressly to describe
‘‘short-range-order effects in the isotropic phase.’’ Katrielet al. ~1986! further demon-
strated that the expansion only converges for very low order parameters. Hence, it is valid
only in the neighborhood of the isotropic state and should not be used for the moderately
high order parameters typical of real LCP systems. A third drawback of the phenomeno-
logical theories is the lack of consistency with existing theories and among themselves.
For example, the conformation tensor theory of Edwardset al. ~1990! does not allow
director tumbling for infinitely thin rods as the Doi theory does, and its stress tensor
cannot be reduced to the Doi stress. As a consequence, the conformation tensor theory
predicts maxima in the shear and normal stresses in simple shear and fails to produce the
second change in sign of the normal stress at high flow rates that has been experimentally
confirmed. Without a stress tensor, the Tsuji–Rey theory cannot be judged in this regard.
But its treatment of the Frank elasticity is at odds with that of Edwardset al. ~1990!.
Based on the earlier observations, we believe that a molecular approach would be more
advantageous than a phenomenological one.

A molecular theory for distortional elasticity is made possible by Marrucci and Greco
~1991! and Marrucci and Greco~1993! who proposed a nonlocal mean-field nematic
potential for LCPs which accounts for spatial variations of the molecular orientation
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distribution. In the absence of flow, this potential has been used to calculate the static
orientational fields corresponding to certain anchoring conditions@Greco and Marrucci
~1992!; Sigillo et al. ~1998!#. As far as we are aware, the only attempt so far to apply this
potential to aflow problem was that of Kupfermanet al. ~2000!. Unfortunately, the stress
tensor in their theory fails to account for the nonlocal nature of the distortional elasticity
and is incomplete. In the present work, we derive a molecularly-based constitutive theory
for nematic LCPs which incorporates distortional elasticity via the Marrucci–Greco po-
tential, and therefore lay the foundation for flow simulations of nematic LCPs. We also
demonstrate that our molecular theory properly reduces to the Leslie–Ericksen theory in
the limit of weak flow and small spatial distortion.

II. EVOLUTION EQUATION FOR THE POLYMER CONFIGURATION

Similar to the original Doi theory, the new theory will have two major components: a
kinetic equation governing the evolution of the polymer configuration and an expression
for the stress tensor. The derivation of the evolution equation is rather straightforward;
one needs only to substitute the Marrucci–Greco nematic potential for the Maier–Saupe
potential in the original Doi theory. We define an orientation distribution function
C(u;r) that varies in space but neglect the translational diffusion of the molecules. The
number density of polymer moleculesn is assumed to be constant in space. In this case,
the Smoluchowski equation may be written as@Doi and Edwards~1986!#

]C

]t
1v¹C 5 2R~ukuC!1D̄rRFRC1

C

kT
RUscfG , ~1!

whereR 5 u3(]/]u) andk 5 (¹v)T. D̄r is the pre-averaged rotational diffusivity and
Uscf is the mean-field nematic potential. Equation~1! differs from the original Doi theory
in that the material derivative ofC appears on the left-hand side instead of the partial
time derivative.

The Marrucci–Greco potential represents the energy of molecular interaction in a
‘‘gradually varying’’ orientational field@Greco and Marrucci~1992!#. For simplicity, we
use the one-constant approximation of the potential, corresponding to three equal elastic
constants in the limit of Frank elasticity

UMG~u! 5 2
3

2
UkTS A1

L 2

24
¹2AD :uu 5 UMS1ŨMG , ~2!

whereA~r! 5 *C(u;r)uu du 5 ^uu& is the orientation configuration tensor,L is a char-
acteristic length for molecular interaction,U is a constant representing the nematic
strength,k is the Boltzmann constant, andT is the absolute temperature. Obviously,UMG

is a generalization of the Maier–Saupe potentialUMS 5 2 3
2 UkTA:uu to accommodate

spatial inhomogeneity. Substituting Eq.~2! for the mean-field potential in Eq.~1! gives us
the evolution equation forC with distortional elasticity.

It is useful to derive an evolution equation forA since the stress tensor will be
expressed in terms of the moments ofC. Furthermore, solving for the moments is much
easier than solving for the distribution function directly@Fenget al. ~1998!#. Following
the Prager procedure, we multiply Eq.~1! by uu, integrate overu and obtains
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]A

]t
1v•¹A2k–A2A–kT 5 26D̄r S A2

d

3D 16D̄rU~A–A2A:^uuuu&!22k:^uuuu&

1
D̄rUL 2

8
~¹2A–A1A•¹2A22¹2A:^uuuu&!, ~3!

whered is the unit tensor, and̂uuuu& 5 *Cuuuu du. The terms involving¹2A repre-
sent the effects of spatial distortions. The terms on the left-hand side constitute the upper
convected derivative ofA. Note that^uuuu& has to be expressed in terms ofA via a
closure approximationfor Eq. ~3! to be self-contained. We should mention that Eq.~3!,
in a somewhat different form, was previously derived by Kupfermanet al. ~2000!.

III. THE NONLOCAL STRESS TENSOR

Because of the long-range order in liquid-crystalline polymers, they are notsimple
materials, which, as defined in continuum mechanics, are such that the stress at a material
point depends upon the history of the deformation gradient tensor at that point only@see,
e.g., Leigh~1968!#. In a LCP, the stress at one point depends on the local deformation
history and the polymer configuration, the latter beingglobally determined by distortional
elasticity in the entire domain. In this sense the stress tensor is nonlocal and the ellipticity
of Eq. ~3! is manifest of the nonlocal nature of the polymer dynamics. The original Doi
theory requires that the flow and the polymer configuration be spatially homogeneous.
This homogeneity avoids nonlocal interference via distortional elasticity and permits the
definition of a local stress in the same way as for fluids lacking long-range order such as
flexible polymer solutions and melts@Doi and Edwards~1986!; p. 70#. Invoking the
principle of virtual work, Doi calculated the elastic stress from the reaction of the LCP to
a uniform virtual deformationd«.

According to Doi and Edwards~1986!, the polymer stresss(P) is the sum of the
elastic stresss(E) and a viscous stresss(V). The latter arises from the viscous friction on
the rigid rod-like molecules and does not depend on the nematic potential. Hence, in
going from the Maier–Saupe potential to the Marrucci–Greco potential,s(V) is un-
changed. It is the elastic stresss(E) that needs to be redefined. To generalize Doi’s
principle of virtual work to a LCP with inhomogeneous orientation, one imagines freez-
ing a certain volumeV of the material in a stressed state, and applying to it a virtual
deformation fieldd«(r) 5 @¹ds(r)#T, whereds is the virtual displacement vector. The
virtual work that the exterior must do to the material to realized«(r) is

dW 5 E
V
s(E):d« dV, ~4!

wheres(E) is the elastic stress tensor being sought. This work is then equated, via the
first law of thermodynamics, to the change in free energy of the material withinV. By
calculating the change in free energy, one may extract the unknown elastic stress from
Eq. ~4!. Note that by invoking a virtualdeformation, one defines a Cauchy stress gov-
erning the flow of the material. Another stress may be defined by introducing a virtual
rotation of the molecules without displacement. Such a stress will be analogous to the
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Ericksen stress for SMLCs@de Gennes and Prost~1993!# and will not appear in the
equations of motion for the material.

For liquid-crystalline materials, this scheme is complicated by the elastic interaction
acrossS, the boundary ofV. This interaction may be easily visualized by thinking ofSas
a solid wall onto which the LCP molecules are anchored. As the virtual deformation in
general rotates the molecules onSagainst an anchoring torque, the wall does extra work
to the LCP which must be incorporated into the energy balance. Accordingly, the change
in free energy has to be evaluated for such reorientation of the molecules as respects the
anchoring condition. IfV is cut out of a larger domain of LCPs instead of being bounded
by walls, the situation remains the same with the anchoring torque replaced by a distor-
tional elastic torque. The upshot is that the ‘‘anchoring condition’’ has to be specified in
order that the elastic interaction acrossS be accounted for in the energy balance and the
elastic stresss(E) be determined.

In deriving the Leslie–Ericksen theory, de Gennes and Prost~1993! eliminated the
surface interactions by requiring the bounding surface to be stationary and the director
orientation to be fixed on them. Note that the constitutive equation thus derived is not
restricted by those specific boundary conditions; it expresses the stress in terms of the
‘‘local’’ distortion ¹n and is an intrinsic property of the material. We follow a similar
approach by requiring that both the molecular orientation and its spatial gradient be fixed
on S. This is equivalent to using a virtual deformationd« that vanishes smoothly toward
S. @Alternatively, one may make the volumeV infinitely large such that the virtual
deformation causes no disturbance on the boundary. This device was used by Landau and
Lifshitz ~1986! in treating the deformation of a general elastic body.#

Thus, the anchoring torque does no additional virtual work. The free energy of the
LCP is determined by the molecular orientation distributionC @Doi and Edwards~1986!#

A 5 nE
V
dVEdu@kTC ln C1 1

2CUscf#, ~5!

wheren is the number density of the polymer molecules and the factor 1/2 accounts for
the fact that the molecular interaction is counted twice when one goes over all the
molecules. Substituting the Marrucci–Greco potentialUMG for Uscf, we have

dA 5 nE
V
dVEdu@kTdC ln C1kTdC1 1

2 d~CUMS!1 1
2 d~CŨMG!#. ~6!

We need to concern ourselves only with theŨMG term, since the other terms can be
treated in formally the same way as in Doi and Edwards~1986! and will produce Doi’s
original stress tensor. Hence
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dAMG 5
n

2
E

V
dVE d~CŨMG! du

5 2
nUkTL 2

32
E

V
dVE d~C¹2A:uu! du

5 2
nUkTL 2

32
E

V
d~¹2A:A! dV

5 2
nUkTL 2

32
E

V
~¹2A:dA1d¹2A:A! dV. ~7!

The variationdA 5 *dCuu du involves the change in the polymer orientation distribu-
tion due to the virtual deformation.dC can be calculated from Eq.~1! by neglecting the
diffusion and nematic terms for a rapid virtual deformation@Doi and Edwards~1986!#

dC 5 S]C

]t
1v"¹C D dt 5 2R•~u3d«–uC!. ~8!

The d¹2A term represents the energy penalty foradditionalspatial distortions produced
by the virtual strain fieldd«(r). Because of the inhomogeneity ofd«, the operatorsd and
¹2 do not commute

d¹2A 5 S ]¹2A

]t
1v"¹¹2AD dt 5 ¹2dA2d«:¹¹A2¹•~d«•¹A!. ~9!

Integrating by parts gives

dAMG 5 2
nUkTL 2

32 F E
V

~2¹2A:dA2d«:¹¹A:A1d«:Q! dV

1E
S
dS•~¹dA:A2¹A:dA2d«•¹A:A!G , ~10!

whereQi j 5 (]Akl /]xi )(]Alk /]xj ), and contractions in the tensorial expressions apply
to adjacent indices, e.g.,d«:¹¹A:A 5 (d«i j )(]

2Alk /]xi]xj )Akl . Now the surface in-
tegral, indicating the surface anchoring effect, can be put to zero sinced«, dA and¹dA
vanish onS. The remaining volume integral can be evaluated by using Eq.~8!. The
procedure consists of integrating by parts and employing the identities given by Birdet
al. ~1987!. Finally, the total change in free energy in Eq.~6! is

dA 5 3nkTE
V
d«:FA2U~A–A2A:^uuuu&!

2
UL 2

24 S A•¹2A2^uuuu&:¹2A1
Q2¹¹A:A

4 D GdV. ~11!

Thus, it is clear from Eq.~4! that the elastic stress is
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s(E) 5 3nkTFA2U~A–A2A:^uuuu&!

2
UL 2

24 S A•¹2A2^uuuu&:¹2A1
Q2¹¹A:A

4 D G . ~12!

The total stress due to the polymer is then

s(P) 5 s(E)1s(V) 5 s(E)1
n

2
z rk:^uuuu&, ~13!

wherez r is the rotational friction constant defined in Doi and Edwards~1986!.

IV. REMARKS ON THE ELASTIC STRESS TENSOR

The elastic stress tensor in Eq.~12! and its derivation present some unusual features
that warrant further discussion:

~a! Nonlocality. Adding distortional elasticity changes the nature of the evolution
equation@Eq. ~3!# from hyperbolic to elliptic. Hence, the polymer configuration is glo-
bally determined by distortional elasticity in the entire domain and it depends on the
boundary conditions on the entire surface. The elastic stress, being a function of the local
deformation historyand polymer configuration, is therefore also dependent on the evo-
lution of the entire domain. This reflects the long-range order in nematic polymers which
makes them nonsimple materials. On the other hand, theform of the constitutive equation
@Eq. ~12!# does not depend on boundary conditions; it expresses the reaction of the LCP
to distortions in terms of thelocal polymer configuration, and applies for any anchoring
conditions. The nonlocality here is then only an indirect dependence of the stress on
distant materials.

~b! Asymmetry. The elastic stress is not symmetric in general, and hence angular
momentum is not conserved in the usual sense. This is to be expected since the mean-
field potential exerts a torque on the rod-like molecules when they are forced away from
their preferred orientational configuration by flow. According to Doi and Edwards~1986;
p. 293!, the torque on a test molecule oriented alongu is T 5 2RUMG(u). Hence, the
total torque on a unit volume of the material is

t 5 nE CT du 5 3
24 nUkTL 2Ail ¹

2Al j e i jkek , ~14!

where e i jk is the permutation tensor,ek is the unit vector for thekth coordinate and
summation over repeated indices is implied. This ‘‘body torque’’ can be shown to bal-
ance exactly the antisymmetric part of the stress tensor

sij
(P)eijk1tk 5 0. ~15!

This balance is required for the conservation of the total angular momentum, which is
also known as Cauchy’s second law of motion@Leigh ~1968!#. It is worth noting that the
body torque is due only to the distortional elasticity. In fact, one may calculate the
molecular torqueT(u) for a spatially homogeneousLCP by using the Maier–Saupe
potential UMS. The average ofT over u vanishes, however. Hence, no body torque
results and the stress tensor is symmetric.

~c! Elastic isotropy. We have used the one-constant approximation of the Marrucci–
Greco potential@Eq. ~2!#, which results from neglecting the length of the rods in com-
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parison to the length of molecular interactionL. If the length of the molecules is taken
into account, the nematic potential has an additional term that gives rise to elastic anisot-
ropy @Marrucci and Greco~1991!#. In this general case, the elastic stress can be derived
in a similar fashion, and will contain the sixth moment ofC in terms such as
*Cuuuu:¹¹A:uu du 5 ^uiujukulumun&]2Amn/]xk]xl .

~d! Closure approximation. The fourth-moment tensor^uuuu& appears in the stress
tensor and the evolution equation. To formulate a closed theory on the level of the second
moment tensor̂uu& 5 A, one needs to relatêuuuu& to A by a closure approximation.
Much work has been done on closures for the original Doi theory which can be directly
borrowed into the present theory for flow calculations@e.g., Fenget al. ~1998!#.

~e! In the extensive treatise of Doi and Edwards~1986!, the elastic stress tensor was
derived for a dilute solution of rod-like polymers subjected to anexternalpotential ~§
8.6!. For nematic solutions, the same expression was used with the external potential
replaced by the mean-field nematic potential. This seemingly careless generalization is in
fact justified. In the free energy, a factor of 1/2 should be added before the potential
energy if it is a mean-field potential@cf. our Eq.~5!#. An extra factor of 2 arises, however,
as the virtual deformation changes not only the local molecular distribution but also the
mean-filed background:*d(CU) du 5 *dCU du1*CdU du 5 2*dCU du. This re-
lationship holds for aU that depends only onlocal pairwise molecular interactions@Doi
and Edwards~1986!; p. 355#

U~u! 5 E C~u8!b~u,u8! du8. ~16!

Such is the case for the Maier–Saupe potential but not for the Marrucci–Greco potential.
In fact, the crux of the derivation in Sec. III is to formulate the change in the mean-field
backgrounddUMG . If one were to insert the Marrucci–Greco potential directly into Doi
and Edwards’ derivation, assuming*CdU du 5 *dCU du, one would miss the (Q
2¹¹A:A) term of Eq.~12!, which, as will be shown in the next section, corresponds to
the Ericksen stress in the Leslie–Ericksen theory. This is the term missing from Kupfer-
manet al.’s ~2000! stress tensor.

V. THE WEAK FLOW LIMIT

The LE theory is built on the premise that the molecular orientation distribution
remains at its uniaxial equilibrium form. This is asymptotically the case when the flow
and the spatial distortion are both vanishingly small, a situation often referred to as the
weak flow limit. Naturally, one may expect amoleculartheory to reduce to the LE theory
in this limit. Kuzuu and Doi~1983! and Kuzuu and Doi~1984! explored this limit of the
original Doi theory and showed that it can be reduced to a form resembling the LE
theory. Since the original Doi theory has no distortional elasticity, an external magnetic
field had to be introduced to generate an asymmetric stress identifiable with Frank elas-
ticity. The same magnetic field was used to suppress director tumbling so that a steady-
state treatment could be applied. Thus, one may consider their work incomplete on those
two accounts. We aim to establish rigorously a relationship between our newly developed
molecular theory and the LE continuum theory. Time dependence will be assumed at the
outset to allow a consistent treatment of director tumbling, and genuine distortional
elasticity in our theory will afford a pertinent comparison with Frank elasticity.
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A. Rotation of the director

We first demonstrate that the weak flow limit of our kinetic equation@Eq. ~1! or Eq.
~3!# can be identified with the LE constitutive equation for the molecular fieldh, which
governs the rotation of the directorn. As Kuzuu and Doi~1983! recognized, the equilib-
rium state in the absence of flow is degenerate in the sense that the director orientation is
indeterminate. A weak flow distorts the ‘‘shape’’ of the orientation distributionC, whose
deviation from the uniaxial stateCeq then determines the directorn. In the following, we
generalize Kuzuu–Doi’s analysis to allow time dependence and spatial inhomogeneity.
Either a weak flow or a mild spatial distortion will perturbC, andn(t) will be deter-
mined by the competition of the two effects.

It is convenient to start with the Smoluchowski equation forC. In view of Eq.~2!, we
rewrite Eq.~1! as

dC

dt
5 D̄rR•~RC1CRŪMS!2R•~GC!, ~17!

whereŪMS 5 UMS/kT and

G 5 u3k–u2
D̄r

kT
RŨMG ~18!

represents the perturbative effects of flow and distortional elasticity. The Leslie–Ericksen
theory will therefore correspond to the zeroth-order solution of Eq.~17! for a vanishing
G, which may be regarded as the perturbation parameter.

The solution to Eq.~17! can be written asC 5 Ceq1C1, whereCeq@u–n(t)#, the
zeroth-order solution, is a uniaxial distribution around the director whose rotation is to be
determined, andC1 is the small deviation in shape from the uniaxial ground state.
Substituting this into Eq.~17! and noting thatdC/dt is a small quantity on the same
order of magnitude asG, we obtain

0 5 R•~RCeq1CeqRŪMS@Ceq# !, ~19!

2D̄rGC1 5
dCeq

dt
1R•~GCeq!, ~20!

where the linear operatorG is defined by Gf 5 2R•(Rf1CeqRŪMS@f#

1fRŪMS@Ceq#). This perturbation problem is peculiar in that the zeroth-order ground
state is degenerate and the equilibrium orientation of the director is indeterminate. The
task then is not to determine the first-order perturbationC1 but to determine the director
n(t) in the ground stateCeq@u–n(t)# such that the perturbation procedure is self-
consistent. The mathematical procedure is outlined in Kuzuu and Doi~1983!, and the
self-consistency criterion may be visualized for a flow-aligning nematic as follows. If, in
the ground state,n differs from the preferred orientation, then even a weak flow or
distortion would rotaten through a finite angle to the preferred orientation because of the
degeneracy in the ground state. The change in the distribution function,C1, would be
finite and the perturbation would fail. Hence, the ground staten has to be oriented at the
Leslie angle so that it does not rotate as a result of a weak flow or distortion. Then the
change inC is only a small distortion of its shape and the perturbation scheme is
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self-consistent. For a tumbling nematic, the same argument applies although the preferred
orientationn(t) is now time dependent. In our case, the self-consistency condition may
be written as

E c0FdCeq

dt
1R•~GCeq!G du 5 0, ~21!

wherec0(u) is the eigenfunction of the Hermitian conjugate operator ofG corresponding
to the vanishing eigenvalue. Kuzuu and Doi~1983! found a solution in the form of
c0(u,f) 5 Q–efg(u), whereQ is an arbitrary constant vector,ef is the unit vector for
the spherical coordinatef ~see Fig. 1! andg satisfies

1

sinu

d

du Ssinu
dg

duD2 g

sin2 u
2

dU0

du

dg

du
5 2

dU0

du
, ~22!

whereU0 5 ŪMS@Ceq# is the Maier–Saupe potential evaluated for the equilibrium dis-
tribution function.

The evaluation of the time dependent and distortional terms in Eq.~21! using the
eigenfunctionc0 is described in the Appendix. In the end, Eq.~21! reduces to an equa-
tion governing the rotation of the directorn. In terms of the rotation relative to the

background fluid:N 5 ṅ2V–n, this equation can be written as

nkTUL 2S2
2

8
¹2n 5

2S2

l
h̄N22S2h̄D–n, ~23!

whereV 5 (k2kT)/2, D 5 (k1kT)/2, S2 5 (3^cos2 u&21)/2 is the order parameter,

h̄ 5 nkT/2D̄r is a nominal viscosity@Doi and Edwards~1986!# and

l 5 2S2SECeqg
dU0

du
duD 21

5
2S2

^g ~dU0 /du!&
~24!

is the tumbling parameter. Equation~23! differs from the result of Kuzuu and Doi~1983!
in the distortional elasticity term¹2n and the time dependence ofn(t). The tumbling
parameterl was correctly derived by Kuzuu and Doi~1983!, and evaluated for the
Onsager potential by Kuzuu and Doi~1984!.

Comparing Eq.~23! with the LE constitutive equation@de Gennes and Prost~1993!#

h 5 g1N1g2D–n, ~25!

FIG. 1. The spherical coordinate system for Eq.~22!.
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we may identify the molecular field as

h 5 ~ 1
8 nkTUL 2S2

2!¹2n 5 K¹2n ~26!

and the coefficients as

g1 5
2S2

l
h̄; g2 5 22S2h̄. ~27!

Equation~26! is exactly the molecular field of the LE theory with elastic isotropy@de
Gennes and Prost~1993!#. Note that the coefficients of Eq.~23! are determined up to an
arbitrary factor; we have chosenK to be the elastic constant derived from the Marrucci–
Greco nematic potential@Marrucci and Greco~1991!#.

It should be emphasized that although Eq.~23! does not contain the first-order pertur-
bationC1, the director rotationn(t) nonetheless depends on how the flow and the spatial
inhomogeneity distort the distribution function. Mathematically, this dependence is
through the eigenfunctionc0 of the transpose operatorG †. Physically, any flow or spatial
distortion, however weak, distortsC from its uniaxial equilibrium state, and this distor-
tion modifies the rotation of the director in a subtle way. Ignoring this effect, one could
compute a ‘‘Leslie–Ericksen limit’’ of the molecular theory by simply insertingCeq into
Eq. ~1! or, equivalently, by substituting the uniaxial forms of^uu& and ^uuuu& into
Eq. ~3!

^uiuj& 5 S2ninj1
12S2

3
dij , ~28!

^uiujukul& 5 S4ninjnknl1
S22S4

7
~ninjdkl1nknldij1ninkdjl1njnldik

1ninldjk1njnkdil !1
7210S213S4

105
~d i j dkl1d jkd l i 1dkid j l !, ~29!

whereS4 5 ^P4(cosu)& is another order parameter,P4 being the fourth-order Legendre
polynomial. This leads to an equation that is similar to Eq.~23! but with a different
tumbling parameter

l 5
1415S2116S4

35S2
. ~30!

This would be the tumbling parameter for a nematic that tumbles with its orientation
distributionfixedat Ceq—a picture at odds with the molecular theory. Mathematically,
this procedure amounts to neglecting the first-order termC1 ~i.e., change in shape of the
orientation distribution! in the perturbation scheme while the remaining termdCeq/dt

~or ṅ) is of the same order. Equation~30! was first derived by Archer and Larson~1995!,
who also recognized its inaccuracy. Figure 2 compares the tumbling parameters accord-
ing to Eqs.~24! and ~30! with the measurements of Ternetet al. ~1999! for three small-
molecule liquid crystals. In Eq.~24!, g(u) is calculated by numerically integrating Eq.
~22! using the Maier–Saupe potential. The experimental values ofl were measured at
different temperatures, which have been converted to values of the nematic strength
parameterU via the Maier–Saupe potential. Equation~24! is clearly superior to Eq.~30!
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in representing the data. Archer and Larson~1995! performed a similar comparison with
previous data that fall mostly in the flow-aligning regime; Eq.~30! appears to fit those
data better than the exactl.

B. The stress tensor

In the LE theory, the stress is written as the sum of an Ericksen stress, which stems
from the Frank elasticity forstaticdistortions, and a ‘‘viscous stress.’’ Note that the latter
is not genuinely viscous as Doi’ss(V) is; it is defined as the total stress minus the
Ericksen stress and actually contains distortional elasticity. Thus,

sLE 5 2K¹n~¹n!T1a1D:nnnn1a2nN1a3Nn1a4D1a5nn–D1a6D–nn.
~31!

With elastic isotropy, the Ericksen stress is symmetric. But the viscous stress is nonsym-
metric and it is convenient to writesLE as the sum of its antisymmetric and symmetric
parts

sLE 5
1

2
~hn2nh!1F2K¹n–~¹n!T1

a21a3

2
~nN1Nn!

1a1D:nnnn1a4D1
a51a6

2
~D–nn1nn–D!G . ~32!

The antisymmetric part (hn2nh)/2 manifests its origin in the torque on the director
when the flow drivesn away from its preferred orientation, which is to be collinear with
h everywhere. The analogy with a suspension of polar particles is obvious@Brenner
~1970!#.

In reducing the polymer stress tensor to the weak flow limit, one must exercise the
same caution as in treating the tumbling parameter. Specifically, the uniaxial equilibrium
distribution can be directly inserted only if all terms are uniformly first order. From Eqs.

FIG. 2. The tumbling parameterl as a function of the nematic strengthU for the Maier–Saupe potential.
Curve~a! represents the correctl in Eq. ~24! whereas curve~b! corresponds to Eq.~30!. The symbols represent
experimental data of Ternetet al. ~1999! for 7CB, 8CB and a commercial mixture~ZLI-3449-100! from EM
Industries.
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~12! and ~13!, the antisymmetric part ofs(P) comes only from the distortional elastic
stress and is first order. Hence, it can be reduced directly by using the uniaxial form ofA
in Eq. ~28!:

2 1
8 nkTUL 2~A•¹2A2¹2A–A!/2 5 1

8 nkTUL 2S2
2@~¹2n!n2n¹2n#/2. ~33!

This is precisely (hn2nh)/2 given the definition ofh in Eq. ~26!. Therefore, the anti-
symmetric part ofs(P) reduces to that of the LE stress in Eq.~32!.

With an inconsequential addition of a constant ‘‘pressure,’’ the symmetric part ofs(E)

may be written as

ss
(E) 5 3nkTF S A2

d

3D 2U~A–A2A:^uuuu&!

2
UL 2

48 S A–¹2A1¹2A–A22¹2A:^uuuu&1
Q2¹¹A:A

2 D G . ~34!

It is inappropriate to substitute the uniaxial forms ofA and ^uuuu& into the earlier
equation; the nondistortional terms, representing Doi’s molecular viscoelasticity, would
vanish. In reality, these terms make a first-order contribution to the stress due to the
distortion of the orientation distribution, while the remaining distortional stress is also of
first order. To properly account for this effect, we note that all terms except (Q
2¹¹A:A)/2 also appear in the kinetic equation forA @Eq. ~3!# and can be replaced by
the flow terms. With the viscous stresss(V) added, the symmetric part of the polymer
stresss(P) becomes

ss
(P) 5 2h̄S ]A

]t
1v•¹A2k–A2A–kT12D:^uuuu& D

1h0D:^uuuu&2
nkTUL 2

32
~Q2¹¹A:A!, ~35!

where h̄ 5 nkT/2D̄r and h0 5 nz r /2. Now all terms are explicitly first order in the
small perturbation parameter@cf. Eq.~18!#. Inserting the uniaxial forms ofA and^uuuu&,
theL 2 terms reduce exactly to the Ericksen stress, and the flow terms transform into the
viscous stress terms in Eq.~32!:

ss
(P) 5 2K¹n–~¹n!T2S2h̄~nN1Nn!1~h022h̄ !S4D:nnnn

1S 14220S216S4

105
h01

14210S224S4

35
h̄ D D

1F2~S22S4!

7
h01

3S214S4

7
h̄G ~D–nn1nn–D!. ~36!

Therefore, the symmetric part of the polymer stress also reduces to the LE form in the
weak flow limit. The six Leslie coefficients can be extracted from comparing Eq.~36!
with Eq. ~32!:

a1 5 ~h022h̄!S4, ~37!
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a2 5 2S2h̄S11
1

l
D, ~38!

a3 5 2S2h̄S12
1

l
D, ~39!

a4 5
14220S216S4

105
h01

14210S224S4

35
h̄, ~40!

a5 5
2~S22S4!

7
h01

10S214S4

7
h̄, ~41!

a6 5
2~S22S4!

7
~h022h̄!, ~42!

which satisfy the Parodi relation:a21a3 5 a62a5. Hence, the molecular theory de-
veloped here contains the phenomenological LE theory as a limiting case.

The Leslie coefficients differ from those of Kuzuu and Doi~1983! in the h0 terms;
they neglected the viscous stresss(V). Though the rigid rod is a drastically simplified
model of a real LCP molecule, it is nonetheless interesting to see how the predicted
viscosities compare with measured values. The predicteda ’s contain three parameters
that need to be fitted against measured viscosities. We will use measured values ofa1 ,

a2 anda3 to determinel, h0 and h̄. From l, the nematic strengthU and, hence, the
order parametersS2 andS4 can be obtained. Then the theoretical values ofa4 , a5 and
a6 can be calculated and compared with the measured ones. Note thath0 can be written
ash0 5 nkT/2Dr

0 , whereDr
0 is the rotational diffusivity of the rods in adilute solution

@Doi and Edwards~1986!#. SinceDr
0 @ D̄r , we haveh0 ! h̄ and the theory predicts a

negativea1. This is indeed the case for the PBG solution listed in Larson~1993!, whose
measured viscosities are~all viscosity values given hereafter are in poise!

~a1,a2,a3,a4,a5,a6! 5 ~247.24,269.2,0.18,3.48,69.3,22.92!.

The predicted values are: (a4 ,a5 ,a6) 5 (9.45,43.6,225.4). Despite the rough agree-
ment, an aphysicalh0 5 2127.5 has to be used to fita1. This is not surprising sincea1
is known to be particularly difficult to measure. In fact, for the flow-aligning small-
molecule nematic MBBA, both positive and negative values have been reported fora1.
O’Neill ~1986! showed thata1 5 20.181 measured by Kneppe and Schneider~1981! is
more reliable than the valuea1 5 0.065 later cited by Larson~1993!. Hence, using the
following measured viscosities for MBBA

~a1,a2,a3,a4,a5,a6! 5 ~20.181,20.785,20.012,0.832,0.453,20.344!,

we have the following predictions: (a4 ,a5 ,a6) 5 (0.212,0.691,20.105), with the more

reasonable valuesh̄ 5 0.795 andh0 5 0.493.

VI. CONCLUDING REMARKS

We have added distortional elasticity to the Doi theory by using the Marrucci–Greco
potential. The principal results are the evolution equation for the polymer orientation
configuration@Eq. ~3!# and the elastic stress tensor@Eq. ~12!#. The theory is derived using
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the one-constant approximation, but can be readily generalized to incorporate elastic
anisotropy. It is the first theory to rationally incorporate both polymer dynamics and
distortional elasticity in flowing nematic polymers, and forms a basis for investigating
flow-microstructure coupling in LCPs, especially the origin and dynamics of orientational
defects. In the limit of weak flow and mild spatial distortion, our molecular theory
reduces to the Leslie–Ericksen theory.

A pertinent question is whether the new molecular theory has all the ingredients for
predicting disclinations and the polydomain texture in flowing LCPs. Shear-flow experi-
ments of Larson and Mead~1993! suggest that disclinations and texture refinement occur
in the aftermath of the roll-cell instability, which itself is due to the interplay between
flow and distortional elasticity@Larson~1993!#. The following three factors appear to be
essential to this scenario:~a! the effect of flow on polymer orientation;~b! the modifica-
tion of flow by the polymer stress; and~c! the effects of distortional elasticity on both
flow and polymer configuration. Apparently, previous simulations of complex LCP flows
failed to produce realistic textures because they did not account for all three factors
properly. Using the original Doi theory, Feng and Leal~1997! realized flow-orientation
coupling without distortional elasticity. Tsuji and Rey~1997! included a form of Frank
elasticity but, for lack of a stress tensor, held the flow field fixed and uncoupled from the
polymer orientation. The recent work of Kupfermanet al. ~2000! included both flow-
orientation coupling and distortional elasticity. Though their stress tensor is incomplete,
the missing ‘‘Ericksen stress’’ has no effect in a unidirectional simple shear so their
results are valid. The reason that no realistic textures emerge, it appears, is that the flow
and orientation are assumed to be two dimensional. Roll cells are thus prohibited. Evi-
dently, one must have a sound constitutive theory on the one hand and apply it to the
appropriate flows on the other. Our new molecular theory contains all the three elements
listed earlier, and holds promise for illuminating the issue of LCP textures.

APPENDIX

We derive Eq.~23! from Eq.~21!. Integrating by parts and using the definition ofG in
Eq. ~18!, we rewrite Eq.~21! as

E c0

dCeq

dt
du1

D̄r

kT
^RŨMG•Rc0&1k:^u~u•Rc0!& 5 0, ~A1!

where^•••& denotes the average of the quantity using theequilibrium distribution func-
tion Ceq. The third term was worked out by Kuzuu and Doi~1983!

k:^uu3Rc0& 5 2Q–n3 S S2D–n1
S2

l
V–nD , ~A2!

wherel is the tumbling parameter of Eq.~24!. Hence, we only need to calculate the
time-dependent term and the distortion term.

A. Time dependency

The uniaxial distributionCeq@u–n(t)# depends on time only through the rotating
director n(t). If in time dt, n rotates ton8 5 n1dv–n, thenCeq rotates withn such
that: Ceq(u–n) 5 Ceq(u8–n8) whereu8 5 u1dv–u. Hence,

dCeq

dt
5

Ceq~u–n8!2Ceq~u–n!

dt
5

Ceq~u–n8!2Ceq~u8–n8!

dt
5 2

]Ceq

]u
•

du

dt
. ~A3!
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But du/dt 5 dv/dt3u 5 (n3ṅ)3u, integration by parts gives

E c0

dCeq

dt
du 5 ~n3ṅ!•^Rc0&. ~A4!

Inserting Kuzuu–Doi’s expressionc0 5 Q–efg(u) with g(u) determined by Eq.~22!,
one gets

^Rc0& 5 E
0

2p
dfE

0

p
Ceq~u!sinuSdg

du
efef1geuu1g cotueueuD –Q du. ~A5!

Integrating the dyads of unit vectors over the azimuthal anglef, one eventually arrives at

E c0

dCeq

dt
du 5 Q•~n3ṅ!

S2

l
. ~A6!

The final steps of the derivation utilize Eq.~19! for Ceq and Eq.~22! for g, and are
similar to those in the Appendix to Kuzuu and Doi~1983!.

B. Distortional elasticity

In the weak distortion limit,ŨMG is a small quantity so that the equilibrium form of
A can be used. From Eqs.~2! and ~28!:

RŨMG 5 2 1
16kTUL 2R~uu!:¹2A 5 2 1

16kTUL 2S2R~uu!:¹2~nn!. ~A7!

Using againc0 5 Q–efg(u) and integrating overf, one gets

D̄r

kT
^RŨMGRc0& 5 2

1

8
D̄rUL 2S2

2Q~n¹2n!. ~A8!

Finally, substituting Eqs.~A2!, ~A6!, and~A8! into Eq. ~A1! gives rise to Eq.~23!.
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Erratum: ‘‘A theory for flowing nematic polymers
with orientational distortion’’
[J. Rheol. 44, 1085–1101 (2000)]
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Due to a production error, Eqs.~1!, ~31!, and ~A8! were published incorrectly. The
corrected versions of these equations appear below.

]C

]t
1v–“C 5 2R•~u3k–uC!1D̄rR•FRC1

C

kT
RUscfG , ~1!

sLE 5 2K¹n–~“n!T1a1D:nnnn1a2nN1a3Nn1a4D1a5nn–D1a6D–nn.
~31!

D̄r

kT
^RŨMG•Rc0& 5 2

1

8
D̄rUL2S2

2Q•~n3“

2n!. ~A8!
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