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Abstract

We consider the shear flow behavior of nematic LCPs, modeled via an extension of the Doi theory that incorpo-
rates the mean-field nematic potential due to Marrucci and Greco to account for distortional elasticity. Based upon
the constitutive model that derives from this starting point, we utilize finite-element methods to investigate the LCP
behavior in a planar shear flow. We assume that the LCP is pinned at the walls and is initially in its equilibrium config-
uration. The goal of our simulations is to explore the evolution of the LCP structure and the flow. Our results show that
in-plane tumbling instabilities lead to a non-uniform orientation field, which, in turn, arrests tumbling. The resulting
quasi-steady-state texture is characterized by a length scale that seems to be consistent with a Marrucci-like scaling.
When we allow for out-of-plane tipping of the director, we predict an out-of-plane director instability, which is qual-
itatively consistent with what has been observed in experiments. © 2002 Elsevier Science B.V. All rights reserved.

Keywords:Liquid crystal polymers; Distortional elasticity; Tumbling; Disclinations; Texture

1. Introduction

There has been a long history of scientific interest in liquid crystalline polymers (LCPs), but relatively
few technological applications other than high tensile strength fibers, such as Kevlar. This is due to the
intrinsic difficulty of maintaining a monodomain orientational state at the macroscopic level, or at least of
controlling the microstructural orientation state in any processing flow other than fiber spinning. When a
nematic LCP undergoes a processing flow that involves a dominant component of shear (e.g. flow into a
mold), there is an immediate formation and/or proliferation of singular structures (points or lines), known
as disclinations, in the orientation field. This leads, generally, to a polydomain structure of randomly
oriented nematic microdomains (i.e. regions with nearly uniform orientation), and thus, to a material
whose rheological and optical properties are largely those of an ordinary isotropic polymer. Since this
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does not occur in the extensional motion of fiber spinning, we may conclude that the nature of the flow
is an important factor in determining the material microstructure. We know moreover that the tumbling
nature of LCPs is crucial for the appearance of the above-mentioned cascade of flow instabilities. In
particular, disclinations are much less common in small-molecule nematics, which in general adopt a
fixed orientation near the flow direction when subject to shear flow. In polymeric LCPs, on the other
hand, the average direction of orientation almost always rotates continuously in a shearing flow (they
exhibit “tumbling” behavior). However, a complete understanding of the dynamics of texture evolution
and its interaction with the flow, which is of crucial importance to any future development of LCPs as
structural materials, is still missing.

Many experimental investigations have been dedicated to the study of this problem, the most compre-
hensive of which are the two papers by Larson and Mead [1,2]. They studied the textural evolution of
a typical LCP solution (PBG) during planar steady shear for a wide range of parameter values and for
different anchoring conditions. Even in such a simple geometry they found that the material exhibits a
very rich microstructural/rheological behavior with multiple transitions in texture. Their main findings,
which are summarized below, are schematically illustrated in Fig. 1. For parallel and homeotropic BCs the
director tips out of the shear plane and the system undergoes a first textural transition with the formation
of a pattern of bands perpendicular to the flow. At later times, the material exhibits a second transition
with the formation of stripes parallel to the flow direction.

The final striped pattern has been quantitatively characterized by later works (e.g. [3,4]). Still limited,
however, is the number of observations of the transient banded texture at intermediate times [5], which
is not to be confused with the banded structure that appears after cessation of shear.

Several attempts to analyze these experimental observations have been made via numerical calculations
using the Leslie–Ericksen (LE) theory. We may recall that the basic assumptions of the LE theory require
slow flows and weak distortions (i.e. conditions in which the director rotates but the shape of the orientation
distribution is unperturbed from its equilibrium form). The 2D flow simulations of Han and Rey [6–8]
were able to capture the instability that drives the average orientation—which is often associated with a
unit vector known as thedirector—out of the shear plane and then leads to a banded texture similar to that
observed in experiments. However, because they used the LE theory, their calculations are relevant only
for low values of the shear rate and their results cannot be expected to hold quantitatively, or possibly

Fig. 1. Typical textural evolution of an LCP solution (PBG-198) during shear [2].
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even qualitatively, at the higher values of shear rate found in processing flows. Recent simulations by
Feng et al. [9], also done in the LE context, allowed for gradients in the vorticity direction rather than the
flow direction, and thus were able to capture the secondary flow instability that produces roll cells and
orientation patterns that can be related to the final striped texture of real materials (since no gradients were
allowed in the flow direction, the banded instability previously mentioned could not be observed). Most
interestingly, this latter work provided a suggestion for a detailed mechanism of disclination formation,
which leads to “thick”, coreless defect lines that are associated with the roll cell boundaries. The use
of the LE theory, however, again limits the range of validity of these predictions. In particular, it leaves
out the potentially critical viscoelastic effects due to distortion of the orientation distribution, which
are an essential characteristic of the other type of defect that characterizes real systems, i.e. “thin”
disclinations with a core in which the orientational order is much lower than at equilibrium [10]. We
believe therefore that a consistent treatment of defect formation leading to quantitative predictions of the
rheological behavior of LCPs is obtainable only in the context of a molecular theory that incorporates
both “distortional elasticity” due to spatial gradients of the configuration field and “viscoelasticity” due
to distortions in the shape of the distribution function.

For this purpose, the original molecular model due to Doi is incomplete as it includes viscoelasticity but
does not incorporate distortional elasticity. An attempt to overcome this limitation of the Doi theory was
made by Larson and Doi [11] with the formulation of an ad hoc mesoscopic model. This model combined
the original Doi theory, which is valid for a monodomain nematic, with phenomenological equations for
the evolution of the various microdomains. However, it provides only qualitative indications of expected
scaling laws and overall stresses, and cannot predict the details of the microstructural evolution of LCPs.

A breakthrough came in recent years with a workable proposal by Marrucci and Greco [12] for the incor-
poration of long-range distortional elasticity into the Doi model via a generalization of the Maier–Saupe
mean-field potential. Their expression for this mean-field potential was recently incorporated into a new
constitutive theory that is appropriate for flow analysis of LCPs [13]. Earlier models proposed by Tsuj
and Rey [14] and by Kupfermann et al. [15] either neglected the coupling between the microstructural
state and the stress field [14], or were missing important terms in the expression for the elastic stress [15].

In the present paper, we use the full model developed by Feng et al. [13] for 2D flow simulations of
LCPs. Our report begins with a brief review of the theoretical framework, the details of which can be
found in the original reference, and with a discussion of the most important aspects of our numerical
scheme. We then present two sets of detailed results for planar shear flows. In the first, we assume that
the configuration tensor is symmetric with respect to the plane of shear (i.e. its three eigenvectors lie
either in the plane of shear or perpendicular to it). These results show the emergence of a texture that is
characterized by a specific length scale. The dependence of this length scale on the relevant parameters is
analyzed and compared with a generalization of the scaling proposed by Marrucci [16]. This first series
of results is also directly comparable to the only previous numerical work with full coupling between
structure and stress [15]. Kupfermann’s work is characterized by the dual assumptions of a 1D flow (this
choice made irrelevant the missing term in the stress expression they used) and a 2D configuration tensor
(i.e. they assumed that all molecules lie in the plane of shear). A puzzling result was that their solutions
did not show evidence of the expected scaling behavior. The first part of the present work is thus focused
on a reexamination of this issue.

In the second part of the paper, we remove the symmetry constraint on the molecular orientation. In
other words, we allow for a fully 3D configuration tensor, though still with the assumption that the flow
is 2D. This precludes the possibility of predicting roll-cell formation, but does allow the prediction of
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the out-of-plane director tipping which has been associated with the transient banded pattern observed in
experiments [1,2,8]. We then conclude with a preliminary evaluation of the predictive capabilities of our
theoretical model.

2. The theoretical model

The model used in this study is an extension of the Doi theory for nematic polymers. Like the Doi
theory, it is based on a statistical mechanics description of a suspension of rigid rod-like molecules. This
model takes into account the effects of flow, Brownian motion and intermolecular forces (both local and
non-local) on the molecular orientation distribution. Assuming the number density of polymer molecules
is constant in space, the kinetic equation governing the evolution of the polymer configuration is written as:
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Hereu is a unit vector specifying the orientation of a rod,Ψ the orientation distribution function,v the
macroscopic velocity,Dr the rotational diffusion coefficient andV is the mean-field nematic potential. The
most significant difference from the original Doi theory is the replacement of the Maier–Saupe potential
with the Marrucci–Greco potential [12]:
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Here the so-called configuration tensor,S, is the second moment ofΨ , while U specifies the strength of
the nematic potential andl is a length scale that is characteristic of distortional elasticity. This form for
the nematic potential takes account of the energy penalty due to a “gradually varying” orientation field,
the non-local elasticity neglected by Doi.

We shall see that the stress tensor is expressed in terms of moments ofΨ . Hence, rather than solve
Eq. (1), the numerical calculations are based on the solution of an approximate equation forS, which is
derived from Eq. (1) by multiplying both sides byuu and integrating over the configuration space (i.e.
the unit sphere). In dimensionless form the resulting equation reads:
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whereD is the symmetric part of the velocity gradient tensor,Q the fourth moment ofΨ , L the length
scale characteristic of the macroscopic flow,De the Deborah number defined asγ̇ /6Dr0

1 (Dr0 is the
rotational diffusivity of an isotropic suspension having the same number density of molecules) and
f = (1 − S : S)−2. This last function was proposed by Doi [17], to account for the dependence of the

1 The Deborah number is usually defined as the ratio of the time scales of molecular diffusion and flow, i.e.γ̇ /D̄r . In our system,
such a quantity varies with position, because of the dependence of the average orientational diffusivity on the local value of the
order parameter (expressed in Eq. (4)). The particular grouping we choose to defineDehas the same qualitative significance as
γ̇ /D̄r , but is independent of position, and proves also to provide a convenient form for the resulting equations.
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rotational diffusivity on the molecular configuration, i.e. the average rotational diffusivity is assumed to be:

D̄r = Dr0f = Dr0

(1 − S : S)2
(4)

It is important to note thatQ has to be expressed in terms ofS via closure approximations for Eq. (3)
to be self-contained. Previous work on theoretical aspects of the closure problem [18–20] has shown that
the best approach is a mixed treatment where the viscous termD:Q is closed via the so-called Bingham
closure [18], while the remaining elastic termsS:Q and∇2S:Q are closed via the quadratic closure (i.e.
Q = SS). This choice allows for a numerically manageable implementation, while preserving director
tumbling, which exists in the solutions of the unapproximated Eq. (1) and is the key to understanding the
origin of disclinations in flow (i.e. tumbling solutions are suppressed if the quadratic closure is used for
the viscous term as well).

The other essential feature of the present model is the governing equation for the stress. Following the
notation of Doi and Edwards [21], the stress is divided into a viscous and an elastic part. The viscous
stress is the same as in the original Doi theory, while the expression for the elastic component has to be
modified to account for distortional elasticity. The procedure to accomplish this is shown in [13] and we
report here only the resulting expression for the total stress:
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Hereβ is the square of the volumetric concentration divided by an empirical coefficient of O(103) (see
Section 9.4.3 of [21]).

We write the equation of motion as:

Re
∂v

∂t
= −∇p + ∇2v + c

De
∇σ (6)

with c = αkT/2ηsDr0 known as the coupling parameter, which contains the solvent viscosityηs and
the number density of polymer moleculesα. Since we considered low Reynolds flows, we neglected the
nonlinear termv∇v. Although we kept the∂v/∂t to make evident the transient nature of the problem, this
term is also small and the choice to keep it is mainly historical.

3. The problem set-up

3.1. The geometry of the system

The problem we analyze here is the model LCP described in the previous section, undergoing a
traction-driven shear flow between two plane parallel boundaries. We assume that the various independent
variables (i.e. velocity, pressure and structure tensor) may be functions of two spatial coordinates:x and
y, which are the flow and shear gradient directions, respectively. We include the variation along the flow
direction, instead of considering a simple 1D shear flow, because, in the second part of the work, we hope
to predict configuration fields that could be related to the banded pattern that is periodic along the flow
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Fig. 2. System geometry with homeotropic BC and angles defining the director (i.e. the major eigenvector of the structure tensor).

direction, and observed in real sheared LCPs. On the other hand, we limit the flow to 2D for this initial
study in order to reduce the size of the numerical problem. This means that we willnotbe able to simulate
the final steady striped texture of real materials, due to roll cells parallel to the flow (see Fig. 2). The only
previous calculations using a full viscoelastic model [15] were restricted to a 1D flow.

We consider, in particular, a region of widthL in the y-direction (across the channel) and length 4L
in the flow direction,x. Due to the limitations of memory and computation time that will be discussed
when commenting on the mesh discretization, we did not consider much larger boxes and we cannot
exclude, therefore, the possibility that size effects might affect the results of our simulations. We believe,
nevertheless, that the aspect ratio chosen is a reasonable compromise between the need for a long enough
computational domain to reduce the influence of the inflow and outflow boundaries and the numerical
limitations, and that the qualitative features of the predictions would not be modified by the choice of
larger domains Fig. 2.

We prescribe the value of the velocity at the top and bottom walls, and assume periodic BCs for the
inflow–outflow boundaries (for detailed comments on the issue of BCs for transient non-homogenous
flows of LCPs (see [22]). We assume eitherhomeotropicorparallel anchoringat the walls implying that the
average orientation is either normal or parallel to the walls with the order parameters = ((3S : S−1)/2)1/2

at its equilibrium value. Finally, we assume that the system is initially at rest with a uniform equilibrium
configuration, with the orientation determined by the prescribed anchoring conditions at the walls.

We consider the orientation distribution to be fully 3D. In other words while we consider the flow to be
restricted to the plane of shear, we allow molecules to be oriented out of the shear plane. This difference
in the dimensionality between the flow geometry and the orientation space is due to our desire to capture
the out-of-plane orientation instability that drives the first textural transition of real systems, as previously
mentioned.

In the first half of the work, we assume that the configuration tensor is symmetric with respect to
the plane of shear (i.e. its three eigenvectors either lie in the plane of flow or are perpendicular to it or,
equivalently,Sxz andSyz are 0). This choice simplifies the calculations and strongly reduces the required
computation time and memory space. It thus seems a reasonable assumption for a preliminary analysis of
the performance of our scheme. In fact, since it is generally agreed that the cause of texture development is
the tumbling nature of LCPs, the in-plane evolution of the director is the first essential aspect of the system
to monitor. This simplifying assumption also makes it possible to compare our results with the work of
Kupfermann et al. [15]. We note that the assumption in their work was actually even more restrictive as
they constrained all molecules to be in the shear-plane, considering in other words only an in-plane 2D
configuration tensor withSxz, Syz andSzz all set to 0.
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In the second part of this paper, the symmetry constraint on the director orientation is removed in
order to take the first step toward a more realistic system that will allow meaningful comparisons with
experimentally observed textures.

3.2. Choice of parameters

An important issue, especially for comparisons between the present numerical results and experiments,
is the value of the various model parameters. The coefficientβ was estimated empirically by comparing
the expression for the viscous stress (Eq. (5)) to experimental data for LCP solutions [23,24] and was thus
set to 2000. A check was made that varying the value ofβ in the range 200–20,000 did not substantially
modify the qualitative behavior of the solution. Reducingβ had only the effect of slowing down the
tumbling-suppression process. A reduction of the value ofβ corresponds in fact to a reduction of the
magnitude of anchoring effects relatively to the flow. The coupling parametercwas fixed at 100. This value
is slightly lower than what is expected in real systems. However, it allowed us to achieve convergence of the
numerical scheme without having to resort to special techniques for the solution of the full set of equations
(i.e. the time stepping was done by a simple sequential solution of the flow and configuration equations).

The strength of the nematic potentialU was varied in the range 6–10 and, for reasons that we will
explain in a following section, these values ofU led to a corresponding range ofDe from 5 to 30.
The ratiol/L was varied in the range [0.5–4]× 10−3, so that the Ericksen number, which is defined as
Er = (L/l)2(De/U), was in the rangeEr ≈ 106–107. This choice for theEr andDeallowed us to make
a comparison with the work on PBG solutions [1] (these values constitute the upper end of the spectrum
they studied experimentally).

The Reynolds number was fixed at 10−2. As previously said, a small non-zero value of the Reynolds
number was chosen to make evident the transient nature of the flow problem. The inertial term is in fact
negligible when compared to the other terms in Eq. (6) and the particular value of theReused affects
only the number of iterations required by the inner stokes solver at each time step.

4. The numerical algorithm

To simulate planar non-homogenous flows of LCPs with distortional elasticity, we extended the
finite-element code for viscoelastic flows that was first developed by Singh and Leal [25]. The algo-
rithm had been successfully applied, in previous studies, to the simulation of transient flows of LCPs
using the original Doi theory [22,26,27] and needed only modest modifications for the implementation of
the additional long-range elastic terms. This implementation is based on a linearized version of Eq. (3),
which, at every time step, is solved iteratively:
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Here the superscript indicates the iteration number, andS0 is the configuration tensor at the previous time
step. The linearization chosen treats the Laplacian terms explicitily so that an iterative solver is needed
to ensure the continuity of the solution near the walls. The dirichlet BC on the walls are, in fact, ensured,
at each iteration, by the penalty method. The small value of the parameterl/L in our system and the fine
discretization near the boundaries make this scheme quickly convergent. Moreover, even with the explicit
treatment of the second order derivative, we did not observe any of the instabilities that prompted the
development of the EVSS-G/FEM by Szady et al. [28] for viscoelastic flow with a hyperbolic constitutive
equation near no-slip surfaces, nor those that characterize systems with a constitutive equation that changes
type, as in Joseph and Saut [29].

Eq. (7) is solved in the frame of reference defined by the local principal axes ofS0, because this
allows for an easier implementation of both the Bingham closure and Patankar’s algorithm to ensure the
non-negative definiteness ofS (details of this numerical feature are given in Singh and Leal [25]). In the
finite-element formulation we used, with the Laplacian terms treated explicitly, Eq. (7) results in a set
of linear equations with a diagonal matrix of coefficients of half-bandwidth 5 (due to symmetry and the
constraintS = 1, the configuration tensorS has only five independent components in the fully 3D case),
which are solved, at each iteration, by a standard SOR solver.

An important issue addressed in the present implementation was the treatment of the Laplacian
terms. Our finite-element formulation uses bilinear shape functions for the configuration tensor (we
used pseudo-P2 triangular elements) and so for a meaningful evaluation of the second-order derivatives
we had to devise a finite-difference formula. The formula reads:

∂2f

∂x2

∣∣∣∣
x=x0

→ −30f0 + 16f1 + 16f−1 − f2 − f−2

12h2
+ O(h3) (8)

The five points considered in the formula are indicated in the figure below, and the values off at the
various points are interpolated from nodal values in the appropriate element. This five point formula with
third-order accuracy is consistent with the treatment adopted for the convective term (for details see [25]),
one of the most praised [30] features of the original code (Fig. 3).

4.1. The finite-element mesh

Great care was taken in the construction of the mesh, especially the discretization along the shear
gradient direction. As will be explained later, it is in fact along that direction that the system starts to
develop a texture and therefore it is the shear-gradient discretization that plays the most critical role in

Fig. 3. Pseudo-P2 triangular elements and points for the finite-difference formula.
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the accuracy of the results. We tested grids with an average of 50, 80 and 100 nodes in the shear gradient
direction. The latter 2 mesh produced practically indistinguishable results for the values of the parameters
chosen in our study. We also tested an 80-node grid with the nodes unevenly spaced (i.e. more closely
packed near the walls) and this brought a slight improvement in the definition of the Fourier spectra peak
(see Section 5.2). The non-uniformities in orientation, in fact, propagate from the region close to the wall
and it is then expected that the need for an accurate discretization is greater there. This 80 unevenly-spaced
nodes grid is the one actually used in the simulations.

As a last remark on the issue of mesh size, we note that we restricted our attention to a limited area
of theEr–Deparameter space. Experiments have shown that for certain values of those parameters (e.g.
the last stages of the Ericksen number cascade where roll cell refinement leads to director turbulence
[2]), the material becomes highly textured and simulations in those circumstances would have required
a finer mesh in the shear gradient direction than the one we used. We preferred instead to analyze the
2D problem and the resulting computations were already quite “bulky”. In particular, the 80 nodes in
the shear-gradient direction result in a total actual number of nodes for the 2D mesh of the order of 104.
Of course, we could not use too coarse a discretization in the flow direction compared to the one on
the shear-gradient direction because strongly irregular elements would have affected the accuracy of our
computations. More importantly, we wanted to be able to ensure adequate discretization to be able to
capture the cross-stream banded flow structure.

5. Part I: configuration tensor symmetric with respect to shear-plane

5.1. Objective and general remarks

In this first section of results, we have considered the flow and microscale configuration under the
assumption that the configuration tensor is symmetric with respect to the plane of shear. Our objective
is basically to see whether our new constitutive model can predict the development of a spatial texture
across the gap of the shear cell and, if so, determine how the characteristic length scale that emerges
depends upon the relevant parameters. Specifically, it is of interest to determine whether the texture scale
is consistent with the qualitative predictions of Marrucci [16], as outlined below, and/or is comparable
to the earlier computational results of Kupfermann et al. [15]. Although the latter were obtained using
a slightly flawed rheological model, the calculations were carried out for 1D shear flow, and in this
case the corrected expression for the stress tensor [13] reduces to the form that they used. Thus, our
calculations should be directly comparable to their results (with the exception of the more restrictive
symmetry assumptions they adopted). Since their results did not scale as expected from the Marrucci
argument, it is important to understand whether this is a generic deficiency in the constitutive model, or a
non-applicability of the Marrucci scaling to the system analyzed (i.e. one that cannot be described by the
simple LE model), or perhaps nothing more than an artifact of their numerical method, their symmetry
assumptions or their choice of parameter values.

Before discussing our results, it is worthwhile to briefly review the Marrucci argument and consider
how (or whether) it may be expected to apply to the present system. The Marrucci scaling is based upon
the simple hypothesis, appropriate when working in the LE context, that a steady state is reached in a
sheared nematic when distortional elasticity and viscous torques balance each other. If we refer to the
microstructural balance in Eq. (3), we see that the ratio of the magnitude of these two forces (represented,
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respectively, by the last and first terms of the right hand side) is:
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Marrucci’s hypothesis is that dynamically stationary states correspond to a fixed value of this ratio. To
represent the order of magnitude of the gradient of the orientation non-dimensionalized with respect to
the macroscopic length scaleL, it is convenient to introduce a texture length scalehtext, defined as the
characteristic length scale for changes in orientation, so that(∇S)2 ∼ 1/(htext/L)2. Substituting this into
Eq. (9), we see that the Marrucci scaling requires:

htext

L
∝ l

L

(
U

De

)1/2
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Hence, we should expect any orientational texture that develops in a flow to be directly proportional to
the length scalel, and to depend onU andDe in the manner shown in Eq. (10).

Although the scaling prediction Eq. (10) pertains strictly to a texture scale that develops in the shear
gradient direction, it has been applied (e.g. [2]) in a loose sense to estimate the length scale of the striped
texture with periodicity along the vorticity direction that emerges in real materials under shear. In the
present section, however, we consider only length scales of the texture in the shear gradient direction.

When molecular elasticity is considered, as in the model used in this study, the Marrucci argument
leading to Eq. (10) cannot, in general, be applied. Steady state is established as a dynamic balance between
thethreephysical contributions to Eq. (3): i.e. viscous forces, gradient elasticity and molecular elasticity
(or viscoelasticity). In the present work, however, we carried out a set of calculations for specially chosen
pairs of values ofU andDe for which we may expect the scaling in Eq. (10) to apply. As shown in
Fig. 4, the (U, De) points we consider are all close to the curve at which there is a transition from
tumbling to wagging for thehomogenousDoi model in linear shear flow (this curve was derived by
Feng et al. [27]). This transition occurs, for a given value of the nematic strengthU, at a shear rate (i.e.
De) that produces a critical amount of defocusing of the orientation distribution, e.g. approximately a
fixed difference between the minimum value of the order parameterS over one rotational period and the

Fig. 4. Tumbling behavior transitions for the monodomain nematic. TheU–Devalues used in the present work are indicated by
the solid dots.
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equilibrium valueSeq. Hence, for the pairs ofDe andU values chosen, we expect that the ratio of the
magnitudes of the viscous terms (tending to disrupt the orientation distribution) and the molecular-elastic
terms (tending to maintain the distribution in its equilibrium form) is approximately fixed. Let us denote
the ratio of molecular-elastic to viscous terms by the fixed parameterΛ. Hence, for these points, we can
think of steady state as being established when the magnitude of the gradient elasticity contributions in
Eq. (3) is approximately equal to thesumof the viscous and molecular elasticity contributions, which is
then, just (1+ Λ) times the viscous terms. Therefore, apart from the factorΛ, which is a coefficient of
order 1 or less (from calculations reported in Chaubal and Leal [18] we estimateΛ ∼ 0.3), we should
expect the Marrucci scaling to apply for the specific points chosen.

As mentioned before, the key aspects to monitor in the analysis of the results in this first part of the work
are the evolution of thedirector(i.e. the major eigenvector of the configuration tensor) in the plane of shear,
and the configuration profile across the gap. For all values of the parameters considered, the qualitative
behavior of the system was the same, with only quantitative differences in the value of the emerging
texture length scale (which we will discuss at the end of this section). Hence, we will present figures for
only one set of parameters, namelyU = 8,De = 15,Er = 8×106, and homeotropic BCs. We chose this
set only because it was in a central region of the range examined. The comments we will make apply to
all other cases. The details of the other cases considered will be included in the Ph.D. thesis of Sgalari.

5.2. Results

Fig. 5 shows the evolution of the in-plane director orientation angleθ , i.e. the angle formed by the
director and the positivex semi-axis at three different positions across the gap. We see that at all three
points the director is initially tumbling. The apparent discontinuities in the angle at−90◦ are in fact only
due to the definition ofθ , which uses the fore-aft symmetry of the director. The director, in reality, keeps
rotating in the same sense but as one end crosses the negative y semi-axis,θ = −90◦, one has to switch
to the opposite end which is appearing atθ = +90◦. Initially, the directors rotate in unison, reflecting the
constant shear rate across the gap, and the lack of any effect of distortional elasticity. As time progresses,
however, the directors at the three points no longer rotate in synchrony, and then, one by one, they stop
rotating altogether. After∼60 strain units (su), the director at all points throughout the gap only oscillates
around thex-direction. We see, for example, that the director aty ∼ 0.6 completes only one tumbling
rotation, then oscillates around the flow direction before completing one additional tumbling cycle during
the final part of the system transient. It may seem peculiar at first that the suppression of director tumbling
should first occur at this intermediate point, rather than closer to the wall where the director orientation
is fixed by the homeotropic anchoring condition. However, this is a consequence of the fact that director
tumbling can be suppressed both due to the so-called “wind-up” effects of distortional elasticity (discussed
further below), and to defocusing of the orientation distribution function. In particular, it is known from
earlier studies of the monodomain Doi model that tumbling is arrested when the flow is strong enough
to significantly reduce the degree of nematic alignment. Indeed, in the results shown in Fig. 5, the order
in which the various points stop tumbling seems to be strongly dependent on the local value of the order
parameter as will be discussed later.

Well-known previous works [31,32], done in the context of the LE theory, also predicted the suppression
of tumbling in a sheared nematic. In the LE system, however, this was entirely due to the build-up of a
gradient in the director orientation across the gap, a state that is known as “winding up” of the director
field and is generated by tumbling itself. The mechanism for arrest of tumbling in this case is the resistance
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Fig. 5. Director in-plane angle vs. non-dimensional time (su) for three points atx = 0: y/L = 0.9, 0.8, 0.6. The parameter
values areU = 8, De = 15,Er = 8 × 106, with homeotropic BCs and an initial equilibrium orientation field.

to further build-up of this orientation gradient due to the action of distortional (i.e. Frank) elasticity. In
our system, as already noted, the distortional elasticity due to gradients in the orientation angle is not the
only mechanism responsible for the suppression of tumbling. If we look (Fig. 6) at the profile of the order
parameter across the gap at different times, for the same case shown in Fig. 5, we see that as tumbling
rotations are performed, the initially uniform order-parameter profile shows an increasing number of dips.

In the figure shown, the order parameter falls to values of∼0.4 (the depth of the dips varies only slightly
with the values ofDeandEr). We remind the reader that 0.53 is the value below which the model nematic
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Fig. 6. Order parameter profile across the gap atx = 0 at three different times.

with distortional elasticity completely neglected becomes flow-aligning for all values of the shear rate
(see Section IID of Marrucci and Greco [34]). Significantly, the tumbling first stops in Fig. 5 at the point,
y ∼ 0.6, where the first dip in the order parameter profile is formed. Finally, as a side comment, we note
that the fact that the order parameter in those areas has a value considerably lower than the equilibrium
value, justifies our original remark about the fact that the LE model will miss important physics, at least

Fig. 7. Order parameter isolines att = 135 su.
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in this range of parameters. Clearly, the tumbling characteristics of the nematic cannot be described in
this case with a constant (equilibrium) value for the order parameter.

When one looks at the full 2D geometry, it is found that the regions of decreased orientational order
are roughly parallel to the flow direction as shown in Fig. 7. Even though a perfect identification is not
possible, due to the lack of a full experimental picture of the configuration profile across the gap, we
tentatively identify the area of the dips inswith the highly stretched (i.e. elongated in the flow direction)
disclination loops predicted by Marrucci and Greco [34] that are characterized by a defect core in a
“melted” state that is much less ordered than the bulk nematic phase (i.e. with a smaller order parameter).
According to Marrucci and Greco [34] the mechanism for the suppression of tumbling, discussed before,
may be envisioned as an “anchoring effect” on the orientation field due to these defect lines.

In Fig. 8a and b we plot the order parameter together with the orientation angle for the director at a
particular moment in time. We see that the profile of the director orientation across the gap closely follows
that of the order parameter. In particular, the orientation angle changes sign in the regions where the order

Fig. 8. Order parameter (a); tumbling angle (b); and velocity gradient (c) profiles across the gap atx = 0 att = 135 su.
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Fig. 9. Time evolution of texture length scale (Fourier spectra maximum of order parameter profile).

parameter is lower, while it attains its maximum values in the regions between the order parameter dips.
This relation between the two profiles agrees with the theoretical predictions in Section IIIE of Marrucci
and Greco [34].

For a complete physical understanding of these defect-like regions, it is useful to examine the velocity
gradient profile across the gap at the time considered previously (Fig. 8a and c). In the regions that we
have suggested as corresponding to disclinations, we see that the velocity gradient is locally reduced.
This is not a surprise, since the viscosity strongly increases for lower values of the order parameter (since
η = αkT/2D̄r, one can see from Eq. (4) thatη ∝ (1 − s2)2). The defects then behave as obstacles to the
overall flow, with a local reduction of the shear rate in those regions.

The qualitative description of the system evolution just presented, is complemented by a quantitative
characterization of the texture. We looked, in particular, at the Fourier spectra of the order parameter
profiles and analyzed their evolution in time. In Fig. 9 we plot the dominant length scale deduced from
the Fourier analysis versus time. We see that, as tumbling is suppressed (around∼60 su), the characteristic
length scale starts to decrease. After∼100 su, we can say that this length scale has become constant.
Beyond this point, only minimal fluctuations (of order 0.01–0.02) are seen in the value of the dominant
length scale, with significant changes occurring only in the short-scale secondary peaks of the Fourier
spectrum, which correspond to the finer details of the profile. We note, in fact, that the configuration never
reaches a completely stationary state, but the director keeps on oscillating around the flow direction and
the disclinations oscillate slightly up and down across the gap.

Fig. 10 shows the dependence of the final steady texture scalehtext on the length scale l that is charac-
teristic of distortional elasticity in the model. We see that, for the lower values ofl/L, the data seem to
fall on a straight line as expected from Eq. (10). For the largest value ofl/L examined, the texture length
scale appears in Fig. 10 to saturate. However, at this point, the texture scale has reached a value that is
comparable to the half gap width (i.e. only one defect line is present in the system) and we do not expect
the argument that led to Eq. (10) to hold in this case.

Kupfermann et al. [15] obtained comparable solutions in a recent investigation for a calculation that
was strictly 1D. These authors also examined the dependence of the texture length scale calculated
from their results on the length scalel of distortional elasticity. Surprisingly, in their work the texture
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Fig. 10. Texture length scale vs.l/L for U = 8, De = 15 (error bars are indicative of the magnitude of the time fluctuations in
the value of the Fourier spectra maximum).

scale did not exhibit the expected scaling. The reason for the discrepancy between their results and ours
on this point is unclear. We can offer only some possible speculations. First of all, they studied a low
dimensional system: in their calculation they considered only 1D flow without anyx dependence of the
various quantities, and a strictly 2D configuration tensor. Another possibility is that they used the quadratic
closure in their simulations. Even though they preserve tumbling behavior because of the choice of finite
aspect ratio for the rod-like molecules in their model, it is known [27] that the viscous term, an essential
element in the force balance, is not well approximated by this choice of closure. Thirdly, they did not
retain the dependence of the rotational diffusivity on the local configuration (Eq. (4)), assuming instead a

Fig. 11. Texture length scale vs.U/De for l/L = 0.001.
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constant value throughout the gap. Considering the strong effect that variations in the value of the order
parameter have on the actual diffusivity, their simplifying assumption could lead to serious inaccuracies,
especially in regions with strongly varying degree of order (i.e. near defects). Finally, they studied systems
characterized by much lower values of the Ericksen number (O(102)) than our work (O(106)). May be,
in that area of parameter space, the Marrucci scaling simply does not apply. In any case it is gratifying
that this aspect of the expected scaling argument does appear to be verified by the present calculations.

Finally, in Fig. 11 we plot the dependence of the texture length scale on the ratioU/De. According to
Eq. (10), this should be expected to vary as (U/De)1/2, and we see that a 1/2 power fitting roughly captures
the trend of our data. It should be noted, however, that the error bars on these points (as in Fig. 10, these
error bars represent the magnitude of the temporal fluctuations in the value of the maximum of the Fourier
spectrum) are large enough that they could also have been fitted with a linear dependence onU/De. We
stress, moreover, that our data were obtained by examining specific pairs of values forDe andU. The
relation betweenhtext andU/De indicated by Eq. (10) is, as we have said, not expected to hold for the
general case when molecular elasticity (viscoelasticity) is included in the model, as in the present work.

6. Part II: uncostranied configuration tensor

6.1. Objective and general remarks

As noted in the introduction, previous computational studies using the LE theory [6–8] have already
predicted an evolution of the system with director tipping or with the formation of roll cells aligned in the
flow direction [9] leading to a striped director field. Even though there are still some qualitative discrep-
ancies between the experimental observations and the fine details of the texture predicted theoretically,
there is general agreement that the physical picture of rolls cells as being responsible for the flow-aligned
striped texture is the correct one. As long as the present simulations are limited to a 2D flow, we would
not be able to predict this final texture, as already noted.

Instead, by releasing the constraint of a configuration tensor that is symmetric with respect to the shear
plane, we hope to obtain predictions for the configuration field that can be somehow related to the banded
texture perpendicular to the flow direction that arises before the inception of the roll cells. We remind
the reader that the earlier analysis of the banded structure, due to Han and Rey [8], considered only low
values of the shear rates, i.e. values for which the basic assumptions of the LE theory they used are valid.
So our calculations are aimed at extending their results to the regime of higherDeandEr.

As in Section 5, we will show results only for one set of parameter valuesU = 8, De = 15 and
Er = 8 × 106, but we will consider all types of BC: homeotropic, parallel and alignment in the vorticity
direction.

6.2. Results

The most significant result of our calculations is that small perturbations (O(10−4)), either uniform
or sinusoidal in space, and either in the bulk or in the anchoring angles, were sufficient to trigger an
out-of-plane instability for both homeotropic and parallel anchoring. As seen in experiments, our simula-
tions predict that, for both types of initial and anchoring configurations, the director tips out of the shear
plane after an initial transient period of tumbling in the shear plane that depends on whether we have
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Fig. 12. Director out-of-plane angle vs. time for two points atx = 0, for the two anchoring conditions: (a) homeotropic; (b)
parallel.

parallel or homeotropic anchoring. Plotted in Fig. 12 is the evolution of the out-of-plane angleϕ for two
points across the gap for the two types of BCs. We see that significant tipping occurs after 15–20 su (a
time that corresponds to∼1 tumbling period) for the case of homeotropic anchoring. In contrast, only∼1
su is needed for tipping in the case of parallel BC. This difference in the time scale for director tipping
is similar to the difference in the time scale required for the system to show bands that we observe in our
simulations, as will be discussed later, and similar to the difference in the time scale for band evolution
in real experiments (see Fig. 1).

Looking at the configuration profile across the gap we still see a modulation in the magnitude of the
order parameter (as was also true in the preceding section) but here we also see a non-uniformity in the
out-of-plane angle. For a compact representation of the complete variation of the configuration across the
gap, a convenient format is the “ribbon plot” shown in Fig. 13. The orientation of the director in the upper
half of the gap (atx = 0 and at two different timest = 12 and 18 su for the case of homeotropic anchoring)
is represented by the orientation of the rods, while the value of the order parameter at different positions
is indicated by the length of the rods. Evident is the progressive twist in the ribbon toward out-of-plane
orientations (i.e. the out-of-plane tipping shown by the two points of Fig. 12 is a trend present throughout
the gap). We also note that the characteristic magnitude of the order parameter modulation is comparable
to that of Section 5 for profiles obtained at the same time.

As the availableexperimentalimages of the texture evolution of actual LCPs are based on patterns
of polarized light transmitted onto the bottom plane of the shear cell, a comparison between theory and
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Fig. 13. Configuration profile in the upper half of the gap atx = 0, for homeotropic BC att = 12 su (a); and att = 18 su (b).

experiments requires that we compute what the transmitted light profiles would look like in our systems.
We imagine that polarized light is shone across the gap and, after having interacted with the non-uniform
configuration field, it is viewed on the bottom plane through a crossed polarizer. To obtain the profile
of the transmitted light intensity we generalized a computational procedure originally developed by Han
and Rey [8] to the case of nematic with non-uniform order parameter (and therefore non-uniform local
birefringence). For either type of BC, we find that non-uniformities in the transmitted light intensity
profile develop on the same timescale as the first significant out-of-plane tipping of the director (see
Fig. 14 for homeotropic BC). We are tempted to identify these non-uniformities with the appearance of

Fig. 14. Transmitted light profile for homeotropic BC att = 12 and 18 su.
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bands perpendicular to the flow direction in real sheared systems. However, due to the limited dimensions
of the slab considered, and the fact that noz dependence is assumed, unequivocal verification is, at the
moment, not possible on this issue.

Finally we find, for wall anchoring in the vorticity direction, that all small perturbations in the anchoring
angles or in the ICs are quickly dampened out and that the uniform configuration is the stable solution.
This agrees with what is seen in the Larson–Mead experiments (see Fig. 1): no banded pattern forms.

6.3. Discussions

The out of plane tipping of the director had already been predicted in previous theoretical works, both
in the LE context [6–8] and in the original Doi formulation [18,33]. In the first series of works, the
force driving this instability was the windup of the director orientation created by tumbling as discussed
in Section 5. In contrast, in the original Doi theory [18,33], pure viscoelastic effects due to molecular
elasticity were sufficient to destabilize the in-plane tumbling and make the vorticity direction a stable
attractor. Our work, for the first time, takes into account both effects in the 3D evolution of the orientation
distribution and it represents, therefore, the first realistic prediction for high values of theEr. Interestingly,
some of the qualitative aspects of the LE solutions, which, as we said, are valid only for low values of
theEr, are preserved in our results. For example, the “twisted ribbon” profile of the director across the
gap, and the appearance of non-uniformities in the transmitted light profile, are similar to what was found
by Han and Rey [6–8], using the LE approximation. We note, however, that the texture they obtained is
much coarser than the one we found because of the low shear rates they considered.

Comparing with the texture evolution of real materials, we see that our predictions can qualitatively
capture the out-of-plane tipping of the director, and also appear to reflect the difference in time scale
for this instability to take place when going from homeotropic to parallel BCs, that was seen in the
Larson–Mead experiments.

7. Conclusions

The numerical scheme developed in this work for implementation of the Marruci–Greco version of the
Doi theory for LCPs with distortional elasticity was shown to be capable of predicting a texture evolution
in shear flows. Moreover, even in the simplest approximation of the model, with the assumption of a
symmetric distribution about the shear plane, the characteristic length scale of the emerging texture was
found to respect expected scalings.

Upon releasing the constraint of a configuration tensor that is symmetric with respect to the plane
of shear, we found that in-plane solutions are unstable to out-of-plane tipping and that the resulting
configuration field is no longer uniform along the flow direction. This is in qualitative agreement with
what is observed in experiments. The order of magnitude of the time scale for the tipping instability is
comparable to experimental values for typical LCP solutions.

Unfortunately no experimental images are available of the configuration profile across the gap, and
thus, a complete verification of the present results is not yet possible. We hope that improvements in
experimental techniques may soon produce data of this type.

In conclusion, our model has shown promising predictive capabilities even though, to fully test its
potential for the prediction of LCP texture evolution, we will need to remove the 2D-flow assumption. In
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fact only 3D flow calculations will allow for roll-cell formation and the striped texture that characterizes
the final steady state of actual LCP materials. Such calculations are currently in progress.
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