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Abstract

We study the interaction between a surface-anchoring colloidal particle and a liquid-crystalline host, and in particular the formation of
orientational defects near the particle. A mean-field theory based on the nonlocal Marrucci—-Greco nematic potential is used to represer
molecular interactions in an inhomogeneous orientational field. An evolution equation for the molecular configuration tensor is solved
numerically whose steady state minimizes the total free energy of the system. With strong homeotropic anchoring on the particle surface
three types of solutions may appear depending on initial conditions and particle size: Saturn rings, satellite point defects, and polar rings. Th
Saturn ring remains stable on micrometer-sized patrticles, contrary to previous calculations but consistent with experiments. A phase diagrar
is constructed for the three regimes. Based on the free energy, the most stable state is the Saturn ring for smaller particles and the satell
defect for larger ones.
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1. Introduction teraction in the nematic subject to distortion. Given an initial
configuration and anchoring conditions on the particle, the
When solid or liquid particles are introduced into a ne- orientational field relaxes to a steady state with defects near
matic host, they tend to self-assemble into regular pat- the particle. This steady state represents a local minimum
terns [1]. The nematic molecules prefer to orient at a certain of the total free energy, which comprises a molecular and a
angle on the particle surface, e.g., perpendicularly in the so-distortional component. Numerical results show the familiar
called homeotropic anchoring. Thus, the anchoring direction satellite and Saturn ring defects. Contrary to previous cal-
on particle surfaces will come into conflict with the far- culations but consistent with experiments, the Saturn ring is
field orientation. It is believed that the resulting defects play predicted to remain stable on supra-micrometer particles. In
critical roles in mediating the interaction between particles addition, our theory reveals a new metastable configuration

and the formation of novel microstructures [1,2]. Most the- termed the polar ring. Finally, the mean-field theory allows

oretical work to date relies on a linear elasticity theory for ys to compute the core energy and determine the relative sta-
liquid crystals known as the Frank theory [3-5]. It assumes bijlity of the three types of defects.

that the molecular orientation distribution is uniaxial about Following is a brief summary of prior studies of defects
the directom, and that spatial variation of is mild. Both near a colloidal particle with strong homeotropic anchoring.
assumptions break down at defects whererhield be-  Three methods have been used to minimize the Frank elas-
comes singular. Traditionally, this difficulty is circumvented tjc energy: minimization among a family of ansatz director
by applying the theory outside the defect core and assign-fields [2,6]; numerical solution of the Euler—Lagrange equa-
ing a size and an effective energy to the core. Thus, defectstion [4,5]; and a Monte Carlo method on a lattice [7]. All
cannot be treated in a self-consistent way. Our work over- produce similar results showing the Saturn ring and satellite
comes this difficulty by using a mean-field theory based on gefect as stable configurations. Owing to the theory’s inher-
anonlocal nematic potential that describes the molecular in- gt inability to describe defect cores, it cannot determine in
a self-contained way which state has lower energy [7]. As-
~* Corresponding author. suming a “melted” core with a 10-nm radius and a constant
E-mail address: feng@ccny.cuny.edu (J.J. Feng). energy density, Stark [4,5] estimated the energy of a defect
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ring and predicted the Saturn ring to be unstable on particlesconcentration of rigid-rod molecules [1&, is the Boltz-
with radiusR > 720 nm. This seems to contradict the obser- mann constant, an@ is the absolute temperatur&(r) =
vations of Gu and Abbott [8] of the Saturn ring on particles [ ¥ (u; r)uudu = (uu) is the configuration tensor. The in-
40 pm in diameter. As a more sophisticated phenomenol-teraction lengthC ~ V1/3 is the only free parameter in the
ogy, a Landau—de Gennes energy has been minimized [9,10}heory. For p-azoxyanisole£ should be on the order of
to predict that the preferred state is a Saturn ring for smaller 1/10 of the molecular length for Eq. (1) to predict reason-
particles and a satellite defect for larger ones. Finally, molec- able values for the elastic constants [13]. Equation (1) can
ular dynamics (MD) simulations [11,12] have also shown the be seen as a molecularly based generalization of the Maier—
two configurations, albeit for tiny particle sizes. The Saturn Saupe potential [15]. In the limit of weak spatial variations,
ring obtains for particles with a radius smaller than roughly it reduces to the Frank elastic energy with one elastic con-
15 molecular widths, and gives way to satellite defects for stantk = 3ukTUS§q£2, v being the number density of the
larger particles. The transition resembles experimental ob-molecules andeq the equilibrium order parameter. A more
servations and calculations based on the Frank theory, butgeneral version of the Marrucci—-Greco energy, based on a
there is a discrepancy of several orders of magnitude in nonspherical’ that accounts for the molecular length, al-
length scale. lows three unequal elastic constants [13], but we will not
The purpose of the present work is to provide a clear concern ourselves with elastic anisotropy in this paper.
and self-consistent picture for the relative stability of various Using Eg. (1), an evolution equation can be derivedior

defect patterns near a strongly anchoring spherical particle.subject to flow, Brownian motion and nematic interactions
This is achieved via a mean-field theory due to Marrucci and [17,18],

Greco [13], which will be briefly described below.

oA
¥+V-VA—KT-A—A-K
2. Theoretical model and numerical method é
=—6D,(A— 3 +6D,U(A-A—A:(uuuu))
Marrucci and Greco [13] derived a potential energy for _ 2002 2
interaction among rigid-rod molecules in a distorted nematic — 2« (uuuu) + 3D, UL (VEA-A+A - VA
material. The spatial distortion, represented by variation of —_2V2A - (uuuuy), 2)

the orientation distribution functiow (u; r), requires con-

sideration of nonlocal interactions between two molecules Wherev is the velocity and its gradientD; is the rotational
some distance apart. This contrasts the local interaction indiffusivity, andé is the unit tensor. The fourth momentum
homogeneous nematics that underlies classical potential entensor(uuuu) = [ ¥uuuudu will be related toA via the
ergies due to Onsager [14] and Maier and Saupe [15]. For Bingham closure [19,20], which assumes a special form for
a test molecule oriented along the unit vectoat posi- the orientation distribution functiow (u). By setting the
tion r, Marrucci and Greco [13] delineated an interaction flow terms to zero, this equation describes the annealing
regionV enveloping the test molecule (Fig. 1). By expand- of orientation in a distorted nematic driven by the interplay
ing ¥ (u; r + p) in a Taylor series for the small distanpe between relaxation of the molecular orientation distribution
and spatially averaging the interaction energy of all mole- and spatial distortion. The former, represented by the first
cules inside a spherical, Marrucci and Greco obtained the two brackets on the right hand side of Eq. (2), is the same

nematic potential energy as gives rise to molecular viscoelasticity in flexible poly-
3 mers [16], while the latter, represented by the Laplacian
Uvg(U) = — EUkT(A + L£2V2A) 1uu, Q) terms, is a mean-field generalization of Frank elasticity. This

. . . evolution decreases the free energy of the system, and the fi-
where U is a constant representing the strength of inter- 5| steady state is its minimizer [21]. The Bingham closure
molecular forces and can be related to the geometry andpecomes exact in equilibrium as the Boltzmann distribution

with the energy of Eq. (1) has the exact Bingham form. Start-
ing from an initial condition, we use this annealing process
to compute the stable orientation field near particles em-
bedded in a nematic. Of course, there may exist multiple
metastable states, and the local energy minimum reached in
this procedure will depend on the initial conditions.

The mean-field theory avoids the difficulties of Frank
elasticity by employing a tensorial description of the mole-
cular orientation. This could have been accomplished by
using the classical Laudau—de Gennes expansion [22]. We

Fig. 1. The interaction volum& around a test molecule used by Marrucci ~ prefer the Marrucci—-Greco energy because of the funda-
and Greco [13] in deriving a nonlocal nematic potential. mental limitations of the Landau—de Gennes approach, as
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carefully critiqued by Greco [23]. First, the expansion rep- By setting A, and Ags to zero, we preclude twist in
resents “the free energy density in the isotropic phase” duethe solution. This turns out to be of little consequence as
to short-range order [24] and is valid only in the neighbor- will be discussed in the next section after presenting the
hood of the isotropic state. Katriel et al. [25] showed that the main results. A scalar order parameter is defineds as
expansion, with coefficients evaluated from a molecular the- /(3A:A —1)/2 [29]. The anchoring condition is specified
ory, fails to converge for moderate-order parameters typical by a uniaxialA with the equilibrium order paramet&gq and
of real nematics. Second, the coefficients of the expansionits major axis along the anchoring direction, which is radial
are to be fitted to the isotropic state and remain constant.atr = R and along; atr = R. At = 0 andr, we impose
This is inadequate if the material is strongly distorted as symmetry byd A, /96 = dAg9/36 =0 andA,9 =0.
near defects [26]. Finally, a constitutive theory for liquid- Since we are interested only in the final steady state, the
crystalline polymers, derived using the Landau—de Gennestemporal evolution of Eq. (2) is advanced explicitly, with
energy through a Poisson bracket procedure, gives rise totime steps as large as numerical stability permits. The Lapla-
nonphysical maxima in the shear and normal stresses [27].Cian V2A is discretized on a nonuniform rectangular grid
In comparison, the Marrucci—Greco energy has a molecular (Fig. 2), which is adaptively refined during the evolution of
basis and does not contain many phenomenological coeffi-A such that large spatial gradients at the defect are well re-
cients. Of course, MD simulations retain even more mole- solved. Convergence with respect to grid size is confirmed
cular details such as spatial variations of density. But they by further refining the mesh after a steady state is reached.
are limited by small sample sizes and nanoscopic length \We useL as the characteristic length angirl. as the char-
scales [12]. An additional advantage of the mean-field theory acteristic time so the only dimensionless parameters in the
is that it is easily extendable to dynamic problems in com- problem arelU and R. We fix U = 4.94 which corresponds
plex geometry, such as are relevant, for example, to processt0 Seq= 0.6 and varyR systematically. For eacR, differ-
ing flows of liquid-crystalline polymers [18,28]. A limitation ~ entinitial configurations are used to explore multiple steady
of the mean-field theory is that the Taylor expansion used in States.
deriving Eq. (1) requires that spatial variations be small over ~ To validate our numerical annealing scheme, we com-
the lengthZ. This is not very restrictive since it allows reso- Pputed the hedgehog and line defects inside spherical and
lution down to the molecular length ~ 10£. cylindrical enclosures with strong homeotropic anchoring.
Details of the setup of the problem are as follows. These simpler problems have been solved previously by
A sphere with strong homeotropic anchoring is placed in Marrucci and coworkers using a self-consistency condition
a nematic which is otherwise uniformly oriented along the [30,31], which entails an additional approximation in ex-
z direction. By assuming axisymmetry abaui@and using panding the exponential in the Boltzmann distribution into
spherical coordinates, our computation domain lies inthe @ Taylor series and truncating after the first order term. Our
plane:R < r < Ros, 0< 6 < 7 (Fig. 2). In all cases com- model avoids this problem by using the Bingham closure,
puted, the defect and most of the distortion occur near the which is exact in equilibrium. Considering this difference,
particle, and it is sufficient to set the outer edge of the do- OUr results agree generally well with theirs. Fig. 3 shows
main atR., = 3R; we tested a larger domain witts, = 5R the radial profile of the order parametsi) for the hedge-
in a few cases with little effect on the result. We further hog defect.S vanishes at the center, where the material is
assume mirror symmetry about thé plane such that the  iSOtropic, and grows monotonically towasdq = 0.6 at the
tensorA has the following form: enclosing spherical wall. Convergence with grid refinement
is verified for both curves. The series truncation in reducing
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Fig. 3. Radial profile of the order paramefr) in a hedgehog point defect
Fig. 2. The computational domain and a relatively coarse mesh with 51 and computed using our method and the self-consistent condition of Greco and
101 grid points along andé, respectively. Marrucci [30].
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Fig. 4. Orientational pattern near the Saturn ringxat 1.128R for

R = 200. The numerical result in (b) corresponds to the boxed area in the
schematic (a) (see Fig. 2 for coordinate system). With three positive eigen-
values,A is represented by an ellipsoid whose projection is shown in the

plot. The major axis of the ellipsoid gives the local director and its aspect

ratio indicates the order parametee= /(3A A — 1)/2.
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Fig. 5. Radial profiles of the three eigenvaluesfoflong 6 = 7/2. The
particle surface is at = R and the outer boundary is at= 3R. Note that
App = 1— Ay — Agg.

reduced, then Fig. 5 shows a very localized core with a ra-
dius of roughly 002R = 4L. Beyondr ~ 1.3R, not only has

S returned toSeq, but the orientation becomes more or less
uniformly alongz. Thus, when a particle is inserted into a
nematic single crystal, its influence is rather limited; even
the “strong anchoring” does not penetrate into the matrix
beyond 03R. As R increases, the Saturn ring shrinks grad-
ually in relation toRr, its radiusr,; decreasing from 181R

at R =15 to 1119R at R = 40,000. Previous calculations
based on Frank elasticity and MD simulations have produced
rq vValues between.10R and 125R [4,5,12]. The MD work
used a modified Gay—Berne potential with various parame-
ters, and the Frank energy does not account for the inter-
molecular potential at all. Thus, the close agreement;in

the self-consistent condition causes a small overpredictionshows that this quantity is insensitive to the detailed physics.

of S near the center and an underprediction farther out.

3. Resultsand discussion

Guided by previous studies [4,5,12], we have used three

initial configurations: (a) a quadrupolar pattern that results
from interpolating the anchoring conditions Rtand R

along the radius, with a “defect ring” on the equatorial plane;
(b) a generalization of the dipolar ansatz of Lubensky et
al. [2] intended to mimic the satellite defect, with the order

Experimentally, Gu and Abbott [8] reported thgt/ R de-
creases from 1.093 to 1.091 Asncreases from 20 to 50 um.
The radius; is slightly below theoretical values, but its de-
crease WithR is correctly predicted by the Frank theory [4,5]
and our mean-field theory.

The main difference between our result and those based
on MD and Frank elasticity is that we predict the Saturn
ring on supramicrometer particles. The Frank theory with
an assumed core radius of 10 nm predicts the Saturn ring
to lose stability atR = 720 nm [4,5]. The MD simulations
cannot accesg larger than 15 times the molecular width.

parameter reduced near the defect; and (c) an intermediatérhese lengths are much smaller than experimental values of

configuration with a defect ring off the equatorial plane.
Starting from (a), the Saturn-ring pattern emerges for all
R values tested: 15 R < 40,000, with a defect ring on

R > 20 um. The largesk for which we have computed the
Saturn ring isR = 40,000. Sincer is scaled byC which is
roughly 1/10 of the molecular lengttd, this corresponds

the equatorial plane of the particle. An example is shown to a particle radius of 8 um for the 5CB used in experi-

in Fig. 4 for R = 200. Except for the structured defect, the
orientation field is qualitatively similar to predictions of the

Frank theory [2,4,5]. At the very center of the defect, the el-
lipsoid representind\ assumes a pancake shape, with two

ments [8] with a molecular length ~ 2 nm. In our simula-

tions, the stability of the Saturn ring may extend well beyond

R =40,000. The defect core—the area in whiglis signif-
icantly reduced—shrinks relatively with increasii®g and

equal in-plane eigenvalues of 0.390 and a reduced order pafrequires ever finer grids to resolve. Thus we did not strive
rameterS = 0.170. Away from the centeA becomes biax-  to determine the upper limit of the Saturn ring regime. Stark
ial and S increases rapidly (Fig. 5). If we define the defect [4,5] suggested that the close proximity of bounding walls
“core” as the area in which is biaxial ands is significantly in the experiment may have stabilized the Saturn ring. To
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Fig. 6. The satellite point defect f& = 500. (a) Cartoon showing the orien- ) ) ) ) ]
tational field near the particle—defect pair; (b) magnified view of the defect Fig. 7. The polar ring foR = 300. (a) Cartoon showing the orientational
core constructed from our numerical solution. field around the particle and polar ring; (b) magnified view of the polar ring,

at (x, z) = (0.043 —1.23)R, constructed from our numerical solution.

check the wall effect, we changed the position of the outer There is considerable biaxiality inside the core, but outside

boundary from 15R to 5R with no apparent effects on the A s essentially uniaxial.
Saturn ring; this is consistent with the compactness of the  starting from the intermediate initial configuration (c),
defect noted above. An expel’imental and more direct test Ofthe Saturn ring solution is recovered fﬁrg 160, with the

Stark's suggestion remains to be done. ' defect ring expanding and moving back to the equatorial
Starting from the initial configuration (b), we arrive at  plane. For larger particles, however, the ring achieves a sta-
the satellite configuration if the particle radiis> 150.  ple equilibrium position near the pole of the particle. Fig. 7

For smaller particles, the point defect opens into a ring, shows this polar ring configuration fat = 300. As R in-
which then dilates and moves toward the equator to form creases, the polar ring shrinks toward thaxis; its radius

a Saturn ring. We have computed the satellite defect up todecreases fromy = 0.127R for R = 170tor; =5 x 1074R

R = 20,000 though it probably remains stable for all higher for R = 20,000 (Fig. 8). In dimensional terms, this corre-
R. Fig. 6 shows the neighborhood of the point defect for sponds to a reduction f from 2.2L to L. Mesh refinement

R =500. Away from the defect, the orientation field is sim-  confirms that the polar ring, as a theoretical solution, persists
ilar to predictions of Frank elasticity [2]. The center of the without collapsing into a point defect. But for all practical
defect is indicated by a vanishirsg With a finite mesh size,  purposes, we may consider the polar rings to merge into the
we locate the defect from the minimum 8f which is typi- satellite pattern at largR.

cally on the order of 10°. The distance from the point defect The polar ring pattern contradicts the prediction of the
to the center of the particle ig; ~ 1.23R for all R tested. Frank theory that no stable configuration exists between the
This compares with 22R to 1.25R predicted by the Frank  Saturn ring and the satellite solutions [4,5]. The MD simula-
theory, 14R by MD simulations, and 17R from experi- tions [12] did not find a polar ring regime, possibly because
mental observations [1,4,5,12]. The experimental drops havethey used the Saturn ring or satellite pattern as initial con-
diameters from 1 to 4 um, which fall within the parameter dition from which the polar ring is unreachable for aRy
ranges of this work and Refs. [4,5] but far exceed the size (cf., Fig. 9 below). Experimentally, Gu and Abbott [8] ob-
reachable by MD. The defect core in Fig. 6 is rather small, served dipolar patterns with “a crumpled line,” instead of a
with a radius of approximately one molecular lengthT his point defect, at the pole, and these defects coexist with the
size does not vary appreciably for &llvalues that we tested.  Saturnrings. This “ball of string” may be likened to our polar
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Fig. 10. The total free energy for the three defect pattefhss scaled by
0 vkT times the total volume of the liquid crystal. The upper curve is for the
2

10 10 polar ring, the lower curve is for the Saturn ring, and the data points are for
R the satellite defect.

10

Fig. 8. Variation of the radius of the polar ring with particle radiusr. free solutions with Saturn rings, satellite defects or polar

rings are used as the initial condition, with a spatially ran-
. Satellite dom disturbance imposed on tlz'l% andAQ,p components.
Polar ring ) In other words A,4 and Agy at different grid points are as-
' signed random numbers between zero and an upper haund
We have tested only small values pf< 10~2 since larger
ones may violate the positive definitenes#of-or these, the
, disturbances die away in subsequent evolution, confirming
/2 - : i the linear stability of the twist-free solutions. Of course, this
Saturn ring . . .
does not rule out the existence of twisted solutions reach-
[ : , able from entirely different initial conditions. The limitation
10 100 1000 10000 R to accessing individual metastable states is inherent to the
Fig. 9. Angular positions and stability ranges for the three types of defects. simulated annealing approach.
The transition from Saturn ring to satellite is hypothetical. To sum up, multiple stable orientation patterns may be
reached from different initial conditions, and a “phase di-
agram” has been constructed in Fig. 9. The Saturn ring is
observable foR ranging from molecular dimensions to mi-
crometers. The satellite defect is stable fogreater than
about 15 molecular lengths. From proper initial configura-
tions, the polar ring pattern can be realized for an interme-
diate R range. Though the upper bound of the Saturn ring
regime is not determined, the ring will probably contract into
a satellite defect once it loses stability at lare Such a
scenario is suggested by experiments [8]. When the satellite
defect becomes unstable at sm&|lit expands into a Sat-
urn ring rather than a polar ring; the critical particle radius
R ~ 150 is too small for the polar ring to be stable.

While “the question of which of the states has the lower
energy cannot be answered unambiguously” by the Frank
theory [7], the mean-field theory affords us an opportunity to
address that. Using Eq. (1), the free energy density is written
as [31]

ring solutions but has a more complex structure. In addition,
its length scale appears to be on the order of a micrometer,
much larger than that predicted here.

Interestingly, the Landau—de Gennes energy predicts de-
fect rings resembling our polar rings [10]. For sufficiently
small R, these defect rings also open up into Saturn rings.
With increasingR, however, the Landau—de Gennes defect
ring maintains its radius and does not shrink into a hedge-
hog point defect. Based on this, Ref. [10] suggests that point
defects do not exist in reality, and previously reported point
defects are in fact rings. The discrepancy between our study
and [10] regarding the existence of point defects may reflect
the limitations of the Landau—de Gennes expansion as dis-
cussed in Section 2. But the ultimate verdict has to come
from high-resolution experimental observations.

The three types of solutions have been obtained by as-
suming no twist (Eqg. (3)). Stark [4,5] has explored twisted
sglutions using the Franktheory. He sh.owed'that.atwist t'ran- (1) =—vkTInZ + gvaU(A +L2V2A) A — fo,
sition may occur for the satellite configuration if the twist 4
constant is sufficiently weak, and that no twisted solution whereZ is the partition function andyp is f evaluated us-
exists with elastic isotropy. The latter result, along with the ing the equilibriumA without spatial variation. A volume
fact that no experimental evidence for the twisted solution integration of /' gives the total free energy, which is then
has been published, motivated us to use the simple twist-scaled byvkT times the volume and plotted in Fig. 10 for
free A in Eqg. (3). It is of interest, however, to see whether the three types of solutions. The small magnitude of the
our tensor-based solutions are stable against twist. Thus, wedimensionles# does not imply dominance by thermal fluc-
solve the evolution equation (2) with the full tengarwhich tuation. Rather, it is due to the fact that the particle distorts
now has five independent components. The previous twist-the nematic orientation only within a small volume in its
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