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Abstract

We study the interaction between a surface-anchoring colloidal particle and a liquid-crystalline host, and in particular the form
orientational defects near the particle. A mean-field theory based on the nonlocal Marrucci–Greco nematic potential is used to
molecular interactions in an inhomogeneous orientational field. An evolution equation for the molecular configuration tensor
numerically whose steady state minimizes the total free energy of the system. With strong homeotropic anchoring on the partic
three types of solutions may appear depending on initial conditions and particle size: Saturn rings, satellite point defects, and polar
Saturn ring remains stable on micrometer-sized particles, contrary to previous calculations but consistent with experiments. A pha
is constructed for the three regimes. Based on the free energy, the most stable state is the Saturn ring for smaller particles and
defect for larger ones.
 2003 Elsevier Inc. All rights reserved.
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1. Introduction

When solid or liquid particles are introduced into a n
matic host, they tend to self-assemble into regular
terns [1]. The nematic molecules prefer to orient at a cer
angle on the particle surface, e.g., perpendicularly in the
called homeotropic anchoring. Thus, the anchoring direc
on particle surfaces will come into conflict with the fa
field orientation. It is believed that the resulting defects p
critical roles in mediating the interaction between partic
and the formation of novel microstructures [1,2]. Most t
oretical work to date relies on a linear elasticity theory
liquid crystals known as the Frank theory [3–5]. It assum
that the molecular orientation distribution is uniaxial ab
the directorn, and that spatial variation ofn is mild. Both
assumptions break down at defects where then field be-
comes singular. Traditionally, this difficulty is circumvent
by applying the theory outside the defect core and ass
ing a size and an effective energy to the core. Thus, de
cannot be treated in a self-consistent way. Our work o
comes this difficulty by using a mean-field theory based
a nonlocal nematic potential that describes the molecula
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teraction in the nematic subject to distortion. Given an ini
configuration and anchoring conditions on the particle,
orientational field relaxes to a steady state with defects
the particle. This steady state represents a local minim
of the total free energy, which comprises a molecular an
distortional component. Numerical results show the fam
satellite and Saturn ring defects. Contrary to previous
culations but consistent with experiments, the Saturn rin
predicted to remain stable on supra-micrometer particle
addition, our theory reveals a new metastable configura
termed the polar ring. Finally, the mean-field theory allo
us to compute the core energy and determine the relative
bility of the three types of defects.

Following is a brief summary of prior studies of defe
near a colloidal particle with strong homeotropic anchor
Three methods have been used to minimize the Frank
tic energy: minimization among a family of ansatz direc
fields [2,6]; numerical solution of the Euler–Lagrange eq
tion [4,5]; and a Monte Carlo method on a lattice [7]. A
produce similar results showing the Saturn ring and sate
defect as stable configurations. Owing to the theory’s in
ent inability to describe defect cores, it cannot determin
a self-contained way which state has lower energy [7].
suming a “melted” core with a 10-nm radius and a cons
energy density, Stark [4,5] estimated the energy of a de
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ring and predicted the Saturn ring to be unstable on part
with radiusR > 720 nm. This seems to contradict the obs
vations of Gu and Abbott [8] of the Saturn ring on partic
40 µm in diameter. As a more sophisticated phenome
ogy, a Landau–de Gennes energy has been minimized [
to predict that the preferred state is a Saturn ring for sma
particles and a satellite defect for larger ones. Finally, mo
ular dynamics (MD) simulations [11,12] have also shown
two configurations, albeit for tiny particle sizes. The Sat
ring obtains for particles with a radius smaller than roug
15 molecular widths, and gives way to satellite defects
larger particles. The transition resembles experimental
servations and calculations based on the Frank theory
there is a discrepancy of several orders of magnitud
length scale.

The purpose of the present work is to provide a cl
and self-consistent picture for the relative stability of vario
defect patterns near a strongly anchoring spherical part
This is achieved via a mean-field theory due to Marrucci
Greco [13], which will be briefly described below.

2. Theoretical model and numerical method

Marrucci and Greco [13] derived a potential energy
interaction among rigid-rod molecules in a distorted nem
material. The spatial distortion, represented by variation
the orientation distribution functionΨ (u; r), requires con-
sideration of nonlocal interactions between two molecu
some distance apart. This contrasts the local interactio
homogeneous nematics that underlies classical potentia
ergies due to Onsager [14] and Maier and Saupe [15].
a test molecule oriented along the unit vectoru at posi-
tion r, Marrucci and Greco [13] delineated an interact
regionV enveloping the test molecule (Fig. 1). By expan
ing Ψ (u; r + ρ) in a Taylor series for the small distanceρ,
and spatially averaging the interaction energy of all mo
cules inside a sphericalV , Marrucci and Greco obtained th
nematic potential energy

(1)UMG(u)= −3

2
UkT (A +L2∇2A) : uu,

whereU is a constant representing the strength of in
molecular forces and can be related to the geometry

Fig. 1. The interaction volumeV around a test molecule used by Marruc
and Greco [13] in deriving a nonlocal nematic potential.
]

t

-

concentration of rigid-rod molecules [16],k is the Boltz-
mann constant, andT is the absolute temperature.A(r) =∫
Ψ (u; r)uudu = 〈uu〉 is the configuration tensor. The in

teraction lengthL ∼ V 1/3 is the only free parameter in th
theory. Forp-azoxyanisole,L should be on the order o
1/10 of the molecular lengthL for Eq. (1) to predict reason
able values for the elastic constants [13]. Equation (1)
be seen as a molecularly based generalization of the Ma
Saupe potential [15]. In the limit of weak spatial variatio
it reduces to the Frank elastic energy with one elastic c
stantK = 3νkT US2

eqL2, ν being the number density of th
molecules andSeq the equilibrium order parameter. A mo
general version of the Marrucci–Greco energy, based
nonsphericalV that accounts for the molecular length,
lows three unequal elastic constants [13], but we will
concern ourselves with elastic anisotropy in this paper.

Using Eq. (1), an evolution equation can be derived foA
subject to flow, Brownian motion and nematic interactio
[17,18],

∂A
∂t

+ v · ∇A − κT · A − A · κ

= −6Dr

(
A − δ

3

)
+ 6DrU

(
A · A − A : 〈uuuu〉)

− 2κ : 〈uuuu〉 + 3DrUL2(∇2A · A + A · ∇2A

(2)− 2∇2A : 〈uuuu〉),
wherev is the velocity andκ its gradient,Dr is the rotational
diffusivity, and δ is the unit tensor. The fourth momentu
tensor〈uuuu〉 = ∫

Ψ uuuudu will be related toA via the
Bingham closure [19,20], which assumes a special form
the orientation distribution functionΨ (u). By setting the
flow terms to zero, this equation describes the annea
of orientation in a distorted nematic driven by the interp
between relaxation of the molecular orientation distribut
and spatial distortion. The former, represented by the
two brackets on the right hand side of Eq. (2), is the sa
as gives rise to molecular viscoelasticity in flexible po
mers [16], while the latter, represented by the Laplac
terms, is a mean-field generalization of Frank elasticity. T
evolution decreases the free energy of the system, and t
nal steady state is its minimizer [21]. The Bingham clos
becomes exact in equilibrium as the Boltzmann distribu
with the energy of Eq. (1) has the exact Bingham form. St
ing from an initial condition, we use this annealing proc
to compute the stable orientation field near particles
bedded in a nematic. Of course, there may exist mult
metastable states, and the local energy minimum reach
this procedure will depend on the initial conditions.

The mean-field theory avoids the difficulties of Fra
elasticity by employing a tensorial description of the mo
cular orientation. This could have been accomplished
using the classical Laudau–de Gennes expansion [22]
prefer the Marrucci–Greco energy because of the fun
mental limitations of the Landau–de Gennes approach
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carefully critiqued by Greco [23]. First, the expansion r
resents “the free energy density in the isotropic phase”
to short-range order [24] and is valid only in the neighb
hood of the isotropic state. Katriel et al. [25] showed that
expansion, with coefficients evaluated from a molecular
ory, fails to converge for moderate-order parameters typ
of real nematics. Second, the coefficients of the expan
are to be fitted to the isotropic state and remain cons
This is inadequate if the material is strongly distorted
near defects [26]. Finally, a constitutive theory for liqu
crystalline polymers, derived using the Landau–de Gen
energy through a Poisson bracket procedure, gives ris
nonphysical maxima in the shear and normal stresses
In comparison, the Marrucci–Greco energy has a molec
basis and does not contain many phenomenological co
cients. Of course, MD simulations retain even more m
cular details such as spatial variations of density. But t
are limited by small sample sizes and nanoscopic le
scales [12]. An additional advantage of the mean-field the
is that it is easily extendable to dynamic problems in co
plex geometry, such as are relevant, for example, to proc
ing flows of liquid-crystalline polymers [18,28]. A limitatio
of the mean-field theory is that the Taylor expansion use
deriving Eq. (1) requires that spatial variations be small o
the lengthL. This is not very restrictive since it allows res
lution down to the molecular lengthL∼ 10L.

Details of the setup of the problem are as follow
A sphere with strong homeotropic anchoring is placed
a nematic which is otherwise uniformly oriented along
z direction. By assuming axisymmetry aboutz and using
spherical coordinates, our computation domain lies in thrθ
plane:R < r < R∞, 0< θ < π (Fig. 2). In all cases com
puted, the defect and most of the distortion occur near
particle, and it is sufficient to set the outer edge of the
main atR∞ = 3R; we tested a larger domain withR∞ = 5R
in a few cases with little effect on the result. We furth
assume mirror symmetry about therθ plane such that th
tensorA has the following form:

(3)A =
(
Arr Arθ 0
Arθ Aθθ 0
0 0 1−Arr −Aθθ

)
.

Fig. 2. The computational domain and a relatively coarse mesh with 51
101 grid points alongr andθ , respectively.
.

-

By setting Arφ and Aθφ to zero, we preclude twist i
the solution. This turns out to be of little consequence
will be discussed in the next section after presenting
main results. A scalar order parameter is defined asS =√
(3A : A − 1)/2 [29]. The anchoring condition is specifie

by a uniaxialA with the equilibrium order parameterSeq and
its major axis along the anchoring direction, which is rad
at r =R and alongz at r =R∞. At θ = 0 andπ , we impose
symmetry by∂Arr/∂θ = ∂Aθθ/∂θ = 0 andArθ = 0.

Since we are interested only in the final steady state
temporal evolution of Eq. (2) is advanced explicitly, w
time steps as large as numerical stability permits. The La
cian ∇2A is discretized on a nonuniform rectangular g
(Fig. 2), which is adaptively refined during the evolution
A such that large spatial gradients at the defect are we
solved. Convergence with respect to grid size is confirm
by further refining the mesh after a steady state is reac
We useL as the characteristic length and 1/Dr as the char
acteristic time so the only dimensionless parameters in
problem areU andR. We fixU = 4.94 which correspond
to Seq = 0.6 and varyR systematically. For eachR, differ-
ent initial configurations are used to explore multiple ste
states.

To validate our numerical annealing scheme, we c
puted the hedgehog and line defects inside spherical
cylindrical enclosures with strong homeotropic anchor
These simpler problems have been solved previously
Marrucci and coworkers using a self-consistency condi
[30,31], which entails an additional approximation in e
panding the exponential in the Boltzmann distribution i
a Taylor series and truncating after the first order term.
model avoids this problem by using the Bingham closu
which is exact in equilibrium. Considering this differenc
our results agree generally well with theirs. Fig. 3 sho
the radial profile of the order parameterS(r) for the hedge-
hog defect.S vanishes at the center, where the materia
isotropic, and grows monotonically towardSeq = 0.6 at the
enclosing spherical wall. Convergence with grid refinem
is verified for both curves. The series truncation in reduc

Fig. 3. Radial profile of the order parameterS(r) in a hedgehog point defec
computed using our method and the self-consistent condition of Grec
Marrucci [30].
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Fig. 4. Orientational pattern near the Saturn ring atx = 1.128R for
R = 200. The numerical result in (b) corresponds to the boxed area in
schematic (a) (see Fig. 2 for coordinate system). With three positive e
values,A is represented by an ellipsoid whose projection is shown in
plot. The major axis of the ellipsoid gives the local director and its as
ratio indicates the order parameterS = √

(3A :A − 1)/2.

the self-consistent condition causes a small overpredic
of S near the center and an underprediction farther out.

3. Results and discussion

Guided by previous studies [4,5,12], we have used th
initial configurations: (a) a quadrupolar pattern that res
from interpolating the anchoring conditions atR andR∞
along the radius, with a “defect ring” on the equatorial pla
(b) a generalization of the dipolar ansatz of Lubensky
al. [2] intended to mimic the satellite defect, with the ord
parameter reduced near the defect; and (c) an interme
configuration with a defect ring off the equatorial plane.

Starting from (a), the Saturn-ring pattern emerges for
R values tested: 15� R � 40,000, with a defect ring on
the equatorial plane of the particle. An example is sho
in Fig. 4 forR = 200. Except for the structured defect, t
orientation field is qualitatively similar to predictions of th
Frank theory [2,4,5]. At the very center of the defect, the
lipsoid representingA assumes a pancake shape, with t
equal in-plane eigenvalues of 0.390 and a reduced orde
rameterS = 0.170. Away from the center,A becomes biax
ial andS increases rapidly (Fig. 5). If we define the defe
“core” as the area in whichA is biaxial andS is significantly
e

-

Fig. 5. Radial profiles of the three eigenvalues ofA along θ = π/2. The
particle surface is atr = R and the outer boundary is atr = 3R. Note that
Aφφ = 1−Arr −Aθθ .

reduced, then Fig. 5 shows a very localized core with a
dius of roughly 0.02R= 4L. Beyondr ≈ 1.3R, not only has
S returned toSeq, but the orientation becomes more or le
uniformly alongz. Thus, when a particle is inserted into
nematic single crystal, its influence is rather limited; ev
the “strong anchoring” does not penetrate into the ma
beyond 0.3R. As R increases, the Saturn ring shrinks gra
ually in relation toR, its radiusrd decreasing from 1.181R
at R = 15 to 1.119R at R = 40,000. Previous calculation
based on Frank elasticity and MD simulations have produ
rd values between 1.10R and 1.25R [4,5,12]. The MD work
used a modified Gay–Berne potential with various para
ters, and the Frank energy does not account for the in
molecular potential at all. Thus, the close agreement inrd
shows that this quantity is insensitive to the detailed phys
Experimentally, Gu and Abbott [8] reported thatrd/R de-
creases from 1.093 to 1.091 asR increases from 20 to 50 µm
The radiusrd is slightly below theoretical values, but its d
crease withR is correctly predicted by the Frank theory [4,
and our mean-field theory.

The main difference between our result and those ba
on MD and Frank elasticity is that we predict the Sat
ring on supramicrometer particles. The Frank theory w
an assumed core radius of 10 nm predicts the Saturn
to lose stability atR = 720 nm [4,5]. The MD simulation
cannot accessR larger than 15 times the molecular widt
These lengths are much smaller than experimental valu
R � 20 µm. The largestR for which we have computed th
Saturn ring isR = 40,000. SinceR is scaled byL which is
roughly 1/10 of the molecular lengthL, this correspond
to a particle radius of 8 µm for the 5CB used in expe
ments [8] with a molecular lengthL∼ 2 nm. In our simula-
tions, the stability of the Saturn ring may extend well beyo
R = 40,000. The defect core—the area in whichS is signif-
icantly reduced—shrinks relatively with increasingR, and
requires ever finer grids to resolve. Thus we did not st
to determine the upper limit of the Saturn ring regime. St
[4,5] suggested that the close proximity of bounding wa
in the experiment may have stabilized the Saturn ring.
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(a)

(b)

Fig. 6. The satellite point defect forR = 500. (a) Cartoon showing the orie
tational field near the particle–defect pair; (b) magnified view of the de
core constructed from our numerical solution.

check the wall effect, we changed the position of the o
boundary from 1.5R to 5R with no apparent effects on th
Saturn ring; this is consistent with the compactness of
defect noted above. An experimental and more direct te
Stark’s suggestion remains to be done.

Starting from the initial configuration (b), we arrive
the satellite configuration if the particle radiusR � 150.
For smaller particles, the point defect opens into a r
which then dilates and moves toward the equator to f
a Saturn ring. We have computed the satellite defect u
R = 20,000 though it probably remains stable for all high
R. Fig. 6 shows the neighborhood of the point defect
R = 500. Away from the defect, the orientation field is si
ilar to predictions of Frank elasticity [2]. The center of t
defect is indicated by a vanishingS. With a finite mesh size
we locate the defect from the minimum ofS, which is typi-
cally on the order of 10−3. The distance from the point defe
to the center of the particle iszd ≈ 1.23R for all R tested.
This compares with 1.22R to 1.25R predicted by the Fran
theory, 1.4R by MD simulations, and 1.17R from experi-
mental observations [1,4,5,12]. The experimental drops
diameters from 1 to 4 µm, which fall within the parame
ranges of this work and Refs. [4,5] but far exceed the
reachable by MD. The defect core in Fig. 6 is rather sm
with a radius of approximately one molecular lengthL. This
size does not vary appreciably for allR values that we tested
(a)

(b)

Fig. 7. The polar ring forR = 300. (a) Cartoon showing the orientation
field around the particle and polar ring; (b) magnified view of the polar r
at (x, z)= (0.043,−1.23)R, constructed from our numerical solution.

There is considerable biaxiality inside the core, but outs
A is essentially uniaxial.

Starting from the intermediate initial configuration (
the Saturn ring solution is recovered forR � 160, with the
defect ring expanding and moving back to the equato
plane. For larger particles, however, the ring achieves a
ble equilibrium position near the pole of the particle. Fig
shows this polar ring configuration forR = 300. AsR in-
creases, the polar ring shrinks toward thez axis; its radius
decreases fromrd = 0.127R forR = 170 tord = 5×10−4R

for R = 20,000 (Fig. 8). In dimensional terms, this corr
sponds to a reduction ofrd from 2.2L toL. Mesh refinemen
confirms that the polar ring, as a theoretical solution, per
without collapsing into a point defect. But for all practic
purposes, we may consider the polar rings to merge into
satellite pattern at largeR.

The polar ring pattern contradicts the prediction of
Frank theory that no stable configuration exists between
Saturn ring and the satellite solutions [4,5]. The MD simu
tions [12] did not find a polar ring regime, possibly beca
they used the Saturn ring or satellite pattern as initial c
dition from which the polar ring is unreachable for anyR
(cf., Fig. 9 below). Experimentally, Gu and Abbott [8] o
served dipolar patterns with “a crumpled line,” instead o
point defect, at the pole, and these defects coexist with
Saturn rings. This “ball of string” may be likened to our po
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Fig. 8. Variation of the radius of the polar ringrd with particle radiusR.

Fig. 9. Angular positions and stability ranges for the three types of def
The transition from Saturn ring to satellite is hypothetical.

ring solutions but has a more complex structure. In addit
its length scale appears to be on the order of a microm
much larger than that predicted here.

Interestingly, the Landau–de Gennes energy predicts
fect rings resembling our polar rings [10]. For sufficien
smallR, these defect rings also open up into Saturn rin
With increasingR, however, the Landau–de Gennes def
ring maintains its radius and does not shrink into a hed
hog point defect. Based on this, Ref. [10] suggests that p
defects do not exist in reality, and previously reported po
defects are in fact rings. The discrepancy between our s
and [10] regarding the existence of point defects may re
the limitations of the Landau–de Gennes expansion as
cussed in Section 2. But the ultimate verdict has to co
from high-resolution experimental observations.

The three types of solutions have been obtained by
suming no twist (Eq. (3)). Stark [4,5] has explored twis
solutions using the Frank theory. He showed that a twist t
sition may occur for the satellite configuration if the tw
constant is sufficiently weak, and that no twisted solut
exists with elastic isotropy. The latter result, along with
fact that no experimental evidence for the twisted solu
has been published, motivated us to use the simple tw
free A in Eq. (3). It is of interest, however, to see wheth
our tensor-based solutions are stable against twist. Thus
solve the evolution equation (2) with the full tensorA, which
now has five independent components. The previous tw
,

Fig. 10. The total free energy for the three defect patterns.F is scaled by
νkT times the total volume of the liquid crystal. The upper curve is for
polar ring, the lower curve is for the Saturn ring, and the data points ar
the satellite defect.

free solutions with Saturn rings, satellite defects or po
rings are used as the initial condition, with a spatially r
dom disturbance imposed on theArφ andAθφ components
In other words,Arφ andAθφ at different grid points are as
signed random numbers between zero and an upper boup.
We have tested only small values ofp � 10−2 since larger
ones may violate the positive definiteness ofA. For these, the
disturbances die away in subsequent evolution, confirm
the linear stability of the twist-free solutions. Of course, t
does not rule out the existence of twisted solutions rea
able from entirely different initial conditions. The limitatio
to accessing individual metastable states is inherent to
simulated annealing approach.

To sum up, multiple stable orientation patterns may
reached from different initial conditions, and a “phase
agram” has been constructed in Fig. 9. The Saturn rin
observable forR ranging from molecular dimensions to m
crometers. The satellite defect is stable forR greater than
about 15 molecular lengths. From proper initial configu
tions, the polar ring pattern can be realized for an inter
diateR range. Though the upper bound of the Saturn r
regime is not determined, the ring will probably contract in
a satellite defect once it loses stability at largeR. Such a
scenario is suggested by experiments [8]. When the sat
defect becomes unstable at smallR, it expands into a Sat
urn ring rather than a polar ring; the critical particle rad
R ≈ 150 is too small for the polar ring to be stable.

While “the question of which of the states has the low
energy cannot be answered unambiguously” by the F
theory [7], the mean-field theory affords us an opportunit
address that. Using Eq. (1), the free energy density is wr
as [31]

f (r)= −νkT lnZ+ 3

4
νkT U(A +L2∇2A) : A − f0,

whereZ is the partition function andf0 is f evaluated us
ing the equilibriumA without spatial variation. A volume
integration off gives the total free energyF , which is then
scaled byνkT times the volume and plotted in Fig. 10 f
the three types of solutions. The small magnitude of
dimensionlessF does not imply dominance by thermal flu
tuation. Rather, it is due to the fact that the particle dist
the nematic orientation only within a small volume in
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neighborhood. This “short-range” behavior has been n
for the Saturn ring (Fig. 4) but prevails in the other regim
as well. In all cases,F decreases with increasingR because
the defect core shrinks in relation to the entire domain.
smallerR, the Saturn ring has the lowest energy, while
largerR, the satellite configuration is the global attract
A crossover occurs betweenR = 1000 and 2000. The po
lar ring always costs the most energy except for perhap
lowestR. Which state prevails in an experiment depe
strongly on the distortion and deformation history of
sample.

In conclusion, the mean-field theory provides a s
consistent description of orientational defects near a
loidal particle immersed in a nematic medium. In parti
lar, it predicts the Saturn ring to persist on supramicrom
particles, and a polar ring to arise from appropriate ini
conditions. These new results appear to be consistent
experiments. We must also note the limitations of this wo
The Marrucci–Greco potential (Eq. (1)) assumes that
spatial variation occurs over length scales much larger
the interaction lengthL. Thus, we approach the limit of th
mean-field theory’s validity with defect cores on the or
of the molecular lengthL∼ 10L. Besides, we have assum
elastic isotropy and strong anchoring, and neglected
face terms in the free energy including the saddle-splay
[4,5]. Future work will relax these restrictions and apply
mean-field theory to particle interaction and self-assem
in nematic dispersions.
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