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Abstract. The use of a phase field to describe interfacial phenomena has a long
and fruitful tradition. There are two key ingredients to the method: the transformation
of Lagrangian description of geometric motions to Eulerian description framework, and
the employment of the energetic variational procedure to derive the coupled systems.
Several groups have used this theoretical framework to approximate Navier-Stokes sys-
tems for two-phase flows. Recently, we have adapted the method to simulate interfacial
dynamics in blends of microstructured complex fluids. This review has two objectives.
The first is to give a more or less self-contained exposition of the method. We will briefly
review the literature, present the governing equations and discuss a numerical scheme
based on different numerical schemes, such as spectral methods. The second objective
is to elucidate the subtleties of the model that need to be handled properly for certain
applications. These points, rarely discussed in the literature, are essential for a realistic
representation of the physics and a successful numerical implementation. The advan-
tages and limitations of the method will be illustrated by numerical examples. We hope
that this review will encourage readers whose applications may potentially benefit from
a similar approach to explore it further.
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1. Introduction. Most complex fluids have complicated internal mi-
crostructures, whose conformation is coupled with the macroscopic dynam-
ics of the material [1]. On the one hand, this coupling gives rise to novel
flow behavior. On the other, it plays a central role in achieving desirable
structure and property in advanced engineering materials. Complex fluids
are often used in composites, of which polymer-dispersed liquid crystals
and polymer blends are good examples [2, 3]. In these two-phase systems,
the components are separated by myriad interfaces that move and deform
with the flow; the interfacial morphology to a large extent determines the
dynamics of the mixture.

A fluid-mechanical theory for two-phase mixtures of complex fluids
has to contend with two difficulties: the moving internal boundaries (or
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internal transition regions) and the complex rheology of the components.
The former is a well-known mathematical difficulty. The movement of
the interfaces is naturally amenable to a Lagrangian description, while the
bulk flow is conventionally solved in an Eulerian framework. A great deal
of effort has gone to reconciling these two considerations in a numerical
scheme [4]. The latter difficulty stems from the fact that the rheology of
each component depends on the internal microstructure, which is coupled
with the flow field [5, e.g.]. Thus, these materials feature dynamic coupling
of three disparate length scales: molecular or supra-molecular conformation
inside each component, mesoscopic interfacial morphology and macroscopic
hydrodynamics. The complexity of such materials has for the large part
prohibited theoretical and numerical analysis.

A conceptually straightforward way of handling the moving interfaces
is to employ a moving mesh that has grid points on the interfaces and
deforms according to the flow on both sides of the boundary. This has
been implemented in boundary integral and boundary element methods
[6-8], finite-element methods [9-11] and a finite-difference method [12, 13].
Besides the overhead in keeping track of the moving mesh, these meth-
ods break down when large displacement of internal domains causes mesh
entanglement or when the interfaces undergo singular topological changes
such as breakup and coalescence. Thus, these methods have been lim-
ited mostly to single drops undergoing relatively mild deformations. As an
alternative, fixed-grid methods have been developed that regularized the
interface [4]. These include the volume-of-fluid (VOF) method [14, 15], the
front-tracking method [16, 17] and the level-set method [18-20]. All these
approaches have the advantage of converting the Lagrangian description
of a geometric motion into the Eulerian description. Instead of computing
the flow of the two components with matching boundary conditions on the
interface, these methods represent the interfacial tension as a body force
or bulk stress spread over a narrow region covering the interface. Then a
single set of governing equations can be written over the entire domain and
solved on a fixed grid in a purely Eulerian framework.

The phase-field method is also a fixed-grid method; it differs from
those aforementioned in that the interface is diffuse in a physical rather
than numerical sense. Thus, it is also known as the diffuse-interface model.
More precisely, the diffuse interface is introduced through an energetic
variational procedure that results in a thermodynamic consistent coupling
system. The basic idea was derived from the consideration that the two
components, though nominally immiscible, does mix in reality within a
narrow interfacial region. A phase-field variable ¢ is introduced, which can
be thought of as the volume fraction, to demarcate the two species and
indicate the location of the interface. A mixing energy is defined based on
¢ which, through a convection-diffusion equation, governs the evolution of
the interfacial profile. The phase-field method can be viewed as a physically
motivated level-set method, and Lowengrub and Truskinovsky [21] have ar-
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gued for the advantage of using a physically determined ¢ profile instead
of an artificial smoothing function for the interface. When the thickness of
the interface approaches zero, the diffuse-interface model becomes asymp-
totically identical to a sharp-interface level-set formulation. It also reduces
properly to the classical sharp-interface model in general.

The idea of diffuse interfaces can be traced back to van der Waals
[22-25], and has since been developed for numerous applications, e.g.,
phase transition and critical phenomena [26, 27], solidification and dendritic
growth in alloys [28, 29], interfacial tension theories [30], phase-separation
[31, 32, 27] and two-phase flows [33-40]. Recently, Yue et al. [41] has gen-
eralized the theoretical model to simulate interfacial dynamics in complex
fluids. Taking advantage of the energy-based formulation, they are able to
resolve the dual difficulties for complex fluid mixtures—moving interfaces
and complex rheology—in a unified framework. So far, Yue and coworkers
have applied the method to a number of problems on drop dynamics of vis-
coelastic and liquid crystalline fluids [42-46]. In the following, we first give
a brief but self-contained derivation of the theoretical model, and describe
a numerical algorithm using spectral methods. Then we will illustrate the
advantages and limitations of the model by numerical examples. We hope
to convince the reader that the diffuse-interface idea can be developed into
a unique CFD tool for multi-phase and multi-component complex fluids.

2. An energy-based phase-field theory. The phase-field model
can be derived from the general procedure of Lagrangian mechanics [21, 37].
We write out the Lagrangian (action functional) of the system based on
its free energy, and carry out variations with respect to the field variations
(and the flow map). This amounts to following the “least-action principle”
and various dynamical laws, and will lead to evolution equations for these
variables (including the momentum equation — force balance equations).
The dissipative portions of these equations need to be derived separately,
for instance via irreversible thermodynamics [47]. The entire procedure
has been demonstrated previously for Newtonian, viscoelastic and nematic
liquid-crystalline fluids [37, 41, 48], and even for fluid-structure interactions
(with the help of a Eulerian description of elasticity) [49]. In the following,
we will use an example of a Newtonian-nematic blend with planar anchoring
for illustration.

For an immiscible blend of a nematic liquid crystal and a Newtonian
fluid, there are three types of free energies: mixing energy of the inter-
face, bulk distortion energy of the nematic, and the anchoring energy of
the liquid crystal molecules on the interface. We introduce a phase-field
variable ¢ such that the concentration of the two components is (1 + ¢)/2
and (1 — ¢)/2, respectively. We express the mixing energy density in the
Landau-Ginzburg form:

_A 2, A2
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where the parameter A is the mixing energy density, and € is a capillary
width representative of the thickness of interface. The gradient energy term
A|V¢|?/2 and the bulk energy term fo = A(¢? — 1)2/(4€%) represent the
“philic” and “phobic” tendencies between the species, their competition
giving rise to the equilibrium ¢ profile. Note that f,;, is the diffuse-
interface counterpart of the interfacial tension. In fact, one can relate the
conventional interfacial tension o to the parameters in the mixing energy.
For instance, from an equilibrium hyperbolic-tangent ¢ profile that is the
1D energy minimizer, one obtains [34, 41]

2v2 A
2.2 =——.
(2.2) o=
The orientation of the nematic liquid crystal is described by the direc-
tor field n(x). The Frank distortion energy expresses the energy penalty
for distorting the orientation [50]:

2 2
(2.3) foutk = K %Vn (V)T + % :

where K is the elastic constant. The second term on the right-hand side
regularized the original Frank energy to allow defects [51]. The nematic
prefers to orient on the interface along an easy axis [50]; any deviation from
it is penalized by an anchoring energy. Here we assume that the easy axis
is any direction in the tangential plane, and write the anchoring energy as

(24) fanch - ?(TL . v¢)27

with the positive constant A representing the anchoring strength. This is
the diffuse-interface counterpart of the Rapini-Popoular energy [52]. Unlike
in the sharp-interface picture, both f,,;z and fyncn are volumetric energy
densities. Finally, the total free energy density for the two-phase material
is written as:

(2.5) f(o,n, Vo, Vn) = frir + #fbulk + fanch

where (14¢)/2 is the volume fraction of the nematic component, and ¢ = 1
in the purely nematic phase.
Variation of the system’s action functional with respect to the phase-

field variable ¢, the nematic director n and the displacement leads to evo-
lution equations for ¢, n and the momentum equation. Augmented by the
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dissipative effects, the governing equations of the system are:

0¢ _ . o20F
(2.6) E%—v Vo =mV 7
0
(2.7) a—? +v-Vn = yh,
(2.8) V-v=0,

0
(29 p (5’; +v- Vv) =-Vp+ V- [u(Vo+Vo') +o°],
where ~; is the interfacial mobility and 7 determines the relaxation time
of n. F'= [ fdQ is the total free energy of the system, whose variations
produce

2 _
210) 5= |-vro QTN L - AV 0 Vo,
@ € 2

and the molecular field

_OF

T on
(2.11) B

koo (L) 0] e

Note that the right-hand side of the dynamic equation (2.6) dictates
the relaxation of the phase-field variable ¢, with a relaxation time propor-
tional to 1/7;. In the limit of v; approaching zero, we recover the kinematic
condition for the interface. Moreover, as € approaches zero, the dynamics
of ¢ will preserve the profile of the transition (hyperbolic-tangent in this
case), a key advantage of phase field approach. The last two terms in
equation (2.10) represent coupling between the phase field and the Frank
distortion energy and anchoring energy. When the interface is thin, fyux
is dominated by the mixing energy near the interface and therefore negligi-
ble. The last term may have an effect on the interfacial ¢ profile for strong
anchoring. But it is a higher order effect, negligible if the effects of interfa-
cial tension and surface anchoring are assumed to be additive (cf. equation
(2.12) below). Thus for simplicity, the last two terms on the right-hand-
side of equation (2.10) are neglected hereafter. There are applications, e.g.
[28], where the interface is relatively thick and the ¢ profile has physical
consequences.

In the variation with respect to displacement, we have assumed equal
density between the two species. A small density mismatch may be handled
by the Boussinesq approximation [37]. In the more general situation, the
mass-averaged mixture velocity becomes non-solenoidal within the interfa-
cial region, and a theory for compressible mixtures can be constructed [21].
The pressure is a Lagrange multiplier for the constraint of incompressibil-
ity. The elastic stress tensor is derived as part of the variational procedure
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[41], and in this case can be written out as

(2.12) 0° = —A\(Vo® Vo) — K172

(Vn) - (V)" = A(n-Vé)n ® Vo.

3. Numerical scheme. While the coupled nonlinear system (2.6—
2.9) are adequate mathematical models for the mixtures of complex fluids,
it is a challenging task to construct a numerical scheme which is capable of
correctly capturing, at a reasonable cost, the complex spatial and temporal
features of these two-phase flows.

We propose to discretize the coupled nonlinear system (2.6-2.9) in time
with a stabilized semi-implicit second-order scheme. The guiding principle
here is that we only want to solve decoupled, constant-coefficient elliptic
equations at each time step while preserving the overall second-order time
accuracy and having a reasonably large stability region.

To simplify the presentation, we shall only describe our approach for
the Cahn-Hilliard equation

(3.1) % v (v%s -

(lp* = Do\ _

and for the time-dependent Stokes equations

0
(32) a—:—VAU+vP: ha,

V-v= 0,

where the forcing functions hy and hs would include all the extra nonlinear
terms in (2.6-2.9) which will be treated explicitly to avoid solving nonlin-
ear equations at each time step. The treatment for the nematic director
equation 2.7) is very similar.

Let us consider first the Cahn-Hilliard equation (3.1). A main diffi-
culty associated with the numerical approximation of (3.1) is that a stan-
dard semi-implicit scheme leads to a very stiff system (when € < 1) which
dictates a very small time step. This difficulty can be alleviated by using
the following shifted semi-implicit scheme:

3¢k+1 _ 4¢k + ¢k71 ) Cs bl , b1
oAl +7(A _GTAW =2hy —hy
(3.3) + ZAR(M - (1+C))e

= (6" = (1 + €)1

where C is a stabilizing parameter typically in the range of [1,5]. Ample
numerical results indicate that the above stabilized semi-implicit scheme
allows much larger time step than the standard semi-implicit scheme does.
We observe that (3.3) is a fourth-order equation for ¢**! with constant
coefficients.
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Next, we describe our approach for solving the time-dependent Stokes
problem (3.2).

o If the boundary conditions are periodic, the pressure in (3.2) can
be easily eliminated using the divergence-free conditions so (3.2)
can be efficiently solved by using a Fourier-spectral method [37].

o If the velocity satisfies a free-slip boundary condition (cf. [53]),
then, the time discrete approximation of (3.2) can be split into
a sequence of Poisson-type equations for the velocity and for the
pressure.

e If the boundary conditions in all but one direction are periodic,
(3.2) can be reduced into a sequence of one-dimensional fourth-
order equations using a Fourier expansion in all but one direction
[54].

e Finally, for the general cases, we shall use a projection type scheme
(see the recent review paper [55]) to decouple the computation
of the velocity from the pressure. For example, we may use the
new consistent splitting scheme introduced in [56]. To be specific,
we assume here that the velocity is subjected to a homogeneous
Dirichlet boundary condition:

3vFtl 4ok 4okl
2At

— vAv* —|—V(2pk —pk_l) = 2ho" —hy" !,

v 90 = 0,

3,Uk:+1 _ 4,Uk: + kal
k+1 _
Bs) (v - (M

(36) karl _ ¢k+1 4 2pk‘ _pk‘fl _ VV ) 'Uk+1,

,Vq>, Vg € H'(),

Note that (3.4) is a Poisson-type equation for v**1 while (3.5) is
a Poisson equation (with homogeneous Neumann boundary condi-
tions) in the weak form for ¢*+1.

Hence, after a time discretization to the coupled nonlinear system
(2.6-2.9), we only need to solve, at each time step, a sequence of constant-
coefficient elliptic equations which can be efficiently handled by one of the
many existing numerical methods using finite difference, finite elements or
spectral methods. Since we shall confine ourselves to simple geometries in
this study, we choose to use the well-conditioned and fast spectral-Galerkin
methods developed in [57, 54, 58] which are capable of solving constant-
coefficient elliptic equations in simple geometries with quasi-optimal com-
putational complexity, i.e., the number of operations per time step is of
order O(Nlog N), N being the number of unknowns. The high resolution
property of the spectral method and the efficiency of the fast spectral-
Galerkin algorithms allow us to numerically solve the coupled nonlinear
system (2.6-2.9) at a reasonable cost. For example, with a 750 MHz Sparc-
v9 processor, the two-dimensional problems with a spatial resolution of
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1024 x 1024 or 2048 x 1024 typically take about 1 minute of CPU time
per time step. For all the simulations reported below, we have carried out
grid and time-step refinements to ensure convergence. If we take 4.164¢ to
be a nominal interfacial thickness (cf. [41]), this layer typically requires
7-10 grids to resolve. Coarser grids will generate spurious oscillations in
the solution, especially in the vicinity of the interface.

4. Advantages of the diffuse-interface model. Needless to say,
the greatest payoff of adopting a diffuse-interface picture is the ease with
which moving interfaces can be handled. Compared with the traditional
sharp-interface view of internal boundaries, there is no longer a need to
track the position of the interface, and to impose matching boundary con-
ditions for solving the flow inside each component separately. As mentioned
earlier, the interfacial tension is now represented by an elastic stress tensor
concentrated in the interfacial region. The cost is the additional dynamics
for ¢; we have to deal with the physics of the convection-diffusion process
as well as the numerical burdens of an additional equation. These will
be discussed in the next section among the subtle issues that need special
consideration.

The diffuse-interface formulation also brings about several “side bene-
fits” that may be of great importance to the physical applications at hand.
Here, we illustrate in some detail three of such benefits that we have noted
in our simulations. These advantages reflect the fact that the phase-field
idea transforms the Lagrangian description of a geometric motion into Eu-
lerian coordinates, and easily represents the competition between various
energy functionals for the multiphase material.

4.1. Short-range molecular forces during topological changes.
For the same reason that the phase-field method handles moving interfaces
easily, so it does singular topological changes such as breakup and coa-
lescence. In the sharp-interface convention, such events require an ad hoc
treatment. For filament breakup and drop coalescence, for example [59, 60],
the thinning neck or film has to be artificially removed once its thickness
reaches a prescribed threshold. In contrast, the diffuse-interface is repre-
sented by the contour of ¢ = 0, which deforms and reconnects smoothly
during flow. Thus, no artificial trigger is needed for drop breakup and
coalescence. As an example, Fig. 1 illustrates the head-on collision and
subsequent coalescence of two Newtonian drops in a Newtonian matrix.
The draining film develops a “dimple” in the middle [61] and the rupture
occurs toward the outside of the film, trapping some matrix fluid inside.

In reality, film rupture is effected by short-range forces such as van
der Waals force [62]. Interestingly, the phase-field model is rooted in the
physics of molecular interaction between the two species, and thus contains
short-range molecular forces. To see this, consider the simple situation in
Fig. 2, with a liquid film (F) of uniform thickness h sandwiched between
semi-infinite domains of another fluid (A). For a thick film, the phase-field
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Fig. 1. Collision and coalescence of two Newtonian drops in a Newtonian
matriz. The Reynolds number, defined using D and U, is Re = 33.6, and the
Weber number is We = 12. Other parameters are: € = 0.01 and v = 3.365x 107°
(after Yue et al. [41], © Cambridge University Press.)

variable at the center approaches the bulk value, say ¢g — —1, at the
center. For a thin film, however, conceivably ¢ inside F will differ from
the bulk value: ¢y > —1. From the elastic stress tensor due to the mixing
energy (cf. [42]), one may calculate the disjoining pressure in the diffuse-
interface model:

A3 —1)?
4.1 M, = Ny =—~0_~/
(4.1) ¢ fo 4¢2
which implies an attractive force between the interfaces as with van der
Waals force. If we estimate ¢y based on a hyperbolic tangent ¢-profile as
in a one-dimensional equilibrium interface [41],

(12) b0 = —tanh (37

Then the disjoining pressure in Eq. (4.1) can be shown to be of the same
order of magnitude as the van der Waals force. As the film thickness
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Fi1G. 2. A cartoon for a draining film and the corresponding ¢ profile.

approaches zero, however, the van der Waals force goes to infinity while II
remains finite. A more detailed comparison can be found in Ref. [42]. On
a fundamental level, the discrepancy between van der Waals force and Il
stems from the truncation of the Cahn-Hilliard free energy at the quadratic
term |V¢|?. An elegant explanation has been given by Pismen [63].

4.2. Complex rheology. Because of its energy-based formalism, our
diffusive interface method incorporates complex rheology easily. The non-
Newtonian rheology is typically due to microstructures whose conformation
deviates from equilibrium under deformation. The conformation of the mi-
crostructure is often governed by a free energy, e.g., the Frank distortion
energy for a liquid crystal or the free energy of a polymer chain. In Sec-
tion 2, we showed how this microstructural energy can be added to the
mixing energy to form the total free energy of the multi-phase system,
which will give rise to the proper constitutive equation for the microstruc-
tured fluids in addition to the evolution equation of the phase field variable.
Thus, interfacial dynamics and complex rheology are included in a unified
theoretical framework.

This procedure is general in that various types of constitutive relations
can be derived by the same procedure. As a second example, we consider
here the important case of a viscoelastic polymer solution modeled as a sus-
pension of Hookean dumbbells in a Newtonian solvent [64]. Instead of the
least-action principle, we follow a formally different but essentially equiv-
alent “virtual-work principle” [5]. For a single dumbbell with a connector
Q, its elastic energy is %H Q - Q, where H is the elastic constant. For an
ensemble of dumbbells with configuration distribution ¥(Q), the average
energy can be written as

(4.3) fa= /R (k:T InW + %HQ : Q) UdQ,

where k is the Boltzmann constant and T is the temperature, and the
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integration is over all possible configurations of Q. Now the total free
energy density of the two-phase system is:

(44) f = fmiz + #nfda

where n is the number density of the dumbbells. Since the stress tensor
due to fmnir has been derived (cf. equation 2.12 and [41]), we will only
consider the elastic stress due to the dumbbell energy f;. We impose a
virtual displacement dx on the material, which takes place instantaneously
so that the dumbbells deform affinely with no slip between the bead and the
surrounding fluid. The corresponding change in the distribution function ¥
can be obtained from the Fokker-Planck equation for ¥ [64]. Now we may
calculate the resultant variation in the dumbbell free energy. Omitting the
intermediate steps [42], we eventually arrive at:

6@2/(M%W+M+HQ@)WM
RS 2
(4.5) = (—kTI+ H < QQ >): (Viz)T,

where < - >= f g "PdQ and I is the identity tensor. Thus the dumbbell
stress tensor is:

(4.6) 74 =-nkTI+nH < QQ >,

which obeys the Maxwell equation. This is exactly the Kramers expression
for the polymer elastic stress tensor [64]. The same procedure can be
followed for other microstructural free energies, such as the Marrucci-Greco
nematic potential energy for liquid-crystalline polymers [65, 5].

4.3. Energy conservation. An additional advantage of the phase-
field method over other interface-regularizing methods is its energy con-
servation: a solution to the governing equations in Section 2 obeys an

(4.7) 2

+ 72

oF

oF
Ve

on

energy law. For example, multiplying equation (2.9) by the velocity v,
molecular field 0F/dn, integrating over the entire domain and summing
the results, we obtain:
P2 )
— —|v dQ
di Q(ﬂ| +f
2
:—/ (lqu:V'uT—nyl >dQ,
Q
surface work has been omitted. Physically, the law states that the total
energy of the system (excluding thermal energy) will decrease from inter-

equation (2.6) by the chemical potential 6F'/d¢ and equation (2.7) by the
d

where f is the system’s potential energy density (cf. equation 2.5), and

nal dissipation. Based on such energy laws, Lin and Liu [66, 67] have
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established the existence of classical and weak solutions for Leslie-Ericksen
fluids. In general, energy laws play an important role in the convergence
of finite-dimensional approximations to partial differential equations, espe-
cially when the solution is not smooth [51]. This constitutes one of the
advantages of our method over previous methods that do not maintain the
system’s total energy budget. In VOF simulations, density is the labeling
function subjected to smoothing. The level-set method renormalizes the
distance function. In either case, the conservation of energy cannot be
maintained.

Note that the energy conservation holds exactly when all the coupling
terms in equation (2.10) are kept. For numerical conveniences, we have
omitted such terms in applications where the interface will remain thin
and the coupling terms have at most a localized effect. This omission
will violate the energy conservation. When the geometry is simple and the
solution is smooth, non-conservation of energy usually does not compromise
the quality of the solution. But difficulties may arise in the presence of rapid
spatial variations, which are characteristic of microstructured fluids with
internal boundaries and/or defects [1, 43].

5. Physical and numerical subtleties. Although the convergence
of the phase-field model to the sharp-interface model has been established
by asymptotic expansion for regular velocity fields [24, 25, 40, 33, 39, 21,
37], there are some subtle issues that merit further discussion. One such
issue, for example, concerns incompressibility. While the phase-field for-
mulation imposes incompressibility throughout the domain (hence also on
the interface), the sharp-interface model satisfies this condition only weakly
on the interface. In fact, the system would be over-determined with such
a constraint on the interface. For phase-field models, we are allowed to
impose V - v = 0 everywhere thanks to the diffused transition layer. The
same holds for VOF and level-set methods through the introduction of an
artificial transition layer. Physically, one may consider the sharp interface
and the diffuse interface different approximations of the real physical sit-
uation, the former by relaxing incompressibility on the interface and the
latter by introducing the transition layer.

The phase-field method can be viewed from two complementary angles:
as a representation of the microscopic physics on the interface or as a nu-
merical device for simulating moving boundary problems without tracking
the interface. Depending on the applications, one or the other viewpoint
may be more appropriate. For applications such as solidification of alloys
[28, 29] and near-critical systems [26, 33], it is essential to ensure that the
phase-field equation captures the dynamics at the interface because the
interfacial profile is of direct interest. On the other hand, the two-phase
flow problems we have simulated involve “immiscible” components with
interfacial thickness on the order of tens of nanometers. Beyond indicating
the position and movement of the interface, the ¢ profile has little direct
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bearing on the macroscopic properties of interest. Thus, there is a degree
of freedom or ambiguity in choosing the dynamics of the phase field and
the parameter values. In particular, the interfacial thickness in the model
can be much thicker than in reality; there is no need, nor perhaps the ca-
pability, to resolve the interface down to nanometer scales. From this an
array of subtle issues arise, which must be handled with care for the model
to be physically sound and numerically efficient.

5.1. Cahn-Hilliard and Allen-Cahn dynamics. As long as our
physical problem conceptually consists of sharp interfaces, the diffusion
dynamics of the phase-field variable is to a large extent fictitious. Thus,
one can choose Cahn-Hilliard, Allen-Cahn or other types of dynamics. We
can view all such choices as a relaxation or approximation of the kinematic
transport equations. Based on similar considerations, we have neglected
certain coupling terms in the Cahn-Hilliard equation due to presence of
microstructures (cf. equation 2.10). One requirement on the diffusion
dynamics is that they maintain the integrity of the interface. In other
words, the “phobic” and “philic” tendencies should be balanced such that
the transition layer neither smoothes out nor steepens into a shock wave.

The Cahn-Hilliard equation follows from the physical argument that
the flux be proportional to the gradient of a generalized chemical potential.
This differs from the conventional Fick’s law, which leads to the Allen-Cahn
dynamics. The advantage of the Cahn-Hilliard equation is the following
conservation of total system “mass”:

(5.1) %/ﬂqﬁ(m,t) dr =0,

if the following no-flux boundary condition is imposed.

0 (Sme
(5.2) an( 55 ):0,

where n is the normal direction to the boundary.

A disadvantage of the Cahn-Hilliard equation is that its higher (4th)
order causes numerical complications. Shen [54] and Yue et al. [41] used a
procedure of splitting it into two second-order Helmholtz equations.

The Allen-Cahn equation is easier to handle numerically but does not
automatically ensure conservation of mass; a Lagrange multiplier can be
introduce to enforce it as a constraint [68]:

(5.3) gf—i—v-V(;S:vl(—(;Z—ko),

with [, ¢(x,t) dz = [, ¢(x,0) dx.
Another possibility is the “advected field” method [69], which is a
compromise between phase-field and level-set approaches. To impose mass
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conservation on the Allen-Cahn equation, an additional term proportional
to the local curvature is added:

(5.4) o Vo= [ 2o+ Vo)

where c is the curvature of interface. In the sharp-interface limit, the new
term cancels the diffusion flux incurred by the Allen-Cahn dynamics, thus
mass is conserved. On the downside, the ad hoc term prevents interfacial
tension to be incorporated into the momentum equation via the phase field.
Instead, it has to be added “by hand” through a spread-out delta function
as in level-set and VOF methods.

Finally, we must point out that the phase-field dynamics do play a
central role in a special class of two-phase flow problems where the interface
undergoes topological changes such as breakup or coalescence[42]. The
length scale of such critical processes approaches that of the interfacial
thickness. In reality, these processes are dominated by short-range forces.
As illustrated in the last section, the Cahn-Hilliard dynamics does contain
a type of short-range force; it produces a disjoining pressure comparable
to the van der Waals force. Then the question arises as to how closely this
type of short-range force approximates reality in a particular experiment.
The answer likely depends on the complex details of the experiment, as
short-range forces from several sources can take part, typically imparting
a stochasticity to the problem [70, 71].

5.2. Interfacial relaxation. Secondary to the ambiguity in interfa-
cial dynamics is the determination of parameter values. For the diffuse
interface to reproduce the macroscopic behavior of a sharp-interface, the
model parameters must be judiciously chosen. In particular, the parameter
1 determines the rate of relaxation of the ¢ field. However, there is little
experimental information on v for the thin-interface two-phase flows that
we are interested in. Jacqmin[34] juxtaposed two considerations on this:
“straining flows can thin or thicken an interface and this must be resisted
by a high enough diffusion. On the other hand, too large a diffusion will
overly damp the flow”. We will discuss several manifestations of interfacial
relaxation in the following.

One interesting effect of interfacial relaxation is the initial “contrac-
tion” of a drop in a quiescent fluid. As an initial condition, we impose the
hyperbolic tangential ¢ profile at the interface (equation 4.2), with ¢ = +1
in the two bulk phases. On commencing the simulation, however, we notice
a very small shift in ¢ such that the interface ¢ = 0 shrinks slightly, and ¢
deviates from +1 slightly in the bulk (Fig. 3). The reason for this artificial
shrinkage is that the initial ¢ field is not the equilibrium one that minimizes
the total free energy in 2D. Thus, the interface tends to shrink to reduce the
mixing energy. Since fQ ¢ dS2 is conserved by the Cahn-Hilliard equation
with the zero-flux boundary condition (equation 5.2), the shrinking inter-
face causes the bulk ¢ value to change slightly, incurring an energy penalty
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=

et
¢ after relaxation

Fic. 3. A diagram showing the initial contraction of a drop in a quiescent matriz
fluid.

in the bulk energy fy. The competition between the bulk and interfacial
energies results in a slightly relaxed ¢ field that has a lower energy than
our initial condition. For a circular drop of radius 7, one can calculate the
shift in the bulk value of ¢ analytically if e/r < 1:

V2e
(5.5) 0 = et
In general, such a formula will not be available. But one may always choose
a sufficiently small € so that the initial shift is insignificant to the accuracy
of the results.

Another important consequence of interfacial relaxation is the change
in apparent interfacial tension[41, 43]. To simulate an experiment with
two immiscible fluids, one chooses appropriate values for the mixing en-
ergy A and capillary width € so as to match \/e to the experimental in-
terfacial tension o according to a formula based on some equilibrium ¢
profile[34, 41]. As ¢ evolves during flow, the matching formula no longer
holds. Yue et al. [41] have shown an example of drop deformation in shear
flows, where the deviation of the ¢ profile from the equilibrium one in-
creases the effective interfacial tension. As a result, the drop deformation
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0.5

0.4

0.3

0.2

0.1

Fi1c. 4. Effect of the mobility parameter v1 on the deformation of a drop after
startup of a simple shear. The drop is Newtonian while the matriz is a viscoelastic
Oldroyd-B fluid (after Yue et al. [41], © Cambridge University Press.)

is underpredicted. Since the rate of relaxation is controlled by =1, it has
an effect on the drop deformation as well. In this case, Fig. 4 shows that a
smaller v; increases the drop deformation slightly.

5.3. Interfacial thickness. The capillary width € is another param-
eter that needs to be chosen carefully. This is a well-recognized issue in
phase-field models for alloy solidification [29]. In our simulations of two-
phase flows, the interfacial thickness h, defined for example by 90% of the
jump in ¢, is typically on the order of 4e. The smallest h that one can
resolve depends on the macroscopic length scale and the computational
capacity. But it is typically much thicker than the nano-scale real inter-
faces. Thus, it is a delicate task to pick an € within one’s computational
reach that produces approximately the correct macroscopic behavior of a
much thinner interface. As mentioned before, € affects the effective interfa-
cial tension, the relaxation of the interface and the short-range molecular
forces. The philosophy behind choosing an appropriate value is perhaps
best illustrated by a situation involving drastic topological changes.

Figures 5 and 6 show simulations with a larger or smaller ¢ than in
Fig. 1 with all other parameters unchanged. The early stage of the simula-
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t=1.678 =1.846

t=1.930 =2.014

F1c. 5. Collision and coalescence of two Newtonian drops in a Newtonian matric
with a thicker interface. The parameters are the same as Fig. 1 except for e = 0.02
(after Yue et al. [42], © Elsevier.)

=2.014 =3.020

t=3.188 =4.027

Fic. 6. Collision and coalescence of two Newtonian drops in a Newtonian matriz
with a thinner interface. The parameters are the same as Fig. 1 except for e = 0.005
(after Yue et al. [42], ©Elsevier.)

tions, say for ¢t < 1.342, is identical with Fig. 1. This is before the interfacial
profiles of the two drops overlap. For a larger ¢, the interfaces of the two
drops overlap at an earlier time during their approach, and the ensuing coa-
lescence occurs more readily (Fig. 5). Note that the interface does not have
time to develop the dimpled shape, and no matrix fluid is trapped inside
the drop. On the other hand, a smaller € prolongs the coalescence process
(Fig. 6). As compared with Fig. 1, the points of rupture are more toward
the ends of the film. This produces a less pronounced waist in the resultant
compound drop, and the entrapped matrix filament does not break up but
retracts into a droplet. The optimal € cannot be determined by an a priori
criterion. Rather, it needs to reflect the range of the molecular forces at
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work in the particular experiment to be simulated. Owing to a degree of
randomness in the short-range forces, the coalescence time in experiments
often exhibits a Gaussian distribution [70, 71]. Obviously, such intricate
details cannot be reproduced by the disjoining pressure in a phase-field
formulation. Instead, one may hope to capture the macroscopic dynamics
in some average sense by using optimal values for the model parameters.
Note that the effect of € is not to be confused with numerical resolution
of the interface. For each e value tested here, mesh refinement has confirmed
that the grid used is adequate for resolving the interface (see also [41]).

5.4. Adaptive mesh refinement. We argue that adaptive mesh re-
finement is capable of addressing all aforementioned issues. As has been
established before, the diffuse-interface model will stay close to the sharp-
interface model, with the conventional interfacial tension, when the interfa-
cial thickness tends to zero [33, 37]. Note that the ¢ profile as a solution to
equation (2.6) is “nontrivial” only within the interfacial layer, whose thick-
ness scales with €. Therefore, for sufficiently small transition thickness e and
elastic relaxation time -y, the effect of interfacial relaxation becomes negli-
gible, and the difference between Cahn-Hilliard and Allen-Cahn dynamics
becomes irrelevant. In fact, they represent two different regularizations of
the kinematic transport of the phase field.

However, in some cases, such as those involving surfactant monolayers,
the interfacial profile needs to be numerically resolved for accurate evalua-
tion of the interfacial stress. The disparity between small € and the global
length scale implies the need for a locally refined grid inside the interfacial
region.

Although procedures for dynamically adaptive meshing seem to be
available [72, 73], they have not been used in a diffuse-interface framework
as we are aware. So far, we have used spectral methods with structured
grids; the resolution of the interface is the numerical bottleneck [41] that
must be tackled before the method can be used for large-scale flow sim-
ulations in three dimensions. Such an adaptive meshing scheme seems to
be most conveniently implemented within a finite-element formulation. In
addition, moving-mesh schemes may serve the same purpose. Code devel-
opment along both directions is underway, and will be reported in the near
future.

5.5. Topological control. So far we have considered it an advan-
tage that the phase-field method automatically handles topological changes
such as merging and rupture of interfaces. This is the case when the na-
ture of the short-range forces are understood and more or less adequately
represented by the phase-field dynamics [42]. In certain applications, how-
ever, this may become a liability [74]. For instance, surface-active agents
greatly modify the behavior of interfaces, stabilizing drops in emulsions
and bubbles in foams against coarsening [1]. Membranes may prevent vesi-
cles in contact from coalescing. If one chooses to use a phase-field model
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Fi1G. 7. Singular cases in 2-D. The inner intersect angles are w, 0, w/2 for cases
a, b and c respectively. The Euler number x is 2, 1 and 1.5. The Euler-Poincaré index
number n is always 2.

in such situations, it is desirable to retain some control of the topological
events within the model. This consists of retrieving topological information
from the phase field formulation, monitoring the occurrence of topological
events, and even using the information to design a criterion for prohibiting
unphysical changes of topology.

Du et al. [75] have recently developed a method for topological control
in a phase-field model via the Euler number. The idea, briefly outlined
below, applies equally well to other simulation methods for free boundary
and interface problems such as the level-set methods.

Given an oriented (regular) compact (i.e., without boundary) surface
I, the well-known Gauss-Bonnet formula states that

(5.6) / K ds =27y,
r

where K = ki1k» is the Gaussian curvature of the surface in R3, ds is the
area element and x/2 in 3D or x in 2D is the Euler number [76]. The
number y is a commonly used topological quantity. For some frequently
encountered surfaces, we have xy = 2 for a sphere, y = 0 for a torus and
x = —2 for a torus with 2 holes. For 2D curves, K is the curvature and
x = 1 for a circle.

Such a concept can be generalized to the cases involving singularities,
as illustrated in Figure 7. For instance, in 2 dimensional cases, we will have
that:

(5.7) 27y = /de-i—Z(ﬂ'—Oéi) :27rx+2(7r—ozi),
r i=1 i=1

where «; are the inner angle at each vertices. And 7, the Euler-Poincaré
index number, is the topological integer, the genus of the surface.

In [75], we derived a phase-field representation of x. Let I' be a smooth
oriented compact surface of a domain € in R® (note that I is allowed to
have multiple disconnected pieces). Let p be a monotonically increasing
function defined from R to R with p(0) = 0. We define the phase-field
function as ¢(x) = p(d(x)) where the signed distance function d(x) =
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dist(x,T) is defined to be positive inside Q and negative outside Q. The
level sets of ¢ are denoted by I', = {z € Q|¢(x) = pu}. In particular, we
have I' = T'y. We also define ' = {z € Q|b < ¢(x) < a}, which forms a
banded (layered) neighborhood around the surface for b < 0 < a. Further
define A(M) = A\ (M)X2(M) = A(V?2d(z)) for a singular matrix M with
A1, A2 being the two non-zero eigenvalues of M = V2d(z). Since we can
view that k1, ko remain close to constant along the normal directions in the
thin layer region ), we have that

% -1 k1 (2)ka(x) ds

4 Jr
p~'(a)
> B m /Q( b) P (d(@))kr(2)ks (@) da
- m /m b) P (d(@)A(V?d(x)) d

1 1

(5.9) = / ———A(V%¢ — p'V;dV;d) dz .

dm(a —b) Jo(ap P'(d(2)) o
In practice, the function p and the constants a, b will be chosen such that p’
is relatively small outside of the transition layer. Now, since p(x) is mono-

tone, hence we have that p'(d(z)) = |Vé(z)| and p”(d(x)) = %S‘-zwg In
the end we have the following theorem [75]:

THEOREM 5.1. If ¢ = ¢(x) of Q as ¢(x) = p(d(x)) where the signed
distance function d(z) = dist(x,T). For any monotone increasing function

p, there exists b < 0 < a, such that the following matriz M, where

1 _VIVeP?-Vo

(5.10) M(l‘)ij = W (Vlvj(b 2V o[t

Vz¢v]¢> ’

is a singular matriz for Vx € Q(a,b) in the sense that it always has a zero
eigenvalue, and the Euler number of I' can be obtained as:

(5.11) X _ / F(z)dz
2 Q(ab)
where ' denote the coefficient of the linear term of the characteristic poly-

nomial of M.

Numerical simulations, such as that in Figure 8 and Figure 9, show
that the Euler number thus computed indeed captures the occurrence of
critical topological events[75].

Besides detecting the occurrence of critical topological events, this
quantity also provides an important tool in designing a scheme to prevent
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Fic. 8. Coalescence of two bubbles in a Newtonian fluid with the time valued at
0.00, 0.10, 0.18, 0.22, 0.24, 0.28 (after Du et al. [75].)
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F1c. 9. A plot of the Euler number in time with the annihilation of the small bubble
(after Du et al. [75].)

topological changes from happening. For instance, one may use a Lagrange
multiplier to enforce the constancy of the Euler number over the entire do-
main. Since the constraint will involve a cost functional of high derivatives,
more detailed analysis and numerical studies are needed in this area.

6. Concluding remarks. This article aims to introduce the ener-
getic variation based phase-field approach to readers interested in the fluid
dynamics of immiscible complex fluids. Although various versions of the
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model have been used in the past to great degrees of success, we highlight
the generic advantages inherent in the formalism. More importantly, per-
haps, we discuss several detailed key crucial issues (challenges) with the
method whose proper treatment is prerequisite to a physically realistic and
numerically practicable implementation of the model.

We emphasize that the diffuse-interface treatment can alternatively
be seen as a physical model or a numerical device. It can be viewed as
a physics motivated approximation (regularization) of the sharp interface
models. The employment of the phase field method changes the Lagrangian
description of the interface motion into Eulerian description. The energetic
variational procedure ensures that the resulting coupling system will still
preserve the overall energy law. The method seems to be more appropriate
for the drop dynamics problems that we have simulated, although there
are other applications where the opposite is true. As such, the interfacial
dynamics and model parameters do not directly correspond to measurable
quantities and their determination is a delicate matter. We have advocated
the view that the criterion should be that the diffuse-interface model accu-
rately predict the macroscopic dynamics of the two-phase system, including
drastic changes of the interfacial morphology. Several numerical experi-
ments are shown to illustrate these issues and how they can be resolved to
a satisfactory degree of accuracy. The inherent ambiguity vanishes as the
interfacial thickness shrinks. Thus, we suggest adaptive mesh refinement
as the solution when a thin interface has to be resolved. It is also necessary
for computing large-scale 3D flows of blends of rheologically complex fluids.
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