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Abstract

A general variational approach for the study of mixtures of complex fluids is de-
scribed in this paper. In particular, the special coupling between the transport of the
microscopic variables by the flow and the induced elastic stress is elaborated, and an
efficient numerical scheme based on a stabilized semi-implicit discretization in time and
a well-conditioned spectral-Galerkin method in space is also presented. As examples
of applications, the Marangoni-Benard convection and the mixture of nematic liquid
crystal with a Newtonian fluid are considered. Some numerical simulations indicating
the robustness and versatility of the proposed approach are presented.

1 Introduction

Complex fluids, such as polymeric solutions, liquid crystals, pulmonary surfactant solu-
tions, electro-rheological fluids, magneto-rheological fluids and blood suspensions exhibit
many intricate rheological and hydrodynamic features that are very important to biological
and industrial processes. Applications include the treatment of airway closure disease by
surfactant injection, polymer additive to jets in inkjet printers, fuel injection, fire extin-
guishers and magneto-rheological damping of structural vibrations etc.

Complex fluids often exhibit anomalous behavior, whose origin can often be traced to
various “elastic” effects due to relaxation of some microstructure. Examples include the
elasticity of deformable particles, the distortional elasticity of liquid crystals, interactions
in charge-stabilized colloids and multi-component phases, and bulk elasticity due to polymer
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chain dynamics in viscoelastic complex fluids. These elastic effects can be represented in
terms of certain internal variables, for example, the orientational order parameter in liquid
crystals (related to their microstructures), the distribution density function in the dumb-
bell model for polymeric materials, the magnetic field in magneto-hydrodynamic fluids,
the volume fraction in mixture of different materials etc. The different rheological and
hydrodynamic properties can be attributed to the special coupling between the transport of
the internal variable and the induced elastic stress. In our energetic variational formulation,
this represents a competition between the kinetic energy and the elastic energy.

A classical way to study the moving interfaces is to employ a mesh that has grid points
on the interfaces and deforms according to the motion of the boundary. The boundary
integral and boundary element methods fall into this category (cf. [10, 50, 24] and their
references). Keeping track of the moving mesh may cause computational difficulties such as
mesh entanglement for large displacement or deformation of internal domains. Typically,
sophisticated remeshing schemes have to be used in these cases. As an alternative, fixed-
grid methods that regularize the interface have been highly successful in treating deforming
interfaces. These include the volume-of-fluid method [27, 28], the front-tracking method
[18, 17] and the level-set method [8, 41]. Instead of formulating the flow in two domains
separated by an interface, these methods represent the interfacial tension as a body-force
or bulk-stress spreading over a narrow region covering the interface. Then, a single set of
governing equations can be written over the entire domain, and solved on a fixed grid in a
purely Eulerian framework.

The energetic phase field model can be viewed as a physically motivated level-set
method. Instead of choosing an artificial smoothing function for the interface, the diffuse-
interface model describes the interface by a mixing energy. This idea can be traced to van
der Waals [51], and is the foundation for the phase-field theory for phase transition and
other critical phenomena (see [12, 6, 5, 39, 40, 49] and the references therein). The phase
field models allow topological changes of the interface, [38] and over the years, they have
attracted much interest in the field of nonlinear analysis (cf. [1, 4, 9, 44, 47]). Similar to
the popular level set formulations (see [41] for an extensive discussion), they have many
advantages in numerical simulations of the interfacial motion (cf.[8]). When the transi-
tional width approaches zero, the phase-field model with a diffuse-interface converges to a
sharp-interface level-set formulation. However, unlike the classical sharp interface model,
the phase-field models allow for topological changes of the interface ([38, 2, 23, 22]) and
have many other advantages in numerical simulations of the interfacial motion, and have
seen many applications in the physics and engineering literature [42, 52].

The purpose of this paper is to illustrate some basic features as well as some useful
generalizations of the phase-field methods for two-phase flows, and discuss in particular
their applications to Marangoni-Benard convection and to the mixture of nematic liquid
crystal with a Newtonian fluid.
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2 An energetic variational approach with phase-field method

We present here, as an illustrative example, a phase-field method for the mixture of two
incompressible Newtonian fluids (cf. [37]).

We introduce a “phase” function φ(x, t) to identify the two fluids ({x : φ(x, t) = 1} is
occupied by fluid 1 and {x : φ(x, t) = −1} by fluid 2), and consider the following Ginzburg-
Landau type of mixing energy:

W̃ (φ,∇φ) =
∫

Ω
[
η

2
|∇φ|2 +

1
4η

(φ2 − 1)2] dx. (2.1)

If we view φ as a volume fraction, then, the mixing density and viscosity will be functions of
φ. The gradient energy η

2 |∇φ|2 plays the role of regularization (relaxation), while the bulk
energy F (φ) = 1

4η (φ2−1)2 represents the interaction between the two species, similar to the
Flory-Huggins free energy [25, 13]. The combination represents the competition between
the (hydro)phobic and (hydro)philic effects between different species. The interface is rep-
resented by {x : φ(x, t) = 0}, with the fixed transition layer of thickness η. The dynamics
of φ can be driven by either Allen-Cahn or Cahn-Hillard types of gradient flow, depending
on the choice of dissipative mechanism. The former leads the Allen-Cahn equation:

φt + u · ∇φ = γ(∆φ− f(φ)), (2.2)

while the latter leads to the Cahn-Hillard equation:

φt + u · ∇φ = −γ
δW

δφ
= −γ∆(∆φ− f(φ)), (2.3)

where f(φ) = F ′(φ) = 1
η (φ2 − 1)φ and u is the velocity field. The right hand side of (2.2)

(resp. (2.3)) can be viewed as the variation with respect to φ in the L2 (resp. H−1) space.
The left hand sides of both (2.2) and (2.3) indicate that the variable φ is transported
by the flow, on top of the energy descent dynamics. The parameter γ represents the
elastic relaxation time. As γ → 0, the limiting φ satisfies the transport equation, which is
equivalent to the mass transport equation (for incompressible fluids). Hence this formulation
can also be viewed as the link (relaxation) between a mass average (in the kinetic energy)
and a volume average (in the elastic energy) between the two species.

We note that the solution φ of (2.2) satisfies a maximum principle but does not preserve
overall volume fraction, while that of (2.3) preserves the overall volume fraction but does
not satisfy a maximum principle.

In order to derive the momentum equation, we consider the total energy (sum of elastic
energy and kinetic energy) E =

∫
Ω[ρ2 |u|2 + λ

2 |∇φ|2 + λF (φ)] dx, and apply the least action
principle (the principle of virtual work) to get [34, 33, 21, 42]:

ρ(ut + (u · ∇)u) +∇p− ν∆u + λ∇ · (∇φ⊗∇φ) = g(x). (2.4)
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Here ρ is the density of the flow and satisfies the following transport equation:

ρt + u · ∇ρ = 0, (2.5)

under the incompressibility condition for the velocity field:

∇ · u = 0. (2.6)

The final system (2.3)-(2.4)-(2.5)-(2.6), together with the suitable boundary and initial
conditions, will then possess the following energy law:

d

dt

∫

Ω
[
ρ

2
|u|2 +

λ

2
|∇φ|2 + λF (φ)] dx = −

∫

Ω
[ν|∇u|2 + γλ|∇(∆φ− f(φ))|2 + gu] dx. (2.7)

We can see that as η → 0, the elastic force λ∇·(∇φ⊗∇φ) converges to a measure supported
only on the interface, with magnitude proportional to the mean curvature [36]. Moreover,
we can also derive the relation of our parameters with the sharp interface ones as indicated
below. To simplify the presentation, let us consider a one-dimensional interface and assume
that the diffusive mixing energy in the region equals to the traditional surface energy:

σ = λ

∫ +∞

−∞

{
1
2

(
dφ

dx

)2

+ F (φ)

}
dx. (2.8)

Let us further assume that the diffuse interface is at equilibrium, and thus has zero chemical
potential,

δFmix

δφ
= λ{−d2φ

dx2
+ F ′(φ)} = 0. (2.9)

Since F (±∞) = 0, that is, φ = ±1 for unmixed components, and dφ
dx

∣∣∣
x=±∞

= 0, this

equation can be integrated once to get

1
2

(
dφ

dx

)2

= F (φ), (2.10)

which implies equal partition of the free energy between the two terms at equilibrium.

Equation (2.10) can be solved together with the boundary condition φ(0) = 0 for any
given F (φ) by direct integration, and we obtain the equilibrium profile for φ(x):

φ(x) = tanh
(

x√
2η

)
(2.11)

Thus, the capillary width η is a measure of the thickness of the diffuse interface. More
specifically, 90% of variation in φ occurs over a thickness of 4.1641η, while 99% of the
variation corresponds to a thickness of 7.4859η.
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Substituting Eq. (2.11) into Eq. (2.8), we arrive at the following matching condition for
the interfacial tension σ:

σ =
2
√

2
3

λ

η
(2.12)

As the interfacial thickness η shrinks toward zero, so should the energy density parameter
λ; their ratio gives the interfacial tension in the sharp interface limit.

Obviously, the correspondence between the diffuse- and sharp-interface models is mean-
ingful only when the former is at equilibrium. During the relaxation of the diffuse interface,
one cannot speak of a constant interfacial tension. Although one may view this as a defi-
ciency of the diffuse-interface model, it in fact reflects the reality that the interface has its
own dynamics which cannot be summarized by a constant σ except under limiting condi-
tions.

The least action principle (variation on the flow maps), which gives the momentum
equation, and the fastest decent dynamics or other types of gradient flows (variation on
the phase variables) are due to different physical principles. However, they are related in
the static case: the first one is equivalent to the variation with respect to the domain and
the second one is the variation of the same functional with respect to the function. It is
clear that if the solutions are smooth (or regular enough), they are equivalent. Discrepancy
between these two equations arises in the presence of singularities and defects.

The existence of the hydrodynamic equilibrium states for the coupled systems (the
static solution with the velocity u = 0) can be viewed as a direct consequence of the special
relation between the solution of the Euler-Lagrange equation of the elastic energy and the
solution of the equation from variation of the domain to such an energy. Formally, it can
be summarized into the following simple theorem (see, for example, [32]):

Theorem 2.1 Given an energy functional W (φ,∇φ), all solutions of the Euler-Lagrange
equation:

−∇ · ∂W

∂∇φ
+

∂W

∇φ
= 0 (2.13)

also satisfy the equation

∇ · ( ∂W

∂∇φ
⊗∇φ−WI) = 0, (2.14)

where I is the identity matrix.
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This theorem guarantees the existence of the hydrodynamic equilibrium state for most
systems. It also gives the stability results [30] and shows that all solutions of the system
(2.3)-(2.4)-(2.5)-(2.6) will approach an equilibrium state as t → +∞. One can also derive
from Theorem 2.1 the usual Pohozaev identity [48] by writing the equations (2.13) and
(2.14) in weak forms.

It is the generality of this energetic variational procedure, especially in accommodating
microstructured fluids via the free energy, that has made the diffuse-interface (phase field)
method our choice for tackling interfacial problems of complex fluids. As mentioned earlier,
the elasticity of complex fluids stems from the relaxation of certain microstructures. If the
evolution of this microstructure can be represented by a free energy, then the material’s
complex dynamics can be incorporated into the above variational procedure by adding the
free energy to the mixing energy. This way, one can conceivably account for any complex
fluids with a properly defined free energy.

In this paper, we will be dealing with two kinds: the thermo-induced Marangoni-Benard
convection of a two-phase fluid and a mixture involving nematic liquid crystals, which are
described by a regularized Leslie-Ericksen model [11, 14, 15, 26]. The latter also introduces
the issue of surface anchoring.

3 Marangoni-Benard convection

In the conventional sharp-interface framework, the Marangoni-Benard convection of two-
phase fluids is described by the following system:

∇ · u = 0, (3.1)

ρ0(ut + (u · ∇)u) +∇p− µdivD(u) = −ρgj, (3.2)

θt + u · ∇θ = k∆θ. (3.3)

Here g is the gravitational acceleration, j is the unit vector of upward direction, u and p

are the fluid velocity and the pressure, θ is the temperature, k is the thermal diffusion, and
the temperature dependent density ρ is described by the Boussinesq approximation:

ρ = ρ0[1− α(θ − θ0)] (3.4)

which is the linear version of all different types of average approaches. Here, the “back-
ground” density is treated as a constant ρ0 and the difference between the actual density
and ρ0 only contributes to the buoyancy force [29].
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The interface conditions take the usual form:

ηt + u · ∇η = 0, (3.5)

[T ] · ν = −σKν + (τ · ∇σ)τ, (3.6)

where τ is the tangential direction on the interface, ν the normal direction, σ is the surface
tension which depends linearly on the temperature, i.e., σ = σ0 − σ1θ. Here [T ] represents
the jump of the stress T across the interface and K the mean curvature. Equation (3.5) is
the kinematic condition, representing the surface (η = 0) motion with the fluid, Equation
(3.6) is the traction (T ) free boundary (balance of forces) condition.

In order to incorporate this Marangoni effect in the phase field model and still maintain
the energy law, we consider the action function:

A(x) =
∫ T

0

∫

Ω0

1
2
ρ0|xt(X, t)|2 (3.7)

−λ(x(X, t))
2

(|∇xφ(x(X, t), t)|2 + F (φ(x(X, t), t))) dXdt.

Here we can view X as the Lagrangian (initial) material coordinate and x(X, t) the Eule-
rian (reference) coordinate. Ω0 is the domain initially occupied by the fluid. The notion
φ(x(X, t), t) indicates that φ is transported by the flow field. The special feature in this
case is the spatial dependence of λ. For example, λ can be a prescribed linear function of
temperature.

For incompressible materials, we consider the volume preserving flow maps x(X, t) such
that

xt(X, t) = v(x(X, t), t), x(X, 0) = X. (3.8)

Then, the least action principle for (3.7) leads to the following momentum equation:

ρ0(ut + (u · ∇)u) +∇p− µ divD(u)

= −∇ · (λ∇φ⊗∇φ− λ

2
|∇φ|2I − λ

4η2
(φ2 − 1)2I)

− (1 + φ)g(ρ1 − ρ0)j − (1− φ)g(ρ2 − ρ0)j,

(3.9)

which is to be solved together with

∇ · u = 0, (3.10)

φt + (u · ∇)φ + γ∆(∆φ− f(φ)) = 0, (3.11)

θt + u · ∇θ = k∆θ, (3.12)

subject to initial conditions
u|t=0 = u0, d|t=0 = d0, (3.13)
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and appropriate boundary conditions.

Moreover, we see that

−∇ · (λ∇φ⊗∇φ− λ

2
|∇φ|2I − λ

4η2
(φ2 − 1)2I)

=− λ∆φ∇φ− λ

2
∇|∇φ|2 − (∇λ · ∇φ)∇φ

+
∇λ

2
|∇φ|2 +

λ

2
∇|∇φ|2 +

1
4η2

∇λ(φ2 − 1)2 +
1

4η2
λ∇(φ2 − 1)2.

Using the same argument as in [37], we can see that the right hand side converges, as η → 0,
to −σKν + ∇σ − (∇σ · ν)ν = −σKν + (∇σ · τ)τ where σ is again the surface tension as
discussed in the isotropic cases and K the mean curvature. Thus, we recovers the traction
free boundary condition (3.6).

Equation (3.9) can be generalized in several ways to handle more general variations in
density and viscosity. For example, instead of (3.4), we can use the following harmonic
“average” density and viscosity:

1
ρ(φ)

=
1 + φ

2ρ1
+

1− φ

2ρ2
,

1
µ(φ)

=
1 + φ

2µ1
+

1− φ

2µ2
,

(3.14)

where ρ1, ρ2 are the initial densities and ν1, ν2 are the initial viscosity constants of the two
fluids. In this case, the momentum equation (3.9) is to be replaced by

(ρ(φ)u)t + (u · ∇)(ρ(φ)u) +∇p− div(ν(φ)D(u)) + λ∇ · (∇φ⊗∇φ) = −ρ(φ)gj. (3.15)

The reason to choose the harmonic average as in (3.14) is that the solution of the Cahn-
Hilliard equation (2.3) does not satisfy the maximal principle. Hence, the linear average
can not be guaranteed to be bounded away from zero. However, due to the L∞-bound
of the solution [3], the harmonic averages lead to desired properties. We note that since
equation (3.11) converges, as η → 0, to the transport equation for φ, and thanks to the
incompressibility condition (3.10), we have

ρt +∇ · (ρu) → 0 (as η → 0). (3.16)

In more general cases where the Boussinesq approximation (3.4) is not valid (e.g., when
the density of the mixture varies significantly), the transport equation (2.5) has to be part
of the system and the momentum equation (3.9) has to be replaced by:

ρ(ut +(u ·∇)u)+∇p− div(ν(φ)D(u)) = −∇· (λ∇φ⊗∇φ− λ

2
|∇φ|2I− λ

4η2
(φ2−1)2I)−ρgj,

where ν(φ) is a prescribed function of φ, an example of which is given in (3.14).
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4 Mixtures involving liquid crystals

In an immersible blend of a nematic liquid crystal and a Newtonian fluid, there are three
types of elastic energies: mixing energy of the interface, bulk distortion energy of the
nematic, and the anchoring energy of the liquid crystal molecules on the interface.

We again use the previously discussed Ginzburg-Landau energy for the mixing energy.

fmix(φ,∇φ) =
1
2
|∇φ|2 + f0(φ), (4.1)

with a double-well potential for the bulk energy

f0(φ) =
1

4η2
(φ2 − 1)2. (4.2)

The nematic has rod-like molecules whose orientation can be represented by a unit
vector n(x) known as the director. When the director field is not uniform, the nematic
liquid crystal has an Oseen-Frank distortion energy [11]:

fbulk =
1
2
K1(∇ · n)2 +

1
2
K2(n · ∇ × n)2 +

1
2
K3(n×∇× n)2, (4.3)

where K1, K2, K3 are elastic constants for the three canonical types of orientational dis-
tortion: splay, twist and bend. We will adopt the customary one-constant approximation:
K = K1 = K2 = K3, so that the Frank energy simplifies to fbulk = K

2 ∇n : (∇n)T. Liu
and Walkington [35] used a modified model by allowing a non-unity director whose length
indicates the order parameter. Thus, the regularized Frank elastic energy becomes:

fbulk = K

[
1
2
∇n : (∇n)T +

(|n|2 − 1)2

4δ2

]
, (4.4)

The second term on the right hand side serves as a penalty whose minimization is simply
the Ginzburg-Landau approximation of the constraint |n| = 1 for small δ. The advantage
of this regularized formulation is that the energy is now bounded for orientational defects,
which are non-singular points where |n| = 0. This makes the numerical treatment much
easier. Note that the regularization is based on the same idea as in Cahn-Hilliard’s mixing
energy. It is also related to Ericksen’s theory of uniaxial nematics with a variable order
parameter [16].

Depending on the chemistry of the two components, the rod-like molecules of the nematic
phase prefer to orient on the interface in a certain direction known as the easy direction.
The two most common types of anchoring are planar anchoring, where all directions in
the plane of the interface are easy directions, and homotropic anchoring, where the easy
direction is the normal to the interface.
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In the classical sharp interface model, the anchoring energy is a surface energy. In our
diffuse-interface model, however, we write it as a volumetric energy density in the same vein
as the mixing energy:

fanch =
A

2
(n · ∇φ)2 (4.5)

for planar anchoring, and

fanch =
A

2
[|n|2|∇φ|2 − (n · ∇φ)2] (4.6)

for homotropic anchoring. In these two equations, the positive parameter A indicates the
strength of the anchoring.

Finally, the total free energy density for the two-phase material is written as:

f(φ, n,∇φ,∇n) = fmix +
1 + φ

2
fbulk + fanch (4.7)

where 1+φ
2 is the volume fraction of the nematic component, and φ = 1 indicates the pure

nematic phase. This energy is equivalent to that of Rey [43], and contains all the physics
discussed there.

The induced elastic energy will be:

σe = −λ(∇φ⊗∇φ)−K
1 + φ

2
(∇n) · (∇n)T −G, (4.8)

where G = A(n · ∇φ)n⊗∇φ for planar anchoring and G = A[(n · n)∇φ− (n · ∇φ)n]⊗∇φ

for homotropic anchoring. Note that the asymmetry of G reflects the fact that surface
anchoring exerts a net torque on the fluid. Bulk distortion will give rise to an asymmetric
stress as well if the elastic constants are unequal [11]. Moreover, from the derivation of
the previous section, we see that the anchoring energy fanch, hence the term G, induces a
Marangoni force along isotropic-nematic interfaces [43].

We now derive the governing system for the mixture of a nematic liquid crystal and a
Newtonian fluid. The field variables are velocity u, pressure p, phase function φ and director
n. The continuity and momentum equations take the usual form:

∇ · u = 0, (4.9)

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p +∇ · σ, (4.10)

where σ = µD + σe is the deviatoric stress tensor.

Based on the free energy in equation (4.7), a generalized chemical potential can be
defined as δF/δφ. If one assumes a generalized Fick’s law, i.e., the mass flux is proportional
to the gradient of the chemical potential, we obtain the Cahn-Hilliard equation for φ [6]:

∂φ

∂t
+ u · ∇φ = ∇ ·

[
γ1 ∇

(
δF

δφ

)
,

]
(4.11)
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where γ1 is the mobility constant. The diffusion term on the right hand side has contribu-
tions from all three forms of free energy.

The rotation of n is determined by the balance between a viscous torque and an elastic
torque. The latter, also known as the molecular field [11], arises from the free energies of
the system:

h = −δF

δn
= K

[
−∇ ·

(
1 + φ

2
∇n

)
+

1 + φ

2
(n2 − 1)n

δ2

]
+ g, (4.12)

where g = A(n · ∇φ)∇φ for planar anchoring, and g = A[(∇φ · ∇φ)n − (n · ∇φ)∇φ] for
homotropic anchoring. Now the evolution equation of n is written as:

∂n

∂t
+ u · ∇n = γ2h, (4.13)

where the constant γ2 determines the relaxation time of the director field. Equation (4.13)
is a simplified version of the Leslie-Ericksen equation [11].

Equations (4.9), (4.10), (4.11) and (4.13) form the complete set of equations governing
the evolution of the nematic-Newtonian two-phase system.

In the above, we have assumed that the two phases have the same constant density,
with negligible volume change upon mixing. Thus, the mixture is incompressible with a
solenoidal velocity. In general, however, the diffuse-interface method is not restricted to
equal-density components. When the two phases have differing densities, one approach is
to view the mixture as a compressible fluid with ∇ · u 6= 0 in the mixing layer, where u is a
mass-averaged velocity [38]. Another approach [33] is to assume the two components mix
by advection only (i.e., without diffusion). Thus, the velocity at a spatial point is defined
as that of the component occupying that point; it is spatially continuous and remains
solenoidal. An inhomogeneous average density is established from the initial condition,
which is later transported by the velocity field. Finally, if the density difference is small,
the Boussinesq approximation can be employed [33].

A solution to the above governing equations obeys the following energy law:

d

dt

∫

Ω

(ρ

2
|u|2 + f

)
dΩ = −

∫

Ω

(
µ∇u : ∇uT + γ1

∣∣∣∣∇
δF

δφ

∣∣∣∣
2

+ γ2

∣∣∣∣
δF

δn

∣∣∣∣
2
)

dΩ, (4.14)

where f is the system’s potential energy density. Physically, this energy law states that
the total energy of the system (excluding thermal energy) will decrease due to internal
dissipation. Thus, one can follow the same procedures as in [30, 31] to rigorously prove
the well-posedness of such a system. Furthermore, thanks to such an energy law, one
can construct stable and convergent finite-dimensional variational approximation to the
governing equations (cf. [35]). This constitutes one of the main advantages of this approach
over other methods that do not maintain the system’s total energy.
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5 Numerical schemes

While the coupled nonlinear systems derived in the previous sections are adequate mathe-
matical models for the mixtures of complex fluids, it is important to construct a numerical
scheme which is capable of correctly capturing, at a reasonable cost, the complex spatial
and temporal features of these two-phase flows.

To illustrate the idea, we shall consider the system (3.9)-(3.10)-(3.11)-(3.12) as an ex-
ample, and present an efficient numerical scheme which we used to produce the numerical
results presented in the next section.

5.1 A stabilized semi-implicit time discretization

We propose to discretize the coupled nonlinear system in time with a stabilized semi-implicit
second-order scheme. The guiding principle here is that we want to solve only decoupled,
well-behaved elliptic equations at each time step while preserving the overall second-order
time accuracy and having a reasonably large stability region.

The semi-implicit scheme we propose for (3.9)-(3.10)-(3.11)-(3.12) is as follows:

Given (uk, pk, φk, θk) and (uk−1, pk−1, φk−1, θk−1), we compute (uk+1, pk+1, φk+1, θk+1)
by solving

ρ0
3uk+1 − 4uk + uk−1

2∆t
− νdivDuk+1 +∇pk+1 = 2h(uk, φk)− h(uk−1, φk−1),

divuk+1 = 0;
(5.1)

3φk+1 − 4φk + φk−1

2∆t
+ γ(∆2 − Cs

η2
∆)φk+1 = −(uk+1 · ∇)(2φk − φk−1)

+ γ∆[2(f(φk)− Cs

η2
φk)− (f(φk−1)− Cs

η2
φk−1)];

(5.2)

3θk+1 − 4θk + θk−1

2∆t
− κ∆θk+1 = −(uk+1 · ∇)(2θk − θk−1); (5.3)

where Cs is a shift constant of our choice and

h(u, φ) =−∇ · (λ∇φ⊗∇φ− λ

2
|∇φ|2 − λ

4η2
(φ2 − 1)2)

− (1 + φ)g(ρ1 − ρ0)j − (1− φ)g(ρ2 − ρ0)j − (u · ∇)u.

(5.4)

Several remarks are in order:

• The above scheme is essentially a second-order implicit-explicit scheme with the
second-order backward difference formula (BDF) for the implicit part and the second-
order Adams-Bashforth for the explicit part.
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• To initialize the above scheme, we can compute (u1, p1, φ1, θ1) by using a first-order
semi-implicit scheme, i.e., replacing the second-order BDF and Adams-Bashforth for-
mula in the above by their first-order counterpart. Since the local truncation error
for this first step will be O(∆t2), the overall accuracy will still be second-order.

• The shift constant Cs is introduced to stabilize the integration of φ. Numerical ex-
periences indicate that Cs ∼ 2 would be a suitable choice, and with this choice, the
influence of η on the admissible time step size is very small. Note that in many cur-
rent applications involving complex fluids, ν is usually not too small so the admissible
time step size is largely determined by λ (and the spatial mesh size), in other words,
a larger λ will require a smaller time step.

• At each time step, we only need to solve a generalized Stokes system (5.1) for (uk+1, pk+1),
a (constant coefficient) fourth-order elliptic equation (5.2) for φk+1, and a (constant
coefficient) second-order elliptic equation (5.3) for θk+1.

Next, we describe our approach for solving the generalized Stokes system (5.1).

• If the boundary conditions are periodic, the pressure pk+1 in (5.1) can be easily
eliminated using the divergence-free conditions so (5.1) can be efficiently solved by
using a Fourier-spectral method [33].

• If the velocity satisfies a free-slip boundary condition (cf. [34]), then, (5.1) can be
split into a sequence of Poisson-type equations for uk+1 and pk+1.

• If the boundary conditions in all but one direction are periodic, (5.1) can be reduced
into a sequence of one-dimensional fourth-order equations using a Fourier expansion
in all but one direction [46].

• Finally, for the general cases, the velocity uk+1 and pressure pk+1 can not be decoupled
explicitly. Hence, a proper splitting scheme should be used to approximate (5.1). We
propose to use the new consistent second-order splitting method introduced in [20].
To fix the idea, let us assume that the velocity satisfies the homogeneous Dirichlet
boundary condition. Then, the consistent second-order splitting method for (5.1) is
as follows:

3uk+1 − 4uk + uk−1

2∆t
− νdivDuk+1 +∇(2pk − pk−1) = 2h(uk, φk)− h(uk−1, φk−1),

uk+1|∂Ω = 0,

(5.5)

(∇ψk+1,∇q) = (
3uk+1 − 4uk + uk−1

2∆t
,∇q), ∀q ∈ H1(Ω), (5.6)

pk+1 = ψk+1 + 2pk − pk−1 − ν∇ · uk+1, (5.7)

Note that (5.5) is a Poisson-type equation for uk+1 while (5.6) is a Poisson equation
in the weak form for ψk+1.
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5.2 Well-conditioned spectral-Galerkin method

The spectral method is a high resolution method capable of producing very accurate re-
sults with a substantially smaller number of unknowns than required with classical finite
difference or finite element methods [19, 7]. Hence, in principle it is very suitable for the
direct numerical simulation of complex physical structures, especially when the problem at
hand is set in simple geometries as is the case in many current applications. Here, we shall
use a spectral-Galerkin method to discretize the spatial variables. More precisely, we shall
use Fourier series for the periodic directions, while for the non-periodic directions, we shall
use Chebyshev or Legendre polynomials. We note that all the second-order or fourth-order
elliptic equations that have to be solved at each time step (see above) can be solved by
using the class of fast and well-conditioned spectral-Galerkin methods[45, 46].

6 Numerical results and discussions

To illustrate the robustness and flexibility of our variational approach, we present below
two numerical simulations pertaining to the Marangoni-Benard convection and mixtures
invloving liquid crystals described in Sections 3 and 4.

The computational domain in both examples is a square box of 2π × 2π with periodic
boundary condition in both directions. The systems are solved by using the stabilized semi-
implicit discretization in time described in the previous section and the Fourier spectral
approximation in space.

6.1 Rising of bubble in a Newtonian fluid — a thermally induced Marangoni
effect

In the following example, we simulate the rising bubble in a Newtonian fluid with a variable
temperature. The situation is essentially the same as in Example 5 of [37] except that the
temperature field there was taken to be constant.

The simulation is performed by solving the system (3.9–3.12) with the following param-
eters: ρ0 = 1, η = 0.01, µ = 0.1, γ = 0.1, κ = 0.01 and λ = λ(φ) = 0.1(φ + 1). As in [37],
we rewrite the Boussinesq approximation in (3.9) as

−g(2ρ0 + ρ1 + ρ2)− gφ(ρ1 − ρ2).

The first term is a constant vector which can be absorbed in the pressure and we have
taken ρ1 − ρ2 = −1. We start the simulation with the phase function φ to be 1 inside the
circular bubble near the bottom of the domain and -1 outside the bubble while the initial
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temprature distribution is colder inside the bubble (θ = 0) than outside the bubble (θ = 5).
The initial condition for u is taken to be zero. We have used 128× 128 Fourier modes and
the time step was taken to be 0.002.

In Figure 1, we show the snapshots of the phase, temperature and the velocity field at
four different times. As expected, the bubble rises mainly due to the gravitational force
which also affect the temperature distribution through the velocity field. The temperature
field in turn induces the well-known Marangoni effect through the momentum euqation.
Notice in particular that the level curves of the temperature are more related to the velocity
field than to the phase field. More quantitative investigation of this Marangoni effect will
be carried out in a future work.

6.2 Retraction of Newtonian drop in nematic matrix

Drop retraction is a popular method for measuring the interfacial tension between the drop
and matrix fluids. The basis of this measurement is the relationship between the evolution of
the drop shape and the interfacial tension. Here, we simulate the retraction of a Newtonian
drop in a nematic fluid.

The drop is initially elliptic with semi-axes 2.5 and 1.0. The fluid is Newtonian inside
the drop and nematic in the matrix. Both fluids have the same viscosity and density. If we
use the equilibrium drop radius, viscosity and interfacial tension to rescale the parameters,
the dimensionless parameters are: λ = 1.342 × 10−2, γ1 = 4 × 10−5, ε = 1.265 × 10−2,
δ = 6.325× 10−2, K = 6.708× 10−2, A = 6.708× 10−3 and γ2 = 10. The anchoring type at
the interface is planar, with the director tending to align tangentially to the drop interface.

The director is initially parallel to the long semi-axis of the drop as shown in Figure 2a
while the final director field is shown in Figure 2b. Figure 3a shows the retraction process of
the drop, the results of a Newtonian drop in a Newtonian fluid is also shown for comparison.
When the matrix is nematic, the drop retracts slower than the whole Newtonian case, and
the final drop shape is non-circular. The competition between fmix and fanchor+fbulk makes
the drop point-ended. Because the anchoring energy is not constant along the interface, the
total interfacial energy which includes anchoring energy and mixing energy varies also. This
yields non-constant effective interfacial tension, and the flow pattern as shown in Figure
2b is a direct consequence of associated Marangoni effect. The time scales of our system
are such that the slowly relaxing interfacial profile is driving a weak flow long after the
macroscopic retraction has been completed.

15



Figure 1: Snapshots of the phase, temperature and velocity at t=1, 2, 3, 4.
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(a) (b)

Figure 2: Director fields: (a) t=0; (b) t=29.81.

6.3 Concluding remarks

We presented a general variational approach for the study of mixtures of complex fluids.
In particular, We discussed the special coupling between the transport of the microscopic
variables by the flow and the induced elastic stress. This variational approach enjoys two
unique advantages: the ease with which a wide range of complex rheology can be accommo-
dated, and the conservation of energy which guarantees the well-posedness of the resultant
system. We have also presented an efficient numerical scheme based on a stabilized semi-
implicit discretization in time and a well-conditioned spectral-Galerkin method in space.
To demonstrate the versatility and robustness of this approach, we presented numerical
simulations of the Marangoni-Benard convection and the mixture of nematic liquid crystal
with a Newtonian fluid. We hope that this variational approach will play an increasingly
prominent role in the modeling and simulation of complex fluids.
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[22] M. E. Gurtin, D. Polignone, and J. Viñals. Two-phase binary fluids and immiscible
fluids described by an order parameter. Math. Models Methods Appl. Sci., 6(6):815–831,
1996.

[23] D. Jacqmin. Calculation of two-phase Navier-Stokes flows using phase-field modeling.
J. Comput. Phys., 155(1):96–127, 1999.

[24] R. E. Khayat. Three-dimensional boundary-element analysis of drop deformation for
newtonian and viscoelastic systems. Int. J. Num. Meth. Fluids, 34:241–275, 2000.

19



[25] R. G. Larson. The Structure and Rheology of Complex Fluids. Oxford, 1995.

[26] F. Leslie. Some constitutive equations for liquid crystals. Archive for Rational Me-
chanics and Analysis, 28:265–283, 1968.

[27] J. Li and Y. Renardy. Numerical study of flows of two immiscible liquids at low reynolds
number. SIAM Review, 42:417–439, 2000.

[28] J. Li and Y. Renardy. Shear-induced rupturing of a viscous drop in a bingham liquid.
J. Non-Newtonian Fluid Mech., 95:235–251, 2000.

[29] J. M. Lighthill. Waves in Fluids. Cambridge, 1978.

[30] F. H. Lin and C. Liu. Nonparabolic dissipative systems, modeling the flow of liquid
crystals. Comm. Pure Appl. Math., XLVIII(5):501–537, 1995.

[31] F. H. Lin and C. Liu. Global existence of solutions for the Ericksen Leslie–system.
Arch. Rat. Mech. Ana., 154(2):135–156, 2001.

[32] F. H. Lin and C. Liu. Static and dynamic theories of liquid crystals. Journal of Partial
Differential Equations, 14(4):289–330, 2001.

[33] C. Liu and J. Shen. A phase field model for the mixture of two incompressible fluids
and its approximation by a fourier-spectral method. Physica D, 179:211–228, 2003.

[34] C. Liu and S. Shkoller. Variational phase field model for the mixture of two fluids.
preprint, 2001.

[35] C. Liu and N. J. Walkington. Approximation of liquid crystal flows. SIAM Journal on
Numerical Analysis, 37(3):725–741, 2000.

[36] C. Liu and N. J. Walkington. An eulerian description of fluids containing visco-
hyperelastic particles. Arch. Rat. Mech. Ana., 159:229–252, 2001.

[37] Chun Liu and Jie Shen. A phase field model for the mixture of two incompressible
fluids and its approximation by a Fourier-spectral method. Physica D, 179(3-4):211–
228, 2003.

[38] J. Lowengrub and L. Truskinovsky. Quasi-incompressible Cahn-Hilliard fluids and topo-
logical transitions. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 454(1978):2617–
2654, 1998.

[39] G. B. McFadden, A. A. Wheeler, R. J. Braun, S. R. Coriell, and R. F. Sekerka. Phase-
field models for anisotropic interfaces. Phys. Rev. E (3), 48(3):2016–2024, 1993.

20



[40] W. W. Mullins and R. F. Sekerka. On the thermodynamics of crystalline solids. J.
Chem. Phys., 82, 1985.

[41] S. Osher and J. Sethian. Fronts propagating with curvature dependent speed: Al-
gorithms based on Hamilton Jacobi formulations. Journal of Computational Physics,
79:12–49, 1988.

[42] T. Qian, X. P. Wang, and P. Sheng. Molecular scale contact line hydrodynamics of
immiscible flows. preprint, 2002.

[43] A. D. Rey. Viscoelastic theory for nematic interfaces. Physical Review E, 61(2):1540–
1549, 2000.

[44] J. Rubinstein, P. Sternberg, and J. B. Keller. Fast reaction, slow diffusion, and curve
shortening. SIAM J. Appl. Math., 49(1):116–133, 1989.

[45] Jie Shen. Efficient spectral-Galerkin method I. direct solvers for second- and fourth-
order equations by using Legendre polynomials. SIAM J. Sci. Comput., 15:1489–1505,
1994.

[46] Jie Shen. Efficient spectral-Galerkin method II. direct solvers for second- and fourth-
order equations by using Chebyshev polynomials. SIAM J. Sci. Comput., 16:74–87,
1995.

[47] H. M. Soner. Convergence of the phase-field equations to the Mullins-Sekerka problem
with kinetic undercooling [97d:80007]. In Fundamental contributions to the continuum
theory of evolving phase interfaces in solids, pages 413–471. Springer, Berlin, 1999.

[48] M. Struwe. Variational Methods, Applications to Nonlinear Partial Differential Equa-
tions and Hamiltonian Systems. Springer-Verlag, 1990.

[49] J. E. Taylor and J. W. Cahn. Linking anisotropic sharp and diffuse surface motion
laws via gradient flows. J. Statist. Phys., 77(1-2):183–197, 1994.

[50] E. M. Toose, B. J. Geurts, and J. G. M. Kuerten. A boundary integral method for
two-dimensional (non)-newtonian drops in slow viscous flow. J. Non-Newtonian Fluid
Mech., 60:129–154, 1995.

[51] J. van der Waals. The thermodynamic theory of capillarity under the hypothesis of a
continuous density variation. J. Stat. Phys., 20:197–244, 1893.

[52] P. Yue, J. J. Feng, C. Liu, and J. Shen. A diffuse-interface method for simulating
two-phase flows of complex fluids. J. Fluid Mech, to appear.

21


