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An approximate mathematical model for polytetrafluoroethylene (PTFE) paste extru-
sion through annular dies is developed. The model takes into account the elastic–plas-
tic and viscous nature of the material in its nonmelt state arising from the formation of
fibrils and the presence of lubricant. The radial flow hypothesis has been used to
describe the flow kinematics of PTFE paste in the conical annular section of the die.
The validity of this hypothesis is demonstrated by performing numerical simulations
using a model recently developed for PTFE paste extrusion. Model predictions are
presented for various cases and are found to be consistent with experimental results of
macroscopic pressure drop measurements in rod and tube extrusion. � 2006 American
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Introduction

Because of its high melting point, polytetrafluoroethylene
(PTFE) is processed by techniques such as paste extrusion,
cold pressing, and sintering.1,2 In PTFE paste extrusion, a
fine powder of individual particles (diameter & 0.25 mm) is
first mixed with a lubricating liquid (lube) to form a paste.
The paste is then compacted at a typical pressure of 2 MPa
to produce a cylindrical tube (preform) that is free of air
voids. The next step involves the extrusion of the preform
using a ram extruder at a temperature slightly above 308C
where PTFE particles become reasonably deformable.2 This
is usually followed by evaporation of the lubricant by pass-
ing the extrudate through an oven. Sintering at high tempera-
tures (3808C) is necessary when full strength is required and
porosity must be eliminated for processes such as wire coat-
ing and tube fabrication.2,3

The flow mechanism associated with PTFE paste extrusion
differs significantly from that of polymer melt flow. In paste

extrusion, microscopically, PTFE molecules are confined in

their crystallite and spherulite configurations, whereas in

polymer melt, molecules are randomly positioned, not con-

stricted to a specific shape, and thus are significantly more

mobile. Moreover, during paste flow particles mechanically

interlock and crystallites unwind to form fibrils that intercon-

nect individual particles.4 The formation of fibrils provides

the good dimensional stability of the final extrudates com-

pared to that of the preforms.1–4

Numerous constitutive models have been developed for

flows of viscoelastic materials, such as polymer melts,5 solids

under plastic deformations,6 and elastic–plastic materials that

exhibit strain hardening as in the case of metal forming or

wire drawing.7 Although PTFE paste exhibits strain-harden-

ing effects,1,2,4 little work has been devoted to its flow mod-

eling as an elasto-visco-plastic material.4 Even with the
available equations, significant modifications may still be

necessary to improve the model predictions. The empirical

equation suggested by Benbow and Bridgwater3 cannot

predict the effect of die entrance angle on the extrusion pres-
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sure of PTFE paste, although it works quite well for other

pasty materials.8,9 Because of its empirical nature, modifica-

tions of any theoretical significance are also difficult to incor-
porate. Also the lubrication approximation used by Benbow
and Bridgwater3 is valid for only a very small entrance
angle, which is not consistent with experimental data of
PTFE paste extrusion for higher die entrance angle used in
rod extrusion.4,11 An improved analytical model for orifice
extrusion of viscoplastic materials was recently proposed.12

Because of structure formation (fibrillation), strain-hardening
effects are obtained at high contraction angles during PTFE
flow and therefore these models3,12 are not suitable for PTFE
paste flow through cylindrical and annular dies.

The flow equation suggested by Snelling and Lontz13 ably
and more accurately describes the effects of die design and
extrusion speed, although it does not take into account the
frictional force, which becomes more important when tapered
dies of small entrance angle are used. Also, the analysis pro-
vided by Snelling and Lontz13 does not account for the pres-
sure drop along the capillary length of the die that follows the
entrance (contraction) region. Ariawan et al.4 proposed a vis-
coplastic model to predict the dependency of extrusion pres-
sure on die geometrical parameters for rod extrusion. This ap-
proximate model successfully captured the nonmonotonic de-
pendency of extrusion pressure on die entrance angle and
other geometrical characteristics of the cylindrical die. Its deri-
vation is based on the radial flow hypothesis (RFH, discussed
below in detail), whose validity was previously demonstrated
experimentally.4,13 Although this model does not explicitly
predict micromechanical details of the extrudates, it predicts
the extrusion pressure very well and therefore is very useful in
die design.4 On the other hand, tube extrusion (annular flow)
is an important process from an industrial perspective, which
has not been modeled in the past.

Therefore the main objective of the present work is to gen-
eralize the model of Ariawan et al.4 to tube extrusion and to
validate it using numerical simulations and experimental
data. As will be evident later, the new model is capable of
predicting the processing behavior of paste flow during tube
extrusion, such as the extrusion pressure as a function of
shear rate and the geometrical characteristics of the die.

The organization of this article is as follows. First, the va-
lidity of the RFH is examined by performing flow simula-
tions based on the rheological constitutive model proposed
by Patil et al.14 Then a mathematical model is derived for
the case of the annular die based on the developments of
Snelling and Lontz13 and Ariawan et al.4 Because the model
involves the same material parameters as those of the model
proposed by Ariawan et al.,4 these are determined from
experimentally measured extrusion pressure for rod extrusion.
Model predictions of the dependency of extrusion pressure
on the geometrical characteristics of the die agree well with
experimental data. Finally, a short summary of the results
concludes the article.

Validation of Radial Flow Hypothesis

This hypothesis assumes that the flow is along the radial
direction in the die (assuming a spherical system of coordi-
nates as in Figure 1a) and points located on virtual spherical

surfaces of a constant radius r from the die apex (Figure 1)
have the same radial velocity.4,13 The mathematical form of
the RFH13 for a cylindrical die (Figure 1a) can be written as

dr

dt
¼ � Q

2pð1� cos aÞr2 (1)

where Q is the volumetric flow rate and r is the distance from
the die apex. Based on this hypothesis, the kinematics of
PTFE flow can be calculated at a given volumetric flow rate.
Snelling and Lontz13 and Ariawan et al.4 experimentally found
that the pattern of deformation can be adequately described by
the RFH in the conical zone of a tapered cylindrical die
(Figure 1a); there is no scientific reason to believe that this
would not be true for an annular die. Significant slippage
exists in the tapered zone of the die (including in annular
dies) and this contributes toward the validity of the RFH.

We examine the validity of the RFH numerically by using
the flow model recently developed by Patil et al.14 These
authors proposed a rheological constitutive equation for PTFE
paste that takes into account the continuous change of the
microstructure during flow through fibril formation. It consists
of shear-thinning and shear-thickening terms with their rela-
tive contributions to the stress determined by a structural para-
meter x:

s ¼ ð1� xÞg1ċþ xg2ċ (2)

The structural parameter x represents the fraction of the
domains of the paste that are fibrillated and takes values of 0
and 1 for the unfibrillated and fully fibrillated cases, respec-
tively; ċ is the rate of strain tensor; and Z1 and Z2 are the
shear-thinning and shear-thickening viscosities that are
expressed by a Carreau model14:

Zi ¼ Z0i 1þ ðliII ċÞ2
h iðni�1Þ=2

(3)

where i ¼ 1 refers to shear-thinning (n1<1) and i ¼ 2 refers
to shear-thickening (n2 > 1). The values of parameters Z0i,
Zi, and li are the infinite shear viscosity, the zero shear vis-
cosity, and a characteristic relaxation time, respectively.

The evolution of the structural parameter is described by a
first-order kinetic differential equation:

v � rx ¼ f � g (4)

where f and g denote, respectively, the rate of creation and
breakage of fibrillated domains in the paste. These functions
are given by

fðġ;cÞ ¼ aġ
ffiffiffiffi
c

p
gðġ; xÞ ¼ bġx

)
ð5Þ

where a and b are dimensionless rate constants for fibril cre-
ation and breakage, both assumed to be 1 in our simulations; C
is the flow-type parameter; and ġ is the magnitude of the strain
rate tensor. The flow-type parameter C indicates the relative
strength of straining and rotation in a mixed flow.15–17 In the
present work, we use finite-element simulations based on this
constitutive model to validate the RFH inside the conical
section of the die during rod extrusion and tube extrusion

AIChE Journal December 2006 Vol. 52, No. 12 Published on behalf of the AIChE DOI 10.1002/aic 4029



(Figure 1). Patil et al.14 showed that predictions of this model
agree very well with macroscopic experimental data of extru-
sion pressure as a function of flow rate (shear rate) and geo-
metrical characteristics of the die.

Because of the presence of lubricant in the paste, significant
slippage occurs at the die walls. This was determined experi-
mentally14 by establishing a relationship between the slip
velocity vS and the wall shear stress sw using the Mooney
analysis, vS ¼ Csw.

18 The simulations in the present study are
performed by using the parameters for a paste studied by
Ochoa and Hatzikiriakos19 and Patil et al.,14 with C ¼ 1.92
m �MPa�1 � s�1. All the other model parameters are listed in
Table 1. Simulations are performed for three different cases
sketched in Figure 1: (a) cylindrical die, (b) annular die with
an axisymmetric inside cylinder of varying diameter that has
the same apex as the outside cylindrical surface, and (c) annu-
lar die with an inside cylinder of constant diameter. The geom-

etry in Figure 1b is convenient for mathematical development,
but that in Figure 1c is more common in applications.

Cylindrical dies

The simulations are first performed for cylindrical dies
with entrance angles of 8, 30, 60, and 908 for various values
of the apparent shear rate, defined as ġA : 32Q/(pDa

3),
where Q is the volumetric flow rate and Da is the capillary
diameter at the exit. The inlet and outlet diameters of the

Figure 1. Illustration of the ‘‘radial flow’’ hypothesis.

The hypothesis assumes the existence of a virtual surface of radius r as measured from the die apex, on which all paste particles moving
toward the apex have the same velocity: (a) cylindrical die for rod extrusion and (b) annular die with inside cylinder of varying diameter
(mandrel pin) for tube extrusion, and (c) annular die with inside cylinder of constant diameter (mandrel pin) for tube extrusion.

Table 1. Parameters of Eq. 3 Used in the Flow Simulations

Parameter Shear-thinning Shear-thickening

Z0 (Pa � s) 4000 1600
l (s�1) 0.3 1
n 0.5 1.3
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conical section are Db ¼ 9.52 � 10�3 m and Da ¼ 5.08 �
10�4 m, respectively. These are typical die dimensions used
in experiments that are presented later. To demonstrate the
validity of the RFH, radial velocity profiles are plotted vs.
angle y (�a � y � a) along the virtual peripheral surfaces at
constant radial positions from the die apex. Figure 2 shows
representative velocity profiles at three different radial posi-
tions from the die apex for a die entrance angle of 308. This
indicates that the velocity variation from the centerline to die
wall is generally small and in agreement with the RFH,
which implies flat velocity profiles. A small variation in the
velocity profile occurs at the inlet to the die, which is consid-
ered unimportant because the contribution of this part of the
flow to the overall pressure drop is negligible.

Figure 3 depicts the percentage variation of velocity,
defined as the difference between velocity at the centerline
and the die wall normalized by the centerline velocity, plot-
ted against the die entrance angle at three radial locations
(a), (b), and (c). The radial positions (a), (b), and (c) are
given by r ¼ R/sin a, where R and a indicate corresponding
cylindrical radius and die entrance angle (Figure 1a). In
Figures 3, 5, and 7 the three cylindrical locations R ¼ 1.5 �
10�3, 3.0 � 10�3, and 4.0 � 10�3 m are identical, although
corresponding radial locations (a), (b), and (c) vary with die
entrance angle. The variation of the velocity profile is signifi-
cant only for (c) near the inlet for dies of high entrance
angle. This variation decreases rapidly in the downstream
direction and, in fact, in the middle of the die [location (b)]
becomes insignificant. At position (b), the velocity variation
is 12% for dies having an entrance angle of 908 and 2.1%
for dies having an entrance angle of 608. For die entrance
angles 2a � 608 (typically used in paste extrusion) the varia-
tion is negligible and therefore the RFH applies.

To study the effect of the apparent shear rate ġA and the die
reduction ratio RR : Db

2/Da
2 on the velocity variation along

the virtual peripheral surfaces at constant r from the die apex,
simulations are performed for a cylindrical die having an en-
trance angle of 2a ¼ 308 and a reduction ratio RR ¼ 352, for

apparent shear rate values ranging from 1875 to 8304 s�1. Near
the outlet [position (a)], the percentage velocity variation nor-
malized by the centerline velocity is found to be 0.015 and
0.026% for the apparent shear rates of ġA ¼ 1875 s�1 and ġA ¼
8304 s�1, respectively. Similarly at position (b), the normal-
ized velocity variations are 0.23 and 0.33% for the apparent
shear rates of ġA ¼ 1875 s�1 and ġA ¼ 8304 s�1, respectively.
Simulations were also performed for various die reduction
ratios ranging from 56 to 567 at the apparent shear rate of
5869 s�1. The percentage velocity variations are 0.058 and
0.02% at position (a) for RR ¼ 56 and 567, respectively. At
position (b), they are 0.8 and 0.24%. Therefore, the RFH is
more accurate at lower flow rates and large reduction ratios.

Annular die with varying diameter mandrel pin

Simulations were also performed for annular dies with an axi-
symmetric inside surface of varying diameter (mandrel pin)
having the same apex with the outside cylindrical surface
(Figure 1b). The existence of a single apex produces a die ge-
ometry that allows the development of an analytical flow model
(see Mathematical Model section below) in spherical coordinates
(r and y define the entire flow field). Simulations were per-
formed for various die entrance angles ranging from 8 to 908 at
various values of apparent shear rate ġA, which is defined as
ġA : 48Q/p(Da � Dp)

2(Da þ Dp), where Q is the volumetric
flow rate. The die and mandrel diameters at the inlet are Db

¼ 9.5 � 10�3 m and Dm ¼ 3.0 � 10�3 m, respectively, and
at the outlet are Da ¼ 5.08 � 10�4 m and Dp ¼ 1.6 � 10�4 m,
respectively (Figure 1b). The coincidence of the apex requires
Dp ¼ Dm(Da/Db). Figure 4 depicts representative velocity pro-
files along the virtual peripheral surfaces at three various radial
positions from the die apex for a die entrance angle of 308 (see
inset of Figure 4). These are qualitatively similar to the profiles
in the cylindrical dies (Figure 2). Small variations in the velocity
profiles are obtained only at the inlet (c) and their contributions
to the overall pressure drop are insignificant.

Figure 5 shows the percentage variation of velocity normal-
ized by the velocity on the mandrel surface, plotted against the

Figure 2. Velocity profiles along the spherical surfaces
at radius r = 5.8 3 10–3 m (a), 1.16 3 10–2 m
(b), and 1.54 3 10–2 m (c) for cylindrical die
(h = 0 corresponds to the centerline).

Figure 3. Percentage variation of velocity normalized by
the centerline velocity, from the centerline to
the die wall plotted with die entrance angle.

The three surfaces are defined by the cylindrical radius R = 1.8
� 10–3 m (a), 3.0� 10–3 m (b), and 4.0� 10–3 m (c).
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die entrance angle at the same radial locations. The variation of
velocity is significant only near the inlet [location (c)] and
increases with die entrance angle. However, variations in ve-
locity over the lower portion of the die that contribute signifi-
cantly to the pressure drop are very small for dies having die
entrance angles up to 608 (typically used in extrusion opera-
tion). Therefore the RFH can be used safely for dies up to en-
trance angles of 608.

Annular die with axisymmetric cylindrical mandrel pin

Similar simulations were performed for annular dies with
an inside cylinder of constant diameter (mandrel pin) as
depicted in Figure 1c. The die entrance angle ranges from 8

to 908. The outer diameter of inlet of the conical section of
the die is Db ¼ 9.5 � 10�3 m, the outer diameter of outlet is
Da ¼ 2.0 � 10�3 m, and the diameter of the axisymmetric
constant diameter cylinder is Dp ¼ 1.9 � 10�3 m (Figure 1c).
Although the analytical mathematical model will be derived
for an annular die having a single apex (Figure 1b), it can still
be used for annular dies with cylindrical mandrel pins, once
the RFH is proven for this geometry.

Figure 6 depicts representative velocity profiles along the
virtual peripheral surfaces at three radial positions from the
die apex for a die having an entrance angle of 308 (see inset
of Figure 6). The results are similar to those discussed ear-
lier. Small variations in the velocity profiles are obtained
only at the inlet to the die. Figure 7 shows the percentage
variation of velocity normalized by the centerline velocity on
the mandrel surface, plotted against the die entrance angle at
the three radial locations. The variation of velocity is signifi-
cant only near the inlet and only for dies having a large en-
trance angle. The variation in velocity profile over most of
the die is very small and increases up to 14.8% for a die en-
trance angle of 908. This clearly indicates that the ‘‘radial
flow’’ hypothesis can be used safely for annular dies having
an entrance angle of up to 608. In a comparison of Figures 5
and 7, it will seem to the observer that the RFH applies bet-
ter in annular dies having mandrel pin of constant diameter.

Mathematical Model

Now that the validity of RFH has been established for cy-
lindrical and annular dies, an analytical model will be
derived to describe annular flow of PTFE paste. It is based
on the RFH and generalizes the earlier model of Ariawan
et al.4 for annular dies.

Annular die without die land (L/Da = 0)

Consider first an annular die without the cylindrical die
land (Figure 1b). Figure 8b shows a volume element bounded

Figure 4. Velocity profiles along the spherical surfaces
at radius r = 5.8 3 10–3 m (a), 1.6 3 10–2 m
(b), and 1.54 3 10–2 m (c) for an annular die
with inside cylinder of varying diameter.

y = 158 corresponds to the outside wall; y = 08 does not
exist because of the presence of the internal mandrel pin.

Figure 5. Percentage variation of velocity from the wall
of the varying diameter mandrel pin to the
die wall normalized by the velocity at the wall
of the varying diameter cylinder, plotted with
die entrance angle at three different spherical
locations (a), (b), and (c) defined in Figure 3.

Figure 6. Velocity profiles along the spherical surfaces
at radius r = 5.8 3 10–3 m (a), 1.6 3 10–2 m
(b), and 1.54 3 10–2 m (c) for an annular die
having a mandrel pin of constant diameter.
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by the spherical surfaces of radius r and (r þ dr) as meas-
ured from the virtual die apex, and by four planes at the azi-
muthal locations of y, y þ dy, f, and f þ df. The RFH
implies that this element will flow toward the die apex, such
that its bounding surfaces remain parallel to those at its pre-
vious position. Because the element does not rotate or devi-
ate from its straight path, this also implies that the stresses
acting on the element are purely normal stresses. In fact,
these stresses are principal stresses, with the radial direction
and the directions normal to the four bounding planes as the
principal directions:

s ¼
sI 0 0

0 sII 0

0 0 sIII

2
4

3
5 ¼

sr 0 0

0 sy 0

0 0 sf

2
4

3
5 (6)

We further assume sy ¼ sf to simplify the mathematics.
In reality, the squeezing in the y and f directions is compa-
rable in magnitude if not equal. The force balance on the
volume element (see Figure 8b) in the radial direction gives
rise to an equilibrium relation:

�2pr2ðcosO� cos aÞdsr � 4prðcosO� cos aÞsr dr
þ4psyrðcosO� cos aÞdr þ 2pfsyrðsinOþ sin aÞdr ¼ 0

(7)

where O ¼ tan�1[(Dm/Db)tan a] and f is the coefficient of
friction. By letting B ¼ f(sin O þ sin a)/2(cos O � cos a)
and N1 ¼ sr � sy, and rearranging, we obtain

dsr
dr

� 2B
sr
r
¼ 2ðsy � srÞð1þ BÞ

r
¼ �2N1ð1þ BÞ

r
(8)

The term N1 is similar to the first normal stress difference
in polymer rheology, except that, in this case, it is for a

nonviscometric flow. To solve the above differential equa-
tion, a relationship describing the first normal stress differ-
ence for the solid–liquid (paste) system in question is thus
required. For an ideally plastic material, Saint-Venant’s
theory of plastic flow gives N1 ¼ s0 at the incipience of
yielding, where s0 is the initial yield stress of the mate-
rial.20 However, for a completely plastic flow to occur
within an elasto-visco-plastic material, N1 has to sufficiently
exceed s0 so as to overcome the initial yield stress, the
elastic stress, and any viscous resistance that may develop
during the flow.6,21

The generalized Newton’s law for viscous flow states that
r ¼ gė and Hooke’s law of elasticity establishes the relation-
ship r ¼ Ee, where Z and E are the viscosity coefficient and
the Young’s modulus, respectively, and e and ė are the loga-
rithmic strain and strain rate tensors, respectively. Combining
the two laws gives the following stress–strain relationship for
a viscoelastic material6:

r ¼ Eeþ Zė (9)

Using the above relation, the term sy � sr adopts the
form of

sy � sr ¼ Eðey � erÞ þ Zðėy � ėrÞ (10)

where ey � er ¼ eII � eI and ėy � ėr ¼ ėII � ėI are the maxi-
mum strain gmax and the maximum strain rate ġmax, respec-
tively. The term ‘‘maximum strain’’ was introduced by Lud-
wik,22 who realized that N1 should be a unique function of
gmax. Ludwik is also credited with the modified Hooke’s law
expression that takes the final form of a power law equation

r ¼ Cen (11)

where C is Young’s modulus when n ¼ 1.
Because of the presence of both the liquid and solid

phases in the PTFE paste system, it is necessary to con-
sider PTFE paste as an elasto-visco-plastic material. To
model its flow, the expression suggested by Snelling and
Lontz13 is adopted, which is essentially the Kelvin stress–
strain relation Eq. 9, with modifications that are similarly
used in the Ludwik power law model Eq. 11 for the elastic
(strain-hardening) term, and the generalized power law
model for the viscous resistance term. The resulting expres-
sion for the first normal stress difference N1 is then written
as follows:

sy � sr ¼ Cgnmax þ Zġmmax (12)

A more general three-dimensional form of Eq. 12 can be
written by considering the general model for an elastic solid,
such as that used by Rivlin,23,24 and for a viscous fluid, in
terms of the invariant functions of the strain and strain rate
tensors, respectively.25 However, the objective here is to
derive a simple analytical flow model to be compared with
macroscopic extrusion pressure measurements.

To account for the initial yield stress, an additional term
may be included on the right-hand side of Eq. 12. However,
this term is expected to be negligible compared to the other
terms, as indicated by the fact that the initial strength of the
preform is much weaker than that of the extrudate.

Figure 7. Percentage variation of velocity from the wall
of the constant diameter mandrel pin to the
die wall normalized by the velocity at the wall
of the constant diameter cylinder, plotted
with die entrance angle at three different
spherical locations (a), (b), and (c) defined in
Figure 3.
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Now, it can be shown that the volume element at a distance
rb from the virtual die apex experiences a maximum strain of

gmax ¼ ey � er ¼ 3ey

¼ 3

Z r

rb

dr

r
¼ �3 ln

rb
r ð13Þ

The maximum strain rate can then be expressed as

ġmax ¼
dgmax

dt
¼ 3

dr

rdt
(14)

The ‘‘radial flow’’ hypothesis for annular conical dies of
single apex can be written as

dr

dt
¼ �Volumetric flow rate

Area of surface
¼ � Q

2pðcosO� cos aÞr2 (15)

Figure 8. (a) Annular die with varying diameter mandrel pin with volume element and (b) its dimensions in the an-
nular conical zone of a tapered die according to ‘‘radial flow’’ hypothesis.

Thus, the maximum strain rate is (see Eq. 14)

ġmax ¼
3Q

2pðcosO� cos aÞr3 (16)

and the normal stress difference is

N1 ¼sr�sy ¼C 3ln
rb
r

� �h in
þ Z

3Q

2pðcosO� cosaÞr3
� �m

(17)

Substituting the above into Eq. 8 yields the following
expression:

�sr¼2ð1þBÞr2B C

Z ½3lnðrb=rÞ�n
r2Bþ1

dr

�

þ Z
�ð3mþ2BÞ

3Q

2pðcosO�cosaÞ
� �m

1

r3mþ2B

� �	
þ r2BĈ

(18)

where the constant of integration Ĉ is evaluated using the
boundary condition sr ¼ sra when r ¼ ra:

Ĉ¼�sra
r2Ba

�2ð1þBÞ C

Z
r a

3lnðrb=rÞ½ �n
r2Bþ1

dr

�

þ Z
�ð3mþ2BÞ

3Q

2pðcosO�cosaÞ
� �m

1

r3ma þ2B

� �	
ð19Þ

The extrusion pressure can then be calculated using Eqs. 8
and 12 with r ¼ rb, that is,

Pextrusion ¼ srb ¼ sraRRB þ 2ð1þ BÞ

� C

 
Db

2 sin a

!2B Z rb¼Db=2 sin a

ra¼Da=2 sin a

½3 lnðrb=rÞ�n
r2Bþ1

dr þ Z
ð3mþ 2BÞ

8<
:

� 12Q sin3 a
p cosO� cos að ÞD3

b

� �m
RRBþð3m=2Þ � 1
h i)

ð20Þ
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where sra is the stress at the die exit; RR is the reduction ra-
tio of larger to smaller cross-sectional area of annular conical
section inlet and outlet, respectively, defined as (D2

b � D2
m)/

(D2
a � D2

p); and C, Z, n, m, and f are material constants that
have to be determined experimentally.

When an orifice die is used, sra may be present at the die
exit as the result of a pulling force during extrudate wind-up
or calendering. However, sra is typically negligible and the
expression for extrusion pressure can then be simplified to

Pextrusion ¼ 2ð1þ BÞ C Db

2 sin a


 �2BR rb¼Db=2 sin a
ra¼Da=2 sin a

3 ln rb=rð Þ½ �n
r2Bþ1

dr
n

þ Z
ð3mþ2BÞ

12Q sin3 a
p cosO�cos að ÞD3

b

h im
RRBþð3m=2Þ � 1
� 
o ð21Þ

Numerical integration is required in Eq. 21. However, for
a range of the die reduction ratio of interest, the following
approximation can be used with reasonable accuracy in
Eq. 21, allowing an analytical solution to be obtained:

lnðrb=rÞ � aðrb=rÞb (22)

where a and b are constant fitting parameters.

Annular die with die land (L/Da = 0)

Additional pressure drop in the die land can be computed
using a similar force balance. The forces acting on a volume
element in the capillary zone are shown in Figure 9. A force
balance on the element yields

ðsz þ dszÞp
D2

a �D2
p

4
� szp

D2
a �D2

p

4
¼ fsr0pðDa þDpÞdz (23)

or

dsz
dz

¼ 4fsr0 ðDa þDpÞ
ðD2

a �D2
pÞ

¼ 4ðDa þDpÞf ðN1 þ szÞ
ðD2

a �D2
pÞ

(24)

where N1 is the previously defined first normal stress differ-
ence, which is expected to be significant as a result of the
elastic nature of PTFE paste. At the end of the die conical
zone (thus, at the entrance of the die capillary zone), N1 can
be calculated using Eq. 17 with r ¼ ra. Assuming N1 to be
approximately constant throughout the capillary zone of the
die, the force balance becomes

dsz
dz

¼ 4ðDa þDpÞf ðN1a þ szÞ
ðD2

a �D2
pÞ

(25)

where

� N1a ¼ C
3

2
lnðRÞ

� �n
þ Z

12Q sin3 aR3=2

pðcos O � cos aÞD3
b

� �m

Solving Eq. 24 and applying the boundary condition sz ¼
szL at z ¼ L, yields

sz ¼ N1a e4f ðz�LÞðDaþDpÞ=ðD2
a�D2

pÞ � 1
h i

þszLe4f ðz�LÞðDaþDpÞ=ðD2
a�D2

pÞ ð26Þ

where szL is the stress imposed at the exit of the die, which
is typically negligible or zero.

The stress present at the entrance of the die capillary zone
(sz0) is obtained from Eq. 26 with z ¼ 0:

sz0 ¼ N1a e�4f ðDaþDpÞL=ðD2
a�D2

pÞ � 1
h i

þ szLe�4f ðDaþDpÞL=ðD2
a�D2

pÞ

(27)

By putting e ¼ (1 � Dp)/Da in Eq. 27, sz0 can be written
as

sz0 ¼ N1aðe�4fL=eDa � 1Þ þ szLe�4fL=eDa (28)

The total extrusion pressure can be obtained by substitut-
ing sra ¼ �sz0 into Eq. 20.

Model Predictions and Comparison
with Experiments

In this section the dependency of the extrusion pressure on
the apparent shear rate, the die entrance angle (2a), and the
die reduction ratio (RR) is predicted by using the proposed
model (Eq. 20), for cylindrical (Figure 1a) and annular dies
(Figure 1b) with no die land section. Extrusion experiments
were performed with cylindrical dies using two PTFE fine
powder resins supplied by Solvay-Solexis (Milan, Italy) of
primary and secondary particle diameters of 0.25 and 450–
550 mm, respectively, and standard specific gravity of 2.16.
The paste was prepared by mixing resins with isoparaffinic
liquid as lubricant (Isopar1 H) supplied by ExxonMobil
Chemical (Houston, TX) with properties listed in Table 2.
The two resins have different molecular weights and are la-
beled as resins A and B in Table 3. The material parameters
C, n, Z, m, and f in Eq. 20 are evaluated by fitting a single
set of experimental data for resins A and B in a cylindrical
die (see Figure 10).4 Dimensions of the cylindrical die are:
Db ¼ 9.5 � 10�3 m, Da ¼ 5.0 � 10�4 m, and the die en-
trance angle was 2a ¼ 608. The model parameters C, n, Z,
m, and f are determined by nonlinear dynamic optimization
using a Gauss–Newton iterative algorithm that minimizes
the difference between model predictions of the extrusion

Figure 9. Force balance on volume element in the die
capillary zone.
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pressure and the measured values. The standard deviations for
all these parameters were <5%. The fitted values of the param-
eters are listed in Table 3 for resins A and B. Because these
are material parameters independent of the die geometry, they
can be used in predicting extrusion pressure for cylindrical and
annular dies of different geometry, as long as the ‘‘radial flow’’
hypothesis is valid. Note the small value of the friction factor
f, which implies that the pressure drop in the die land is much
smaller compared to that in the conical zone. Typically, the
pressure drop in the die land can account for about 5% of the
total pressure drop for short dies (L/Da ¼ 5) to 30% for long
dies (L/Da ¼ 40), depending on the type of resin.

Figure 10 plots the extrusion pressure for resins A and B
in rod extrusion. The solid lines indicate model prediction
using parameters determined by best fitting of the experimen-
tal data. The steady-state extrusion pressure generally inc-
reases with increasing apparent shear rate. Although resin A
has a lower viscosity than that of resin B, it has a larger elas-
tic constant, and the strain-hardening effect leads to a higher
pressure drop than that of resin B. The dotted lines indicate
model predictions for tube extrusion using the same model
parameters. As expected, the extrusion pressure for annular
dies is higher than that for cylindrical dies under comparable
conditions because of the presence of the additional inside
cylinder wall.

Once the material parameters are determined, the model
can be used to predict the effects of die geometry on extru-
sion pressure. Figure 11 shows the model predictions for the
dependency of extrusion pressure on the die reduction ratio
for cylindrical die and annular die with varying diameter
mandrel pin (Figure 1b) using the parameters for resin A.
The reduction ratio of the die is increased by decreasing the
small diameter Da for the cylindrical die, and both Da and
Dp for the annular die. The nonlinear dependency of extru-
sion pressure on the die reduction ratio is clearly seen.

Figure 12 depicts the model prediction for the dependency
of the extrusion pressure on the die entrance angle for cylin-
drical and annular dies. One observes that the extrusion pres-
sure initially decreases and goes through a minimum until it
again increases with increasing die entrance angle. In both
cylindrical and annular dies, the minimum extrusion pressure
is required for a die with die entrance angle of around 88.
This value depends on the value of the material parameters.

To further test the validity of the proposed mathematical

model, experiments were performed using resin B in an an-
nular die with a cylindrical die land attached. The annular
die has an exit diameter of Da ¼ 6.48 � 10�3 m, a mandrel
pin of diameter Dp ¼ 4.7 � 10�3 m, a die entrance angle of
2a ¼ 1808, a length to diameter ratio L/Da ¼ 35, and a
reduction ratio of (D2

b � D2
p)/(D

2
a � D2

p) ¼ 35. Details for
the experimental procedure can be found in previous publica-
tions.4,19,26,27 Figure 13 compares the measured steady-state
extrusion pressure as a function of the apparent shear rate
with model predictions using the fitted values of the various
parameters listed in Table 3. The agreement between the two
is excellent and indicates that our model is capable of accu-
rate description of paste extrusion for both cylindrical and
annular dies.

Table 2. Physical Properties of Isopar
1
/ H Lubricant

Property Isopar1/ H

Specific gravity, kg/m3 (258C) 760
Surface tension, N/m (258C) 2.37 � 10�2

Vapour pressure, Pa (388C) 104
Viscosity, Pa � s (258C) 1.09 � 10�3

Table 3. Values of Material Constants and Coefficient of
Friction Needed in Eq. 25 to Predict the Extrusion Pressure

for Paste Slow in Cylindrical and Annular Dies

Resin C (MPa) n Z (MPa � s) m f

A 1.14 � 10�1 2.28 1.25 � 10�3 1.21 1.3 � 10�4

B 8.92 � 10�2 2.13 3.56 � 10�3 1.11 1.12 � 10�4

Figure 10. Effect of apparent shear rate on the extru-
sion pressure of PTFE paste for a cylindrical
(rod extrusion) and an annular conical die
(tube extrusion).

The experimental data refer to rod extrusion using an ori-
fice die (L/D = 0), having RR = 352, 2a = 608.

Figure 11. Effect of die reduction ratio on the extrusion
pressure of PTFE paste for a cylindrical (rod
extrusion) and an annular die (tube extru-
sion).
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Conclusions

Numerical simulations were performed for conical and an-
nular dies by using a combined shear-thinning and shear-
thickening rheological constitutive model proposed by Patil
et al.14 to study the validity of the RFH during PTFE paste
flow. The numerical results have shown that the ‘‘radial
flow’’ hypothesis is valid for both cylindrical and annular
dies having a contraction angle up to 608. Based on these
findings, a simple flow model is developed to predict the de-
pendency of extrusion pressure on the extrusion speed (appa-
rent shear rate) in annular dies. The model considers the
paste as an elasto-visco-plastic material that exhibit both
strain-hardening and viscous resistance effects during flow.
Comparison with limited experimental data from both cylin-
drical and annular dies was found to validate the usefulness
of this analytical and approximate but simple model. The

model successfully predicts the dependency of extrusion
pressure on apparent shear rate for tube extrusion using
model parameters determined by fitting data for rod extru-
sion. The model was also used to predict the dependency of
extrusion pressure on die geometrical parameters.

A final comment relates to the limitations of the model.
Although the extrusion pressure can be well predicted as a
function of the operating parameters and the geometrical
characteristics of the dies, the material’s structure (fraction
of fibrillated domains) is not explicitly calculated. This limi-
tation is the subject of a future study and it would be ideal
to have an analytical model that can relate flow kinematics
and structure with the mechanical properties of the final
extrudates as in the numerical flow model of Patil et al.14

Acknowledgments

This work was supported financially by a grant from Solvay-Solexis,
Bollate, Milan, Italy.

Notation

MM, MMM, MMMMa, b ¼ fitting parameters (Eq. 22)
B ¼ model parameter defined as f(sin O þ sin a)/

2(cos O � cos a)
C ¼ proportionality constant for the elastic term in

Eq. 11, Ludwik’s power law model
Ĉ ¼ constant of integration
Da ¼ die exit diameter
Db ¼ die entrance diameter
Dm ¼ mandrel diameter at the inlet of the annular

die
Dp ¼ mandrel diameter at the exit of the annular

die
E ¼ Young’s modulus of elasticity
f ¼ Coulomb’s law coefficient of friction, between

PTFE paste and die wall
f ¼ rate of creation of fibrillated domains (Eq. 5)
g ¼ rate of breakage of fibrillated domains (Eq. 5)
L ¼ length of die land
m ¼ power law index for the viscous term of Eq.

12
ni, n ¼ power law indices for the elastic term of Eqs.

3 and 12, (i ¼ 1, 2)
N1, N1a ¼ first normal stress difference (N1a is the first

normal stress difference calculated at the
exit of the die)

Pextrusion ¼ extrusion pressure
Q ¼ volumetric flow rate

RFH ¼ ‘‘radial flow’’ hypothesis
RR ¼ die surface reduction (contraction) ratio
Ra ¼ average roughness

r, y, f ¼ spherical coordinate axes used in force analy-
sis in the die conical (entrance) zone (if
used as subscripts, these indicate the direc-
tions in which a particular vector is acting)

rb, ra ¼ radial distances as measured from the virtual
die apex to the entrance and exit of the die
conical zone, respectively

t ¼ time
v ¼ velocity field vector
vS ¼ slip velocity
z ¼ axial coordinate

Greek letters

MM, MMM, MMMMa ¼ half die entrance angle
a, b ¼ dimensionless rate constants used only

in Eq. 5
ġ ¼ rate of strain tensor

Figure 12. Effect of die entrance angle (2a) on the
extrusion pressure of PTFE paste for a cy-
lindrical die (rod extrusion) and an annular
die (tube extrusion).

Figure 13. Effect of apparent shear rate on the extru-
sion pressure of PTFE (resin B) paste for an
annular die (tube extrusion).
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ġA ¼ apparent shear rate
gmax, ġmax ¼ maximum strain and strain rate, respectively

(maximum strain is defined as the differ-
ence of strains in the first two principal
directions)

eI, eII, eIII ¼ strains in the three principal directions
er, ey, ef ¼ strains in the three principal directions

e, ė ¼ strain and strain rate, respectively
Z ¼ viscosity coefficient
Z0 ¼ zero shear viscosity in Eq. 3
Z ¼ infinite shear viscosity in Eq. 3
li ¼ characteristic relaxation times in Eq. 3 (i ¼

1, 2)
x ¼ structural parameter that represents the frac-

tion of the fibrillated domains
s ¼ stress
sw ¼ wall shear stress

sI, sII, sIII ¼ stresses in the three principal directions
sr, sy, sf ¼ stresses in the three principal directions

s0 ¼ yield stress
t ¼ stress tensor
C ¼ flow type parameter
O ¼ angle of the mandrel pin
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