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ABSTRACT Muscle contraction underlies many essential functions such as breathing, heart beating, locomotion, regulation of
blood pressure, and airway resistance. Active shortening of muscle is the result of cycling of myosin cross-bridges that leads to
sliding of myosin filaments relative to actin filaments. In this study, we have developed a computer program that allows us to
alter the rates of transitions between any cross-bridge-states in a stochastic cycle. The cross-bridge states within the cycle are
divided into six attached (between myosin cross-bridges and actin filaments) states and one detached state. The population of
cross-bridges in each of the states is determined by the transition rates throughout the cycle; differential equations describing
the transitions are set up as a cyclic matrix. A method for rapidly obtaining steady-state exact solutions for the cyclic matrix has
been developed to reduce computation time and avoid the divergence problem associated with numerical solutions. In the
seven-state model, two power strokes are assumed for each cross-bridge cycle, one before the release of inorganic phosphate,
and one after. The characteristic hyperbolic force-velocity relationship observed in muscle contraction can be reproduced by the
model. Deviation from the single hyperbolic behavior at low velocities can be mimicked by allowing the rate of cross-bridge-
attachment to vary with velocity. The effects of [ATP], [ADP], and [Pi] are simulated by changing transition rates between
specific states. The model has revealed new insights on how the force-velocity characteristics are related to the state transitions
in the cross-bridge cycle.

INTRODUCTION

In muscle contraction, the relationship between shortening

velocity and the load on the muscle can be approximated

mathematically as a rectangular hyperbola (1). The relation-

ship succinctly summarizes a muscle’s mechanical perfor-

mance. With a two-state cross-bridge model, A. F. Huxley

(2) has demonstrated that the inverse relationship between

force and velocity is a reflection of the fundamental steps

governing the interaction between the myosin cross-bridges

and the actin filaments. The actomyosin interaction is be-

lieved to be stochastic, that is, each step (either a physical

transition or a chemical reaction) within the cross-bridge

cycle influences the probability of occurrence of the fol-

lowing steps (3–6). The force-velocity relationship is known

to be affected by intracellular concentrations of substrate

(ATP) and metabolites (ADP, inorganic phosphate, H1), and

these effects can be interpreted in terms of direct perturbation

on the mechanical transitions in the cross-bridge cycle by

chemical forces (5,7–13). Details regarding how the events

within the cross-bridge cycle shape the force-velocity rela-

tionship, however, are not entirely clear. To further our under-

standing of muscle contraction at the molecular level,

increasingly complex models are being used to explain the

force-velocity relationship and how it can be changed under

different conditions (2,6,14,15). In this study, we have

developed a seven-state model to specifically address the

question of how ATP and its metabolites alter the transitions

within the cross-bridge cycle and hence modify the charac-

teristics of the force-velocity relationship. In this study, we

also investigated the biphasic behavior of velocity in muscles

shortening at near-maximal load (16–18) and explained the

behavior in terms of velocity-dependence of transition rates.

Another major component of this study is the development

of a rapid computational method for obtaining exact solu-

tions of simultaneous equations from a cyclic matrix of any

size. This new tool is particularly suited for analyzing cyclic

interactions or reactions, such as those found in the muscle

cross-bridge cycle. One major advantage of this tool is that it

allows investigators to formulate the cross-bridge cycle with

virtually unlimited number of states and monitor the flux of

cross-bridges in and out of each state in real-time, because of

its high computational efficiency. Another advantage of this

method compared to conventional numerical methods is that

it does not have a nonconvergence problem where numerical

iterations do not lead to a solution, and can handle stiff

matrices (matrices with widely varying rate constants) that

need to be used in the cross-bridge cycle simulation.

METHODS

The cross-bridge cycle

The cross-bridge cycle (Fig. 1) used in simulating the force-velocity

behavior of muscle is essentially the same as those proposed previously by

us (3,5,14) and by others (2,6,9–13,15,19). The biochemical basis of the

cross-bridge cycle is based on the model of Lymn and Taylor (20). The

force-velocity relationship as first described by Hill (1) is a steady-state
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muscle property, as opposed to the non-steady-state properties such as

velocity (21) and tension (19) transients. The cross-bridges occupy both the

attached and detached states. Two power strokes per cycle are assumed

based on the findings of Dantzig et al. (9,10) and of Wang and Kawai

(11,12). The first power stroke is assumed to occur before the phosphate

release (Fig. 1), and a second one is assumed to occur after the phosphate

release. This is consistent with the finding that inorganic phosphate inhibits

force production in skinned muscle fibers (8). For simplicity, cross-bridges

occupying the attached states before the first power stroke are assumed to

generate no force, and the cross-bridges occupying the attached states after

the second power stroke are assumed to generate twice as much force as

those do in states between the first and second power strokes. The release of

ADP is assumed to be after the second power stroke, because detention of

ADP release has been found to increase muscle force (5,22). The rigor

bridges (A�M, Fig. 1) are assumed to be force-bearing bridges because de-

tention of cross-bridges in that state by lowering ATP concentration has been

found to increase muscle force (5,22).

States 1 and 2 (Fig. 1) are chemically identical, but State 1 is assumed to

be different from State 2 in two ways; one is that there is an isomerization

step between the two states that enables the cross-bridges in State 2 to gen-

erate force (power-stroke 1), and the other is that the cross-bridges in State

1 can readily detach from actin filaments at high sliding velocities. This

second feature is used to account for the lower energy consumption rate

observed at high velocity of shortening (23) and is consistent with the model

of Huxley and Simmons (19,24). States 3–5 are also chemically indistin-

guishable; a conformational change in myosin (power-stroke 2) separates

States 3 and 4, and an isomerization step separates States 4 and 5. The isom-

erization step is added to account for actomyosin isomerization observed in

biochemical experiments (25), and to account for some unique char-

acteristics observed in tension transients (14) that can be explained by a

delay due to the isomerization step. This isomerization step in isometric con-

traction is considered to be the rate-limiting step and minimally reversible

(10) in the cross-bridge cycle and is assigned the slowest value for its

transition rate. State 0 includes two complexes (M�ATP and M�ADP�Pi) in

rapid equilibrium. It is assumed in this model (Fig. 1) that the rate of ATP

hydrolysis is much faster than any transition rates in the cycle and therefore

M�ATP 4 M�ADP�Pi (within the dotted rectangle, Fig. 1) collapses into a

single state (i.e., State 0).

Cyclic matrix and mathematical solution

One important assumption made in the simulation model is that each step or

transition in the cycle is a separate stochastic process, so that the rate of each

transition is simply the product of the fraction of cross-bridges in the starting

state multiplied by the rate coefficient (either a constant or a function) for

that transition. As described above, cross-bridges are assumed to cycle

through all states. A linear first-order differential equation is used to describe

the rate of change of the fraction of cross-bridges in each state. The rate of

change in a particular state is taken as the difference between the rates at

which cross-bridges move into and out of the state. The following set of

equations describes the rate of change in each state illustrated in Fig. 1,

dX0=dt ¼ k60X6 1 k10X1 � ðk06 1 k01ÞX0 (1a)

dX1=dt ¼ k01X0 1 k21X2 � ðk10 1 k12ÞX1 (1b)

dX2=dt ¼ k12X1 1 k32X3 � ðk21 1 k23ÞX2 (1c)

dX3=dt ¼ k23X2 1 k43X4 � ðk32 1 k34ÞX3 (1d)

dX4=dt ¼ k34X3 1 k54X5 � ðk43 1 k45ÞX4 (1e)

dX5=dt ¼ k45X4 1 k65X6 � ðk54 1 k56ÞX5 (1f)

dX6=dt ¼ k56X5 1 k06X0 � ðk65 1 k60ÞX6 (1g)

where the term Xi represents the fraction of cross-bridges in the State i. The

sum of all state fractions equals 1. By definition, all the transition rates are

zero in steady state. By setting Xi/dt in Eq. 1 to zero, however, it would result

in an ill-posed problem with no unique solution. This problem can be

avoided by replacing one of the above equations with

X0 1 X1 1 X2 1 X3 1 X4 1 X5 1 X6 ¼ 1: (2)

The steady-state fraction of the cross-bridges can then be obtained by

solving this new system of equations.

To obtain exact solution from a large set of simultaneous equations using

conventional methods is slow and becomes impractical when the matrix size

is .;10. Numerical methods are usually used to solve large matrices. For a

stiff matrix with widely varying constants (such as the one required for the

cross-bridge cycle simulation), a potential problem is that the numerical iter-

ations may not converge and produce a solution. (Note that there are special

methods for better handling of stiff matrices, such as the Gear Method (26).)

For large matrices with hundreds or even thousands of simultaneous equa-

tions, numerical methods can also be slow. An extremely fast computational

method specifically for solving cyclic matrices of any size has been de-

veloped by us (see Appendix). This method allows instant updates of state

fractions of cross-bridges in the computer simulation as soon as the rate

constants or functions are changed. This method may become indispensable

in the future if the cross-bridge cycle is divided into thousands of steps to

simulate atomic interactions between the protein surfaces of myosin and

actin during the processes of attachment, power stroke, and detachment.

Rate functions

In our simulation, some of the transition rates used (indicated in Fig. 1) are

constants, and some are functions of shortening velocity. The transition rates

used to simulate isometric contraction are all within the range used by

Dantzig et al. (9,10) and that specified by Wang and Kawai (11,12) and

Galler et al. (13). There are three types of functions used to describe the

FIGURE 1 A seven-state model of bio-

chemical cycle of actomyosin interaction.

The states are labeled 0–6 in circles. M,

myosin; A, actin. A�M, actomyosin complex;

and A�M9, A�M after an isomerization step.

The dot between letters denotes ionic

bonding. Power strokes (PS1 and PS2) are

assumed to happen between States 1 and 2,

and States 3 and 4. The rate constants under

isometric conditions (ki) are assigned the

following values (s�1): k01 ¼ 40; k10 ¼ 70;

k12 ¼ 140; k21 ¼ 80; k23 ¼ 150; k32 ¼ 15;

k34 ¼ 20; k43 ¼ 0.2; k45 ¼ 10; k54 ¼ 0.1; k56 ¼ 25; k65 ¼ 0.25; k60 ¼ 200; and k06 ¼ 50. It is assumed that there is a fast equilibrium between M�ATP and

M�ADP�Pi (in dotted rectangle) with near infinite forward and backward rates. Note that under nonisometric conditions, some transition rates are assumed to

vary with the sliding velocity of myosin relative to actin filaments; these rates as functions of velocity are specified in Fig. 2 and Table 1.
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dependence of transition rates on velocity, as depicted in Fig. 2 (A–C). In

Table 1, the constants that defined each function for velocity-dependent

transitions are listed. For single hyperbolic force-velocity relationship simu-

lation, the attachment rate (k01, Fig. 1) is constant (i.e., velocity-indepen-

dent). For simulation of reversal of curvature of force-velocity curve at low

shortening velocities, k01 varies with velocity as described by the function

shown in Fig. 2 B. For simulation of double hyperbolic force-velocity

relationship, k01 varies with velocity as described by the function shown in

Fig. 2 C. The transition rates k10, k12, k23, k34, k45, k56, and k60 all depend on

velocity as described by the linear function shown in Fig. 2 A.

SIMULATION

In simulating the force-velocity behavior observed in muscle

contraction, velocity is used as an independent variable,

varying from 0 to maximum velocity (Vmax). The absolute

value of Vmax obtained from the simulation depends on the

rate constants/functions used. Therefore, in different simu-

lations, Vmax can have different absolute values. Zero ve-

locity corresponds to the isometric condition where force

generated by the muscle is maximal (Fmax). The value Fmax

is determined by the sum of fractions of cross-bridges in the

states after the power stroke transitions, i.e., from State 2 to

State 6 in Fig. 1. Force generated by the cross-bridges in

States 2 and 3 (i.e., the states between the first and second

power-stroke) is assumed to be proportional to the sum of the

cross-bridge fractions in those states (i.e., X2 1 X3). Force

generated by the cross-bridges in States 4–6 (i.e., the at-

tached states after the second power stroke) is assumed to be

proportional to the sum of the cross-bridge fractions in those

states multiplied by a factor of 2 (i.e., 2(X4 1 X5 1 X6)). The

value Fmax, therefore, is proportional to [X2 1 X3 1 2(X4 1

X5 1 X6)]. At each increment of velocity, the velocity-

dependent rate functions (Table 1) are evaluated and the new

rates are used to calculate the state fractions (Xi-values) in the

cross-bridge cycle. It is assumed that the transitions gov-

erning the second power stroke and ADP release are cross-

bridge strain-dependent (15,27); it is also assumed that the

transitions governing the first power stroke and Pi release are

strain-dependent. Hence the transition rates k12, k23, k34, k45,

k56, and k60 (Fig. 1) are all assumed to be velocity-dependent

in a manner depicted in Fig. 2 A, with the slopes (m)

specified in Table 1 for each transition. The detachment rate

(k10) is also assumed to be velocity-dependent (Table 1).

Force generated by the cross-bridges in all force-generating

states (States 2–6) is assumed to be a linear function of short-

ening velocity, as depicted in Fig. 2 D, so as to simulate the

scenario that, at high velocity of shortening, some of the

bridges remaining in those states are able to generate nega-

tive force. The idea of negatively strained bridges at high

shortening velocity was first proposed by Huxley (2). In

this model simulation, the decrease in force is due to two

factors—one is the reduction in the fraction of attached

bridges (because k10 increased with velocity) and the other is

the accumulation of negative-force bridges. These two fea-

tures mimic those in the model of Huxley and Simmons (19).

Hyperbolic and other features
of force-velocity curve

An inverse relationship between shortening velocity and

force (against which the muscle shortens) can be generated

by the model outlined in Fig. 1. By assuming that k01 (rate of

cross-bridge attachment) is constant (i.e., velocity-indepen-

dent), and using values of rate constants and functions listed

in Table 1 and Fig. 1 legend for other transitions, a curvi-

linear, inverse relationship between velocity and force is

obtained (open circles, Fig. 3). This relationship can be de-

scribed well by a rectangular hyperbolic function (solid line,

Fig. 3) of the form

ðF 1 aÞðV 1 bÞ ¼ c; (3)

where F and V are force and velocity, respectively, and a, b,

and c are constants. At V ¼ 0,

FIGURE 2 Velocity-dependent rate functions (A–C)

used in the simulation of cross-bridge cycle and force-

velocity relationship in muscle. Function A (linear) is used

for the forward transitions (clockwise, Fig. 1) between all

attached states and the transition from State 6 to State 0,

and from State 1 to State 0 (Fig. 1). Function B is used to

simulate reversal of force-velocity curvature at low veloc-

ity. Function C is used to simulate the double hyperbolic

feature of force-velocity relationship at low velocity.

Function D depicts the relationship between shortening

velocity and force exerted by cross-bridges in states 2–6.

The value Fi and ki denote force and rate constants under

isometric conditions, respectively. The ki-values are listed

in Fig. 1 legend. V and Vmax are velocity and maximal

velocity of muscle shortening, respectively. The constants

for the rate functions (a, b, c, d, m, and n) are specified in

Table 1.
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Fo ¼ c=b� a; (4)

and at F ¼ 0,

Vo ¼ c=a� b: (5)

The value for the normalized constants obtained from a

nonlinear curve fit (SigmaPlot 8.0, Systat Software, Point

Richmond, CA) is a/Fo ¼ b/Vo ¼ 0.23 (Fig. 3, solid line).

Note that Fo and Vo are different, respectively, from Fmax and

Vmax in that the former parameters are obtained from curve

fitting, the latter parameters are muscle properties.

To simulate the reversal of curvature of the force-velocity

curve at the low velocity region observed in smooth muscle

(18), exactly the same model parameters that produced the

rectangular hyperbolic force-velocity curve in Fig. 3 are used

except that k01 is assumed to be velocity-dependent as de-

picted in Fig. 2 B. The simulated force-velocity curve is

shown in Fig. 4 A.

To simulate the double hyperbolic force-velocity curve at

the low velocity region observed in intact skeletal muscle

(17), exactly the same model parameters for the single

hyperbolic force-velocity curve (shown in Fig. 3) are used,

except that k01 is assumed to depend on velocity as depicted

in Fig. 2 C. The simulated force-velocity curve is shown in

Fig. 4 B.

Curvature in force-velocity curve

The curvature of the simulated force-velocity curve can be

altered by changing the slope (n) of the linear function that

specifies the magnitude and direction of force of individual

cross-bridges in the force-generating states as a function of

velocity (Fig. 2 D). A steeper decline in force with velocity

produces more negative-force bridges at moderate to high

velocities; this has an effect of decreasing the curvature of

the force-velocity curve.

The curvature of the simulated force-velocity curve can

also be altered by changing the rate constants (or functions)

at various transitions in the cycle (Fig. 1). One feature

observed in the simulation is that an increased curvature is

TABLE 1 Velocity-dependent rate functions used in some transitions within the cross-bridge cycle

Transition/state ki (s�1) Function Function parameters

0-1 40 k/ki ¼ 1 (for single hyperbolic curve)

0-1 40 k/ki ¼ 0.5 1 a(1�e�b(V/Vmax)) (for curvature reversal at low V only) a ¼ 1.2; b ¼ 22

0-1 40 k/ki ¼ e�c(V/Vmax) 1 ed(V/Vmax) �1 (for double hyperbolic curve only, maximum value of k/ki is

capped at 1.4)

c ¼ 20; d ¼ 7

1-0 70 k/ki ¼ 1 1 m(V/Vmax) m ¼ 70

1-2 140 k/ki ¼ 1 1 m(V/Vmax) m ¼ 14

2-3 150 k/ki ¼ 1 1 m(V/Vmax) m ¼ 14

3-4 20 k/ki ¼ 1 1 m(V/Vmax) m ¼ 14

4-5 20 k/ki ¼ 1 1 m(V/Vmax) m ¼ 14

5-6 10 k/ki ¼ 1 1 m(V/Vmax) m ¼ 14

6-0 20 k/ki ¼ 1 1 m(V/Vmax) m ¼ 14

2 — F/Fi ¼ 1 � n(V/Vmax) n ¼ 0.57

3 — F/Fi ¼ 1 � n(V/Vmax) n ¼ 0.57

4 — F/Fi ¼ 1 � n(V/Vmax) n ¼ 0.86

5 — F/Fi ¼ 1 � n(V/Vmax) n ¼ 1.43

6 — F/Fi ¼ 1 � n(V/Vmax) n ¼ 1.43

Note: Transitions not listed in the table are velocity-independent and the rate constants are listed in Fig. 1 legend.

FIGURE 3 Simulated force-velocity relationship (open circles, data gener-

ated by model) fitted with a hyperbolic curve (A). See text for fitting parameters.

Snapshots of fractions of cross-bridges occupying each state at zero (1), medium

(2), and maximum (3) shortening velocity (corresponding respectively to condi-

tions where isometric force, maximum power, and maximum velocity are gener-

ated) are shown in panel B. The value Xi corresponds to states indicated in Fig. 1.
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often associated with an increased cross-bridge fraction in

the detached state (X0). An example is given in Fig. 5. As the

attachment rate constant (k01) is decreased, which causes

the cross-bridges to accumulate in the detached state, the

curvature of the force-velocity curve is increased. By reduc-

ing other transition rates such as k12 and k23, accumulation of

bridges in the detached state also occurs, and leads to an

increased curvature of the force-velocity curve (results not

shown). Reducing k01 has the most dramatic effect because it

has the most direct effect on the state fraction X0.

Changes in force-velocity relationship due
to variations in concentrations of ATP, ADP,
and inorganic phosphate

Based on the cross-bridge cycle outlined in Fig. 1, the effect

of an increase in [ADP] is simulated by reducing k56. The

same effect can also be simulated by changing both k56 and

k65, but for simplicity, only the forward rate is changed. The

value k56 is a linear function of velocity, as indicated in Table 1.

By reducing the value of k56 in the isometric state from 25 s�1

to 5 s�1, isometric force (Fmax) increases by 24.0%, maximal

shortening velocity (Vmax) decreases by 14.4%, and the ratio

of a/Fmax increases from 0.230 to 0.402 (see Fig. 6 B and

Table 2). By adding 4 mM MgADP to their regular con-

tracting solution that contained 4 mM MgATP, Cooke and

Pate (22) observed a 35% increase in isometric force and a

50% decrease in velocity in skinned rabbit psoas fibers. With

the same muscle preparation, Seow and Ford (5) observed a

25% increase in isometric force, a 35% decrease in velocity,

and a 55% increase in the value of a/Fmax after raising

MgADP concentration from 0 to 2 mM in the presence of

5 mM MgATP. The findings from experiments with rabbit

psoas therefore agree qualitatively with the model predic-

tions resulting from only one change in a single model param-

eter. It is not clear, though, how the changes in MgADP

concentration in the experiments correspond exactly to the

changes in the value of k56 in the model.

The effect of a decrease in [ATP] is simulated by reducing

k60. The linear function of k60 is listed in Table 1. By re-

ducing k60 from 200 s�1 to 20 s�1, Fmax increases by 23.7%,

Vmax decreases by 21.2%, and the ratio of a/Fmax increased

from 0.230 to 0.609 (Fig. 6 B). The effect of low [ATP] on

FIGURE 5 (A) Normalized force-velocity curves from simulation with

various slopes (n) for the linear function (F/Fi ¼ 1 � n(V/Vmax), Fig. 2 D)

that specifies force generated by individual cross-bridges in the post-power-

stroke states. (B) Normalized force-velocity curves from simulation with

various rates of attachment (k01).

FIGURE 4 (A) Simulated force-velocity relationship (open circles) with a

reversal of curvature in the low velocity region. Model parameters used in

the simulation are the same as those in Fig. 3 except that the attachment rate

constant (k01) is replaced with a rate function depicted in Fig. 2 B. Inset

shows magnified low velocity region. (B) Simulated force-velocity rela-

tionship with double hyperbolae. Model parameters used in the simulation

are the same as those in Fig. 3 except that the attachment rate constant (k01) is

replaced with a rate function depicted in Fig. 2 C. Inset shows magnified low

velocity region. Solid curves are hyperbolic fits only for data range 0–0.75

Fmax.
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the force-velocity properties is very similar to that of high

[ADP], except that a 10-fold change in [ATP] is required to

match the effect of a fivefold change in [ADP] in terms of

force increase (see Fig. 6, A and B, and Table 2). By reducing

MgATP concentration from 4 mM to 2 mM, Cooke and Pate

(22) observed a 19% increase in isometric force and a 46%

decrease in shortening velocity. Lowering MgATP concen-

tration from 10 mM to 2 mM, Seow and Ford (5) found

qualitatively similar results—a 23% increase in isometric

force and a 31% decrease in shortening velocity. Further-

more, they found an increase of 17% in the a/Fmax ratio (5).

The effect of an increase in [Pi] is simulated by reducing

the rate constant k23. By reducing k23 from 150 s�1 to 30 s�1,

Fmax decreases by 28.2%, Vmax is unchanged, the ratio of

a/Fmax increases from 0.230 to 0.346 (see Fig. 6 C and

Table 2). By adding 12 mM inorganic phosphate in their

regular contracting solution, Cooke and Pate (22) observed a

30% decrease in isometric force and no change in shortening

velocity. The model prediction (Fig. 6 C) also agrees with the

findings by Hinken and McDonald (28) in cardiac myocyte

when isometric force is normalized.

DISCUSSION

We have demonstrated that the characteristic force-velocity

relationship observed in muscle contraction can be simulated

mathematically in a seven-state model of cross-bridge cycle

where the transitions between states are assumed reversible

and where some of the transition rates are assumed de-

pendent on shortening velocity (Fig. 1). The absolute values

for the rate constants and functions are found to be somewhat

unimportant in our model simulation, because the relative

changes in the force-velocity properties are determined by

relative magnitudes of transition rates throughout the cycle,

and not by the absolute values of these rates. The slowest

forward (clockwise) transition under isometric condition is

assumed to be the transition between States 4 and 5 (an

isomerization step, Fig. 1), as identified by Dantzig et al.

(10). The value k45 is assigned a value of 10 s�1. Because

there is a large range of values used for transition rates found

in literature (9–13), in our simulation, average values for

these rates are chosen using k45 as a reference. Many features

of the force-velocity curve can be mimicked by changing the

transition rates. However, two key components have to be

incorporated into the model for it to correctly predict ex-

perimental results. The first component involves the as-

sumption that the second power stroke is associated with

greater force per cross-bridge (compared with that associated

with the first power stroke). This assumption is necessary to

account for the effect of blockade of the Pi release step

(between States 2 and 3) that is known to decrease isometric

force. The factor of 2 chosen to differentiate the force per

bridge from the first and second power strokes is, however,

arbitrary. The second component involves the assumption

that negative force is generated by some bridges when cy-

cling at high rates. Without this assumption, the model

would have no internal brake and would generate a force-

velocity curve that approaches Vmax asymptotically (i.e.,

Vmax ¼N).

Rectangular hyperbola and other features
of the force-velocity curve

In simulating the force-velocity behavior characterized by a

single rectangular hyperbola (Fig. 3), only constants and

linear functions (of velocity) for transition rates are used. In

FIGURE 6 Simulation of the effects of decreased ATP concentration

(Y[ATP]) in panel A, increased ADP concentration ([[ADP]) in panel B,

and increased inorganic phosphate concentration ([[Pi]) in panel C. Force

and velocity in test conditions (altered substrate and metabolite concentra-

tions compared to control) are normalized to the control Fmax and Vmax.

Changes in force-velocity properties are summarized in Table 2.
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simulating the curvature reversal at the low velocity region

(Fig. 4 A), instead of a constant, the attachment rate (k01)

is made to rise exponentially to a maximum as velocity

increases (see Fig. 2 B for the rate function used). This

velocity-dependent rate increase can be interpreted as an

increase in the probability of detached myosin cross-bridges

finding binding-sites on actin filaments, when sliding move-

ment between myosin and actin filaments is allowed (16).

This increased probability of attachment, however, is soon

offset by the increase in the rate of detachment (k10) as

velocity increases. This explains why the curvature reversal

is confined in the low velocity region, as found in smooth

muscle by Wang et al. (18).

In simulating the double hyperbolic feature of force-

velocity relationship observed by Edman et al. (15), a tran-

sient decrease in k01 as a function of velocity (Fig. 2 C) is

necessary. This is somewhat opposite to the k01 function

used in simulating the curvature reversal described above.

The simulation results also possesses opposite characteristics

in terms of local concavity at the low velocity region of the

curve (Fig. 4). Edman et al. (15) explained the relatively

large decrease in force during low-speed shortening as due

to detachment of highly (positively) strained cross-bridges.

In the model by Duke (6), a different explanation is offered:

At loads approaching the maximal isometric force, the low

sliding velocity diminishes the probability of cross-bridges

going through the power-stroke transition. The lack of power

strokes in turn reduces the sliding velocity. This self-

reinforcing process thus leads to a sharp decrease in velocity

with increasing loads (6). Our model offers yet another

explanation that does not involve detachment of high-strain

bridges (15) or accumulation of bridges in the states before

the power stroke transition (6). Our model indicates that a

transient decrease in the rate of cross-bridge attachment in a

muscle shortening at low velocity (against a near maximal

load) can produce a force-velocity relationship with a bi-

phasic feature. In muscle contraction, the probability of cross-

bridge attachment is likely partially determined by the

flexibility of individual cross-bridges and by how the binding

sites on the thin filaments are spaced. These determinants

probably play less of a role when sliding velocity is high.

It is not clear why different muscles possess different

force-velocity characteristics at the high force region (15,18).

It is well known that different myosin isoforms are asso-

ciated with different muscle types; it is possible that cross-

bridges made of different isoforms possess different spring

stiffness or flexibility, and that this difference in molecular

rigidity determines the shape of the force-velocity curve at

the low velocity region. One puzzle is that the biphasic force-

velocity relationship is not always observed. For example, in

skinned skeletal muscle fibers, there is no evidence for the

biphasic feature (7,8,22,29) or at least the feature was not

prominent enough to be noticed.

Curvature of the force-velocity curve

Besides Fmax and Vmax, another important parameter that

determines the general shape of a force-velocity curve is the

curvature described by the ratio a/Fmax, if the force-velocity

relationship is approximated by a rectangular hyperbola.

(Note that a lower value of the a/Fmax ratio indicates a greater

curvature). It is therefore of interest to find out, in a cross-

bridge cycle, how the curvature is affected by the transition

rates. As shown in Fig. 5 A, increasing the slope (n) of the

velocity-dependent force function for the post-power-stroke

states (F/Fi ¼ 1 � n(V/Vmax), Fig. 2 D) corresponds to a

decreasing curvature of the force-velocity curve. This is

because, by increasing the slope (n), lower velocity is re-

quired to drive the bridges to the negative-force region;

this effectively truncates the high-velocity, low-force part of

the force-velocity curve and results in an apparent decrease

in curvature. As shown in Fig. 5 B, decreasing the value of

attachment rate constant (k01) corresponds to an increasing

curvature. This also leads to an increase in the fraction of

detached cross-bridges, under all loads. In our simulation,

perturbations of the cross-bridge cycle that have led to re-

tention of bridges in the detached state (X0) often result in

an increase in the curvature. The connection between the

fraction of bridges in the detached state and the force-

velocity curvature is not obvious. However, by examining

the changes in the state fractions at various velocities, it is

noticed that the increase in the number of detached bridges at

high velocity comes as a consequence of a disproportional

decrease in the bridges occupying States 5 and 6—the last

two attached states that produce mostly positive force at low

velocity and mostly negative force at high velocity. There-

fore, the condition that results in an increase in the fraction

of detached bridges also leads to a decrease in the number

of negative-force bridges, especially at high velocities.

The reduced number of negative-force bridges means that

TABLE 2 Summary of changes in force, velocity, and curvature in simulation of the effects of #[ATP], "[ADP], and "[Pi ]

Transition rate change (Fmax)t/(Fmax)c (Vmax)t/(Vmax)c (a/Fmax)t/(a/Fmax)c

(k60)t/(k60)c ¼ 0.1 (Y[ATP]) 1.237 0.788 2.650

(k56)t/(k56)c ¼ 0.2 ([[ADP]) 1.240 0.856 1.746

(k23)t/(k23)c ¼ 0.2 ([[Pi ]) 0.718 1.000 1.505

Note: The subscripts c and t denote control and test, respectively. The control parameters are derived from the force-velocity curve shown in Fig. 3 that

possesses initial k values as indicated in Fig. 1 legend. The only change made to produce a test curve (shown in Fig. 6) is by changing one transition rate as

indicated by the ratios listed in the first column of this table.
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fewer positive-force bridges are required to cycle at low

loads and to maintain high velocity of shortening. The shift

in balance favoring positive-force bridges increases Vmax

because it delays the occurrence of net zero force, and this

leads to an increase in the curvature of the force-velocity

curve.

There is a common belief that what determines the cur-

vature of a force-velocity curve can be understood in terms

of overlapping processes governing the decrease in force

and increase in velocity (30). It has been reasoned that as ve-

locity increases, the number of positively strained bridges

decreases while the number of negatively strained bridges

increases. At low velocities, how quickly the positive-force

bridges detach will determine the slope of the force-velocity

curve in the high-force region. At high velocities, it is the rate

of detachment of negative-force bridges that determines the

slope of the curve in the low-force region (30). Our model

has no conflict with this line of reasoning; it suggests, how-

ever, that the curvature is governed by many more subtle

aspects of the cross-bridge cycle that can only be appreciated

with a comprehensive modeling with at least seven states in

the cross-bridge cycle.

It has been argued that the curvature of a force-velocity

curve is related to the thermodynamic efficiency of the mus-

cle (31). This is consistent with our model prediction that a

greater curvature is usually associated with a smaller fraction

of negative-force bridges at high velocity of shortening, as-

suming that equal number of positive-force bridges is re-

quired to negate the effect of negative-force bridges.

Modification of force-velocity curve by altered
transition rates due to changes in [ATP],
[ADP], and [Pi]

In skinned skeletal muscle fibers, we and others have shown

that lowering [ATP] or raising [ADP] in the bathing solution

decreases shortening velocity and increases force produced

by the muscle fiber, and also decreases the curvature of the

force-velocity curve (5,7,22,32). In our simulation, all these

changes can be reproduced simply by reducing the rate of

transition between States 6 and 0 (to mimic the effect of low

[ATP]) (Fig. 6 A) or by reducing the rate of transition be-

tween States 5 and 6 (to mimic the effect of high [ADP])

(Fig. 6 B). In our experiments with skinned fibers, it has been

found that a large change in [ATP] is required to produce a

moderate change in force or velocity (5). This feature is also

found in our simulation. Recall that a 10-fold change in k60

(which governed the rate of ATP binding, Fig. 1) produces

approximately the same effect as a fivefold change in k56

(which governed the rate of ADP release, Fig. 1). By ex-

amining the fractions of cross-bridges occupying each state

(Fig. 7), it becomes clear that the explanation is in the small

initial cross-bridge population in State 6 (due to large initial

value for k60). To cause a sufficient accumulation of bridges

in that state, k60 has to be reduced drastically. Because in

State 5, the initial cross-bridge population is relatively

large (due to a relatively small initial value for k56), a

moderate decrease in k56 is sufficient to cause significant

accumulation of bridges in State 5. This insight was not avail-

able to us in our early studies (5). The agreement between

experiment results and model output is another confirmation

that, in a cross-bridge cycle, ADP release precedes that of

ATP binding.

It has been shown in skinned skeletal muscle fibers that an

increase in [Pi] is associated with a decrease in force and no

change in maximal (unloaded) shortening velocity (8,22,28).

In our simulation, a 10-fold reduction in k23 leads to a large

decrease in force with no change in velocity (Fig. 6 C). The

simulation therefore agrees with experimental results. The

simulation results also suggest that there must be another

power stroke after phosphate release, because without such a

power stroke, reduction in force could not be accomplished

by lowering k23. It is not difficult to understand intuitively

that by blocking the transition associated with Pi release in

the cross-bridge cycle, force can be reduced. However, it is

not easy to explain how such a block does not lead to a re-

duction in shortening velocity. A closer examination of the

state fraction of bridges (Fig. 7) reveals that partial blockade

of the transition between States 2 and 3 ([[Pi ]) results in a

large increase in the cross-bridge population in State 1. Be-

cause of the large value for k10 and the steep dependence of

k10 on velocity (Table 1), as well as the fast equilibrium

(large values for k12 and k21) between States 1 and 2, most of

the detained bridges (seen under isometric conditions) de-

taches without going through the power strokes at high short-

ening velocity. As shown in Fig. 8, at maximal velocity of

shortening, although there is evidence of bridges being de-

tained in State 2 (X2) in our simulation of [[Pi ], the per-

turbation does not alter significantly the overall distribution

of the state fraction of bridges, and therefore should not

change Vmax significantly, because Vmax is determined by the

FIGURE 7 Fraction of cross-bridges occupying each state under isometric

conditions at simulated low substrate and high metabolite concentrations

shown in Fig. 6 and Table 2.
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balance of positive-force and negative-force bridges mainly

in the high-force states (States 4–6).

CONCLUSION

Unique features of force-velocity relationship found in both

striated and smooth muscle contraction can be reproduced

by a mathematical model based on steady-state solutions of a

7 3 7 cyclic matrix that describes cross-bridge transitions in

a seven-state model with two power strokes. Model predic-

tions regarding altered substrate (ATP) and metabolites

(ADP, Pi) concentration in muscle contraction qualitatively

matched the results from experiments on skinned skeletal

muscle fiber and cardiac myocyte. Insights into the mech-

anisms underlying changes in force-velocity properties can

be gained by examining the distribution of state fractions of

cross-bridges in the model under different conditions.

APPENDIX

Many biological events occur in repeating stochastic steps and are often

modeled as transitions between discrete states arranged in a circle. Cycling

of the muscle cross-bridges is a good example. To understand the kinetics of

these chemical and physical transitions, a system of simultaneous differen-

tial equations can be derived based on a cyclic model. Solution to the model

depends on solving the associated cyclic matrix. For large matrices (i.e.,

large number of states in the model), existing methods for exact solutions are

too slow and numerical methods are usually the only option. A major

disadvantage of using numerical methods is that the iterations sometimes

converge slowly or not at all, especially when the matrix is stiff (i.e., with

widely varying coefficients), as most of the matrices derived from biological

systems are. Here we describe a method specifically designed for solving

cyclic matrices. This highly efficient method is particularly suitable for

matrices derived from analysis of the cross-bridge cycle; it obtains exact

solutions for matrices of any size rapidly, and it does not have limitations

associated with numerical methods.

To help describe the method, we use a three-state model as an illustration

(Fig. A1). Using actomyosin interaction as an example, the rate of change in

a particular state is taken as the difference between the rates at which cross-

bridges move into and out of the state. That is,

dX1=dt ¼ k31X3 1 k21X2 � ðk12 1 k13ÞX1;

dX2=dt ¼ k12X1 1 k32X3 � ðk21 1 k23ÞX2;

dX3=dt ¼ k23X2 1 k13X1 � ðk31 1 k32ÞX3:

(A1)

Under steady state, dXi/dt¼ 0, where Xi is the fraction of cross-bridges in

the state i. Solving the expressions in Eq. A1 under steady state will result in

an ill-conditioned problem with no unique solution. This problem can be

avoided by replacing one of the above equations with X1 1 X2 1 X3¼ 1. For

generality, let us consider an M-state model that gives rise to a linear system

with the following matrix form:

D � X ¼ Y; (A2)

where

X ¼ ½X0;X1;X2; . . . ;XM�1�T; and Y ¼ ½0; 0; 0; . . . ; 1�T:

Instead of Cramer’s rule, we use a simple graphical representation that leads

to a formula for the exact solution for the linear system. Let us look at Fig. 1

but imagine that we have M states instead of 3. On the linkage (arrows

between two states) we write the rate constants ki,i11 from state i to state

i 1 1, and ki11,i from state i 1 1 to i as in Fig. 1. After observing the structure

of exact solutions at small M, we propose the following form of solution:

Xi ¼
xi

+
M�1

j¼0

xj

for i ¼ 0; 1; . . . ;M � 1: (A3)

Here, xi ¼ +M

j¼1
Ti;j and Ti,j is defined in the following paragraph. Note that

the denominator only serves to normalize the solution so that +M�1

i¼0
Xi ¼ 1.

For a given i, we go over all the other states, denoted by j. For each j,

imagine that we break the linkage between states j and j 1 1, and then go from

state j and j 1 1 toward state i along the intact links, accumulating products of

the rate constants along the clockwise and counterclockwise routes:

FIGURE 8 Fraction of cross-bridges occupying each state at maximal

velocity of shortening. Although X2 under conditions mimicking [[Pi ] is

more than four-times greater than that of the control (too small to be seen on

the graph), the overall distribution of the bridges in other states is largely

unaffected by the partial blockade of the transition between State 2 and State

3 at maximal velocity of shortening.

D ¼

�ðk0;M�1 1 k0;1Þ k1;0 0 � � � 0 kM�1;0

k0;1 �ðk0;1 1 k1;2Þ k2;1 � � � 0 0

0 k1;2 �ðk2;1 1 k2;3Þ � � � 0 0

..

. ..
. ..

.
1 ..

. ..
.

0 0 0 � � � �ðkM�2;M�3 1 kM�2;M�1Þ kM�1;M�2

1 1 1 � � � 1 1

2
66666664

3
77777775
;
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Ti;j ¼ ðkj11;j 1 2kj12;j13 � � � ki�2;i�1ki�1;iÞ
3ðkj;j�1kj�1;j�2 � � � ki12;i 1 1ki11;iÞ:

(A4)

Note that all the subscripts should be mapped onto [0, M�1] due to peri-

odicity once they exceed this range.

In the following, we will show that Eq. A3 is indeed the solution of

Eq. A2. It can be verified that Ti,j has the following properties:

ki;i11Ti;j ¼ ki11;iTi11;j

¼ ki;i11 ki11;i ðkj11;j12 kj12;j13 . . . ki�2;i�1ki�1;iÞ
3ðkj;j�1 kj�1;j�2 . . . ki13;i12ki12;i11Þ (A5)

for i, j ¼ 0,1, . . ., M¼1 and j 6¼ i;

ki�1;iTi�1;i�1 ¼ ki;i11Ti;i ¼ ki;i11;ki11;i12 . . . ki�2;i�1ki�1;i (A6)

for i ¼ 0,1, . . ., M�1; and

ki;i�1Ti;i�1 ¼ ki11;iTi11;i ¼ ki;i�1ki�1;i�2 . . . ki12;i11ki11;i (A7)

for i ¼ 0,1, . . ., M�1.

Considering Eqs. A5–A7, we can arrive at the following equation:

Now the second bracket on the right-hand side amounts to

+M�1

j¼0;j6¼i
ðki;i11Ti;j � ki11;iTi11;jÞ, which vanishes by virtue of Eq. A5. Simi-

larly, the first bracket vanishes as well, since it is the same as the second after

replacing i symbolically by i11. Finally, the third and fourth brackets are

zero because of Eqs. A6 and A7, respectively. Thus

ki�1;ixi�1 � ðki;i�1 1 ki;i11Þxi 1 ki11;ixi11 ¼ 0: (A9)

Since Xi differs from xi only by a constant scaling factor (compare to Eq. A3),

Xi will satisfy Eq. A9 as well. For i¼ 0,1, . . . , M�2, these constitute the first

M�1 expressions in Eq. A2. The Mth equation is satisfied automatically by

the normalization in Eq. A3:

+
M�1

i¼0

Xi ¼ 1: (A10)

Thus, we have demonstrated that Xi as defined above is the exact solution

of Eq. A2. Solution of the linear system of Eq. A1 is only a specific case of

Eq. A3 with M ¼ 3.

It is extremely easy to solve Eq. A3 for virtually any M with a short

computer program (with ,15 short lines of codes!). This allows instant dis-

play of modeling results and provides modelers instant feedbacks regarding

the effect of a change in rate constants on the steady-state distribution of

state fractions. As the model of biological processes becomes more and more

realistic, the number of states in the model will undoubtedly increase in

the future. As the state number approaches hundreds or even thousands, the

method outlined here will become indispensable.
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