
Theoretical Aspects of Liquid Crystals and
Liquid Crystalline Polymers

James J. Feng
Department of Chemical and Biological Engineering and Department of Mathematics,
University of British Columbia, Vancouver, British Columbia, Canada

INTRODUCTION

Liquid crystallinity refers to an intermediate state of
matter where the molecules exhibit a degree of order
that is between that of ordinary liquids and solids.
Typically, these molecules have an elongated shape
and an intrinsic tendency toward alignment. Yet, the
inter-molecular forces are not so strong as to bind
them into a regular lattice as in crystalline solids. Thus,
the orientational order among the molecules makes the
material anisotropic and ‘‘crystalline,’’ while the lack
of strong positional order allows the material to flow
like ordinary fluids. This liquid–solid duality gives rise
to much of the ‘‘anomalous’’ behavior of liquid crystal-
line materials. When understood, however, their unique
dynamics can be harnessed to produce high-performance
materials with unique properties.

In this entry, we review the state of the art in
theoretical modeling and computation of the flow
and rheology of low-molecular-weight liquid crystals
(LCs) and liquid crystalline polymers (LCPs). The
latter can be viewed as macromolecular liquid crystals,
and the significance of the molecular weight will be
made clear shortly. We restrict our scope to nematics,
one of the several types of LCs with no positional
order altogether;[1] they seem to have the most impor-
tant applications and have been the focus of theoretical
efforts. Owing to the long-standing academic and
industrial interest in these materials, their dynamics
have been summarized in several reviews, e.g.,
Refs.[1–4]. While overlapping those in certain aspects,
we emphasize constitutive modeling and numerical
simulation of defects and texture. The latter nicely
demonstrates the interplay between macroscopic flow
and mesoscopic orientation, a hallmark of liquid crys-
talline dynamics. Due to space limitation, we will
attempt to construct a coherent framework instead of
an exhaustive literature review. Based on their concep-
tual origins, we discuss continuum theories and mole-
cular theories separately. In addition, a theory for
liquid crystalline materials has been proposed based on
nonequilibrium thermodynamics.[5] As the theoretical
framework and mathematical representation are quite
independent of the other theories, we will not discuss

this theory but refer the reader to Beris and Edwards’
monograph.[5]

Because of similar molecular attributes, LCs and
LCPs share enough common features to be discussed
in this single entry. A significant difference is that the
large LCP molecules have a much longer relaxation
time. Thus, the molecular conformation of LCPs is
easily disturbed by flow and deformation. Rheologi-
cally, therefore, the material exhibits ‘‘molecular
viscoelasticity’’ as macromolecular fluids normally do.
Small-molecule LCs relax so fast that their molecular
configuration remains almost always at equilibrium;
there is no viscoelasticity. Both LCs and LCPs resist
spatial distortion to their orientational pattern. This
tendency is known as ‘‘distortional elasticity.’’ The
continuum theories were originally developed for
small-molecule LCs, capturing distortional elasticity
but not molecular viscoelasticity. Molecular theories,
on the other hand, have evolved to contain both
ingredients. Not surprisingly, a properly constructed
molecular theory should reduce to a continuum theory
in the limit of vanishing molecular relaxation time.

CONTINUUM THEORIES

The tendency of LCs to resist and recover from distortion
to their orientation field bears clear analogy to the
tendency of elastic solids to resist and recover from
distortion of their shape (strain). Based on this idea,
Oseen, Zocher, and Frank established a linear theory
for the distortional elasticity of LCs.[1] Ericksen[6,7]

incorporated this into hydrostatic and hydrodynamic
theories for nematics, which were further augmented
by Leslie[8] with constitutive equations. The Leslie–
Ericksen theory has been the most widely used LC
flow theory to date.

Frank Elasticity

Viewing the LC as an anisotropic continuum, a
pseudo-vector n of unit length, called the director, is
used to indicate the orientation field. Thus, orientational
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distortion is described by the spatial gradient Hn(r).
Retaining quadratic terms, one may write the free
energy density for orientation distortion as:[1]

Fd ¼ K1

2
ðH �nÞ2 þ K2

2
ðn �H � nÞ2

þ K3

2
jn � H � nj2 ð1Þ

where the coefficients K1, K2, and K3 are elastic
constants corresponding to three canonical forms of
orientational distortion: splay, twist, and bend.[1] The
K’s have the dimension of force, and Fd has the dimen-
sion of energy per unit volume. When the three K’s are
equal, the free energy takes on a particularly simple
form:

Fd ¼ K

2
Hn : ðHnÞT ð2Þ

Thus the ‘‘one-constant approximation’’ is often
used in theoretical analysis.

Leslie–Ericksen Theory

When n(r) is disturbed, say by an external magnetic
field, an elastic torque arises:

h ¼ � dFd

dn
¼ � @Fd

@n
þ H � @Fd

@Hn

� �
ð3Þ

Known as the molecular field, h tends to restore n to its
former orientation. Minimizing the total free energy
shows that an equilibrium is achieved when h is parallel
to n. Furthermore, when the LC is deformed, the var-
iation of Fd(n,Hn), with respect to the strain, gives rise
to an elastic stress known as the Ericksen stress:[1]

sE ¼ � @Fd

@ðHnÞ � ðHnÞ
T ð4Þ

The above two equations form the core of
Ericksen’s theory of LC hydrostatics.

Leslie recognized from early experiments that the
anisotropy of the materials calls for multiple viscosity
coefficients corresponding to different orientation of
the LC relative to the flow. Combining this idea with
the Ericksen theory leads to the Leslie–Ericksen (LE)
theory, which comprises two elements: one describing
the evolution of n(r) in a flow field, and the other
prescribing an extra stress tensor due to the evolving
n(r) field.

The evolution of n(r) is governed by a balance
between viscous and elastic torques:

h ¼ g1N þ g2D �n ð5Þ

where g1 and g2 are viscosity coefficients,

N ¼ dn

dt
� O �n ð6Þ

is the rotation of n relative to the background fluid,
O ¼ ½ðHvÞT � Hv�=2 and D ¼ ½ðHvÞT þ Hv�=2
being the rotation and strain rate tensors. The molecu-
lar field h is given by Eq. (3) in terms of n. The Leslie–
Ericksen stress tensor is written as

sLE ¼ sE þ a1D : nnnn þ a2nN þ a3Nn

þ a4D þ a5nn �D þ a6D � nn ð7Þ

where the a’s are viscosity coefficients, related to the
g’s of Eq. (5) by g1 ¼ a3 – a2 and g2 ¼ a2 þ
a3 ¼ a6– a5 (see Ref.[1] for explanation).

We must point out two related limitations of the LE
theory. First, it applies to small-molecule LCs and to
LCPs in the limit of vanishing strain rate. This is
because the LE theory uses a vector n to represent
the orientation state of the fluid, tacitly assuming that
the molecular orientation distribution stays at its equi-
librium state. This is reasonable when the molecular
relaxation time is much shorter than the characteristic
time of the flow. Second, the theory does not allow
orientational defects, which would be singularities in
the n field. In reality, LCs and LCPs tend to have
a high density of defects.[1,9,10] Near the defect core,
large spatial gradients distort the molecular orientation
distribution, thus invalidating the LE theory.

Predictions of the Leslie–Ericksen Theory
for Shear Flows

The LE theory has been applied to simple shear,
Poiseuille, and nonviscometric flows.[4,11] If a3=a2 > 0,
the LE theory predicts a steady ‘‘flow-aligning’’ solu-
tion in shear flows. If a3=a2 < 0, however, no steady
solution exists, and n rotates continuously. The latter
type, known as ‘‘tumbling’’ nematics, exhibits much
richer dynamics.We will focus on instabilities in sheared
tumbling LCs, for these reveal the most interesting
physics, especially regarding the nucleation of defects.
The key parameter in this problem is the Ericksen num-
ber: Er ¼ g1VH=K1, V and H being the characteristic
velocity and length, respectively. It represents the inter-
play between the viscous torque exerted by shear and
the elastic torque emanating from the wall anchoring.

Consider the shear flow geometry in Fig. 1, with
three different anchoring conditions on the top and
bottom planes. The initial condition is a uniform n field
consistent with the wall anchoring. Cases (a) and (b) are
similar in which n lies initially in the y–z plane. In both
cases, the LE theory predicts an in-plane tumbling
instability and an out-of-plane twist instability.[12]

2956 Theoretical Aspects of Liquid Crystals and Liquid Crystalline Polymers



If n is restricted to the y–z plane during the shear, a
steady ‘‘windup’’ solution obtains for low shear rates,
with n rotating the most at the center and less toward
the walls. This windup picture becomes unstable at a
critical shear rate, where the director tumbles discon-
tinuously to a new solution with reduced elastic energy.
The critical Er depends on material parameters, and
falls roughly between 10 and 100. Mathematically, this
instability is represented by the existence of multiple
in-plane solutions at certain ranges of the shear rate.[13]

An example is shown in Fig. 2.
If one relaxes the constraint of in-plane orientation,

a second instability appears in roughly the same Er
range, with the director being driven out of the flow-
gradient (y–z) plane toward the vorticity (x) direction.[12]

This twist instability is accompanied by secondary
flows orthogonal to the primary flow. Critical Er
values for the tumbling and twist instabilities have
been determined,[12] and detailed bifurcation diagrams
constructed.[14] With increasing Er, n approaches the
vorticity direction except for a thin layer next to the
walls; the whole field approaches the initial condition
in Fig. 1 with the anchoring condition (c).

This ‘‘log-rolling’’ configuration, be it the initial
state with condition (c) or the result of a twist instability
with conditions (a) or (b), is itself unstable to the for-
mation of counter-rotating pairs of rolls aligned with the
flow(Fig. 3A).This roll-cell instabilitywasfirst recognized
by linear analyses.[15,16] Along the vorticity direction, the
rolls disturb the n field periodically and produce alternat-
ing dark and light stripes parallel to the primary flow,
which have been experimentally confirmed.[17–19]

Experiments demonstrate that at even higher Er, the
rolls become unstable and irregular. Ultimately, defect
lines called disclinations form in the flow direction. As
the linear analysis concerns the behavior of infinitesi-
mal disturbances, the growth of the instability and
further bifurcations are inaccessible to such analyses.
This motivated Feng, Tao, and Leal[20] to carry out a
direct numerical simulation of a sheared nematic.
Using the LE theory, with the one-constant approxi-
mation, they predicted a cascade of instabilities illu-
strated in Fig. 3. Steady state rolls first appear at
Er ¼ 2368. The director twists toward the flow (z)
direction at the center of the cells. With increasing Er,
the secondary flow and the director twisting intensify,
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Fig. 1 Geometry for shear flow, with three
possible anchoring conditions on the top

and bottom planes: (a) n fixed along the flow
direction (planar anchoring); (b) n fixed
along the velocity gradient (homeotropic

anchoring); and (c) n fixed along the vorticity
direction (log rolling).
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Fig. 2 The maximum orientation angle ym
(in radians) as a function of Er for in-plane
windup solutions of the LE theory using param-
eters for 8CB.[12] Multiple values of ym indicate

multiple solutions at one shear rate, the jumps
among which are the tumbling instability.
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while the wavelength of the dominant mode shrinks.
When Er reaches 4026, the steady solution gives way
to a time-periodic one: the roll cells begin to oscillate
(Fig. 3B). When Er exceeds 6867, the cells split and
evolve into an irregular pattern (Fig. 3C). Meanwhile,
the director field forms ‘‘ridges,’’ namely elongated
regions where n is mostly aligned with the primary flow
(Fig. 3D). If the local secondary flow is favorable, the
ridges break up to produce pairs of �1 disclinations of
the escaped type with a diffuse core. This is the first
detailed understanding of the process of flow-induced
defect formation. More recently, Tao and Feng[21]

extended this work to allow three unequal elastic

constants, and explored the interaction among the
three modes of distortion during the nucleation of
defects. Note that the LE theory is generally incapable
of describing defects. Fortunately, the disclinations
produced by broken roll cells in both experiments[18]

and numerical simulations[20,21] are nonsingular lines
with a diffuse core.

Generalizations of the Leslie–Ericksen Theory

The inability of the LE theory to describe orientational
defects has motivated efforts to generalize it.

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

Splitting Propagation

2                                          3                                         4 5                                          6                                         7

A

B

C

D

Fig. 3 Secondary flows in the x–y plane showing instabilities in a sheared nematic: (A) velocity vectors showing steady roll cells
at Er ¼ 2602; (B) a snapshot of oscillating roll cells at Er ¼ 4336; (C) cell splitting at Er ¼ 8672; and (D) ridges, indicated by
arrows, break up to produce pairs of �1 defects marked by the ellipses. (From Ref.[20].)
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The origin of the difficulty is the assumption of an
equilibrium orientation distribution. In reality, the
large spatial gradients at the defect would distort the
molecular orientation distribution and severely reduce
the local order parameter.

Ericksen[22] introduced a variable scalar order
parameter; this amounts to assuming a spheroidal orien-
tation distribution, with the axis of symmetry along the
unit-length director. Liu and Walkington[23] proposed a
conceptually related model by allowing the director
length to vary. Its deviation from unity incurs a penalty
in the Ginzburg–Landau form, and the Frank energy
with the one-constant approximation can be rewritten as

FCW ¼ K
1

2
Hn : ðHnÞT þ ðn � n � 1Þ2

4d2

" #
ð8Þ

The small parameter d indicates the extent of the
defect region where jnj deviates from unity; singularity
is avoided as jnj shrinks. Thus, jnj serves the role
of Ericksen’s scalar parameter. Tsuji and Rey[24,25]

represented the molecular orientation distribution by
a second-rank tensor. Thus, the distribution is allowed
an ellipsoidal shape with three distinct eigenvalues. The
free energy assumes the Landau–DeGennes form.[26]

Now defects correspond to points where the two lar-
gest eigenvalues are equal and a unique director cannot
be defined. This theory has been used to study the
appearance and evolution of spatial textures.[24,25]

Finally, the Larson–Doi theory[27] is an ingenious
generalization of the LE idea to a larger length scale
to account for polydomain textures.

MOLECULAR THEORIES

The starting point of a molecular constitutive theory is
a simple mechanical model for the molecule that
captures its most salient traits. Thus, flexible polymer
molecules have been represented by elastic dumbbells
and bead-spring chains,[28] and rigid polymers by rigid
dumbbells[28] and rigid rods.[29] For its simplicity, the
evolution of the model molecule is easily described
by a convection-diffusion equation. Then a Fokker–
Planck equation is written for the probability dis-
tribution function of an ensemble of these molecules.
Finally, the macroscopic stress tensor is derived
in terms of the distribution function. This kinetic the-
ory framework was pioneered by Kirkwood (see, for
example, Ref.[29]).

Nematic Potentials

The orientational order in a nematic derives from
inter-molecular forces of various origins. We represent

such molecular interactions by a mean-field potential
energy known as the nematic potential. The Onsager
and the Maier–Saupe potentials have played prominent
roles in the development of the subject.

The Onsager potential is based on the
excluded-volume effect among rod-like molecules.[1]

Consider an ensemble of rigid rods of uniform length
L and diameter b, with a number density n and an
orientation distribution function C(u) for the molecu-
lar orientation u. For a test molecule oriented in u,
the effect of all the other molecules can be represented
by a mean-field Onsager potential:

VONðuÞ ¼ nkT
Z

Cðu 0Þbðu;u 0Þdu 0 ð9Þ

where bðu;u0Þ ¼ 2bL2ju � u 0j represents the
excluded-volume interaction between two molecules
along u and u 0, k is the Boltzmann constant, T is
temperature, and the integration is over a unit sphere
representing all possible orientations.

The Maier–Saupe potential is a phenomenological
model originally proposed for thermotropic small-
molecule LCs.[1] It is obtained by replacing the
excluded-volume interaction in Eq. (9) by

bðu;u 0Þ ¼ const � b1bL
2ðu � u0 Þ2 ð10Þ

where b1 is a constant. Then, the Maier–Saupe nematic
potential can be written as:

VMSðuÞ ¼ const � 3

2
UkTuu :

Z
Cðu0Þuu0du0

¼ const � 3

2
UkTuu : S; ð11Þ

where

U ¼ 2

3
b1nbL

2 ð12Þ

is called the nematic strength, and

S ¼
Z

Cðu 0Þu0u 0du 0 ð13Þ

is the second-order moment of the orientation distribu-
tion.

With either nematic potential, the equilibrium
orientation distribution Ceq(u) can be computed via a
self-consistency condition, and the isotropic-to-
nematic transition has been analyzed in terms of
nematic strength parameters.[1,29]
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Doi Theory for Monodomain LCPs: Molecular
Viscoelasticity

Doi developed a dynamic theory for rigid-rod polymers
using the Onsager potential.[29,30] Subsequent appli-
cations mostly used the Maier–Saupe potential for
mathematical simplicity; we will illustrate Doi’s theory
using the latter. Consider the evolution of the orien-
tation distribution C(u) for an ensemble of rods in a
linear flow with a constant velocity gradient Hv. C(u)
is assumed to be spatially uniform; the nematic is a
single crystal, or ‘‘monodomain.’’ The conservation
of probability leads to the following Fokker–Planck
equation:

@C
@t

¼ �R � ðu � j � uCÞ þ DrR

� RC þ 1

kT
CRVMS

� �
ð14Þ

where the rotational operator R ¼ u � ð@=@uÞ, and
j ¼ ðHvÞT. Dr is a ‘‘pre-averaged’’ rotational diffusiv-
ity for the rods.[29] The nematic potential VMS enters as
it modifies the rotation of rods by exerting a torque
�RVMS. An evolution equation for the second-moment
tensor S follows from Eq. (14):

@S

@t
¼ �6Dr S � d

3

� �
þ 6DrUðS � S� S : QÞ

þ k � S þ S � kT � 2k : Q ð15Þ

where Q ¼ R
uuuuCðuÞdu, and d is the second-rank

unit tensor. An elastic stress tensor can be derived by
the virtual work principle:

sE ¼ 3nkT ½S � UðS � S � S : QÞ� ð16Þ

In addition, a viscous stress tensor arises from
viscous friction on the rods:

sV ¼ n
2
zrj : Q ð17Þ

where zr is a rotational friction constant defined by Doi
and Edwards.[29]

For Eqs. (15)–(17) to be a self-contained rheological
theory, the fourth-order moment Q has to be related to
the second-moment S by a closure approximation.
Such a closed theory describes the LCP orientation by
the second-rank tensor S, and the director can be iden-
tified as the eigenvector for the largest eigenvalue.
Doi[30] introduced a decoupling approximation:
S :Q ¼ S :SS, which turns out to be unsatisfactory
as it artificially suppresses director tumbling.[31] More
sophisticated closure models have since appeared,
and their impact on the theory’s prediction has been

carefully examined (for example, Refs.[32,33].) The best
closure models to date preserve most of the qualitative
features of the theory.

The Doi theory captures the molecular viscoelasticity
of LCP, i.e., the relaxation of the orientation distribu-
tion under flow. But it completely ignores distortional
elasticity and is limited to monodomains. The assump-
tion of spatial uniformity underlies all its key elements:
the nematic potential, the kinetic equation, and the
elastic stress tensor. Therefore, its successes are
restricted to situations where distortional elasticity is
insignificant.

One such success is the prediction of anomalous
normal stress differences in shear flow. Measurements
indicate that the normal stress differences N1 and N2

undergo two sign changes as the shear rate increases.
For small and large shear rates, N1 > 0, N2 < 0 as
expected of flexible polymers. In an intermediate range,
however, N1 < 0, N2 > 0.[34] When Eq. (14) is solved
without closure approximations, the Doi theory predicts
three regimes of director dynamics with increasing shear
rate: tumbling, wagging, and steady alignment.[31,35,36]

The first sign change occurs within the tumbling regime,
while the second occurs in the steady alignment regime.
These transitions are linked to the spreading or
narrowing of the orientation distribution C. For N1

and N2, quantitative agreement has been achieved
between prediction and measurements.[34] Using the
closure-approximated Doi theory, Feng and Leal[37]

simulated inhomogeneous LCP flows, and showed that
director tumbling can lead to defect-like patterns. They
also predicted a flow-orientation instability resembling
experimental observations in channel flows.[38]

Complete Theories with Molecular Viscoelasticity
and Distortional Elasticity

To add distortional elasticity to the Doi theory, one
has to start with a more general nematic potential that
accounts for spatial gradients. Marrucci and Greco[39]

derived such a potential for nonlocal interaction
among rigid-rod molecules in a distorted nematic
material. For a test molecule oriented along u at posi-
tion r, Marrucci and Greco delineated an interaction
region V enveloping the test molecule. Spatial aver-
aging of the molecular interaction inside a spherical
V produces a nonlocal nematic potential:

VMGðuÞ ¼ const � 3

2
UkT S þ L2

24
H2S

 !
: uu

ð18Þ

where the interaction length L 
 V 1=3 is the only free
parameter in the theory. Eq. (18) is a molecularly-
based generalization of the Maier–Saupe potential.
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Following the procedure in deriving the Doi theory,
one arrives at a kinetic equation for S:[40,41]

@S

@t
þ v � HS

¼ �6Dr S � d
3

� �
þ 6DrUðS � S � S : QÞ

þ j � S þ S � jT � 2j : Q þ DrUL2

8

� ðH2S � S þ S � H2S � 2H2S : QÞ ð19Þ

where the last line represents the consequences of
the spatial gradients. Derivation of the elastic stress
tensor involves subtleties in treating the nonlocal
interaction among molecules. Feng, Sgalari, and
Leal[41] generalized the virtual work principle to cover
a finite volume of the LCP, and imposed a condition of
zero work on the boundary. This leads to an elastic
stress tensor:

sE ¼ 3nkT ½S � UðS � S � S : QÞ� � nkTUL2

8

� S � H2S � H2S : Q þ P � HHS : S

4

� �
ð20Þ

where Pij ¼ ð@Skl=@xiÞð@Slk=@xjÞ. With a proper
closure approximation, Eqs. (19) and (20) constitute a
‘‘complete’’ constitutive theory for LCPs that incorpo-
rates both molecular viscoelasticity and distortional
elasticity.

This theory has two notable features. The nonlocality
of molecular interaction is reflected by the ellipticity of
Eq. (19) [cf. Eq. (15)]. Thus, the LCP configuration is
globally coupled by distortional elasticity. In addition,
the elastic stress tensor is asymmetric. The mean-field
torque on LCP molecules amounts to a ‘‘volume
torque’’ on the material, which modifies the usual con-
servation of angular momentum. The antisymmetric
part of the stress tensor precisely balances the volume
torque computed by averaging the molecular torque.[41]

Eq. (18) is actually a special form of the Marrucci–
Greco potential obtained by taking a spherical interac-
tion region around a test molecule. This corresponds,
in the limit of weak distortion, to the one-constant
approximation in Frank elasticity. Accounting for
the molecular length in an oblong interaction region,
Marrucci and Greco[39] derived a more general poten-
tial that produces three unequal elastic constants.
Wang[42] has built this general nematic potential into
a dynamic theory. Finally, we note several alternatives
to the kinetic approach of LCP rheology.[5,24,43]

Despite the different starting points, the complete
theories obtained are essentially the same.

Predictions of the Complete Theories

As the complete theories include both molecular
viscoelasticity and distortional elasticity, an outstand-
ing question is: do they predict the correct dynamics
for texture evolution that have eluded previous simpler
models? So far, efforts to answer this have been limited
to numerical simulations on shear flows.

Kupferman, Kawaguchi, and Denn[40] assumed no
streamwise (along z in Fig. 1) or spanwise (along x)
variations and a two-dimensional orientation with all
molecules lying on the y–z plane. A one-dimensional
‘‘windup’’ picture emerges, similar to the Leslie–Erick-
sen predictions.[13] At low shear rates, a steady state is
reached. At higher shear rates, the director continues
to tumble in the interior of the domain, with the
near-wall distortion being released periodically. A dis-
appointing feature of the result is the lack of an inher-
ent texture length scale that would reflect the balance
between elastic and viscous torques.[3]

Rey and Tsuji[24,25] permitted two-dimensional
variations of orientation on the y–z plane, but
decoupled the flow field from the kinetic equation so
that the linear velocity profile is fixed and unperturbed
by LCP stress. Results reveal the conflict between the
tumbling tendency far from the anchoring walls and
the fixed orientation at the walls, which is resolved
by periodic nucleation of a pair of defects. Again, no
inherent texture length scale emerges. The common
features of the above solutions—a windup structure
and periodic appearance and annihilation of �1=2
defects—are similar to the prediction of the original
Doi theory.[32,37,38] Thus, a key expectation of the com-
plete theories, namely the prediction of a texture length
independent of macroscopic geometry, is not fulfilled,
perhaps owing to the simplifications in these simulations.

Sgalari, Leal, and Feng[44] sought to relax the geo-
metric and physical restrictions in simulating shear
flows. The constitutive and momentum equations are
fully coupled, with the flow affecting the LCP orienta-
tion, and the resulting stress tensor modifying the flow
in return. Two-dimensional variations on the y–z plane
are allowed, though the configuration tensor S is
assumed to be symmetric about the shear plane as in
Tsuji and Rey.[24] Finally, the dependence of the rota-
tional diffusivity on the order parameter, the so-called
tube dilation effect,[29] is included. Upon startup of
shear, the interior of the domain tumbles as seen
before. In time, however, this tumbling is arrested by
distortional elasticity, and narrow strips containing
much-reduced order emerge along the flow direction.
These strips are roughly parallel to each other and
are taken to be disclination lines. A characteristic tex-
ture length htext is identified from the Fourier spectrum
of the order parameter profiles. htext refines in time and
approaches an equilibrium level in about 100 strain
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units (Fig. 4A). Marrucci’s argument for the inherent
texture length,[3] carried over to the complete molecular
theory, yields the following scaling:

htext / L
U

De

� �1=2

ð21Þ

where De is the Deborah number of the flow. The
numerical data appear to be consistent with the
square-root scaling (Fig. 4B). Sgalari, Leal, and Feng[44]

further removed the restriction on S being symmetric
about the shear plane. Then, the complete theory
predicts an out-of-plane twist instability resembling
the predictions of the LE theory.[12]

More recently, Sgalari, Leal, and Meiberg[45] and
Klein and Leal[46] examined the instability of simple
shear to secondary flows in the x–y plane. The initial
instability takes on a similar form to that predicted
by the LE theory, with the appearance and subsequent

breakup of roll cells.[20] But the complete theory allows
these authors to probe director turbulence and the
Deborah-number cascade at much higher shear
rates.[18] The authors argued that �1=2 strength
‘‘thin’’ defects would eventually appear in addition
to the escaped �1 disclinations noted before.

Connection Between Molecular and
Continuum Theories

As alluded to in the introduction to this entry, the LE
theory was conceived for small molecule LCs while
molecular theories are intended for LCPs. LC mole-
cules retain their equilibrium orientation distribution.
LCPs are susceptible to disturbances to their distri-
bution function C(u); its temporal relaxation gives rise
to molecular viscoelasticity, while its spatial gradient
produces distortional elasticity. A natural question is
whether the molecular theories reduce properly to the
continuum LE theory in the limiting case of an
undisturbed orientation distribution. This situation
arises in the ‘‘weak flow limit’’ where the flow is
weak (De � 1) and spatial distortions are small
(jcSj � 1=L). In this limit, Feng, Sgalari, and Leal[41]

has proved that their version of the complete theory
reduces properly to the LE theory.

Their proof relies on the fact that in the limit of
small spatial distortions, The Marrucci–Greco poten-
tial of Eq. (18) reduces to the Frank elastic energy of
Eq. (2) with

K ¼ 1

8
nkTUS2eqL

2 ð22Þ

Seq being the equilibrium order parameter. Feng,
Sgalari, and Leal[41] followed the unusual perturbation
procedure outlined by Kuzuu and Doi,[47] in which the
base state is undetermined because a uniform single crys-
tal does not have a preferred orientation. The kinetic
equation and stress tensor reduce precisely to the LE
forms,with thephenomenological elastic andviscous con-
stants determined by equilibrium molecular parameters.

As indicated above, such an agreement is perhaps
expected. On the other hand, it is remarkable that a
rather complex phenomenological theory postulated
for an LC continuum can be reconciled with an even
more complex molecular theory built on the concept
of intermolecular potential. Perhaps the only other
such happy instance is the agreement between the con-
tinuum Oldroyd-B model for viscoelastic liquids and
the molecular model based on a dilute suspension of
linear Hookean dumbbells in a Newtonian solvent.[28]

The idea that the LE theory applies to weak flows,
while the molecular theories to strong flows provides
a convenient framework for interpreting experimental

Fig. 4 (A) Evolution of htext in time for U ¼ 8, De ¼ 15,

Er ¼ 8 � 106, L=H ¼ 10�3 and (B) scaling for htext when
U=De is varied. The data points are numerical results and
the dotted line indicates the square-root law of Eq. (21).
(From Ref.[44].)
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observations. Larson and Mead[18] identified the
so-called Ericksen number (Er) and the Deborah
number (De) cascades for sheared nematic polymers.
At lower shear rates, the molecular distribution
remains largely undisturbed although the preferred
orientation–the director–rotates. The dynamics are
thus dictated by Er, the ratio between viscous and
distortional elastic effects. The LE simulations of Feng,
Tao, and Leal[20] and Tao and Feng[21] fall in this
cascade, and their results indeed correlate well to
observations in the Er cascade. Higher flow rates start
to distort the molecular distribution, and molecular
viscoelasticity becomes significant once De rises to
O(1).[18] This is the De cascade, where distortional elas-
ticity no longer has a major effect on certain macro-
scopic properties such as rheology. That is why the
original Doi theory, with distortional elasticity omitted
entirely, is able to reproduce the anomalous normal
stress differences to quantitative accuracy.[34] For other
features such as defect generation, distortional elasticity
remains locally important. This is the case for the simu-
lations of Sgalari et al.[44,45] and Klein and Leal.[46]

CONCLUSIONS

In this brief review, we strive to construct a coherent
picture of our current theoretical understanding of
the flow and rheology of small-molecule and polymeric
nematic liquid crystals. Owing to space limitations, we
have presented results selectively, based more on the
need to tell a somewhat coherent story than the signifi-
cance of the work.

To sum up, there have been two types of constitutive
theories for LCs and LCPs: one based on phenomeno-
logical modeling that treats the material as a conti-
nuum, and the other based on a molecular picture
and a statistico-mechanical approach. The molecular
theories contain the continuum LE theory as a limiting
case for weak flows and small spatial distortions.
Shear-flow simulations using the LE theory capture
qualitative features of the Ericksen number cascade,
including shear-induced defect formation. More recent
simulations using a complete molecular theory have
reproduced some experimental observations at higher
shear rates extending into the Deborah number
cascades. In particular, an inherent texture length
emerges and follows a scaling expected from balancing
the viscous and elastic effects.
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