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A drop falling onto a fluid-fluid interface may not merge with it at once but may undergo a so-called
partial coalescence cascade. Experimental observations of this phenomenon have revealed
fascinating features of the process for Newtonian as well as polymeric fluids. In this paper, we
describe numerical simulations of partial coalescence based on a phase-field method. Results show
that partial coalescence occurs for an intermediate range of drop sizes, and proceeds in two stages:
capillary waves propagating along the drop and transforming it into a fluid column, and neck
formation on the column and pinch-off of the secondary drop. In the first stage, interfacial energy
turns into kinetic energy following film rupture, while in the second, the kinetic energy overcomes
an energy barrier due to the initial increase in interfacial area during neck formation. A parametric
study establishes a criterion for partial coalescence in terms of a maximum Ohnesorge number that
applies to a wide range of fluid densities and viscosities as long as the Bond number is small.
Viscoelasticity in either the drop or the matrix tends to delay the pinch-off of the secondary drop,
and may even suppress partial coalescence altogether. The underlying mechanism is large tensile
polymer stresses resisting the stretching and thinning of the fluid neck. The numerical results are in
qualitative, and in some cases quantitative, agreement with prior experiments. © 2006 American
Institute of Physics. �DOI: 10.1063/1.2364144�

I. INTRODUCTION

When a drop settles gently in an immiscible ambient
fluid onto a flat interface between these two fluids, it rests on
the interface for an extended time and then coalesces with
the homophase beneath the interface. The rest time is asso-
ciated with the drainage of the ambient fluid from the thin
film between the drop and the interface, and exhibits a
Gaussian-like distribution due to the stochastic nature of film
rupture. But the coalescence process is highly repeatable, and
occurs on a time scale much shorter than the rest time. Under
certain conditions, the merging between the drop and lower
bulk is not completed at once but goes through many cycles
of partial coalescence, each leaving a smaller daughter drop
on the interface. This peculiar phenomenon, made widely
known by Charles and Mason1 in 1960, has not been studied
nearly as extensively as the film drainage preceding it,2,3 and
is the focus of this computational study.

To give a brief summary of the experimental findings, it
is convenient to define four dimensionless groups that gov-
ern the partial coalescence process,

Oh =
�1

��1�D
, �1�

Bo =
��1 − �2�gD2

�
, �2�

�* =
�1

�2
, �3�

�* =
�1

�2
, �4�

where D is the diameter of the drop and � is the interfacial
tension. � and � are the density and viscosity of the fluids,
with subscripts 1 and 2 denoting the drop and the matrix
phase, respectively. The Ohnesorge number Oh and Bond
number Bo indicate the relative importance of viscosity and
gravity with respect to interfacial tension.

Charles and Mason1 attributed partial coalescence to
capillary pinch-off. Upon film rupture, the primary drop
transforms into a liquid column. The column gets thinner in
time until Rayleigh instability produces a neck near its base.
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A secondary drop then pinches off. If one equates the sec-
ondary drop size to the wavelength of the fastest-growing
capillary wave, this picture implies a constant size ratio be-
tween the secondary and primary drops �=0.42, somewhat
below observed values.1,4 Including the viscosity of either
component will lead to an even greater underprediction.5,6

Thoroddsen and Takehara4 recognized that for low-
viscosity fluids such as water and air, there exists an inter-
mediate range of drop size D such that both Oh and Bo are
vanishingly small. Then the size ratio � can only depend on
�* and �*, and must remain a constant through successive
cycles of partial coalescence. For their fluids, such a self-
similar regime was observed for D on the order of hundreds
of micrometers, and the constant � is around 0.5. More re-
cently, Chen et al.2 extended this picture by identifying a
viscous regime for smaller drops and a gravity regime for
larger ones. Scaling relationships have been developed for
the size ratio � and the coalescence time �c in terms of the
Bond number Bo and the Ohnesorge number Oh.

A general criterion for the occurrence of partial coales-
cence has remained elusive. Based on earlier data, Charles
and Mason1 proposed a criterion based on the viscosity ratio:
0.02��*�7–11. This was later contradicted by
Thoroddsen and Takehara,4 who observed partial coales-
cence for water and ethanol drops in air with �*�100.
Mohamed-Kassim and Longmire7 argued that viscosity,
gravity, inertia, and capillarity all influence partial coales-
cence, and suggested a criterion Bo·Oh�0.02–0.03, where
Oh is an Ohnesorge number defined using the average den-
sity and viscosity between the two fluids. This cannot be a
universal criterion, however. As Bo·Oh�D3/2, this criterion
implies that if partial coalescence occurs for a certain D, it
would occur for all subsequent smaller drops. In reality, the
partial coalescence cascade terminates for sufficiently small
drops when capillary breakup is arrested by viscosity.4,8 For
low-viscosity liquids, Chen et al.2 found that partial coales-
cence occurs for an intermediate range of drop sizes bounded
by a critical Boc�5 for large drops and by a critical Ohc

�0.02 for small drops.
Finally, the above experiments are all based on Newton-

ian fluids. Chen et al.3 hypothesized that partial coalescence
involves strongly extensional deformation of the fluids, and
may be sensitive to viscoelasticity. Their experiment has
largely confirmed this idea; viscoelasticity in either phase
seems to suppress partial coalescence. Without data on the
flow and stress fields, however, it is impossible to construct a
detailed understanding of the mechanisms at work. A similar
statement can be made for the Newtonian experiments as
well. Thus, a computational investigation of the partial coa-
lescence process seems highly desirable at present.

Partial coalescence is difficult to simulate because of the
morphological changes of the interfaces that occur on ex-
ceedingly small time and length scales. In recent years, we
have developed a phase-field method for interfacial flows of
complex fluids that is capable of handling interfacial rupture
and coalescence.9 The interface, implicitly represented by a
phase-field variable, is modeled as a diffuse layer that stores
a mixing energy that gives rise to the interfacial tension. The
energy formulation makes it easy to incorporate complex

rheology. Despite successful applications to a variety of
problems,10–19 the phase-field description faces an intrinsic
challenge in representing the vastly disparate length scales
for the interface and the bulk. Recently, progress has been
made by adaptive meshing.20,21 Still, it remains to be seen
whether the partial coalescence process can be successfully
reproduced numerically.

Thus, we have set three objectives for this study: �a� to
reproduce quantitatively the partial coalescence process in
Newtonian fluids; �b� to establish a more firmly grounded
and more general criterion for partial coalescence through a
parametric study; and �c� to clarify the effects of viscoelas-
ticity in the process.

The plan for the rest of the paper is as follows. Section II
briefly summarizes the mathematical model and numerical
methods. Section III presents the main results of the study in
three subsections. The first uses quantitative comparisons
with experiments to demonstrate the capability and limitation
of the numerical methods. The second consists of a paramet-
ric study that culminates in a criterion for partial coalescence
in low-Bond-number situations. The final subsection is de-
voted to viscoelasticity. Section IV summarizes the main re-
sults and points out the limitations of this work.

II. GOVERNING EQUATIONS AND NUMERICAL
METHODS

The theoretical model and numerical method used in our
computation have been described at length elsewhere,9,20,22

and only a brief outline is given here. Consider an immis-
cible blend of a Newtonian fluid with viscosity �n and a
viscoelastic Giesekus fluid with solvent viscosity �s and
polymer viscosity �p. We introduce a phase-field variable �
to describe the diffuse interface between the two compo-
nents; �=−1 and 1 in the Newtonian and Giesekus bulk
phases, and it changes smoothly across the interfacial layer.
The nominal “interface” is at �=0. The governing equations
consist of the Cahn-Hilliard equation describing the convec-
tion and diffusion of the interface, the linear momentum
equation, the continuity equation, and a constitutive equation
for the viscoelastic fluid:

��

�t
+ v · �� = 	�2G , �5�

�� �v
�t

+ v · �v	 = � · �− pI + �� + G � � + �g , �6�

� · v = 0, �7�

�p + 
H�p�1� − �

H

�p
��p · �p� = �p��v + ��v�T� , �8�

where

G = 

− �2� +
���2 − 1�

�2 � �9�

is the chemical potential, 	 is the Cahn-Hilliard mobility
parameter, � is the capillary width, 
 is the mixing energy
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that determines the interfacial tension:9 �= 2�2
3




� . The total
stress tensor is

� = �1 + �

2
�s +

1 − �

2
�n	��v + ��v�T� +

1 + �

2
�p, �10�

where �p is the polymer stress. 
H is the polymer relaxation
time, � is the mobility parameter in the Giesekus model,23

and the subscript �1� denotes the upper convected derivative.
The Oldroyd-B model is recovered when �=0. The density �
is the average between the two components using their “con-
centrations” 1±�

2 , and g is the gravitational acceleration.
Equations �5�–�8� are solved by a finite-element code

AMPHI that uses adaptive meshing to resolve the narrow
interface.20 P2 elements are used for v and �, and P1 ele-
ments for p and �p. Second-order implicit schemes are used
for temporal discretization. A general-purpose mesh genera-
tor GRUMMP24 is adopted for the adaptive meshing, and �
is used as the criterion of mesh refinement. The most chal-
lenging aspect of the computation is in resolving the interfa-
cial region, which has a thickness �5�, and the attendant
numerical issues have been discussed in previous
publications.20,22 Extensive numerical experiments have de-
termined the ranges of the time step and grid size required
for adequate resolution. All the results presented here satisfy
these guidelines.

III. RESULTS AND DISCUSSIONS

We assume an axisymmetric geometry for the partial
coalescence process as illustrated in Fig. 1. The rectangular
computational domain has H=7D and R=3D. The depth of
the lower bulk H1=3D, and we initially place the drop very
close to the flat interface, H2=0.02D. The capillary width �
=0.005D, and the mesh size is 0.8� at the interface and 0.2D
in the bulk phases. All quantities are made dimensionless by

D, �1, and �. In particular, the characteristic time is the
inertio-capillary time tic= ��1D3 /��1/2, and stresses are scaled
by � /D. The four dimensionless groups have been given in
the Introduction. For boundary conditions, we set the veloc-
ity v=0 at the lower and right boundaries, and impose sym-
metry conditions along the axis. On the upper boundary, we
impose the natural boundary condition of vanishing stresses.
The initial condition is v=0 everywhere.

The mobility parameter 	 needs to be chosen carefully
such that the Cahn-Hilliard diffusion maintains the interfa-
cial profile without overly damping the flow field.13 With
�=0.005D fixed, varying 	 �scaled by D3 / �tic��� from 2.5

10−5 to 4.0
10−4 results in less than 1% variation in the
drop size ratio. In most simulations, therefore, we have used
	=1.0
10−4. Furthermore, we have tested other values of
the capillary width: �=0.004D, 0.01D, and 0.02D. 	 is
changed accordingly in proportion to �2 as suggested by
Jacqmin,13 from 6.4
10−5 to 1.6
10−3. For �=0.004D and
0.01D, the results differ from that for �=0.005D by less than
0.2%, while for �=0.02D, the difference is roughly 3%.
Thus, �=0.005D gives an interface thin enough to guarantee
converged results.

For a typical run, the adaptive mesh has 2
104�3

104 cells, with about 1.7
105�2.6
105 unknowns. The
time step is chosen such that the interface will not move over
one mesh cell at one step,20 and ranges from 10−4 to 10−2 in
dimensionless terms. Typically, one cycle of partial coales-
cence takes less than 2000 time steps, and requires less than
12 h of computation on a 3.0G Xeon processor.

A. Newtonian fluids: Comparison with experiments

Prior experiments1,2,4,7 made two important observations
on partial coalescence: �a� The process consists of two
stages, namely the propagation of capillary waves up the
surface of the drop and capillary breakup of the filament that
produces the daughter drop; �b� partial coalescence occurs
for an intermediate range of drop sizes, and is arrested by
gravity for larger drops and by viscosity for smaller ones.
Those have been reproduced, quantitatively for the most
part, by our simulations.

As an experimental benchmark, we have chosen the
sequence in Fig. 4 of Chen et al.2 showing a water drop
coalescing with an oil-water interface. The oil-based matrix
fluid is 20% polybutene in decane. The dimensional param-
eters are D=1.1 mm, �=29.7 dyn/cm, �1=1.0 g/cm3,
�1=0.01 poise, �2=0.76 g/cm3, and �2=0.02 poise. The di-
mensionless parameters are Oh=5.53
10−3, Bo=9.58

10−2, �*=1.32, and �*=0.5. We have also simulated an
experiment by Charles and Mason1 on partial coalescence of
a water drop with an interface with aniline. The outcome of
the comparison is almost identical to the one described here.

Figure 2 shows a frame-by-frame comparison of the in-
terfacial evolution during partial coalescence. First, the oil
film between the drop and the interface ruptures at t=0, and
this sets off surface waves that propagate up the drop surface
and outward on the interface ��a�–�d��. In time the drop is
transformed into a fluid column that shrinks in diameter con-
tinuously ��e�–�h��. The height of the column does not dimin-

FIG. 1. A schematic of the geometry of the numerical simulation. Because
of axisymmetry, the computational domain is the right half of the meridian
plane.
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ish at this stage, however. In fact, the column lengthens
somewhat. Now a neck forms at the bottom of the column
and continues to pinch in �i�. Finally, pinch-off occurs �j� and
a secondary drop is left above the interface ��k�,�l��.

The simulation not only captures the qualitative features
of partial coalescence, but also predicts the interfacial shape
and drop size with quantitative precision. The only discrep-

ancy is with the time intervals between �i�, �j�, and �k�: the
pinch-off of the filament at the neck and the formation of the
secondary drop occur faster in the simulation than in the
experiment. In a microscopic view, pinch-off happens when
the distance between interfaces becomes comparable to the
interfacial thickness and the van der Waals force begins to
dominate. In reality, the oil-water interface spans tens of na-

FIG. 2. Comparison between numerical and experimental results for a partial coalescence cycle. The time interval between experimental snapshots �lower
rows� is fixed: �t=542 �s, and the times indicated are those at which the numerical picture resembles the experimental one most closely. Instantaneous
streamlines are plotted on the right half of the numerical pictures �enhanced online�.

102102-4 Yue, Zhou, and Feng Phys. Fluids 18, 102102 �2006�

Downloaded 25 Oct 2006 to 137.82.115.193. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp

http://link.aip.org/link/mm/doi=10.1063/1.2364144&filename=034610phf2.avi


nometers. In our phase-field model, however, � is much
larger. This is a numerical necessity as it is computationally
prohibitive to resolve the range of length scales from
D�1 mm down to nanometers. The thicker interface then
leads to earlier interfacial rupture and coalescence. Note that
this issue only affects portions of the simulation that involve
short length scales. Adaptive meshing has allowed resolution
of thinner interfaces,20 and numerical effects due to Cahn-
Hilliard diffusion can be minimized by a judicious choice of
phase-field parameters.9,25

It is instructive to examine the interchange among inter-
facial, kinetic, and potential energies during the partial coa-
lescence. The onset and propagation of surface waves in
Figs. 2�b�–2�d� involves mostly interfacial energy being
transformed into kinetic energy of the two fluids. Some of
this kinetic energy turns into potential energy when the up-
ward momentum lifts the top of the liquid column in �h�. In
Fig. 2�h�, the height-to-diameter ratio of the fluid column is
approximately 2, smaller than � that is required for surface
perturbations to grow according to Plateau’s capillary
instability.26 This means that the interfacial area �and energy�
will increase if a neck is formed. Thus the necking, at least
initially, is driven by inertia as the kinetic energy is trans-

formed back into interfacial energy. If the velocity is sud-
denly set to zero at the beginning of necking, no pinch-off
would occur.27 The increase of interfacial area presents an
energy barrier that has to be overcome for partial coales-
cence to occur. This point will be revisited when we inves-
tigate the critical conditions for partial coalescence.

Partial coalescence occurs for an intermediate range of
drop diameters, and this is depicted in Fig. 3 in terms of the
drop size ratio �. Note that �=0 implies complete coales-
cence. The computational parameters correspond to experi-
ments on water drops in a decane matrix,2 and the experi-
mental data are also shown for comparison. Numerical
results show a range of the drop diameter D within which
��0. The upper bound Du lies between 1 and 2 cm �these
are the two runs that straddle the boundary�, and the lower
bound Dl is between 39 and 78 �m. The range Dl�D
�Du can be recast in terms of Oh and Bo, and these two
parameters are also shown in the figure.

When D decreases, Oh increases and so does the signifi-
cance of viscosity. As D→Dl, the surface waves will be
dampened by viscosity to such an extent that no pinch-off
occurs. Such a scenario is depicted in Fig. 4. In a separate
simulation for a larger drop �D=312.5 �m, Oh=9.96

10−3�, partial coalescence does occur; the neck forms on
the liquid column at dimensionless time t=0.56 and the sec-
ondary drop pinches off at t=0.70. In comparison, the neck
formation in Fig. 4�b� is delayed by the viscous effect at the
greater Oh. Consequently, more kinetic energy is dissipated
prior to neck formation, and what remains is not enough to
overcome the energy barrier due to the increase in interfacial
area that a pinch-off would entail. The result is complete
coalescence. Thus, viscous dissipation determines whether
the energy barrier can be surmounted. If it is, however, vis-
cosity exerts only a weak influence in the ensuing partial
coalescence process since Oh�10−2 is much below unity.
Therefore, the drop size ratio remains roughly a constant
���0.5� with increasing Oh until the kinetic energy fails to
negotiate the barrier. At that point � plummets to zero and
partial coalescence is arrested. The precipitous transition at
Dl, as opposed to the gradual one at Du, is a signature of the
energy barrier.

On the opposite end of the D range, gravity begins to

FIG. 3. Drop size ratio � vs initial drop size D in a water/decane system. For
the decane matrix �2=0.74 g/cm3, �2=0.01 poise, and �=32 dyn/cm. The
filled circles are from experiments of Chen et al. �Ref. 2�.

FIG. 4. Partial coalescence is arrested by viscosity for a drop of diameter D=39 �m�Dl. The material properties are for a water-in-decane system,
Oh=2.82
10−2, and t is made dimensionless by the inertio-capillary time tic �enhanced online�.
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dominate as D �or Bo� increases, and this produces a faster
depletion of the drop. Figure 5 shows a simulation for a
water drop in decane whose diameter is just above Du. Under
gravity, the drop fluid drains so fast into the lower bulk phase
that the whole drop practically collapses before the neck has
time to form. Thus, partial coalescence is arrested by gravity
for large drops.

Furthermore, the numerical results in Fig. 3 show the
three regimes of partial coalescence previously identified in
experiments: an inertio-capillary regime with a constant �
sandwiched by a viscous regime �for smaller drops� and a
gravity regime �for larger drops� where � is reduced, respec-
tively, by viscous dissipation and gravity-driven drainage,
eventually to zero. More quantitatively, the simulation repro-
duces Dl almost exactly. The predicted � agrees with experi-
mental data fairly well for Bo�0.1. For larger drops, how-
ever, the simulation overpredicts � and Du. The reason is that
the initial condition used in the simulations—a spherical
drop a small distance above a flat interface—does not reflect
the real geometry of the interfaces just prior to film rupture,
especially at high Bo. In reality, coalescence is preceded by a
relatively slow film-drainage process. During this time, the
drop and the interface deform under gravity when Bo is
large. The drop sags into an ellipsoidal shape that minimizes
the sum of interfacial and potential energies.7 Meanwhile, the
interface beneath the drop becomes highly curved for the
interfacial tension to provide an upward net force that bears
the weight of the drop. Thus, the drop “makes contact” with
the interface over a much larger area than the wedge between
a sphere and a flat interface �cf. Fig. 2�a��. Once the film
ruptures, a wider conduit opens and the drop fluid drains out
more readily than in our numerical simulations. This ex-
plains the high-Bo discrepancy in Fig. 3.

To capture the film drainage process and the curved in-
terfaces at large Bo is difficult because of the inherent limi-
tation of our phase-field method. The relatively thick diffuse
interface tends to cause coalescence to occur prematurely as
compared to reality. It is a challenge for any numerical
model to accommodate the three disparate length scales:
D� film thickness� interface thickness, and especially so
for interface-capturing methods. To our knowledge, the only
attempt to simulate the film drainage between a drop and an
interface using interface capturing is by Zheng et al.,28 with

the level-set method. It is fortunate that this issue does not
affect partial coalescence for smaller Bo, where a spherical
drop above a flat interface is a good enough geometric
approximation.

To sum up, we have used well-characterized experiments
to benchmark our numerical scheme AMPHI. It gives accu-
rate predictions except for two processes—initial film rup-
ture and pinch-off of the daughter drop—where the small
separation between interfaces taxes the diffuse-interface
method. The first precludes us from studying the film drain-
age process and limits us to small Bo values for the rest of
the paper, and the second must be kept in mind as a caveat in
interpreting numerical results.

B. Newtonian fluids: Parametric study

1. Effect of the Bond number Bo

To assess the uncertainties related to the initial interfa-
cial shape at large Bo, we first quantify the effect of Bo.
Figure 6 shows the variation of � with Bo at fixed Oh, �*,
and �*. Note that this plot differs from Fig. 3 where all
material constants are fixed and the drop diameter D
changes. Here, one may think of D as being fixed as well,
and Bo being varied by changing g. For Bo�0.1, � is essen-
tially independent of Bo as the gravity effect becomes insig-
nificant. For decreasing Oh, � is seen to converge to the

FIG. 5. Partial coalescence is arrested by gravity for a drop of diameter D=2 cm�Du. The material properties are for a water-in-decane system, Bo=31.9,
and t is made dimensionless by the inertio-capillary time tic �enhanced online�.

FIG. 6. Drop size ratio � as a function of Bo for several Oh values. Density
ratio �*=1.33, viscosity ratio �*=1.
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plateau value in Fig. 3 that characterizes the inertio-capillary
regime.2,4 On the other hand, if Oh increases to a critical
value near 2.5
10−2, � abruptly drops to zero for all Bo
because of the energy barrier explained before. With increas-
ing Bo, � decreases to zero gradually in the gravity regime,
in which our numerical results are subject to increasing er-
rors. Therefore, all simulations presented hereafter have used
Bo=10−3 with negligible gravity effect. In reality, this small
Bo corresponds to a small drop �roughly D�100 �m in Fig.
3� or a small density difference between the two fluids or
even microgravity.

2. Effect of the Ohnesorge number Oh

With the three other dimensionless parameters fixed, the
effect of varying Oh may be thought of as due to changing
the viscosities �1 and �2 in proportion. Figure 7 depicts the
variation of the drop size ratio � in such a scenario.

The drop size ratio � is not a monotonic function of Oh
but achieves a maximum at an intermediate Oh. This non-
monotonicity can be attributed to the competition between
drop depletion and pinch-off at the neck. Note first that the
curve approaches the inertio-capillary regime on the left as
Oh→0. With increasing Oh, viscous dissipation hampers the
downward flow of the drop fluid that depletes the drop. As a
result, less fluid drains out of the drop and � tends to increase
with Oh.

In the meanwhile, viscosity also dampens the develop-
ment of surface disturbances that will eventually lead to the
pinch-off of the liquid column, as in Figs. 2�g�–2�j�. This can
be more precisely shown by measuring the coalescence time
�c, defined as the interval between the initial film rupture and
the pinch-off of the secondary drop. Figure 8�a� plots the
dependence of �c, scaled by the inertio-capillary time tic, on
viscosity of the two components represented by an average
Ohnesorge number, Oh= �̄ /��̄�D, where �̄= ��1+�2� /2
and �̄= ��1+�2� /2. The increase of �c with Oh �or the viscos-
ity of either component� confirms the viscous damping of the
growth of surface disturbances. Thus, more fluid tends to
drain out of the drop before the pinch-off. This effect appar-
ently dominates the reduction in draining speed at higher Oh,
and causes � to decrease with Oh. Thus the viscous regime is
obtained,2 and eventually � drops to zero as Oh approaches a
critical value.

Incidentally, the �c results in Fig. 8�a� seem to contradict
Kinoshita et al.’s theory on viscous damping of capillary
instability on a fluid filament.29 When a small amount of
viscosity is added to either the filament or the matrix, it
serves as a perturbation to Rayleigh’s inviscid theory, and a
linear increase of the pinch-off time with Oh is expected.
However, Kinoshita et al. showed that the viscosity of the
filament �1 has more impact than the matrix viscosity �2,
and the two should be combined as ��= �3�1+�2� /4 in con-
structing the Ohnesorge number. It is surprising that our data
for a wide range of �* are successfully represented by the
average viscosity �̄, but not by �� �Fig. 8�b��. This may be
rationalized by the fact that our liquid column is not an infi-
nite filament in a quiescent matrix; instead, there are com-
plex flow fields in and surrounding the column, and the ki-
netic energy of the drop fluid has to overcome the
aforementioned energy barrier in effecting a pinch-off.

The linear fitting yields �c=0.634 at the limit of Oh=0
where the process is totally determined by capillarity
and inertia. This compares with the experimental value
�c�0.70 in the inertio-capillary regime.2 Again, the under-
prediction is due to premature pinch-off in our diffuse-
interface model.

3. Effect of the viscosity ratio �*

With all other parameters fixed, varying �* amounts to
varying the matrix viscosity �2 while keeping the drop vis-

FIG. 7. Drop size ratio � as a function of Oh with the other parameters
fixed: Bo=10−3, �*=1, �*=1.33. The same trend is observed for other �*

values tested, both below and above unity.

FIG. 8. Coalescence time �c increases
with the viscosity of either fluid com-
ponent. �a� Plotted against Oh, data at
various viscosity ratios tend to col-
lapse onto a single line for small Oh.
The solid line, �c=0.634�1+8.920Oh�,
is the linear fitting of three sets of data
at �*=1/2, 1, 2, and Oh�0.01. �b� No
such collapse occurs if data are plotted
against Oh� defined using ��= �3�1

+�2� /4 as suggested by Kinoshita et
al. �Ref. 29�.
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cosity �1 constant. Thus, the draining speed of the drop fluid
should not change greatly. With an increasing �*, the viscos-
ity of the surrounding fluid is reduced, resulting in a smaller
average Ohnesorge number Oh. From Fig. 8, we expect a
shorter �c as the capillary disturbance grows more rapidly.
Therefore, the drop size ratio � is greater at higher �*, as
shown by Fig. 9�a�. Moreover, since the matrix viscosity
scales with 1/�*, its influence should diminish for large �*.
This explains the fact that ���*� levels off with increasing
�*. One expects � to approach an upper limit when �*→�.

To isolate the effect of the drop viscosity �1, we can
vary �* for a fixed value of Oh/�*. Figure 9�b� shows a
nonmonotonic variation of �, which confirms the argument
put forth to explain Fig. 7. In other words, increasing drop
viscosity damps the velocity of drainage flow on the one
hand, and prolongs the coalescence time on the other. De-
pending on the competition of these two effects, � increases
with �1 �or �* in this case� at smaller �1, peaks, and then
declines at higher drop viscosity. The fact that � decreases
with increasing Oh/�* is due to the same effect of the matrix
viscosity �2 as shown in Fig. 9�a�.

4. Effect of the density ratio �*

With all other parameters fixed, �* is varied through the
density of the matrix phase �2. We should mention that when
�* crosses unity, the direction of gravity is reversed in the
simulations. Results show that � increases with �* monotoni-
cally �Fig. 10�a��. As the density and viscosity of the drop
fluid are fixed, we can assume that the drainage speed at
which the drop is depleted is approximately constant. Then
the increase in � with �* must be due to a decrease in the
coalescence time �c, which is indeed the case �Fig. 10�b��.
Owing to the weak viscous effect �Oh�1�, �c scales with an
inertio-capillary time ��D3 /��1/2, where � is a certain com-
bination of �1 and �2. When �* increases, �2 decreases, and
so do � and �c. The last two data points for Oh=2
10−2 are
anomalous because this Oh is very close to the maximum Oh
for partial coalescence �cf. Fig. 3�. Thus, the trends in Fig. 10
are clearly explained.

With �*→� and the matrix fluid becoming inertialess, �
tends to an upper limit. When �* decreases, on the other
hand, � appears to approach zero at a finite critical value �c

*

where partial coalescence is arrested by the inertia of the

FIG. 9. The drop size ratio � as a func-
tion of the viscosity ratio �* �a� at
fixed Oh=10−3; �b� at fixed Oh/�*.
The other parameters are Bo=10−3 and
�*=1.33.

FIG. 10. �a� The drop size ratio � increases with the density ratio �* for three fixed values of Oh. �b� The coalescence time �c decreases with �*. The other
parameters are �*=1 and Bo=10−3.
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surrounding fluid. Extrapolation of the curves in Fig. 10�a�
indicates a common �c

*�0.006 for all Oh values. This �c
*,

along with a critical Oh, forms part of a criterion for partial
coalescence.

5. Criteria for partial coalescence

Of the four dimensionless groups of the problem, we
cannot explore large Bond numbers owing to numerical limi-
tations discussed before. Thus, it seems reasonable to seek a
criterion for partial coalescence embodied by a critical Ohne-
sorge number Ohc that depends on �* and �*. Figure 3 indi-
cates a maximum Oh for partial coalescence, determined in
part by the energy barrier. A similar critical Ohc has been
identified for other values of �* and �*.

Figure 11 shows the critical Ohnesorge number as a
function of �*. As Oh is defined using the drop viscosity, we
have also plotted the critical condition in terms of a “matrix
Ohnesorge number” Oh2=�2 /��2�D. Note first that Ohc ap-
proaches a constant around 3.25
10−2 as �* increases be-
yond 4. This is when the matrix viscosity becomes negli-
gible. Conversely, Oh2c approaches a constant near 1.85

10−2 when �* falls below 1/64, when the drop viscosity

becomes too small to affect the coalescence process. In the
intermediate range 1/64��*�4, both drop and matrix vis-
cosities are important, and the partial coalescence criterion is
perhaps best expressed by some combination of �1 and �2.
After some trial and error, we have found �̃= �2�1+�2� /3 to
be a particularly suitable “composite viscosity”: the critical

values of the corresponding Ohnesorge number Oh˜

= �̃ /��̄�D exhibit a simple sigmoidal shape on the semilog
scale of Fig. 11, and can be fitted to

Oh˜ c��*� = 2.45 
 10−2 −
1.74 
 10−6

�*3.125 + 9.35 
 10−5 . �11�

The dependence of the critical Ohnesorge number Oh˜ c

on �* is depicted in Fig. 12 for several values of �*. For

�*=1, Oh˜ c is nearly a constant over the range of �* tested.
This implies that in this case the inertia of both phases exerts
equal influence on the criterion for partial coalescence, such
that as long as �̄ is used to calculate the Ohnesorge number,
its critical value is insensitive to �*. For the other �* values,
the variation with �* is very mild as well.

Over wider ranges of �* and �*, it is not easy to express

the function Oh˜ c��* ,�*� in an analytical form as Eq. �11�.
Instead, Fig. 13 depicts this function graphically. Note first

FIG. 11. Dependence of the critical Ohnesorge number on viscosity ratio �*

at �*=1.33 and Bo=10−3. Oh2=�2 /��2�D is an Ohnesorge number based

on the matrix fluid properties and Oh˜ = �̃ /��̄�D is based on a “composite
viscosity” �̃= �2�1+�2� /3.

FIG. 12. The critical Ohnesorge number Oh˜ c depends weakly on �* for an
intermediate range of �*.

FIG. 13. Critical Ohnesorge number Oh˜ c as a function of �* and �* in a surface plot �a� and a contour plot �b�. The former gives a better global view while
the latter is more convenient for quantitative evaluation.
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that Oh˜ c is nearly a constant �close to 2.45
10−2� for
�*�0.4 �zone I�, consistent with prior observations in Fig.

12. In zone II ��*�0.5 and �*�0.4�, Oh˜ c depends on �*

weakly and the contours are mostly vertical. Therefore, in
zone I and zone II, Eq. �11� is a rather accurate criterion for
partial coalescence. These two regions cover most experi-
ments in the literature, especially those on liquid-liquid sys-
tems whose �* and �* do not deviate greatly from unity.

In zone III ��*�0.5 and �*�0.4�, Oh˜ c depends on both
�* and �* in a complex way and we did not attempt to fit the
data to an empirical equation. The most notable feature is a
ridge-like structure roughly parallel to the �* axis. This il-

lustrates the fact that for small enough drop viscosity, Oh˜ c no
longer depends on �*. The same limiting behavior has been

noted in Fig. 11. We should point out that the Oh˜ c values for
small �* and �* are subject to greater numerical uncertainty.
The reason is that � becomes very small in this limit, and
numerical resolution of the small secondary drop becomes
difficult in our diffuse-interface framework.

Toward the bottom of zone III, there is an additional
constraint on partial coalescence: �*��c

*, where �c
*�0.006

from extrapolating Fig. 10�a�. The physical mechanism un-
derlying �c

* differs from that for the critical Ohnesorge num-

ber. Oh˜ c marks the sudden drop of � from a relatively large
value to zero, and is determined by the energy barrier. On the
other hand, �c

* represents the competition between the coa-
lescence time �c, which is roughly the time needed for pinch-
ing off the secondary drop, and the time needed for depleting
the primary drop. Figure 13�b� shows that for a small �*

above �c
*, say �*=0.1, the critical Oh˜ c for partial coalescence

is actually higher than that at a large �*, say �*=0.5. Thus,

Oh˜ c and �c
* are independent constraints.

In summary, we propose Oh˜ c��* ,�*� in Fig. 13 and
�*��c

* as a “universal� criterion for partial coalescence in
Newtonian systems for all density and viscosity ratios. For
moderate parameter values in zone I and zone II, the simpler
criterion of Eq. �11� may be used. Of course, this criterion is
not truly universal because of the small-Bo limitation. Ex-
perimentally, Chen et al.2,3 identified a critical condition
Bo�5 for partial coalescence in the gravity regime. Our
simulation seems to suggest the same phenomenon �cf. Fig.
3� but cannot compute the critical Bo with confidence. Fur-
thermore, Mohamed-Kassim and Longmire7 noted interme-
diate regimes where the critical condition for partial coales-
cence depends on both viscosity and gravity, and suggested
the criterion BoOh�0.02−0.03. In a way, our criterion
complements these large-Bo criteria. It represents a step to-
ward a complete understanding of partial coalescence, but is
certainly not the final word on it.

6. Comparison with experiments

When discussing Fig. 3, we have already noted the good
agreement of � and Ohc with experimental data for a water/
decane system2 with �* and �* both close to unity. The more
general predictions in the parametric study can be compared
with other experiments.

For water drops coalescing with an air/water interface,
we have �*�103 and �*�102. Extrapolating the curves in
Figs. 9�a� and 10�a�, we may estimate a limiting value
��0.55 for large �* and �* when Oh is well below the
critical value. Thoroddsen and Takehara4 observed ��0.5
for an air/water system. Honey and Kavehpour8 further re-
ported �=0.65±0.08, 0.58±0.06, and 0.52±0.05 for metha-
nol, water, and silicone oil drops coalescing with the air/
liquid interface. Most recently, Blanchette and Bigioni27

suggested ��0.55 at vanishing Bo based on experiments and
simulations on an air/ethanol system. For liquid-liquid
systems, Charles and Mason1 experimented with a large
variety of immiscible fluid pairs, with �*�1–11 and
�*�0.004–70. Because of the large initial drop size
�D�0.4–0.7 cm�, the Bond number is large �Bo�1� and
the first cycle of partial coalescence exhibits a small size
ratio in the range of 0.13–0.41. In subsequent cycles with
smaller D and Bo, they reported ��0.5±0.05. All these data
agree well with our predictions.

For liquid drops coalescing with an air/liquid interface,

extrapolating Fig. 13 gives a critical Oh˜ c�0.025. The nu-
merical and experimental results of Blanchette and Bigioni27

give Oh˜ c=0.017 for both water and ethanol, reasonably close
to our prediction. If we consider the inverse scenario of an
air bubble coalescing with a water/air interface, �*�1.29

10−3 and �*�1.82
10−2. Since �* is below �c

*=0.006, we
expect no partial coalescence. This seems empirically true,
and there are no experimental reports to the contrary. Finally,
we may rationalize the partial coalescence criterion of
Charles and Mason1 based on the viscosity ratio, 0.02��*

�7�11. We know that when �* is too low or too high, the
composite viscosity �̃ is dominated by the larger of the two
viscosities. In their experiments, the lower viscosity is al-
ways on the same order as the water viscosity. A very low or

high value of �* then implies a large �̃ and a large Oh˜ .
Therefore, the seemingly peculiar criterion on �* is actually

consistent with our criterion Oh˜ �Oh˜ c. Specifically, the up-
per bound �*=10, at which partial coalescence is arrested for
drops of 50% glycerol/50% water in benzene, corresponds to

Oh˜ =2.30
10−2, which is very close to our Oh˜ c=2.45

10−2 for �*=10 and �*�1. The lower bound �*=0.02, for
water drops in cyclohexanol with complete coalescence,

gives Oh˜ =0.14, which is higher than the predicted Oh˜ c and
therefore consistent with our criterion.

C. Viscoelastic fluids

In a recent experimental study, Chen et al.3 found that
viscoelasticity in either the drop or the matrix phase tends to
prolong the coalescence time, reduce the drop size ratio, and
increase the minimum drop size for partial coalescence. The
effect seems to be stronger if the viscoelasticity occurs in the
drop than the matrix. They further proposed that the mecha-
nism for the effect lies in the suppression of capillary insta-
bility on liquid filaments. In the present study, we have simu-
lated the partial coalescence process when either the drop or
the matrix is a polymer solution modeled as a Giesekus or
Oldroyd-B fluid. For simplicity, we fix the viscosity ratio
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�*=1 and the density ratio �*=1.33. For viscoelastic fluids,
�* is defined using the total �polymer plus solvent� zero-
shear-rate viscosity. A small Bond number Bo=10−3 is used
as before. The Deborah number is defined as

De =

H

tic
= 
H� �

�1D3 , �12�

where 
H is the polymer relaxation time.
Figure 14 compares two drop-interface coalescence se-

quences: in �a� the drop and lower bulk is an Oldroyd-B fluid
while in �b� both fluids are Newtonian. All other conditions
are the same. Partial coalescence occurs in �b� because

Oh˜ =1.85
10−2 is below the critical value Oh˜ c=2.45

10−2 �cf. Eq. �11� and Fig. 11�. The fluid column necks,
pinches off, and forms a secondary drop. The secondary drop
itself then coalesces with the interface, and this coalescence

is complete in one shot because Oh˜ is now higher than Oh˜ c.
The viscoelastic drop in �a� exhibits a different behavior:
partial coalescence is arrested and no secondary drop is pro-
duced. Before t=0.74, the interface evolves in almost exactly
the same way as that of the Newtonian system. But during
the necking process, especially its later stage, viscoelasticity
begins to play an important role. The neck gets very thin
�t=0.837−0.934� but never pinches off. The bulb on top of
the thin neck behaves as a drop; it falls under gravity onto
the interface and generates a new ring of capillary wave that
propagates upward along the drop surface �t=1.04�. There is
even a new episode of necking �t=1.19� before complete
coalescence. The suppression of partial coalescence and the
“secondary coalescence” of the attached bulb have been ex-
perimentally observed for drops of dilute polymer solutions.3

Figure 15 shows two snapshots of the flow and stress
fields at the neck. At the earlier time �t=0.74�, the draining

flow is appreciable while the polymer stress has not had time
to develop. Because of the energy barrier discussed earlier,
capillarity opposes further necking. But the flow is domi-
nated by inertia, and the Bernoulli effect produces a low
pressure inside the neck where the flow speed is high �Fig.
15�a��. The low pressure overcomes the capillary resistance
and causes the neck to pinch in further. This creates an elon-
gational flow in the neck. By t=0.837, therefore, the polymer
stress �pyy has grown to very high levels, with a maximum
around 50 at the thinnest part of the neck. In comparison, the
viscous stress has a local maximum of roughly 1. The direct
consequence of this high tensile stress �or elongational vis-
cosity� is the suppression of further stretching and thinning
of the neck. Note that the downward flow in the neck is
much reduced in Fig. 15�b� as compared with Fig. 15�a�.
Thus, viscoelasticity in the drop phase has arrested partial
coalescence. The polymer tensile stress in Fig. 15�b� is remi-
niscent of the high viscoelastic stress that develops in poly-
mer threads undergoing capillary breakup.30 But we do not
produce the “beads-on-a-string� morphology for the param-
eters used in this simulation. Experimentally, Chen et al.3 did
observe beads developing on the neck that connects the drop
to the lower bulk.

To quantify the viscoelastic effect, we have conducted a
modest parametric study using the Giesekus model. For the
Oldroyd-B model, the viscoelastic stress tends to grow to
such levels as to cause numerical divergence. The Giesekus
mobility parameter � moderates the elongational stress.23

Our results show that even a small � is sufficient to restore
partial coalescence. We have tested �=0.01 and 0.1 at
De=0.1 and 1, Oh=0.01 and 0.02, and 
2=0.8, all of which
result in partial coalescence. The sensitivity of partial coales-
cence to � is analogous to the capillary breakup of viscoelas-

FIG. 14. Interfacial evolution for a drop coalescing with an interface. Oh=2.0
10−2, Bo=10−3, �*=1.33, and �*=1. �a� An Oldroyd-B drop in a Newtonian
matrix, with De=0.1 and the ratio between retardation time and relaxation time 
2=�s / ��s+�p�=0.9. �b� Both fluids are Newtonian. Time is made
dimensionless by tic �enhanced online�.
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tic jets, where an Oldroyd-B jet does not break up while a
comparable Giesekus jet does.31 When a viscoelastic drop
does undergo partial coalescence, the tensile stress depicted
in Fig. 15�b� delays the pinch-off. Thus, the coalescence time
�c is longer than its Newtonian counterpart, and increases
with decreasing � in Table I. This is in agreement with
experiments.3 The drop size ratio �, on the other hand, es-
sentially remains unchanged with the rheology �last column
of Table I�. This is because the polymer stress in the neck not
only delays pinch-off, but also suppresses the draining of the
drop fluid into the bulk �see Fig. 15�b��. Thus, the Giesekus
drop loses little more fluid in the final stage of pinch-off even
though the process lasts longer. This appears to be at odds
with the experimental finding that polymer drops tend to
have somewhat lower �.3

If the viscoelasticity occurs in the matrix fluid rather
than the drop, our simulations show that its effect is qualita-
tively the same. Some results are tabulated in Table I for a
Newtonian drop coalescing with a Giesekus-Newtonian fluid
interface. The coalescence time �c is longer than the New-
tonian value as pinch-off is delayed, but � changes little.
Figure 16 shows the polymer stress field around the neck
before pinch-off. First, the polymer stress in the ambient
fluid is restricted to a narrow region next to the interface,
which, considering the axisymmetry of the geometry, consti-
tutes a thin-walled tube that wraps around the neck of the

Newtonian fluid column. Second, at the interface the princi-
pal direction of the stress tensor is tangential, and the prin-
cipal tensile stress attains its maximum at the thinnest point
of the neck. Since the fluid inside the neck undergoes strong
stretching, the Giesekus fluid experiences a similar deforma-
tion by way of the no-slip condition on the interface. Hence
the high tensile polymer stress surrounding the interface. By
the same token, this tensile stress along the interface tends to
inhibit the stretching of the interface because that entails
stretching of the surrounding fluid as well against the poly-
mer stress. Thus, necking is hampered and pinch-off is de-
layed. This prediction is consistent with the experimental
observation that adding polymer to the matrix phase delays
the pinch-off of the secondary drop and even inhibits partial
coalescence.3

Chen et al.3 observed that the viscoelasticity impacts
partial coalescence more when it is in the drop than the am-

FIG. 15. Flow and stress fields around the neck of the fluid column for the simulation in Fig. 14�a�. �a� Vertical velocity vy and pressure p contours at
t=0.740. The polymer stress is small at this stage, with a maximum of �pyy =4.98. �b� Vertical velocity vy and polymer stress �pyy contours at t=0.837. Velocity
is scaled by D / tic and stresses by � /D.

TABLE I. Coalescence time �c and drop size ratio � for partial coalescence
in Newtonian/Giesekus systems at Oh=0.02, �*=1, �*=1.33, and
Bo=10−3. De=0.1 and 
2=0.8 for Giesekus fluids.

Fluid components �c �

Newtonian drop in Newtonian matrix 0.752 0.460

Giesekus drop in Newtonian matrix �=0.1 0.785 0.463

�=0.01 0.818 0.459

Newtonian drop in Giesekus matrix �=0.1 0.796 0.459

�=0.01 0.811 0.457

FIG. 16. Polymer stress distribution near the interface for a Newtonian drop
coalescing with a Giesekus-Newtonian interface. The parameters are
Oh=2.0
10−2, Bo=10−3, �*=1.33, �*=1, �=0.01, 
2=0.8, De=0.1, and
the dimensionless time is t=0.776. The right half of the plot shows the
principal direction of the polymer stress while the left half shows the mag-
nitude of the tensile stress along the principal direction.
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bient fluid. This is reasonable considering that in the latter
case, the polymer stress influences the thinning and pinch-off
of the neck indirectly via the interface. For reasons that are
unclear at present, the data in Table I do not show a clear
trend for the Giesekus drop vis-à-vis the Giesekus matrix.
One indication apparently consistent with the experiment is
that while partial coalescence can be completely suppressed
for the Oldroyd-B drop in Fig. 14, we are unable to suppress
partial coalescence with a Giesekus or Oldroyd-B matrix for
a range of parameters tested.

IV. CONCLUSION

The numerical simulations are motivated by recent ex-
periments on the coalescence between a drop and a fluid
interface, and have reproduced important aspects of the ex-
perimental observations. Within the parameter ranges exam-
ined, we may summarize the numerical results as follows.

�1� For a Newtonian drop in a Newtonian ambient fluid, our
numerical package AMPHI simulates the partial coales-
cence process nearly to quantitative accuracy. The
pinch-off of the secondary drop requires the kinetic en-
ergy of the fluids to overcome an energy barrier due to
an initial increase in the interfacial area.

�2� Partial coalescence occurs within an intermediate drop
size. For Newtonian systems with small gravity effects,
a “universal criterion” has been proposed in terms of
the density ratio and a composite Ohnesorge number:

partial coalescence occurs only if Oh˜ �Oh˜ c��* ,�*� and
�*��c

*.
�3� Viscoelasticity in either component hinders the stretch-

ing of the neck and delays the pinch-off. Partial coales-
cence may be completely eliminated when the drop fluid
is viscoelastic. The drop size ratio varies little with the
rheological parameters.

We have to emphasize the numerical challenge in resolv-
ing interfacial phenomena that occur on a length scale com-
parable to the interfacial thickness. The diffuse-interface
model employed here has the advantage of simulating inter-
facial rupture and coalescence naturally. But a downside is
the loss of accuracy due to numerical diffusion when the
length scale approaches that of the interfacial thickness. With
adaptive meshing, the minimum length scale that AMPHI
can resolve is on the order of 10−3 of the macroscopic length
�e.g., drop diameter D�. This has limited our simulations to
low Bo values, and small-scale events such as pinch-off tend
to take place more rapidly than in reality owing to numerical
diffusion. With this caveat, we conclude that the simulations
agree well with experimental observations, and provide new
insights into the physics governing partial coalescence, espe-
cially the role of viscoelastic stresses.
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