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Abstract - We present a sharp-interface algorithm for simulating the diffusion-driven

bubble growth in polymer foaming. A moving mesh of unstructured triangular elements

tracks the expanding and deforming bubble surface. In the interior of the liquid, the mesh

velocity is determined by solving a Laplace equation to ensure spatially smooth mesh move-

ment. When mesh distortion becomes severe, remeshing and interpolation are performed.

The governing equations are solved using a Galerkin finite-element formalism, with fully

implicit time marching that requires iteration among the bubble and mesh deformation,

gas diffusion and the flow and stress fields. Besides numerical stability, the implicit scheme

also guarantees a smooth interfacial curvature as numerical disturbances on the interface

are automatically relaxed through the iterations. The polymer melt is modeled as a vis-

coelastic Oldroyd-B fluid. First, we compute three benchmark problems to validate various

aspects of the algorithm. Then we use a periodic hexagonal cell to simulate bubble growth

in an isothermal two-dimensional foam, fed by a gaseous blowing agent initially dissolved

in the melt to supersaturation. Results show two distinct stages: a rapid initial expansion

followed by slow drainage of the liquid film between bubbles driven by capillarity. The effect
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of viscoelastic rheology is to enhance the speed of bubble growth in the first stage, and hin-

der film drainage in the second. Finally, we use axisymmetric simulations to investigate the

thinning film between a bubble and a free surface. Melt viscoelasticity is shown to initially

enhance film thinning but later resist it. An important insight from the simulations is that

polymer strain-hardening, namely the steep increase of elongational viscosity with strain,

helps stabilize the foam structure by suppressing bubble-bubble coalescence and bubble

burst at the foam surface. This confirms prior observations in foam extrusion experiments.

Keywords: Free surface problem; Interfacial flows; Moving mesh; Finite elements;

Viscoelasticity; Oldroyd-B fluids; Film drainage; Capillarity
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1 Introduction

Foams are an important class of industrial materials with diverse applications such as in

packaging, insulation, personal care and fire retardation [1]. Although a wide range of

materials can be foamed, including carbon, ceramics and metals [2–4], aqueous foams and

polymer foams are the most common. Aqueous foams have received much attention as a

prototypical soft matter, and a more or less coherent understanding has taken shape on

their structure, deformation and microrheology [5–7]. Polymer foams, on the other hand,

are used in the solid state. Their properties depend critically on the foaming process,

from nucleation of microbubbles to their subsequent growth driven by gas diffusion. Fluid

dynamics and rheology play central roles in this process. Despite much effort, our theoretical

understanding of polymer foaming remains relatively primitive, at least in comparison with

that in aqueous foams.

Modeling and numerical simulation of polymer foaming are difficult tasks. First, mi-

crobubbles nucleate mostly heterogeneously on defects, impurities or nucleating agents in

the polymer melt [8]. A widely applicable and satisfactory nucleation model is not yet

available. Consequently, most theoretical work has concentrated on bubble growth from

prescribed initial conditions. Second, real foams have a more or less random structure, with

bubbles growing next to neighbors of various sizes and proximity. This is typically circum-

vented by using one-dimensional (1D) models of a single spherical bubble growing within a

spherical shell [9]. Recently, 2D periodic cells have been used to represent bubble-bubble in-

teractions [10,11]. Third, the growing and deforming bubbles represent a moving-boundary

problem. Several numerical methods have been developed for interfacial flows, such as the

volume-of-fluid (VoF) [12,13], level set [14], front tracking [15,16], moving mesh [17], lattice

Boltzmann [18,19] and phase-field methods [20]. However, the foaming process has several

special features. The flow in the melt is coupled with gas diffusion that drives the bubble

expansion. The non-Newtonian rheology of the polymer melt must be incorporated into

the flow equations. One may neglect the gas flow within the bubble and treat the bub-

ble surfaces as free boundaries. But the gas compressibility must be accounted for by an

equation of state. Finally, the polymer properties are often modified by plasticization and

temperature variations [21].
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Numerous 1D models have been developed, which have incorporated non-Newtonian

rheology [8, 22–24], temperature effects [25] and plasticization [26]. In comparison, 2D

computations are scarce. Popinet and Zaleski [27] used front tracking to calculate the

cavitation problem where the bubble pressure is given by a polytropic law for adiabatic

compression. Caboussat et al. [28, 29] used a VoF technique to calculate the free surface

flow of compressible gas bubbles surrounded by incompressible liquids. Beechem et al. [3]

used front tracking to calculate single bubble growth in Newtonian carbon foams in a

rectangular domain. So far, the most detailed numerical simulation on polymer foaming is

due to Everitt et al. [10, 11], who used a split Eulerian-Lagrangian finite element method

to compute bubble growth in a 2D periodic foam. The polymer viscoelasticity is shown to

produce a thicker and more uniform film by drawing fluid back from Plateau borders.

The numerical method described in this paper is based on the same idea of reconciling

Eulerian and Lagrangian descriptions in moving-boundary problems. This is achieved by

an arbitrary Lagrangian-Eulerian (ALE) scheme using a mesh velocity [30]. The governing

equations are solved by finite elements on a moving grid, with fully implicit updating of the

bubble surface. After describing the algorithm, we present three benchmark calculations

that validate various aspects of the method and the code. Then we simulate the diffusion-

driven growth of bubbles in polymer foaming in a 2D periodic cell. Our results confirm

those of Everitt et al. [10] on the viscoelastic effects. Furthermore, we explore an intriguing

non-monotonic dependence of bubble growth on the Deborah number, which reveals the

central role of melt strain-hardening in polymer foaming. Finally, we investigate the film

drainage between a bubble and a free surface as is relevant to bubble burst frequently seen

in foaming operations.

2 Mathematical formulation and numerical algorithm

2.1 Governing equations

A gas bubble in a polymer melt is illustrated in Fig. 1. Its expansion involves three

processes: flow of the polymer melt, gas diffusion in the polymer melt, and isothermal

expanding of the gas bubble.
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Figure 1: Schematic of a gas bubble in a polymer melt. Ω is the computational domain with

inner boundary ∂Ωi and outer boundary ∂Ωo. Pressure p, velocity v, polymer stress τ p and gas

concentration c are to be solved in the polymer melt, while the bubble mass mb, volume Vb and

pressure pb need to be calculated for the bubble.

For the polymer melt, the governing equations include the momentum equation

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇p + ∇ · τ + ρg (1)

and the continuity equation

∇ · v = 0, (2)

where ρ, v, t, p, τ and g are melt density, velocity, time, pressure, stress and body force,

respectively. The viscoelastic rheology is represented by the Oldroyd-B model, which, to be

strict, is for dilute polymer solutions [31]. However, this simple model is easy to implement

numerically and does capture the essential rheological features of interest here, such as

strain-hardening. Thus, the stress in the melt is expressed as the sum of a viscous “solvent”

stress and a polymer stress: τ = τ s + τ p = µs[∇v + (∇v)T ] + τ p, µs being a “solvent”

viscosity. τ p is given by the following constitutive equation:

τ p + λH

[
∂τ p

∂t
+ v · ∇τ p − τ p · (∇v) − (∇v)T · τ p

]
= µp[∇v + (∇v)T ], (3)

where λH , µp are relaxation time and viscosity of the polymer. The total viscosity of

polymer melt is given by µ = µs + µp.

Gas diffusion in the polymer melt is governed by a convection-diffusion equation

∂c

∂t
+ v · ∇c = ∇ · (D∇c), (4)
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where c and D are the gas concentration and diffusivity in the polymer melt. Although c is

typically the mass fraction of gas in the polymer, it is dimensionally more convenient here

to define it as the gas density, namely the gas mass per unit volume of the melt.

Each bubble gains mass at a rate equal to the mass flux of dissolved gas (blowing agent)

diffusing into the bubble:
dmb

dt
= −

∮

∂Ωi

D∇c · ndS, (5)

where mb is the gas mass inside the bubble, n is the normal direction to the bubble sur-

face ∂Ωi pointing into the bubble. The gas in the bubble remains at thermodynamic and

mechanical equilibrium, and obeys the ideal gas law:

pbVb = mbRT, (6)

where pb is the gas pressure, Vb is the bubble volume, and R and T are the specific gas

constant and absolute temperature. In this paper, we only consider the isothermal case

where T is a constant.

Equations (1–6) form the governing equations for polymer foaming. Among these,

Eq. (5) is an ordinary differential equation and Eq. (6) is a simple algebraic equation.

Only Eqs. (1–4) need to be solved on a spatial grid.

2.2 Boundary conditions

On the inner boundary ∂Ωi, i.e., the bubble surface, we assume there is no surfactant and

thus the shear stress is zero. The normal stress obeys the Young-Laplace equation:

n · (−pI + τ ) = (−pb + Kσ)n, (7)

where σ is the surface tension, n is the normal to bubble surface (see Fig. 1), and K is the

surface curvature in 2D or twice the mean curvature in 3D. Gas concentration is given by

Henry’s law:

c = kpb, (8)

where k is the Henry’s law constant.

On the outer boundary ∂Ωo, we can either impose a fixed far-field gas concentration

(c = c∞) or a zero flux condition ( ∂c
∂n = 0) depending on the physical setup of the problem.

For the flow field, various portions of ∂Ωo may have no-slip, slip, prescribed stress or “moving

wall” conditions. These will be described in Section 3 for specific problems.
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Figure 2: Triangular mesh around a non-spherical bubble, with refined elements at the bubble tips

where the surface curvature is high.

2.3 Mesh adaptation and moving mesh scheme

The governing equations are solved in 2D planar and axisymmetric geometries on a triangu-

lar mesh, which moves and deforms according to an arbitrary Lagrangian-Eulerian (ALE)

scheme [30,32]. Curved P2 triangles (six nodes) are used to better fit the curved boundaries.

Mesh adaptation is achieved by the addition, removal and redistribution of boundary nodes.

Initially, the outer boundary ∂Ωo is divided into segments of size h0 and the inner bound-

ary ∂Ωi of a typically much smaller size h1. Then the bulk mesh is generated by Delaunay

triangulation [33,34]. During this process, smoothing is used to ensure a gradual variation of

the mesh size throughout the domain. During the simulation, boundary deformation may

necessitate mesh refinement on ∂Ωi and even ∂Ωo. This is determined according to two

criteria: surface curvature and proximity between two boundaries. On ∂Ωi, the boundary

mesh is refined at larger curvature and coarsened at lower curvature, within the range of

[0.1h1, 2h1], so each boundary segment subtends roughly the same central angle. Figure 2

shows an example of such refinement. Note that the minimum resolvable length is 0.1h1 and

smaller surface features will be smoothed out. When two surfaces approach each other, the

thin film between them is resolved by reducing the mesh size on the surfaces to a fraction,

usually 1/3, of the film thickness. An example can be found in Fig. 16(b).
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At every time step, the mesh quality is checked by comparing the volume and aspect

ratio of each element with their initial values in the undeformed mesh [30]. Distortions

arise from the relative motion of internal surfaces as well as the refinement or coarsening

of the surface nodes described above. If mesh distortion exceeds a threshold, the whole

computational domain is remeshed, and the field variables are mapped from the old mesh

to new mesh by a global least-squares projection scheme [30].

ALE centers on the simultaneous use of two coordinate systems: an Eulerian coordinate

x and a quasi-Lagrangian coordinate X affixed to the moving mesh. Thus the mesh velocity

is given by:

vm(x, t) =
∂x(X , t)

∂t
. (9)

On the domain boundary (including the bubble surface) the mesh velocity conforms to

that of the boundary with possible slip. Inside the domain, mesh velocity is given by the

following Laplace equation:

∇ · (ke∇vm) = 0, (10)

where ke is the inverse of the local element volume [30,32]. In the moving mesh system, the

variables are defined based on X instead of x, thus the material derivatives in the governing

equations will be replaced by the referential time derivatives δ
δt = ∂

∂t

∣∣
fix X :

d

dt
=

∂

∂t
+ v · ∇ =

δ

δt
+ (v − vm) · ∇. (11)

If vm = v, the mesh would follow the local fluid flow and thus be fully Lagrangian. Note

that the mesh velocity and other time-dependent governing equations are coupled. After we

obtain the mesh velocity at a new time, the mesh position can be updated by integrating

Eq. (9).

2.4 Finite-element formulation

The discretization of the governing equations follows the standard Galerkin formalism. We

seek the following weak solutions: (v, p, τ p) ∈ U×P×T , c ∈ C and vm ∈ Um. For 2D flows,

the solution spaces satisfy U ∈ H1(Ω)2, P ∈ L2(Ω), T ∈ L2(Ω)3 (L2(Ω)4 for axisymmetric

flow), C ∈ H1(Ω), and Um ∈ H1(Ω). Note that the computational domain Ω varies with
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the moving boundary. Using basis functions (ṽ, p̃, τ̃ ) ∈ U × P × T , we write the following

weak forms of the flow equations:

∫

Ω

{[
ρ

(
δv

δt
+ (v − vm) · ∇v − g

)]
· ṽ + (−pI + τ ) : ∇ṽ

}
xαdΩ − S = 0, (12)

∫

Ω
−(∇ · v)p̃ xαdΩ = 0, (13)

∫

Ω

{
τ p + λH

[
δτ p

δt
+ (v − vm) · ∇τ p − τ p · (∇v) − (∇v)T · τ p

]

−µp

[
∇v + (∇v)T

]}
: τ̃ xαdΩ = 0, (14)

where α = 0 for 2D planar geometry and α = 1 for axisymmetric geometry with x being

the radial coordinate. In this paper, the double dot product between tensors is defined as

a : b =
∑

ij aijbij . S is the surface integral of stress boundary conditions:

S =

∫

∂Ω
n · (−pI + τ ) · ṽ xαdS

=

∫

∂Ωi

(−pb + Kσ)n · ṽ xαdS +

∫

∂Ωτ

n · (−pI + τ ) · ṽ xαdS, (15)

where ∂Ωτ is part of the outer boundary on which stress or “moving wall” boundary con-

ditions are imposed. An example of the latter is given in Section 3.4.

Similarly, by using c̃ ∈ C and ṽm ∈ Um we write the weak formulations for gas concen-

tration and mesh velocity as:

∫

Ω

{[
δc

δt
+ (v − vm) · ∇c

]
c̃ + D∇c · ∇c̃

}
xαdΩ = 0, (16)

∫

Ω
ke∇vm : ∇ṽm dΩ = 0. (17)

The nonlinear system of Eqs. (12–14) is solved by Newton’s method. The resulting

linear system within each Newton iteration and the linear systems of Eqs. (16) and (17) are

solved using iterative methods such as the preconditioned generalized minimum residual

(GMRES) scheme or biconjugate gradient stabilized (BICGSTAB) algorithm. The use of

preconditioners is critical to numerical convergence and more details and references may be

found in Hu et al. [30].
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2.5 Evaluation of the surface tension force

Equation (15) contains the surface tension force: St =
∫
∂Ωi

Kσn·ṽ xαdS. Given the position

of surface nodes, we have used two different schemes to evaluate St. One is to calculate the

curvature K directly from the parabola [35] or circumcircle going through three consecutive

surface nodes. This method is straightforward and easily generalized to 3D surfaces [36].

However, numerical errors imply that the surface force integrated over a closed loop does

not necessarily vanish. The second scheme, based on integrating the surface tension along

the tangent, explicitly ensures the vanishing of the total surface force on any closed loop or

surface [15].

In most cases that we have tested, the two methods give essentially identical results.

In viscoelastic flows, the tangential integration method sometimes seems less stable than

the other. It has been reported that direct calculation of K is liable to oscillations even

when the surface appears smooth. These have been suppressed either by a straightforward

filtering of the high frequency modes or by a more sophisticated fairing algorithm [16]. Our

method is unaffected by such oscillations because the interface is updated implicitly. During

the iterations, surface tension smooths out kinks caused by numerical disturbances.

2.6 Temporal discretization and iteration scheme

The nonlinear systems are solved implicitly to enhance stability. The referential time deriva-

tives δ
δt in Eqs. (12, 14, 16) are approximated by second-order schemes such as the Crank-

Nicolson scheme [30]: (
δv

δt

)n+1

= 2
vn+1 − vn

∆tn+1
−

(
δv

δt

)n

, (18)

where the superscript n and n + 1 stand for time steps, and ∆tn+1 = tn+1 − tn. Typically,

the time step is adjusted automatically according to a set of criteria, including the mesh

quality and the amount of surface movement in each step. Within each time step, the whole

system is solved iteratively through the following steps:

1. Check mesh quality. If mesh quality is too low, then remesh the whole computational

domain, and project all the field variables at tn to the new mesh.
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2. Prepare for iteration.

(a) Set the initial guess for the variables at tn+1 to their values at tn: v∗ = vn,

τ ∗
p = τn

p , and so on, where ∗ denotes an estimation for the (n + 1)th step.

(b) Move the mesh based on a first-order integration of Eq. (9):

x∗
m = xn

m + ∆tn+1vn
m, (19)

where xm is the position of mesh nodes. If the mesh quality deteriorates below

a prescribed standard, decrease ∆tn+1 and iterate this step until mesh quality is

acceptable.

(c) Estimate bubble mass according to a first-order scheme

m∗
b = mn

b + ∆tn+1

(
dmb

dt

)n

. (20)

3. Iterate until v∗, p∗, τ ∗
p, v∗

m, c∗ and m∗
b converge.

(a) Based on the mesh x∗, calculate the bubble volume V ∗ and the curvature of

bubble surface K∗. Update bubble pressure p∗b based on the new V ∗ and m∗
b

according to Eq. (6). Use K∗ and p∗b to further update the stress and gas con-

centration conditions at bubble surface according to Eqs. (7) and (8).

(b) Solve the flow equations (12, 13, 14) by Newton-Krylov methods to get new

estimates v∗, p∗, and τ ∗
p.

(c) Solve the convection-diffusion equation (16) for gas concentration c∗.

(d) Based on c∗, calculate the gas flux into the bubble
(

dmb

dt

)∗
from Eq. (5), and

update the bubble mass:

m∗
b = mn

b +
∆tn+1

2

[(
dmb

dt

)n

+

(
dmb

dt

)∗]
. (21)

(e) Update the boundary condition for mesh velocity according to v∗, and solve

Eq. (17) for the new mesh velocity v∗
m.

(f) Move the mesh according to a second-order scheme:

x∗
m = xn

m +
∆tn+1

2
(vn

m + v∗
m) . (22)

If the mesh equality falls below the prescribed threshold, then decrease ∆tn+1

and go back to step 2.
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4. Upon convergence, set vn+1 = v∗, pn+1 = p∗, τn+1
p = τ ∗

p, cn+1 = c∗, mn+1
b = m∗

b ,(
dmb

dt

)n+1
=

(
dmb

dt

)∗
, V n+1

b = V ∗
b , pn+1

b = p∗b , vn+1
m = v∗

m and xn+1
m = x∗

m. Move on

to the next time step.

Numerical experiments indicate that Eq. (21) is prone to oscillations due to over-

correction. If numerical errors cause the gas flux
(

dmb

dt

)∗
to be overpredicted, it will result

in an overpredicted bubble mass m∗
b and pressure p∗b . The latter raises the gas concentration

at the bubble surface via Henry’s law and thus lowers the gas flux into air bubbles. In the

next iteration, the overpredicted gas flux will be lowered, but often undershooting the even-

tually converged value. This numerical oscillation is more prominent at larger ∆t and may

even lead to divergence. To avoid such oscillations, we introduce a damping mechanism by

replacing Eq. (21) by

(m∗
b)

i+1 = mn
b +

∆tn+1

2

[(
dmb

dt

)n

+ f̃

]
, (23)

where f̃ = (1 − c)f i+1 + cf i, f =
(

dmb

dt

)∗
, i + 1 and i denote values in the current and

previous iteration. c ∈ [0, 1) is a constant defined as:

c =





0 when (δf i+1δf i) ≥ 0

|δf i+1|
|δf i|+|δf i+1| when (δf i+1δf i) < 0

, (24)

where δf i+1 = f i+1 − f i is the variation of gas flux between two subsequent iterations.

When there is no oscillation in δf , then c = 0 and Eq. (23) reduces to Eq. (21). Once

oscillation in f is detected, f̃ is taken to be the weighted average between two iterations.

This scheme turns out to be very effective and enables us to take full advantage of the

implicity by allowing a large ∆t.

3 Numerical results

We will describe simulations of five problems. The first three, oscillation of a spherical bub-

ble, rising of a bubble in a quiescent fluid, and diffusion-driven growth of a single bubble,

are intended to validate various aspects of our numerical method and code through compar-

ison with known solutions. The other two, diffusion-driven growth of multiple bubbles and

film drainage between a bubble and a free surface, explore new physics relevant to polymer

foaming, especially the role of viscoelasticity of the polymer melt.
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Figure 3: Schematic of a spherical bubble of radius R surrounded by a fluid shell of outer radius

Ra.

3.1 Radial oscillation of a spherical bubble

Consider a spherical bubble in an infinite domain of a viscous liquid in which the gas is

insoluble. In response to a disturbance in bubble size or pressure, the bubble executes a

damped oscillation that is described by the Rayleigh-Plesset equation [37]. This 1D solution

has been used by Popinet and Zaleski [27] to validate their numerical code. We compute

the oscillation of a bubble surrounded by a fluid shell (Fig. 3), whose outer edge is subject

to ambient pressure pa. The liquid viscosity is µ and its density ρ. The surface tension is

σ on the bubble surface. Neglecting the surface tension on the outer edge of the fluid, we

write the modified Rayleigh-Plesset equation:

RR̈

(
1 − R

Ra

)
+

3

2
Ṙ2

(
1 − 4R

3Ra

)
=

1

ρ

{
pb − pa −

4µṘ

R

[
1 −

(
R

Ra

)3
]
− 2σ

R

}
, (25)

which reduces to the classical Rayleigh-Plesset equation [37] when Ra → ∞. Here pb can

be expressed as a function of R according to the equation of state. In this paper we only

consider the isothermal expansion or compression of an ideal gas, thus

pb =

(
R0

R

)3 (
pa +

2σ

R0

)
, (26)
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where R0 is the bubble radius at equilibrium. Supplemented by Eq. (26), Eq. (25) forms

an ordinary differential equation for R(t), which can be easily solved by MATHEMATICA.

For small amplitude oscillations with Ra → ∞, the natural frequency is given by [37]

f =
1

2π

√
3pa + 4 σ

R0

ρR2
0

. (27)

We will calculate the bubble oscillation in water using our ALE code in the domain

shown in Fig. 3, with Ra = 10R0. The physical parameters are: µ = 10−3 Pa s, ρ = 103

kg/m3, σ=0.072 J/m2, pa = 105 Pa. Two equilibrium bubble radii R0 = 1 µm and 10 µm

are tested, and the bubble radius is set to 1.75R0 at t = 0.

At the bubble surface, we use the normal stress condition in Eq. (7). On the outer

boundary, the normal stress is fixed at the ambient pressure pa. As the bubble oscillates,

the outer boundary (arc B̂C in Fig. 3) moves as well. However, the relative variation of

Ra is δRa

Ra
∼

(
R0

Ra

)3
δR
R0

≈ 0.001 for the parameters used here. Thus we have applied the

outer boundary condition at a fixed location r = 10R0. This incurs an error in the pressure

at r = Ra that is approximately 2ρṘ2
(

R0

Ra

)4
δRa

Ra
≈ 2 × 10−7ρṘ2, which is negligible.

Approximately 50 triangle vertices are deployed along B̂C and about 25 along D̂A. Because

the flow is irrotational and the amplitude of oscillation is not very large, the mesh does not

deform much during the whole process. Therefore, remeshing is only performed once or

twice within each oscillation cycle. As a result, the total number of elements fluctuates

between 2117 and 2173. The time step is taken to be ∆t = 0.005tf to ensure temporal

accuracy, where tf = R0√
pa/ρ

is the time scale for the oscillation. Two thousand steps of

time marching take about 1 hour on a 1.0 GHz Pentium III processor.

Figure 4 shows excellent match between finite-element calculations and the exact so-

lution of Eq. (25). Numerical errors, measured against the analytic solution, are given in

Table 1 for several grid sizes, which clearly show second-order accuracy in space.
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t/tf
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Figure 4: Bubble oscillation in a finite extent of incompressible fluid.

Elements along R0 = 1 µm R0 = 10 µm

i bubble surface (N) L2 error (ǫ) order (n) L2 error (ǫ) order (n)

1 12 1.18 × 10−3 7.41 × 10−3

2 17 5.75 × 10−4 2.1 3.71 × 10−3 2.0

3 25 2.89 × 10−4 1.8 1.60 × 10−3 2.2

Table 1: The finite-element solutions for R(t) show second-order accuracy with decreasing grid size.

n is defined as ni = log(ǫi/ǫi−1)/ log(Ni−1/Ni). For all cases, 2N elements are distributed along the

domain outer boundary, and the time step is fixed at ∆t = 0.005tf .

3.2 Rise of a bubble in a quiescent liquid

Hnat and Buckmaster studied the different shapes and terminal velocities of bubbles rising

in incompressible liquids [38]. Their data have served as benchmark for various numerical

codes for interfacial or free surface flows [12, 14, 39, 40]. These are used here to validate

the treatment of surface deformation due to external flow. The oscillating bubble of the

previous subsection keeps its spherical shape and does not highlight the role of the surface

tension.

In particular, we will use the case of Fig. 1(A) in Hnat and Buckmaster [38], with the

following fluid parameters: ρ = 875.5 kg/m3, µ = 0.118 Pa s, σ = 3.22 × 10−2 J/m2. The
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Figure 5: Schematic of the computational domain for the rising bubble.

bubble radius R = 6.08 × 10−3 m, and the gravitational acceleration g = 9.8 m/s2. These

form two dimensionless groups: an Eötvos number Eo = ρg(2R)2

σ = 39.4 and a Morton

number M = gµ4

ρσ3 = 6.50 × 104. The experimentally measured terminal rising velocity of

the bubble is U∞ = 0.215 m/s. This corresponds to a Reynolds number Re = ρU∞R
µ = 9.69,

Weber number We = ρU2
∞

R
σ = 7.64, and a drag coefficient CD = (4/3πR3)ρg

1/2(πR2)ρU2
∞

= 3.44. Since

the experiment was done in a large container with negligible wall effects, we use a very

large computational domain with L = 10R and H = 30R as shown in Fig. 5. Because of

axisymmetry, only the right half of the meridian plane is calculated. Symmetry conditions

are used on the y-axis, while no-slip and slip velocity conditions are imposed at the bottom

and right walls, respectively. The upper boundary is treated as a free surface subject to the

atmospheric pressure pa = 1.01× 105 Pa. The bubble is released at h = 5R, and the initial

pressure is set to be pb = pa + ρg(H − h) + 2σ
R = 1.02 × 105 Pa.

Roughly 100 boundary segments are distributed along the half circle of the bubble

surface and 60 along the x-axis, producing around 29,000 finite elements at the beginning.

The time step is adjustable during the calculations with a typical value ∆t = 4.4×10−3 R
U∞

.

Remeshing is performed about every 40 steps initially because of drop deformation. In
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Figure 6: (a) The steady-state bubble shape. The left half is from the experiment of Hnat and

Buckmaster [38], while the right half is our simulation. The streamlines are in close agreement as

well. (b) The instantaneous velocity at the top and bottom of the bubble, scaled by the experimental

terminal velocity U∞.

the final steady state, much less remeshing is needed if the mesh is allowed to slip on the

bubble surface. If the surface nodes do not slip, remeshing occurs once every 20 steps or

so. A typical run of 3000 time steps takes less than 15 hours of computation on a 1.0 GHz

Pentium III processor.

Comparison with the experiment [38] is shown in Fig. 6. Both the steady-state bubble

shape and the flow field in the wake are reproduced accurately by the simulation. At the

start of the rise, the bubble flattens. Thus the instantaneous velocity at the bottom of the

bubble is significantly larger than at the top. In time, the bubble assumes a steady-state

shape of a spherical cap, with a terminal rising velocity that is 99.5% of the experimental

U∞. We also tested a smaller computational domain with L = 5R and H = 20R. The wall

confinement reduces the terminal velocity slightly to 0.953U∞.

In the simulations, we have treated the gas in the bubble as an ideal gas. Thus, there is

a slight expansion of the bubble volume Vb as it rises (Fig. 7). For the parameters used here,

the hydrostatic head above the bubble is insignificant as compared to pa and the increase in

Vb is minimal. When we decrease the number of surface segments from 100 to 50, apparent

oscillations of the bubble volume become noticeable. This is a numerical artifact due to
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Figure 7: The bubble volume Vb, scaled by the initial volume Vb0 = 4

3
πR3, increases during the

rise. The thick line is for a finer mesh with 100 elements on the bubble surface, while the oscillatory

trajectory is for a coarser mesh with 50 surface elements.

remeshing. Each time the number of boundary segments changes, Vb as calculated from the

surface nodes changes slightly. Thus remeshing supplies a more or less periodic disturbance

to Vb. Interestingly, there is a sort of resonance when the frequency of remeshing is close

to that of the natural frequency of the bubble (cf. Eq. 27). With finer grids, the oscillation

disappears quickly.

3.3 Single bubble growth

Feng and Bertelo [8] have solved the 1D problem of the diffusion-driven growth of a single

spherical bubble in an infinite, initially supersaturated polymer melt. The rheology is

represented by the Oldroyd-B model. By solving the same problem in a 2D axisymmetric

domain similar to that in Fig. 3, we aim to validate two additional aspects of the code:

its handling of diffusion-driven bubble growth and the effect of viscoelasticity. Similarly to

Ref. [8], we define the dimensionless groups for bubble growth in an Oldroyd-B melt as:

p∗a =
paR2

0

µD , Re = ρD
µ , Ca = µD

σR0
, β = µs

µ , k∗ = kµD
c0R2

0

, A∗ = RTk, De = λHD
R2

0

, where R0 and

c0 are the initial bubble radius and gas concentration. The outer edge of the computational

domain is fixed at Ra = 50R0, approximating an infinite sea of melt. On the outer boundary,

the normal stress is equal to the ambient pressure pa, and the gas flux vanishes. The mesh
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Figure 8: Comparison of bubble growth for different De between ALE calculations (symbols)

and previous 1D calculations of Feng and Bertelo [8]. The dimensionless parameters are: p∗a = 1,

Re = 10−6, Ca = 2.5, β = 0.1, k∗ = 0.01 and A∗ = 0.11. The melt is of infinite expanse in the 1D

calculations.
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Figure 9: Comparison of bubble growth between ALE calculation with the experimental data of

Han and Yoo [41]. The experimental conditions correspond to: p∗a = 0.04605, Re = 1.21 × 10−10,

Ca = 78.57, β = 0, k∗ = 4.686, A∗ = 0.3551 and De = 495.0. The numerical simulation matches all

these except for β = 0.1, and starts with a bubble radius of R0 = 20 µm.

size is approximately 0.063R0 on the initial bubble surface and 0.78R0 in the bulk region,

and there are approximately 19,000 triangular elements overall.
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For a wide range of De, Fig. 8 shows excellent agreement between our 2D ALE calcula-

tions and the previous 1D calculations [8]. The two solutions only become distinguishable

when the bubble grows to a radius R ∼ 20R0. That is when the outer boundary starts to

exert an influence on the bubble growth in the ALE computation. At R = 10R0, the strain-

rate on the bubble surface corresponds to an effective Deborah number λHṘ/R = 0.465,

8.92 and 107 for De = 1, 10 and 100. We have also computed bubble growth under condi-

tions corresponding to an experiment on foam extrusion [41]. Figure 9 shows that bubble

growth is over-predicted by roughly 20%. The experiment has multiple bubbles growing in

an enclosed mold, and competition between neighboring bubbles may have hindered bubble

growth. Besides, there is uncertainty in the initial radius of the bubble. In view of these

complications, the agreement in Fig. 9 is reasonable.

3.4 Multi-bubble interaction

We consider a two-dimensional foam expanding in ambient pressure pa. We assume that

the foam has large spatial dimensions and consists of monodisperse gas bubbles that form a

periodic hexagonal honeycomb pattern (Fig. 10a). These assumptions are reasonable in an

average sense for bubbles in the interior of the foam [10]. Due to symmetry of the periodic

cell, we only need to consider one twelfth of a single cell as shown in Fig. 10(b). During foam

expansion, boundaries BC and DA slide along straight lines, while AB remains vertical and

moves to the right.

The boundary conditions on the bubble surface ĈD are those given by Eqs. (7) and (8).

BC and DA are lines of symmetry on which we impose the slip and no-gas-flux conditions:

v · n = 0, (28)

n · (−pI + τ ) · t = 0, (29)

n · ∇c = 0, (30)

where n and t are the local normal and tangential vectors. AB is also a line of symmetry

on which the zero-shear-stress (Eq. 29) and zero-flux (Eq. 30) conditions apply. However,

AB moves as a result of foam expansion and Eq. (28) must be replaced by a moving wall

condition: n · v = vw, where vw(t) cannot be prescribed a priori. To predict vw, Everitt
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(a) (b)

Figure 10: (a) Hexagonal cells in a monodisperse foam. (b) The computational domain is a part

of the periodic cell.

et al. [10, 11] introduced an energy equation that relates the work done by the bubble

pressure, the ambient pressure and internal stresses to the increasing bubble surface energy.

In the following, we derive an alternative condition that is easier to implement in our finite-

element algorithm.

When AB moves rightward by an infinitesimal distance δx, the volume of ∆OAB in-

creases by δV = ABδx. Then the entire foam expands by nδV , n being the number of units

identical to ∆OAB in the foam. This expansion against the ambient pressure pa requires an

amount of work nδV pa. Inside the unit cell ∆OAB, the only work output is by the normal

stress on AB. Adding such output from all n cells and equating the sum to the total work

against pa, we obtain: ∫

AB
n · (−pI + τ ) dS = −paAB. (31)

Note first that this condition represents the force balance governing foam expansion, an

average normal stress in the foam being equated to the ambient pressure. Second, this

condition concerns only the work of expanding the foam, and is not an energy balance.

However, if coupled with the momentum equation, Eq. (31) should be consistent with the

energy equation of Everitt et al. [10, 11]. Finally, this extra boundary condition can be

easily incorporated into our Galerkin weak form, and exactly compensates for the extra
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Figure 11: Expansion viscosity of a 2D foam. The solid curve is computed from a 2D ALE simulation

using Eq. (32), while the dashed one represents Eq. (33).

unknown vw. The moving wall condition amounts to −paABṽw in the surface integral in

Eq. (15).

As a validation of the periodic-cell assumption and the boundary condition in Eq. (31),

we first compute the expansion viscosity of a Newtonian foam. The expansion viscosity is

defined as:

η =
(pb − σ

R − pa)

V̇f

Vf

, (32)

where Vf is the foam volume (the sum of bubble volume and melt volume) and R is the

equivalent bubble radius. Using a 1D shell model (cf. Fig. 3) to represent the bubble and

its surrounding melt, Kraynik et al. [6] calculated η for a planar foam:

η = µ
1 − φg

φg
, (33)

where φg = R2

R2
a

is the instantaneous gas volume fraction. To simulate the same process in our

2D domain (Fig. 10), we turn off gas diffusion and consider the expansion of bubbles having

a high initial bubble pressure. Our initial conditions are OA = 1.5R0 and pb = 21pa, and the

ambient pressure is pa = σR0. We record the temporal evolutions of pb, R and the volume

∆OAB, and use Eq. (32) to evaluate the foam expansion viscosity. Figure 11 shows close

agreement of our ALE computation with Eq. (33). Discrepancy becomes apparent after
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φg ≈ 0.7, when the bubble starts to deviate from the circular shape in our simulations.

Thus we conclude that our geometric setup and boundary conditions work well. We have

also computed η when the foam expansion is driven by gas diffusion instead of an initially

elevated bubble pressure. Similar agreement with Eq. (33) is observed.

In simulating diffusion-driven foam expansion, we use pa, R0, k and µ to non-dimensionalize

all the variables, e.g., scaling time by µ
pa

. The following parameters are used: A∗ = RTk = 1,

D∗ = Dµ
paR2

0

= 1, σ∗ = σ
paR0

= 1, and the melt is inertialess. Initially, L = OA = 1.2R0,

c∗0 = c0
kpa

= 20, and p∗b = pb

pa
= 2. Thus the system is in mechanical equilibrium but not ther-

modynamic equilibrium; gas diffusion from the supersaturated melt will drive the bubble

growth. With a viscoelastic melt, two extra parameters are needed: De = λHpa

µ and β = µs

µ .

Initially, the polymer molecules are coiled and the polymer stress is nil. In the following we

drop the superscript ∗ for dimensionless variables where such omission does not cause con-

fusion. Mesh size is about 0.014 in the melt, and the total number of triangular elements is

roughly 2000. As an indication of the accuracy of the simulations, melt volume is conserved

to within 3×10−5 during foam expansion, while the total mass of gas is conserved to within

2%. Almost all the mass loss for gas occurs in the first several time steps; the initial sharp

boundary layer of c at the bubble surface is difficult to resolve accurately. This mass loss

can be reduced to within 4 × 10−4 if we use c∗0 = p∗b = 8 as the initial condition, in which

case the system is in thermodynamic equilibrium and has no boundary layer of c at t = 0.

Foam expansion is illustrated in Fig. 12 by the increase of the domain size L = OA

and the decrease of the thinnest film thickness hfilm = DA (cf. Fig. 10b). For Newtonian

and viscoelastic melts alike, the results clearly exhibit two stages of foam growth. The

first is diffusion-driven rapid expansion (0 < t . 0.2). The rapid growth in bubble size

is accompanied by an equally rapid decline in the gas concentration in the melt, depicted

by the contour plots in Fig. 13(a). In this stage, the pressure is lower at the film center

(Point A in Fig. 10b) than in the Plateau border (Point B). This is because the melt

experiences more severe squeezing at the film center and thus develops greater viscous

or viscoelastic normal stress. The hydrodynamic pressure is consequently lower so as to

maintain force balance around the bubble surface. The second stage features capillarity-

driven film drainage (t & 0.2). Having exhausted most of the dissolved gas in the melt, the

bubble gains little mass or volume in this stage, and the foam essentially stops expanding
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Figure 12: (a) Temporal growth of the foam size indicated by L = OA. (b) Evolution of the film

thickness hfilm = DA. For all non-Newtonian melts β = 0.5.

(a) (b)

Figure 13: (a) Distribution of the concentration of dissolved gas during foaming. The initial

concentration is c0 = 20 at t = 0. (b) Pressure distribution within the melt. The melt is Newtonian

and the process corresponds to the Newtonian curves in Fig. 12.

(Fig. 12a). Note in Fig. 13(a) the nearly uniform c through out the melt at t = 3.0. As the

bubble surface deviates from a circular shape, however, the curvature difference creates a

capillary pressure that is lower in the Plateau border than at the center of the film, contrary

to the previous stage (Fig. 13b). This drives the film drainage [42] and the continual, albeit

slow, decrease of the film thickness hfilm (Fig. 12b).

Viscoelastic effects differ markedly between the two stages. In the first stage, the foam
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(a) t = 0.2 (b) t = 0.5

Figure 14: Contours of the tensile stress τpyy in the viscoelastic film. (a) Buildup of τpyy toward

the end of the rapid expansion stage, and (b) its subsequent relaxation in the film drainage stage.

expands more rapidly as the polymer relaxation time λH (or De) increases. This is because

the polymer stress develops more slowly at larger De, and the melt initially appears to be

less viscous upon start of deformation. A similar scenario has been identified for viscoelastic

effects on drop coalescence [43]. For much of the second stage, on the other hand, the melt

film is thicker in viscoelastic melts than in the Newtonian melt. This may be rationalized by

the fact that polymer stresses developed during foam expansion now resist further growth

of the foam and thinning of the polymer film. The two-stage scenario has been previously

reported by Everitt et al. [10] for viscoelastic melts in the high-De limit. In our simulations,

the second stage comes about for all De, and even for Newtonian fluids.

Viscoelasticity in stage two exhibits two additional features that are somewhat unex-

pected. First, the effect of De is no longer monotonic; the thickest film and the slowest

foam expansion are observed for an intermediate De = 1. This is the result of two com-

peting factors: the accumulation of polymer stress during the foam expansion stage and

its subsequent relaxation in the film drainage stage. As illustrated by Fig. 14, the polymer

tensile stress τpyy rises quickly to large values for a low De = 0.1, only to relax shortly

into the film drainage stage. For a large De = 5, the polymer stress attained during foam

expansion is so small that its longevity amounts to little. It is at an intermediate De that
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the viscoelasticity resists foam expansion most effectively, through a polymer stress that is

both relatively large and long lasting. The second surprising feature is the undershoot in the

film thickness hfilm for De = 1 in Fig. 12(b). This is due to the polymer stress τpyy that has

arisen, along with τpxx, from the roughly planar elongational flow in the film. Countering

capillary drainage, τpyy tends to pull the fluid from the Plateau border (Point B in Fig. 10b)

toward the film center (Point A). At its peak, this stress is large enough to reverse the film

thinning temporarily, and then declines as the polymer relaxes in the second stage. Hence

the undershoot in hfilm. Everitt et al. [10] observed a similar undershoot and explained it

similarly by polymer recoil. When we increase the polymer stress relative to the viscous

stress in the constitutive equation by decreasing β = µs/µ, the undershoot becomes more

prominent, in agreement with Everitt et al. [10].

To summarize the viscoelastic effects on bubble growth, strain-hardening, namely the

sharp growth of polymer stresses in extensional flows, is the most important rheological

property in foaming. That these stresses tend to hinder bubble growth is well known. In

fact, high-molecular-weight additives are frequently used to increase the “melt strength”,

which will prevent excessive growth and burst of bubbles and produce more uniform bubble

sizes and better foam expansion [44]. Previous calculations of single bubble growth are

able to predict the initial fast growth in viscoelastic melts [8], but not the subsequent film

thinning as governed by the interaction between neighboring bubbles.

We have also explored bubble interactions in a non-periodic geometry, and Fig. 15

illustrates the growth of a cluster of bubbles in a Newtonian melt. Initially, bubbles of

the same radius R0 are arranged in a hexagonal pattern, the distance between neighboring

bubbles being 2.4R0. The computational domain is a circle of radius 30R0 centered around

the bubbles. On the outer boundary, the normal stress is set to the ambient pressure and

the gas flux vanishes. The initial gas concentration is c∗0 = 8, the initial bubble pressure

is p∗b = 8, and all other parameters are the same as the Newtonian simulation in Fig. 12.

Thus the system is in thermodynamic equilibrium but not mechanical equilibrium. As the

bubbles grow, the whole cluster expands. Depending on the competition for dissolved gas

between neighboring bubbles, four bubble sizes emerge. The six bubbles at the corners of

the outer hexagon grow the fastest, because they have access to the gas-rich melt on the
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Figure 15: Growth of a cluster of bubbles in a Newtonian melt. (a) t = 0; (b) t = 0.7974. The

grey-scale contours indicate the gas concentration c∗. Initially c∗
0

= 8.

outside with the least competition from other bubbles. These are followed by the non-

corner bubbles on the outer layer and in turn by the inner hexagon. The central bubble

grows the slowest. As the bubbles press against one another, thin films form between them

and the inner bubbles assume approximately hexagonal shapes (Fig. 15b). This may be

considered the prototype for the periodic cell of Fig. 10. Furthermore, Fig. 15 shows the

competition between neighboring bubbles to be one cause for polydispersity in real foams,

besides continual nucleation and age differences. Note that Fig. 15(b) is far from a “final

equilibrium” and the bubbles will continue to grow until all the dissolved gas is consumed.

Quantitatively, the central bubble grows at a lower rate than in the periodic geometry of

Fig. 10 under comparable conditions. This is because in the non-periodic setup, each bubble

displaces more polymer melt on average than in the periodic setup.

3.5 Film drainage between a bubble and a free surface

Given that higher melt strength suppresses bubble growth, it seems counterintuitive that

it also produces greater foam expansion [44]. The explanation lies in the fact that higher

polymer stresses prevent burst of bubbles at the surface of the foam and loss of blowing

agent into the atmosphere. This has motivated our investigation of the interaction between

a bubble and a free surface. At the surface, however, bubble-bubble interactions can no
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(a) (b)

Figure 16: A bubble pressing against a free surface in a Newtonian melt. (a) Snapshots of the

interfacial morphology at t = 0, 9.85, and 20.45. (b) Computational mesh around the bubble at

t = 20.45.

longer be represented by the periodic cells of Fig. 10. Without including a large number

of bubbles, it is difficult to simulate the squeezing among bubbles that thrusts the outmost

ones against the free surface. As an expedient, we have used a buoyancy force to drive the

bubble upward toward an initially horizontal free surface. Since gas diffusion is insignificant

in the film drainage stage, we have neglected it completely. In real systems, surfactants may

affect film drainage by immobilizing the surfaces [45]. This will not be considered here. We

concentrate on the influence of rheology on film drainage between the bubble and the free

surface.

We use the axisymmetric computational domain of Fig. 5. All parameters and variables

are made dimensionless by the initial bubble radius R, liquid density ρ and viscosity µ. The

geometric parameters are L = 4, H = 5 and h = 3, and the flow parameters are such that

the Eötvos number Eo = ρg(2R)2

σ = 2 and the Ohnesorge number Oh = µ√
ρσ(2R)

=
√

2
2 . For

viscoelastic fluids, we use β = µs

µ = 0.5 and three relaxation times are calculated: λH = 1,

2 and 10. Ambient pressure is set to pa = 300 such that the bubble volume increases less

than 1% during its rise. Initially, 75 and 50 mesh nodes are distributed along the bubble

surface and radial direction, respectively. This corresponds to roughly 4000 finite elements.

Numerical experiments show these to be sufficient for convergence with grid size.
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Figure 17: Thinning of the film between the bubble and the free surface. (a) The film thickness

hfilm as a function of time. (b) The thinning rate as a function of hfilm. Viscoelastic melts with three

relaxation times are compared with a Newtonian melt of the same total viscosity µ. A Newtonian

melt with the solvent viscosity µs is also shown.

In a Newtonian melt, the evolution of the bubble and free surfaces is shown in Fig. 16(a).

At t = 9.85, a dome is formed on the free surface which provides a downward surface force

to counter the buoyancy of the bubble. At t = 20.45, the film has drained to a very small

thickness hfilm = 6.75 × 10−3, less than 1% of the bubble radius. Resolution of such films

poses a numerical challenge, which is handled in our case by adaptively refining the mesh

in the film as shown in Fig. 16(b). Even the thinnest part of the film contains two or three

layers of interior nodes. However, with the decreasing mesh size comes an increasingly severe

constraint on the time step even for our fully implicit method. We have to use ∆t = 0.001 to

march beyond t = 20. Larger ∆t tends to cause undulations on the surfaces and destabilize

the thin film. For viscoelastic systems, the constraint on ∆t is even more restrictive.

For a viscoelastic melt, the general features of film thinning are the same as for a

Newtonian melt, but the thinning rate depends on the Deborah number, as depicted in

Fig. 17. Approximating the flow in the film by the startup of biaxial extension at a constant

rate ǫ̇0 < 0, the transient elongational viscosity for an Oldroyd-B fluid is [31]

η̄+ = 3µ

[
β +

1 − β

(1 − De)(1 + 2De)

]
− µ(1 − β)

1 − De
e
− t

λH
(1−De) − 2µ(1 − β)

1 + 2De
e
− t

λH
(1+2De)

, (34)
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Figure 18: Strain rate ǫ̇ for the biaxial extension in the film as a function of the film thickness.

where De = −ǫ̇0λH is the local Deborah number. It is easy to see that η̄+ = 3βµ at t = 0,

which is the purely viscous contribution of the solvent. Because the polymer stress needs

time to build up, this initially lower η̄+ causes the viscoelastic films to thin faster at the

early stage than the Newtonian film with the same total viscosity µ. However, due to the

effect of solvent viscosity, all the viscoelastic curves are bounded by the Newtonian curve

with µ = 0.5.

To understand the long-time behavior of the film, we note that the steady-state elonga-

tional viscosity

η̄ = lim
t→∞

η̄+(t) = 3µ

[
β +

1 − β

(1 − De)(1 + 2De)

]
(35)

is non-monotonic in De. For β = 0.5, we have





17
6 µ ≤ η̄ ≤ 3µ for De ∈ [0, 0.5]

3µ < η̄ < ∞ for De ∈ (0.5, 1)

η̄ → ∞ for De ∈ [1,∞)

. (36)

If De < 0.5, η̄ of the viscoelasticity fluid is always smaller than its Newtonian counterpart

3µ. For De > 0.5, η̄ will eventually exceed the Newtonian value, and indeed will grow

without bound if De ≥ 1.

To ascertain the polymer stress in the film, we define an effective strain-rate ǫ̇ =

1
hfilm

dhfilm

dt , whose variations with the film thickness are depicted in Fig. 18. For 0.01 <
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hfilm < 0.1, −ǫ̇ = 0.40±0.04, 0.38±0.06 and 0.28±0.16 for λH = 1, 2 and 10, respectively.

The corresponding local Deborah numbers fall exactly in the three ranges of Eq. (36). Bear-

ing this in mind, it is quite straightforward to explain the long-time tendency of the curves

in Fig. 17. For λH = 1, the film drains faster than its Newtonian counterpart at all times

because the viscoelastic elongational viscosity is always below 3µ. In fact, the difference in

thinning rates between the two tends to grow in time. The λH = 2 curve in Fig. 17(b),

on the other hand, approaches the Newtonian curve in time because De > 0.5 and η̄+ will

eventually exceed 3µ. At λH = 10, the thinning rate drops dramatically toward the end

as η̄+ grows rapidly for De > 1. Although we did not carry on the calculation further,

the trend in Fig. 17(a) suggests that the polymer film for λH = 10 will eventually become

thicker than the Newtonian one. Another noteworthy feature of Fig. 18 is that the Newto-

nian strain-rate for µ = 1 remains approximately half of that for µ = 0.5. This is because

the film drainage is a quasi-static Stokes flow with a time scale proportional to the liquid

viscosity.

The film drainage here is driven by a constant buoyancy force, and the process is some-

what simpler than in the last subsection, where the film drainage is induced by capillary

forces after earlier foam expansion has produced a curvature gradient along the bubble

surface. Nevertheless, the polymer rheology is manifested through the same fundamental

mechanism of strain-hardening. This causes the steep decline in thinning rate for the longest

λH in Fig. 17(b). In the same vein, the lowest film thinning rate in the second stage occurs

for the highest De in Fig. 12(b).

In reality, the film bursts once it gets to a critical thickness where short-range molecular

forces such as van der Waals attraction become dominant. Absent such non-hydrodynamic

effects, the film thickness hfilm will not decrease to zero in finite time, as can be readily

shown by a lubrication analysis. Numerically, our mesh size continues to decrease with hfilm,

and the simulations eventually grinds to a halt. The simulations in the last subsection (cf.

Fig. 12b) has the same fate. To properly simulate film burst, the short range forces have to

be accounted for [43].
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4 Conclusion

In this work, we have developed an arbitrary Lagrangian-Eulerian scheme for tracking

bubble surfaces during foaming, and validated the algorithm and finite-element code by

benchmark problems. A moving mesh tracks the interfaces accurately, with adaptive re-

finement and coarsening based on surface curvature and proximity between surfaces. Fully

implicit time-stepping enhances numerical stability and ensures smoothness of the surface

curvature. Iterative schemes such as preconditioned GMRES and BICGSTAB are used to

solve the linear system. With gas diffusion included, the scheme proves to be accurate and

efficient for simulating polymer foaming. But the algorithm and numerical package apply

generally to free-boundary problems of viscoelastic fluids.

We have simulated diffusion-driven expansion of a 2D foam as well as the thinning

of a film between a bubble and a free surface. Results show strain-hardening to be the

most important rheological property for polymer foaming, which mostly involves biaxial

extension of the melt. A significant insight from the simulations is that the elongational

viscosity of the polymer melt helps stabilize the foam structure by suppressing bubble-

bubble coalescence and bubble burst at the foam surface. The two simulations are consistent

with prior experimental observations that (a) increasing the melt strength results in smaller

but more uniform bubble sizes, and (b) increasing the melt strength produces greater foam

expansion in the end as the polymer stresses prevent burst and collapse of bubbles on the

surface of the foam.

We end by pointing out the limitations of the current work. Although the Oldroyd-B

model gives the correct trend in strain-hardening, it does not quantitatively capture the

rheology of typical polymer melts. More elaborate constitutive equations are required if

the results are to be used to guide process design. Second, real foams feature a bubble-

size distribution, with spatially and temporally random nucleation and growth. Direct

simulation of such a foam requires the inclusion of a large number of bubbles, and the

computational cost is still prohibitive at present. As noted in the text, this also hampers

a realistic depiction of bubbles thrust against the foam surface. Finally, we have neglected

non-hydrodynamic effects that are important to the actual foaming process. For instance,
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temperature variations in space and time, along with solidification, are crucial to foam

extrusion. Plasticization of the melt by the dissolved gas may also have an important

part [26]. To simulate interfacial rupture as occurs in bubble burst or coalescence, short-

range molecular forces have to be incorporated [43]. Therefore, much research remains to

be done in simulating polymer foaming.

Acknowledgment: This research was supported in part by Arkema Inc. J.J.F. was also

supported by the NSERC, the Canada Research Chair program and the Canada Foundation

for Innovation. We thank Andrew M. Kraynik for suggesting the comparison in Figure 11.

References

[1] D. Klempner, K. C. Frisch, editors, Handbook of Polymeric Foams and Foam Tech-

nology, Hanser Publishers, New York, 1991.

[2] H. X. Peng, Z. Fan, J. R. G. Evans, J. J. C. Busfield, Microstructure of ceramic foams,

J. Eur. Ceramic Soc. 20(7) (2000) 807–813.

[3] T. Beechem, K. Lafdi, A. Elgafy, Bubble growth mechanism in carbon foams, Carbon

43 (2005) 1055–1064.
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