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This Letter reports on numerical simulations motivated by experimental observations of an unusual
inverted-heart shape for bubbles rising in an anisotropic micellar solution. We explain the bubble
shape by assuming that the micelles are aligned into a nematic phase, whose anchoring energy on
the bubble competes with the interfacial tension and the bulk elasticity of the nematic to modify the
interfacial curvature. Numerical results show that bubbles with sufficiently strong planar anchoring
rising in a vertically aligned nematic indeed assume the observed shape. The parameter values
required are compared with the experimental materials and conditions. © 2007 American Institute
of Physics. �DOI: 10.1063/1.2722421�

To investigate the impact of solids on viscoelastic liq-
uids, Akers and Belmonte1 dropped spheres of diameter d
�1 cm into an aqueous solution of the worm-like micellar
system cetylpyridinium chloride �CPCl�/sodium salicylate
�NaSal�. Occasionally air bubbles were entrained into the
fluid, and would rise in the wake of the ball �Fig. 1�. Such a
bubble assumes a peculiar shape while in the near wake,
resembling an inverted heart or a spade �a�. The upper sur-
face has sloped shoulders that join in a point. The bottom is
relatively flat with a small conical protrusion in the middle.
As it rises, both points on top and bottom quickly retract and
the bubble appears roughly spherical �b�. Further up, the
bubble assumes the familiar shape with a round top and a
long pointed tail at the bottom �c�. The last image resembles
that seen of bubbles in viscoelastic polymer solutions,2,3 the
tail being produced by the tensile stress in the wake of the
bubble. The inverted-heart shape in the first image, on the
other hand, has never been reported before. A possible ex-
planation is that the micellar solution has been temporarily
transformed into an anisotropic nematic liquid in the near
wake of the falling ball. The ordered micelles have a pre-
ferred orientation, known as the “easy direction,”4 with re-
spect to the bubble surface, deviation from which is penal-
ized by an anchoring energy.5,6 Such surface anchoring may
compete with the interfacial tension and the bulk molecular
order and force the bubble into the peculiar shape. Farther
away from the ball, the micelles relax and lose the nematic
order, and the bubble shape reverts to that commonly seen in
viscoelastic liquids.

Although Akers and Belmonte did not present direct evi-
dence for the orientational order in the near wake, a flow-
induced nematic state can be inferred from two facts. First, a
falling ball produces strong elongation in its wake that tends
to modify the microstructural conformation of the fluid. Both
flexible polymers and worm-like micelles have been ob-
served to align into “birefringent strands” in the near wake.7,8

Second, semidilute and concentrated micellar solutions are
known to undergo an isotropic-to-nematic transition under
shear, for surfactant concentrations down to 1.09 wt.%.9–11

At higher concentrations, micelles commonly exhibit a nem-
atic phase even in equilibrium.12,13 The CPCl concentration
used by Akers and Belmonte is estimated at 2.87 wt.%, well
into the semidilute regime. It is therefore reasonable to as-
sume an anisotropic nematic state in the near wake, with the
micelles predominantly oriented vertically. In such an envi-
ronment, the bubble shape is affected not only by the hydro-
dynamic forces and interfacial tension, but also by the sur-
face anchoring and bulk molecular orientation.

To test this hypothesis, we have carried out dynamic
simulations of bubbles rising in a nematic fluid having a
vertical far-field orientation. The nematic background is as-
sumed to be time-invariant since the time required for the
bubble to traverse the nematic region, estimated from its rise
velocity, is much longer than the time scale of the simulation
�cf. Fig. 3 below�. The rheology and orientation of the fluid
are modeled by the Leslie-Ericksen theory for liquid
crystals,4 and the moving and deforming bubble surface is
captured in a diffuse-interface framework.14 Details about
the theoretical model and numerical method can be found
elsewhere,15,16 and only a brief summary is given here. The
free energy of a Newtonian-nematic mixture has three con-
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tributions: a mixing energy, a bulk elastic energy, and a sur-
face anchoring energy
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In fmix, � is the phase-field variable with �=1 and −1 in the
nematic and Newtonian bulk phases and �=0 at the inter-
face, � is the mixing energy density and � is the capillary
width. fbulk is the Frank energy with a single elastic constant
K, n being the director, regularized to permit defects where
�n� deviates from unity over a small region of size �.4,17 For
fanch, we adapt the Rapini-Popoular form5 for planar anchor-
ing to our diffuse-interface formalism, with A being the an-
choring energy density and the easy direction being perpen-
dicular to the interface normal ��. Planar anchoring is
expected for the micelles based on an entropic argument,12

which will be revisited when comparing the simulation with
observations. In the sharp-interface limit, 2	2�� 3� gives
the interfacial tension � and 2	2A� 3� becomes the anchor-
ing strength W.5,14,18

A variational procedure on the free energy, supple-
mented by the appropriate dissipative terms, leads to the
governing equations:14
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where the deviatoric stress tensor
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with the Leslie viscous stress4 ��=
1D :nnnn+
2nN
+
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6D ·nn, and the molecular field
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In the above, � is the Cahn-Hilliard mobility parameter, D
= 1

2 ��v+ ��v�T� and N= dn � dt − 1
2 ���v�T−�v� ·n. The 
’s

are the Leslie viscous coefficients, �1=
3−
2, �2=
2+
3

=
6−
5, and 	 is the viscosity of the Newtonian phase.
The governing equations are discretized on a finite-

element grid using the Petrov-Galerkin formulation with
streamline upwinding for the constitutive equation.16 With
axisymmetry, the 2D computational domain is covered by an
unstructured grid of triangular elements. A key element of
the numerical algorithm is an adaptive meshing scheme that
deploys the finest grids around the interface and adaptively
coarsens and refines the grid as the interface moves. Numeri-
cal experiments with grid refinement and time-step refine-
ment have been carried out to ensure adequate resolution,
and the accuracy and robustness of the code has been estab-
lished by benchmarking against rising bubbles in Newtonian
fluids and other published results.16

To analyze the effects of flow and molecular order sepa-
rately, we first computed the equilibrium shape of a station-
ary bubble in a nematic �Fig. 2�. The static shape depends on
the competition among the interfacial tension �, the anchor-
ing strength W and the bulk elastic energy K. Minimizing the
total free energy, the bubble typically takes on a lemon shape
�Fig. 2�b��, and the degree of elongation is determined by
two dimensionless groups: W /� and Wa /K, a being the
equivalent radius of the bubble. For weak anchoring
�Wa /K�1�, n readily deviates from the easy direction and
bulk elasticity can exert little influence on the bubble shape
�Fig. 2�a��. For strong anchoring, however, the bubble be-
comes more elongated to reduce the bulk distortion at the
expense of increased interface area �Fig. 2�c��. Note the

FIG. 1. An air bubble rising in the wake of a falling steel ball in a micellar
solution. The bubble volume is roughly 2 cm3 and the images are separated
by 33 ms. From Akers and Belmonte �Ref. 1� with permission, ©2006
Elsevier B.V.

FIG. 2. Equilibrium shapes of stationary bubbles in a nematic with a vertical
far-field orientation. The curves depict the director field and the bubbles are
axisymmetric with planar anchoring. Both � and K are fixed at �a /K=3,
and the three plots correspond to increasing anchoring strength: Wa /K
=0.6, 15, and 150.
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“boojum” defects at the poles of the bubble, where bulk dis-
tortion creates large surface curvatures. Both the lemon
shape and the boojum defects have been reported in prior
studies.19,20

The shape of a rising bubble is also influenced by flow
effects, expressed by two dimensionless groups:21 the Mor-
ton number Mo= g�4� ��3 and the Eötvos number Eo
= �ga2�� , � and � being the liquid density and viscosity and
g the gravitational acceleration. In Akers and Belmonte’s
experiment,1 the micellar solution is strongly shear-thinning,
and its surface tension � also varies depending on the relax-
ation and redistribution of the surfactants. Based on the data
given, the experimental conditions correspond to 8.70�Eo
�20.3 and 10−2�Mo�103. The simulations will use Eo and
Mo in these ranges, with the characteristic viscosity �= �
4

−
2+
6� /2 being the average between two Miesowicz vis-
cosities and the ratios of the Leslie coefficients approximat-
ing those of MBBA.4 The anchoring strength W and bulk
energy K are more difficult to estimate. We have tested a
range of W /� and Wa /K values, and their relevance to real
materials will be discussed later. For computational conve-
niences, we have assigned equal density and viscosity to the
“bubble” and matrix fluid;16 the buoyancy force is replaced
by an upward body force acting on the bubble. The density
and viscosity of the bubble phase are known to have only
minor effects on the bubble shape.21

Figure 3 shows snapshots of a bubble during its rise. The
initial shape is spherical, with a uniform director field �Fig.
3�a��. Within a time scale of �a /W �
1.41 in this case�, the
director relaxes toward the easy direction on the bubble sur-
face, deforming it into a lemon shape resembling Fig. 2�b�.
At this point the bubble velocity is about 46% of its terminal
value. As the rise velocity increases, so does the hydrody-
namic drag due to viscous and inertial forces. As a result, the

shoulders are pushed down and flattened, and the bubble
loses fore-aft symmetry �Fig. 3�c��. Eventually a steady state
is reached in Fig. 3�d�, with a bubble shape closely resem-
bling the experimental picture in Fig. 1�a�. The terminal ve-
locity U corresponds to a Reynolds number Re= �Ua ��
=3.39, while the experimental value in Akers and Belmonte1

is estimated as 1.72�Re�3.90. The steady-state Ericksen
number Er= �Ua �K =2.05. The flat bottom is reminiscent of
the bubble shape in Newtonian liquids21 at a comparable Re,
except for the protrusion in the middle due to the boojum
defect. The dimensional time for Fig. 3�d� is about 200 ms,
which is consistent with the estimated experimental time re-
quired for the heart shape to develop. This simulation offers
strong support for our hypothesis that it is the nematic order
in the wake of the ball that affords the bubble its unusual
shape.

Basic features of the inverted-heart shape—sloped
shoulders and a flat bottom with a conical protrusion—are
obtained if both W and K are sufficiently large; a rough
guideline is W�� and K�0.1�a. These numerical param-
eters need to be related to the experiment.1 Since no in situ
characterization was done on the micellar solution, we are
limited to circumstantial evidence. For nematic worm-like
micelles, anchoring arises from entropic effects such as ex-
cluded volume, and a scaling argument on W predicts strong
planar anchoring �Wa /K�1�.12 This has been confirmed ex-
perimentally through quadrupolar interactions among colloi-
dal particles.12,13 Thus, it is reasonable to assume planar an-
choring in our computations, and the condition Wa /K�1 is
consistent with the numerical parameters in Fig. 3. However,
the estimated W is smaller than the surface tension of com-
mon thermotropic liquid crystals.22 In the experiment,1 the
abundance of surfactants may have reduced � below W. For
lyotropic nematics made of self-assembled molecular aggre-
gates similar to worm-like micelles, W /��1 has been ob-
served for domains in a biphasic system.20,23

The mechanism revealed by the heart-shaped bubble has
potential applications in other complex fluids that feature
nematic-isotropic interfaces, such as nematic emulsions24

and polymer-dispersed liquid crystals �PDLC�.25 In self-
assembly of colloids for making photonic crystals,26 a nem-
atic matrix will afford better control of the spatial periodicity
as well as the possibility of nonspherical voids with better
performance and tunability.27,28 In manufacturing PDLC
films, planar anchoring inside nematic drops tends to pro-
duce a bipolar shape similar to those in Fig. 2. The drop
shape and orientation can be exploited to enhance the con-
trast and switching speed between the on- and off-states.29,30

Finally, the phase morphology of bicontinuous polymer-
liquid crystal networks31 and “reversed mode PDLC”32 de-
pends on the coupling between surface anchoring, bulk elas-
ticity and deformation, and the mechanism discussed in this
Letter is expected to play a key role.
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FIG. 3. Snapshots of the rising bubble in a nematic with planar anchoring.
The far-field molecular orientation is vertical. Eo=11.2, Mo=1.01, W /�

=5, and Wa /K=15. Time is scaled by 	2a /g. Steady state is reached in
frame �d�.
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