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Synopsis

his paper reports finite-element simulations of drop deformation in converging flows in an
xisymmetric conical geometry. The moving interface is captured using a diffuse-interface model
nd accurate interfacial resolution is ensured by adaptive refinement of the grid. We have explored
he effects of viscoelasticity on drop deformation when either the drop or the matrix is a Giesekus
uid. Contrary to the popular belief that viscoelasticity in the drop hinders deformation and that in

he matrix enhances deformation, we predict a more complex picture in which viscoelasticity in
ither component may suppress or promote drop deformation depending on the capillary number
a and the drop-to-matrix viscosity ratio �. Smaller Ca and � are conducive to the behavior
entioned above, while large Ca and � may produce the opposite effect. Both trends are explained

y the reaction of the polymer stress to the inhomogeneous and transient deformation in the
onverging flow field. Finally, this understanding reconciles contradictory results in the literature
s opposite limits in the parameter space. © 2008 The Society of Rheology.
DOI: 10.1122/1.2837525�

. INTRODUCTION

Drop deformation in a flowing medium is important to processing engineering mate-
ials such as emulsions and polymer blends �Tucker and Moldenaers �2002�� and to
hysiological processes in microcirculation �Zhou et al. �2007��. In both contexts, the
uid components are often non-Newtonian complex fluids containing macromolecules,
nd the drop deformation depends on their viscoelastic rheology. In homogeneous shear
nd extensional flows, numerous studies have formed a rather coherent picture on how
apillary, viscous and viscoelastic forces affect drop deformation �Rallison �1984�; Stone
1994�; Ramaswamy and Leal �1999a,1999b�; Hooper et al. �2001b�; Greco �2002�; Yue
t al. �2005b,2005c, 2006b�; Sibillo et al. �2006�; Khismatullin et al. �2006��. In simple
hear flows, viscoelasticity in the drop tends to reduce drop deformation while that in the
atrix has a non-monotonic effect: it reduces drop deformation in lower Deborah number

�
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470 ZHOU, YUE, AND FENG
ut increases drop deformation with stronger viscoelasticity �Yue et al. �2005c��. In
niform extensional flows, a polymer drop deforms less than its Newtonian counterpart
hile a polymer matrix tends to enhance drop deformation �Ramaswamy and Leal

1999a,1999b�; Hooper et al. �2001b��. This is consistent with the heuristic idea that drop
eformation is controlled by the balance among fluid stresses inside and outside and the
nterfacial tension �Ghodgaonkar and Sundararaj �1996��.

In comparison, our knowledge of drop deformation in inhomogeneous flow geom-
tries, such as channels or pipes with varying cross sections, is rather fragmentary and
ometimes contradictory. In the conical section of a converging pipe flow, a drop moving
long the centerline experiences inhomogeneous and time-dependent elongation. Of the
andful of experiments in this geometry, Chin and Han �1979� reported that increasing
he polymer concentration in the drop fluid suppresses drop deformation, while increasing
he polymer concentration in the matrix has the opposite effect. This seems consistent
ith the behavior in homogeneous elongation. The more recent experiment of Bourry et
l. �1999�, on the other hand, was inconclusive as to whether a polymeric drop deforms
ore or less than a Newtonian one with comparable viscosity. Both experiments were

omplicated by the strong strain-rate-dependent rheology of the fluids; it is uncertain
hether the effect is due to elasticity or viscosity that has changed with the deformation.
s a matter of fact, Kim and Han �2001� later attributed the observations of Chin and
an �1979� entirely to viscosity. Mighri et al. �1997� attempted to clear up this issue by

arrying out similar experiments with Boger fluids in one or both components. Their
esults seem in agreement with the simple argument advanced in homogeneous elonga-
ional flows: polymer in the drop hinders its deformation while that in the matrix en-
ances deformation. These authors further correlated drop deformation with the differ-
nce in elasticity between the drop and the matrix. In the only theoretical or
omputational study known to us, Khayat �1998� computed drop deformation in a conical
ipe using a linear Oldroyd-B model. The results exhibit the opposite trend to that of
ighri et al. �1997�. That is, a polymeric drop deforms more while a polymeric matrix

auses a suspended drop to deform less.
This contradiction was the initial motivation for the present work. Using the nonlinear

iesekus model, we have systematically investigated the effect of viscoelasticity on drop
eformation in a converging pipe flow over a wide range of the Deborah number. The
esults reveal an intricate picture that contains both prior studies as special cases at
pposite ends of the parameter space. Note that historically, the conical geometry has
een used as an imperfect device for generating elongational flows in which to measure
he fluid’s elongational viscosity �Cogswell �1972�� or to study drop deformation �Chin
nd Han �1979��. Our perspective is different: we see this not only as a prototypical
eometry for various polymer processing operations, but also as an inhomogeneous flow
hat is simple enough to allow detailed analysis of the fluid mechanics of drop deforma-
ion.

I. THEORETICAL MODEL AND NUMERICAL METHOD

To simulate a moving internal boundary, one either tracks it with boundary grids that
re part of a moving mesh or captures it on a fixed grid using some scalar field �Sethian
nd Smereka �2003��. In this work, we employ the diffuse-interface method in the latter
ategory. In this model, the two nominally immiscible fluid components are assumed to
ix in a thin interfacial region; a phase field � varies smoothly from one bulk value

�=−1� to the other ��=1�. The interfacial tension derives from a mixing energy that is

functional of �. One advantage of this method is in handling morphological changes
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471VISCOELASTIC EFFECTS ON DROP DEFORMATION
uch as drop coalescence �Yue et al. �2005a��. But in the present problem, it is mostly a
umerical device for capturing the deforming and moving drop surface. The diffuse-
nterface model has been the subject of several reviews �Anderson et al. �1998�; Lowen-
rub and Truskinovsky �1998�; Feng et al. �2005��, and the numerical implementation
sed here has also been detailed before �Yue et al. �2006b��. Therefore, we will give only
brief outline in the following.
Through a formal variational procedure, one may derive the governing equations of a

wo-phase system consisting of a Newtonian fluid and a Giesekus fluid:

� · v = 0, �1�

�� �v
�t

+ v · �v� = − �p + � · � + G � � + �g , �2�

� = �1 − �

2
�n +

1 + �

2
�s���v + ��v�T� +

1 + �

2
�p, �3�

�p + �H�p�1� + �
�H

�p
�p · �p = �p��v + ��v�T� , �4�

G = ��− �2� +
���2 − 1�

�2 � , �5�

��

�t
+ v · �� = ��2G , �6�

here �= 1−�
2 �1+ 1+�

2 �2 is the average density between the two fluids, G is the chemical
otential derived from a Landau–Ginzburg mixing energy, �n is the viscosity of the
ewtonian component, and �s and �p are the solvent and polymer viscosities of the
iesekus component. In the Giesekus model, �H is the polymer relaxation time, � is the

o-called mobility factor, and the subscript �1� denotes upper convected derivative �Bird
t al. �1987a��. We have taken the Newtonian component to be fluid 1 ��=−1� and the
iesekus component fluid 2 ��=1�. In the simulations, either may be the drop or matrix
uid. The diffuse-interface model has three parameters: the mixing energy density �, the
apillary width � and the molecular mobility �. These are chosen so that the proper
harp-interface limit is approached �Jacqmin �1999�; Liu and Shen �2003�; Yue et al.
2007��, with the interfacial tension being 	= 2	2

3
�

� .
The Giesekus model is used chiefly because it strikes a balance between simplicity and

ealistic rheological predictions. Derived from a dumbbell model with anisotropic viscous
riction and Brownian motion �Bird et al. �1987b��, the Giesekus model is perhaps the
implest nonlinear model with reasonable normal stress differences. Applied to polymer
elts and solutions in step shear, startup of uniaxial elongation and step biaxial exten-

ion, the Giesekus model “can describe the shear damping function and elongational
iscosity quite accurately” �Khan and Larson �1987�; Tirtaatmadja and Sridhar �1995��.
n prior computations on drop breakup and coalescence, the Oldroyd-B model sometimes
aused difficulties in convergence �Yue et al. �2006a��. Although this is not a concern for
he relatively mild strain rates in this work, we nevertheless prefer the Giesekus model as
t better represents the rheology of real polymeric liquids.

The computations are done in an axisymmetric geometry using AMPHI, a finite-

lement package based on the diffuse-interface model with adaptive meshing developed
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472 ZHOU, YUE, AND FENG
or interfacial flows of complex fluids �Yue et al. �2006b��. The governing equations are
iscretized using Galerkin finite elements on an unstructured triangular grid, with second-
rder fully implicit time stepping that requires Newton iteration at each time step. More
etails of the numerical method can be found in Yue et al. �2006a,2006b�, who also
eported detailed parametric studies and validation with benchmark problems. Adequate
patial and temporal resolution is ensured for the simulations presented in the following.
iscretization errors are controlled to within 1% of the results.

II. PROBLEM SETUP

Figure 1 depicts the axisymmetric geometry of the converging flow channel. The
omputational domain is the upper half of the meridian plane. On the upstream boundary,
e specify a parabolic profile for the axial velocity vz with a centerline velocity v0 and

ero radial velocity vr. If the matrix fluid is viscoelastic, we also impose fully developed
olymer stresses at the entrance. Fully developed entrance conditions are not exactly
orrect in our geometry, even if it is preceded by a long straight section upstream. They
re used here for simplicity, and numerical experiments show that the drop deformation
n the conical section is not sensitive to the entry condition. For example, imposing the
teady velocity and stress profiles at the beginning of the contraction that have been
omputed with a long straight section upstream will produce a 3% difference in drop
eformation. Along the centerline, we assume conditions of symmetry with �

�r =0 for all
elocity and stress components except vr=0. At the exit, natural boundary conditions are
sed. Initially, a spherical drop of radius a is placed at z0=5a on the centerline in a
uiescent matrix; the initial velocity and stress fields are zero. At time t=0, the inflow
elocity profile is activated and the flow starts throughout the domain. The drop elongates
hile moving down the centerline of the pipe.
Upon non-dimensionalizing the governing equations and boundary conditions, the

ollowing six dimensionless groups emerge �in addition to the Giesekus mobility � and
he four length ratios indicated in Fig. 1�:


 =
�d �drop-to-matrix density ratio� , �7�

IG. 1. Schematic of the flow geometry, with the computational domain being half of the meridian plane. Not
rawn to scale.
�m
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473VISCOELASTIC EFFECTS ON DROP DEFORMATION
� =
�d

�m
�drop-to-matrix viscosity ratio� , �8�

k =
�s

�s + �p
�solvent viscosity ratio in Giesekus fluid� , �9�

Ca =
�ma�̄̇

	
�capillary number� , �10�

Re =
�mv0a

�m
�Reynolds number� , �11�

De = �̄̇�H �Deborah number� , �12�

here the subscripts d and m denote the drop and matrix components. For the viscoelastic
uid, the total zero-shear viscosity �s+�p is used in computing �, be it in the drop or the
atrix. Since the strain rate varies along the centerline, we have used an averaged strain

ate �̄̇ in defining the capillary and Deborah numbers. Assuming that the centerline ve-
ocity varies according to the inverse of the cross-sectional area, the total Hencky strain
rom z=0 to z=L is 2 ln

R1

R2
and the total transit time is

ttr = 

0

L dz

vz
=

L

3v0

R1
2 + R1R2 + R2

2

R1
2 . �13�

e define the average strain rate �̄̇ as the ratio between these two quantities.
Several parameters are fixed throughout the simulations. The drop-to-matrix density

atio is kept at 
=1, and the Reynolds number remains at Re=0.01 so inertia is negli-
ible. All the length ratios are fixed at their values in Fig. 1. To avoid the stress blowup
n the Oldroyd-B model but to produce sufficiently large viscoelastic stresses, we have
sed a small �=0.03 for all the simulations. The polymer relaxation time is varied over
wide range to capture a comprehensive picture of the viscoelastic effect. Thus, the value
f rheological parameters is based more on the need to reveal interesting physics than to
pproximate specific fluids. The discussion in the next section will focus on the effects of
a, �, and De on drop deformation.

V. NUMERICAL RESULTS

To explore the drop deformation in a converging pipe flow, we have done three groups
f simulations: a Newtonian drop in a Newtonian matrix as the baseline, a Giesekus drop
n a Newtonian matrix, and a Newtonian drop in a Giesekus matrix.

In the literature, drop deformation has been represented by two length ratios: l−b
l+b and

l
a , l and b being the half length and half breadth of the drop. The first is sensitive to small
epartures from sphericity, while the second is more suitable for highly elongated drops
Stone et al. �1986�; Tretheway and Leal �2001��. We will use D= l

a in this paper since the
rop deformation may be quite large.

When the rheology of either the drop or the matrix changes, the drop speed and
isplacement will vary. Thus, it is awkward to compare D based on the same time or the
ame drop position on the centerline. Following Mighri et al. �1997�, we use the matrix

train in the absence of the drop as the benchmark for comparing drop deformation. From
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474 ZHOU, YUE, AND FENG
he local strain rate �̇=
dvz

dz on the centerline, the matrix Hencky strain �m can be calcu-
ated. The corresponding matrix stretch ratio Dm=exp��m� turns out to be

Dm�z� =
vz�z�
vz�z0�

, �14�

here z0=5a is the initial position of the drop. Thus, Dm�z� is the deformation of a matrix
uid particle currently at z with respect to its initial configuration at z0, where the unde-
ormed drop sits initially. Drop deformation D will be examined vis-à-vis the matrix
eformation Dm at the same z as the drop’s centroid on the centerline of the converging
ipe.

. A Newtonian drop in a Newtonian matrix

In our geometry, the drop experiences a spatially inhomogeneous and temporally
ransient extensional flow as it moves along the centerline of the converging pipe. Figure

depicts the kinematics of the flow around the drop. The streamlines, in a reference
rame fixed on the centroid of the drop, resemble those of an elongational flow but exhibit

fore-aft asymmetry. Consequently, the drop is asymmetric as well, being more elon-
ated in the front. The contours of the strain rate exhibit a general increase downstream.
ut within the drop, �̇ achieves a maximum at the front tip.

Figure 3 depicts the deformation of a Newtonian drop in a Newtonian matrix for
everal viscosity ratios. Comparing the D�z� and Dm�z� profiles in Fig. 3�a�, we note that
or the relatively high capillary number Ca=2.9, the drop deforms more than the matrix
f it is less viscous ��=0.01� and vice versa ��=2�, in agreement with experimental
bservations �Delaby et al. �1994��. For Dm, we also plot a curve based on the exact
tokes flow solution in an infinite cone �van der Reijden-Stolk and Sara �1986��. The
ctual stretching ratio turns out to be rather higher than the analytical solution, thanks to

IG. 2. A snapshot of the flow field around the drop when Dm=2.5 and the drop centroid is near z=18a. Ca
2.9, �=0.5. The top half shows streamlines in a reference frame fixed on the centroid of the drop, while the
ottom half shows contours of the strain rate �̇, the second invariant of the strain rate tensor. For a clearer view
f the drop interior, we have magnified the r coordinate relative to z.
he inlet and outlet conditions.
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475VISCOELASTIC EFFECTS ON DROP DEFORMATION
Figure 3�b� plots the drop deformation D as a function of the matrix deformation Dm

or five � values. All curves have an initial transient, obviously due to the somewhat
rtificial initial condition, but eventually assume a constant slope. This linearity has been
bserved experimentally by Mighri et al. �1997�. In steady and homogeneous elongation,
he steady-state deformation of a drop �for subcritical Ca� is often viewed as the result of
he balance between viscous and capillary forces. In our situation, the strain rate in the

atrix continues to increase as the drop moves downstream �cf. Fig. 3�a��, as does the
iscous force. Thus, the drop deformation increases continuously. For the rest of the
aper, we will use the slope S of the straight portion of the D�Dm� curves to indicate the
peed of drop deformation. For Newtonian systems, S will be shown to depend on Ca and
, while for non-Newtonian fluids, the Deborah number De is involved as well.

A curious observation in Fig. 3�b� is that for this Ca the drop deformation does not
eem to depend on the viscosity ratio � monotonically. This effect is more clearly illus-
rated in Fig. 4 in terms of the slope S. For smaller Ca, there is an intermediate viscosity
atio �M at which the drop deforms the fastest. With Ca increasing from 0.29 to 1.45, �M

ecreases from approximately 0.35–0.20, and seems to disappear for larger Ca.
The nonmonotonic dependence of S on � can be explained by the transient deforma-

ion of a drop after the startup of an elongational flow at a fixed strain rate. Numerical
omputations by Hooper et al. �2001b� show that a more viscous drop reacts to the
tartup more slowly; its initial deformation lags behind that of a less viscous drop.
owever, it eventually achieves a greater steady-state deformation, provided that Ca is
elow the critical value for drop burst. The slower initial reaction is due to a longer
emulsion time” tem=

�da

	 for the drop �Sibillo et al. �2004��, and the greater steady-state
eformation is because the more viscous interior sustains higher internal stresses so as to
fford the exterior fluid a firmer “grip” on the interface. In our geometry, the drop
xperiences an unsteady external flow in the Lagrangian sense. So it deforms continually
nd is in a perpetual transient state. For small � values, tem is short and the drop is close
o equilibrating with the local strain rate. Thus, it exhibits the steady-like behavior with
he instantaneous D�t� increasing with �. For large � values, the contrary is true and the

IG. 3. �a� Drop and matrix deformation as functions of the position z for Newtonian systems at Ca=2.9. For
he drop deformation D, two viscosity ratios are shown. For the matrix deformation Dm, an analytical result
ased on creeping flow in an infinite cone is also shown for comparison �van der Reijden-Stolk and Sara
1986��. �b� Drop deformation D as a function of the matrix deformation Dm for Newtonian systems at Ca
0.29.
rop is dominated by the transient response, with D�t� decreasing with �. This explains
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476 ZHOU, YUE, AND FENG
he non-monotonic S��� curves in Fig. 4 for smaller Ca. Larger Ca may be thought of as
he result of increased flow rate or decreased interfacial tension. Either way, a drop would
ake longer dimensional time to reach steady state upon startup of the uniform elongation.
n our geometry, therefore, the transient response prevails and D decreases with � mono-
onically. This monotonic decrease confirms previous computations in the limit of Ca

� �Bourry et al. �1999��.

. A Giesekus drop in a Newtonian matrix

Figure 5 depicts the deformation of viscoelastic Giesekus drops as a function of the

IG. 4. The slope of drop deformation S as a function of viscosity ratio � in Newtonian systems at different
a.

IG. 5. Deformation of Giesekus drops as a function of the Newtonian matrix deformation with �=0.5 and
=0.2. �a� Ca=2.9; �b� Ca=0.29. Although the differences among the curves are small in magnitude, they are

uch greater than discretization errors and represent a real physical effect.
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477VISCOELASTIC EFFECTS ON DROP DEFORMATION
ocal matrix deformation for several capillary and Deborah numbers. Similar to the New-
onian drops in Fig. 3, the viscoelastic drop attains a “linear regime” of deformation after
n initial transient. This is consistent with the observations of Mighri et al. �1997�. Thus,
he drop deformation may be analyzed in terms of the slope S as before, but now as a
unction of the Deborah number De.

Figure 6 shows four S�De� curves for different Ca and � values. For �=0.5, two
ifferent behaviors are manifested for large and small Ca. For highly deformed drops at
a=2.9, viscoelasticity promotes drop deformation. That is, the polymeric drop deforms

aster than the Newtonian drop, and the difference increases monotonically with De. For
oderately deformed drops at the lower Ca=0.29, the viscoelastic effect is non-
onotonic; S first decreases with De, reaches a minimum around De=2 and then in-

reases. At the largest De computed, the drop deformation is still below that of the
ewtonian drop. For �=0.1, the non-monotonic behavior is seen for both Ca values.
The differing trends can be explained in terms of the “effective viscosity” of the

on-Newtonian drop. The polymer stress takes a finite time ���H� to react to flow, and as
he simplest example, Fig. 7 shows the stress growth curves for a Giesekus fluid after
tartup of a homogeneous elongation at a constant strain rate �̇. For short times, the
olymer viscosity is smaller than its Newtonian counterpart, and indeed it decreases with
e. This may be called the “weak regime” where the polymer molecules do not have

ime to unravel and sustain stress. For long times, the polymer stress eventually outgrows
he Newtonian value, and in this “strong regime,” �̄+ increases with De. The longer the
olymer relaxation time, the longer the weak regime persists. Note that these so-called
egimes are rather loosely defined; they refer to how �̄+ varies with De within a certain
ime interval and a certain range of De.

Our simulations are complicated by two additional factors. First, the flow inside the
rop is not uniformly elongational but comprises regions of varying flow type and strain
ate. Second, the Lagrangian unsteadiness experienced by the drop imposes a more com-
lex deformation history than sudden startup. However, the main idea of Fig. 7 carries

IG. 6. Viscoelastic effects on the deformation of a Giesekus drop in a Newtonian matrix at �a� Ca=2.9, �b�
a=0.29. The drop deformation is represented by the slope S scaled by the corresponding Newtonian slope Sn,
nd exhibits different trends with varying Deborah number De. For all cases, the Giesekus fluid has a solvent
iscosity ratio k=0.2.
ver: depending on how fast the polymer stress develops, the drop may have an effective
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478 ZHOU, YUE, AND FENG
iscosity that is lower or higher than its Newtonian counterpart, which would make it
eform faster or slower. In the following, we will first analyze two such scenarios for
=0.5 and Ca=0.29 and 2.9.
In both cases, the streamlines �top of Figs. 8�a� and 8�b�� have the same asymmetric

yperbolic pattern. However, the contours of the strain rate differ �top of Figs. 8�c� and
�d��. In the highly elongated drop at Ca=2.9, �̇ is fairly uniform inside the drop, with a
eak maximum near the front tip. In the less deformed drop at Ca=0.29, �̇ is small in the
iddle of the drop but attains relatively large magnitudes near the front and the back,
ith a maximum at the front tip. Contours of the normal stress N1=
zz−
rr in the bottom
alves of Figs. 8�c� and 8�d� show similar patterns.

To explain this difference, it is convenient to think of the straining inside the drop as
rom two possible origins: primary flow due to elongation of the drop and secondary flow
e.g., recirculating eddies� due to confinement of the interface. For a drop that deforms
ffinely with the matrix, the internal straining is entirely due to the first. For a drop that
as attained steady shape in an elongational flow, it is entirely due to the second. As our
rop stretches at a rate that is S times that of the matrix, we may take Svm to be the
rimary flow inside the drop, vm being the “background” velocity of the matrix in the
bsence of the drop. Then the remainder v−Svm represents the secondary flow. For Ca
2.9, the drop elongates almost affinely as S�1 in Fig. 5�a�. Thus, the flow field inside

he drop is as if the interface did not exist, and the secondary flow due to the interface,
lotted in the bottom of Fig. 8�a�, is almost nil. For Ca=0.29, in contrast, the drop
eforms much more slowly than the matrix �cf. Fig. 5�b��. The secondary flow exhibits
he familiar recirculating eddies in the bottom of Fig. 8�b�. This pattern produces strong

IG. 7. Stress growth in Giesekus fluids after startup of uniaxial elongation. The elongational viscosity �̄+ is
caled by that of a Newtonian fluid with the same zero-shear viscosity �s+�p, the Deborah number is De
�̇�H and time is scaled by 1 / �̇.
niaxial extension and long residence times near the front and back stagnation points and
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479VISCOELASTIC EFFECTS ON DROP DEFORMATION
onsequently the �̇ and N1 contours in Figs. 8�c� and 8�d�, in much the same way as
nside a drop that has reached steady-state deformation in steady uniaxial elongation
Ramaswamy and Leal �1999b��.

The above analysis has two implications to interpreting the viscoelastic effects on drop
eformation. First, since the bulk of the drop experiences much lower stress than the
aximum N1 at the front, it is reasonable to use this maximum N1

max as an indication of
he drop’s internal stress and hence its resistance to deformation. Second, the magnitude
f �̇ in Fig. 8 possibly puts the Ca=0.29 case �with an average strain rate �̇av=0.045� in
he strong regime of Fig. 7 but Ca=2.9 ��̇av=0.09� in the weak regime, with different
ependence on the Deborah number.

This is confirmed by comparing the history of stress growth at the front tip of the drop
or a range of De �Fig. 9�. For Ca=0.29, the maximum stress N1

max increases as De
ncreases from 0.029 to 2.9. This is the strong-regime behavior, with the effective vis-
osity of the drop increasing with De. Referring to Fig. 4, a zero-shear viscosity ratio of
=0.5 means that we are in the range where drop deformation decreases with drop
iscosity. Thus, D decreases with De in this range in Fig. 6�b�. As De increases further to
4.5 and 290, the polymer stress grows more slowly, and N1

max starts to decrease with De
or the initial part of the drop’s trajectory. This explains the subsequent increase of D with
e in Fig. 6�b�. The non-monotonic dependence of D on De for Ca=0.29, therefore,

eflects the polymer stress inside the drop undergoing a transition from the strong to the

IG. 8. Snapshots of the flow and stress fields near the Giesekus drop when Dm=2.5. �=0.5 and k=0.2. �a�
a=2.9. The top shows streamlines in the reference frame of the drops’s centroid, while the bottom plots the
elocity vector field v−Svm. �b� The same plots for Ca=0.29. The reference vector in �a� and �b� is 0.2v0. �c�
a=2.9. The top and bottom respectively plot contours of the strain rate �̇ and the normal stress difference N1.

d� The same plots for Ca=0.29.
eak regime. This is essentially the intermediate regime in Fig. 7 in which the elonga-
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480 ZHOU, YUE, AND FENG
ional viscosity at a fixed time first increases with De and then declines. In contrast, the
olymer stress for Ca=2.9 remains mostly in the weak regime because the strain rate �̇
s lower in the drop and the stress grows more slowly. This is evident in Fig. 9�a� and
xplains the monotonic increase of D with De in Fig. 6�a�.

We have performed the same analysis on the two curves in Fig. 6 for �=0.1. The
uantitative difference is that �̇ inside the drop is now higher. This is easy to understand
ince with decreasing drop viscosity, the interfacial mobility increases. The larger �̇
mounts to shifting the dimensionless time in Fig. 7 to the right, thereby the weak regime
or �=0.5 to the intermediate regime for �=0.1 in Fig. 6�a�. Conceivably, the drop will
till exhibit entirely weak behavior �S increasing monotonically with De� at sufficiently
arge Ca.

To summarize, the viscoelastic effect on drop deformation is rooted in the polymer
tress in the drop, but manifested through a sort of “spatial integration” over extensional
nd rotational regions inside the drop as well as a “temporal integration” over the
agrangian-unsteady trajectory of the drop. As in the simple picture of Fig. 7, here the
olymer stress grows according to the polymer relaxation time and the local strain rate.
hus one may be tempted to relate the polymer stress to a local Deborah number. But we
id not attempt to identify the local instantaneous �̇ and De to force a quantitative
onnection with the weak and strong regimes in Fig. 7. This is because the spatial and
emporal variations make it impossible to define an effective De for the entire drop and
inpoint the time for the transition from the weak to the intermediate regime. The con-
ection between Figs. 7 and 6 is more subtle than can be thus quantified.

. A Newtonian drop in a Giesekus matrix

Deformation of Newtonian drops in a Giesekus matrix also displays the linear growth
ith matrix deformation after an initial transient, similar to the inverse case of the last

ubsection �Fig. 3�. This is again in agreement with the experimental observations of
ighri et al. �1997�. Thus, we continue to use the slope S of the growth curve as a

ardstick to measure the effect of matrix viscoelasticity on drop deformation. Figure 10
lots the variation of S with the Deborah number De for two capillary numbers and two

IG. 9. History of stress growth at the front tip of the Giesekus drop for a range of De. �a� Ca=2.9; �b� Ca
0.29. For all curves �=0.5 and k=0.2.
iscosity ratios. For �=0.5, drop deformation is seen to decrease monotonically with De
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481VISCOELASTIC EFFECTS ON DROP DEFORMATION
or both Ca. For �=0.1, however, two different behaviors may appear. For Ca=0.29, S
rst increases with De, peaks around De=0.9 and then decreases for higher De to values
elow the Newtonian deformation. For Ca=2.9, S declines monotonically with increas-
ng De.

The two trends can be explained in terms of the transient polymer stress in a similar
ashion to the last subsection. A minor complication is that in the Newtonian curves of
ig. 3, Ca is defined using the matrix viscosity �m. While changing the drop viscosity �d

nly affects �, changing �m would change the capillary number as well, and the resultant
hange in D or S cannot be read directly off Fig. 4. If we define a capillary number Ca*

sing �d, then the effect of changing �m �and thus �� with Ca* fixed is very simple: the
rop deformation decreases with � for all values of Ca* tested. An example is shown in
ig. 11 for Ca*=0.029. There is no longer the interplay between initial transient and final
teady state seen in Fig. 3. Based on Fig. 11, the effect of matrix viscoelasticity can be
asily interpreted through the idea that the growing polymer stress amounts to a changing
ffective viscosity for the matrix.

We will first explain the differing trends seen for �=0.1. The flow and stress fields
ear the drop, plotted in Fig. 12, show a certain similarity to those in the last subsection.
ur focus, of course, now falls on the Giesekus matrix fluid surrounding the drop. Note

hat for the less deformed drop at Ca=0.29, �̇ and N1 are much larger than the drop at
a=2.9, and their maxima occur just outside the front tip of the drop. Therefore, the drop
t Ca=0.29 may experience the strong regime while the latter the weak regime. This is
orne out by the stress growth curves for a range of De at each Ca �Fig. 13�. For Ca
2.9, the polymer stress decreases monotonically with De, showing weak regime behav-

or. For Ca=0.29, on the other hand, N1 increases with De until De=0.87, and then
eclines with greater De. There is a transition from the strong regime for smaller De to
he weak regime for larger ones. If the polymer stress amounts to, in an average sense, an
ffective viscosity of the viscoelastic matrix, then in view of Fig. 11, we can rationalize
he monotonic decrease of S with D in Fig. 10�a� and the non-monotonic variation in Fig.
0�b�.

IG. 10. Viscoelastic effects on the deformation of a Newtonian drop in a Giesekus matrix at �a� Ca=2.9, �b�
a=0.29. The drop deformation is represented by the slope S scaled by the corresponding Newtonian slope Sn.
or all cases, k=0.7.
For �=0.5, the strain rates and polymer stresses are both lower, since the higher drop
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482 ZHOU, YUE, AND FENG
iscosity reduces the interfacial mobility. Qualitatively this corresponds to shifting the
imensionless time in Fig. 7 to smaller times. Consequently the weak regime prevails for
oth Ca values. We omit a detailed analysis for brevity.

Based on the analysis of the last two subsections, the commonality between Figs. 6
nd 10 becomes apparent. No matter whether the viscoelasticity occurs in the drop or the
atrix, its effect on drop deformation may fall in the weak regime or the intermediate

egime �i.e., the transition from the strong to the weak regime�. The key determinant is
he magnitude of �̇ inside the viscoelastic component relative to the externally imposed
train rate. A smaller Ca or � causes a higher �̇ and favors the strong regime. Generally,
e may expect the De range corresponding to the strong regime to widen for decreasing
a and/or �, and to narrow and even disappear for increasing Ca and/or �.

. COMPARISON WITH PRIOR STUDIES

The results reported in the last section may seem inconsistent with the conventional
hinking that the polymer in the drop reduces its deformation while polymer in the matrix
ncreases deformation. That notion is based on the heuristic argument that the steady-
tate drop shape is the result of a balance among the hydrodynamic forces inside and
utside the drop and the interfacial tension �Ghodgaonkar and Sundararaj �1996��. In
teady uniform elongational flows, the predictions are indeed confirmed by experiments
nd calculations �Ramaswamy and Leal �1999a,1999b�; Tretheway and Leal �2001�;
ooper et al. �2001b��. The converging flow geometry produces a continuously increas-

ng strain rate along the centerline, which keeps the polymer stress, be it in the drop or
he matrix, in a perpetual transient. As a result, the drop deformation exhibits a more
aried behavior than in steady elongational flow.

The experiment of Mighri et al. �1997� and the computation of Khayat �1998� provide

IG. 11. The slope S as a function of the viscosity ratio � for a Newtonian drop in a Newtonian matrix with
he capillary number based on the drop viscosity fixed at Ca*=0.029.
he most comprehensive data in the literature on drop deformation in a conical flow
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eometry. Mighri et al. �1997� reported a linear relationship between drop deformation D
nd matrix deformation Dm for all Newtonian and Boger-fluid drops and matrices tested.
ur predictions are consistent with these findings except that the linearity becomes es-

IG. 12. Flow and stress fields near a Newtonian drop in a Giesekus matrix at Dm=2.5. �=0.1, k=0.7. The
treamlines, velocity vectors and contours for �̇ and N1 are plotted in the same way as in Fig. 8. Ca=2.9 for �a�
nd �c� and Ca=0.29 for �b� and �d�. The reference vector in �a� and �b� is for the velocity vector plots.

IG. 13. History of stress growth outside the front tip of the Newtonian drop in the Giesekus matrix for a range

f De. �a� Ca=2.9; �b� Ca=0.29. �=0.1 and k=0.7 for all curves.
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484 ZHOU, YUE, AND FENG
ablished only after the influence of the initial condition dies out in the numerical simu-
ations. For all their experimental runs, Mighri et al. found that viscoelasticity in the drop
ecreases drop deformation while that in the matrix increases it. These correspond to our
trong-regime behavior. In contrast, Khayat’s simulations, based on a linear Oldroyd-B
odel, predict purely weak-regime behavior; the drop deformation increases monotoni-

ally with De if the polymer is in the drop but decreases monotonically if in the matrix.
he contradiction between these two studies can be reconciled by examining the flow and
aterial parameters.
Using the material and experimental parameters of the experiment of Mighri et al., we

ave determined the range of dimensionless groups as defined here: 9�10−3�Ca�9
10−2, 0.28���1.1 and 4�10−3�De�0.14. Comparing these parameters with Figs.
and 10, it is reasonable to assume that the small Ca and small De have put all the

xperiments within the strong regime. Khayat �1998� did not report the matrix viscosity
sed in his computations. If we take �m�50 Pa s from the experiment of Bourry et al.
1999�, which Khayat �1998� aimed to simulate, then Khayat’s Ca is estimated to be
round 800. The viscosity ratio is also relatively large: �=3, and the Deborah number De
anges from 0.016 to 0.16. The large Ca and � imply that his simulations are well within
he weak regime. Therefore, the experiment of Mighri et al. and Khayat’s simulation fall
n opposite ends of the parametric spectrum; the former is entirely in the strong regime
hile the latter is in the weak regime.
The strong-regime behavior is more familiar because most prior experiments have

easured steady-state drop deformation. The only exception may be the experiment of
elaby et al. �1995�, in which deformation of polymer inclusions in a polymer matrix is
easured following startup of stretching. They reported that the drop deforms more �or

ess� than in a comparable Newtonian/Newtonian system if its relaxation time is longer
or shorter� than that of the matrix polymer. This trend corresponds to our weak regime.
he authors invoked the linear viscoelastic theory of Palierne to explain the observations,
ven though the total strain is on the order of 5. A quantitative comparison with our
alculations is difficult because the experiment employed uniform elongation. A further
omplication arises from the use of polymer melts, whose stretching may implicate both
eformation-dependent viscosity and elasticity, and it is impossible to separate the two.
dditional hints of weak-regime behavior come from the computational results of
ooper et al. �2001a�. In startup of uniaxial elongation at a fixed strain rate, viscoelas-

icity in the drop causes a faster initial drop deformation than a Newtonian drop of the
ame viscosity, and a Newtonian drop deforms more slowly in a viscoelastic matrix.

To verify the weak-regime drop deformation predicted here, experiments should be
esigned to have low strain rates but fast transients in the Lagrange sense, with polymers
f long relaxation times. This way, the polymer stress is kept in an “undeveloped stage,”
ar from equilibrating with the local instantaneous strain rate. In the past, the strong-
egime picture was long held for shear flows as well �Elmendorp and Maalcke �1985�;

ighri et al. �1998��, until the careful low-strain-rate measurements of Guido et al.
2003� suggested the existence of weak-regime deformation for small De. Computational
onfirmation came afterwards �Yue et al. �2005c��. In inhomogeneous elongational flows,
ur predictions of weak- and intermediate-regime drop deformation await similar experi-
ents.
Finally, the idea of comparing the polymer relaxation time �H and the emulsion time

em has proved useful in analyzing certain viscoelastic interfacial flows �Olbricht and Leal
1983�; Grillet et al. �1999��. For instance, Grillet et al. �1999� found the so-called
lasticity parameter De / Ca an important determinant of interfacial instability in coating

ows involving a viscoelastic liquid. The idea does not apply to our problem, however. A
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485VISCOELASTIC EFFECTS ON DROP DEFORMATION
ong tem implies a long transient in drop deformation, and a long �H indicates slow
rowth of polymer stress. Both conspire, rather than compete, in bringing about weak-
egime behavior.

I. CONCLUSION

In this study, we have investigated the influence of viscoelasticity on drop deformation
n converging pipe flows in a conical geometry. Three series of simulations have been
arried out, with Newtonian drops in a Newtonian matrix, Giesekus drops in a Newtonian
atrix and Newtonian drops in a Giesekus matrix. Viscoelastic effect on drop deforma-

ion turns out to be rather subtle, and may enhance or suppress drop deformation depend-
ng on the flow and material parameters.

With the viscoelastic component in the drop or the matrix, the dependence of drop
eformation on the Deborah number may be either monotonic or non-monotonic. The
ormer is attributable to the initial weak regime in the development of the polymer stress
pon startup of elongation, where the instantaneous elongational viscosity is lower for
arger De. The latter corresponds to a transition from a strong regime to the weak regime,
ith the instantaneous stress first increasing with De and then declining. In the weak

egime, a polymer drop deforms more readily than a comparable Newtonian one, and a
olymer matrix is less able to deform a drop than a Newtonian matrix of the same
iscosity. In the strong regime, the trend is reversed. Which behavior prevails in a conical
ow channel depends on the capillary number Ca, the viscosity ratio � as well as the
ange of the Deborah number De. A smaller Ca and a smaller � are conducive to larger
ocal strain rates and hence faster polymer growth, whereas a larger Ca or � favors the
eak regime.
This scheme reconciles contradictory results in the literature as opposite limits in the

arameter space. Thus, it provides a more or less complete picture for viscoelastic effects
n drop deformation in transient elongational flows. To verify this picture experimentally,
arefully designed experiments should explore low strain rates and fast transients.
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