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Synopsis

The second normal stress difference N, experienced by non-Newtonian fluids flowing in a pipe
may give rise to secondary flows in the transverse direction. As a result, one component tends to
encapsulate the other in stratified flows. In multilayer coextrusion, such secondary flows tend to
distort the interface and affect layer uniformity. This paper presents numerical simulations of the
elastically driven encapsulation in two-component stratified viscoelastic fluids. The simulations are
based on a phase-field theoretical model and use finite elements with adaptive meshing to resolve
the moving interfaces. The results suggest two mechanisms for elastic encapsulation: One due to
the mismatch of N, between the components and the other due to noncircular geometry of the
cross section. In circular pipes, the more elastic fluid tends to protrude into the other component in
the center of the pipe and become encapsulated. This produces the curtate cycloid interface shape
commonly seen in experiments. If the cross section is noncircular, both the geometric effect and
the elastic stratification are at work, and the interfacial motion is determined by the competition of
these two mechanisms. This understanding provides an explanation for the anomalous
encapsulation of the less elastic component by the more elastic one observed in multilayer
coextrusion. © 2008 The Society of Rheology. [DOI: 10.1122/1.2933436]

I. INTRODUCTION

Polymer coextrusion is a key process in manufacturing commercial products such as
bicomponent fiber, multilayer flat film, and sandwiched foam composites [Han (1981)].
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The quality of these products is determined, to a large extent, by the uniformity of the
layer structure and the interfacial morphology. Viscosity and elasticity stratification are
known to cause interfacial instabilities that develop in the primary flow direction, and
these have received much experimental and theoretical investigation [Wilson and
Khomami (1993); Khomami and Ranjbaran (1997); Khomami and Su (2000)]. The en-
capsulation phenomenon, on the other hand, involves distortion of the interface in the
plane orthogonal to the primary flow, i.e., the cross section. It is much less studied and is
the topic of this paper.

A major factor in the encapsulation phenomenon has been identified as the viscosity
difference between the two continuous phases. In viscous encapsulation, the less viscous
component migrates to the wall and encloses the more viscous component in pipe flows
[Lee and White (1974); Southern and Ballman (1975)]. The viscosity contrast determines
both the direction and the degree of encapsulation [Lee and White (1974)]. This phenom-
enon came to be widely recognized from the transport of highly viscous heavy crude oil
in pipelines, where the addition of a small amount of water to the crude oil considerably
reduces the pressure gradient necessary to drive the flow [Joseph (1997)]. A “minimum
viscous dissipation principle” has been invoked to explain the interface shape found in
experiment [MacLean (1973); Everage (1973)], although such a variational principle is
not rigorously justifiable for flows with interfaces, and is known to fail under certain
conditions [Joseph and Renardy (1993)]. Everage (1975) carried out both experimental
and theoretical studies on the transient interface motion in a bicomponent tube flow of a
nylon/nylon system, and identified two stages in viscous encapsulation. The first stage is
characterized by a rapid interface shift caused by the equilibration of the component
pressures, and ends within 2D (D being the tube diameter) downstream the merging point
of the two components. The second stage involves the gradual movement of the interface
around the tube perimeter, which proceeds downstream for about 120D until complete
encapsulation is achieved. The mechanism in the second stage is not yet well understood,
but contact line motion definitely plays an important role [Torres et al. (1993)].

Another factor, specific to non-Newtonian fluids, is the elastic normal stresses. When
non-Newtonian fluids are sheared in a pipe flow, the second normal stress difference N,
amounts to a lateral forcing in the plane of the cross section. This may cause interfacial
motion through two mechanisms. First, if the cross section is noncircular, secondary
flows will arise even within a single-component homogeneous fluid. This is a well-known
effect and a summary of the literature can be found in Yue et al. (2008). This geometric
effect will distort the interface between two polymers regardless of their rheological
differences [Dooley et al. (1998)]. Second, “elastic stratification” in terms of differing N,
between the components will produce an imbalance of force and thus interfacial defor-
mation even in a circular pipe. White ef al. (1972), through a simple theoretical analysis,
showed that the component with a higher —W, tends to protrude into the other one, and
eventually be encapsulated. Note that the second normal stress coefficient W,=N,/ ¥, ¥
being the shear rate, is generally negative. In bicomponent coextrusion through noncir-
cular dies [Khomami and Ranjbaran (1997); Dooley (2002); Dooley and Rudolph
(2003)], both mechanisms are at work. For brevity, we will use the term elastic encap-
sulation to refer to interfacial motion driven by elastic normal stresses, even though the
secondary flow in noncircular channels usually does not lead to complete encirclement of
one component by the other [Dooley et al. (1998)].

An interesting question is the interplay between viscosity stratification and elasticity
stratification. Coextrusion experiments using polymer pairs suggest the viscosity contrast
as the more dominant factor [Lee and White (1974); Khan and Han (1976); Dooley and
Rudolph (2003)]. Analysis and computational results have also been used to argue that
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elasticity has minimal effects on interfacial motion [White and Lee (1975); Sunwoo et al.
(2001, 2002)]. Thus elastic effects have been mostly neglected. But some key observa-
tions cannot be explained by viscous effects alone. One such phenomenon is the curtate
cycloid interface shape [Han (1973); Lee and White (1974); Minagawa and White (1975);
Southern and Ballman (1975)]; see Fig. 3 of Southern and Ballman (1975) or Fig. 6(a) of
this paper. Coextruding two polystyrene melts through a circular pipe at temperature 7
=240 °C, Southern and Ballman (1975) attributed this extraordinary interface shape to a
viscosity crossover, i.e., uy > ug if y>17y,. and uy < up if y<v,, where w is the shear
viscosity, . is the shear rate at the crossover, and A and B denote the two components.
Thus when the average shear rate in the pipe is around 7,, component A is less viscous
than B at the tube center where ¥ is low, but more viscous near the wall where 7 is high.
They argued that this would lead to opposite interfacial motion in the two regions and
hence the curtate cycloid shape. However, when the same experiment was repeated at
T=220 °C, at an average shear rate around the now lower 7,, the curtate cycloid shape
failed to appear. Furthermore, Karagiannis et al. (1990) and Torres ef al. (1993) simulated
Southern and Ballman’s experiments by matching their shear viscosity data using an
inelastic Carreau model. Again, no curtate cycloid shape was predicted by the three-
dimensional (3D) numerical calculations. These cast doubts on the explanation based on
a viscosity crossover. Could melt elasticity be the real cause of the curtate cycloid shape?

Another notable phenomenon is the anomalous encapsulation observed by Khomami
and Ranjbaran (1997). When two polymer melts are coextruded in three layers (A-B-A)
through a slit die, with the middle layer being less viscous, the more viscous component
encapsulates the less viscous one if the latter is sufficiently thin. The authors suggested
that this counter-intuitive phenomenon might be due to the elastic effects, but offered no
detailed explanation.

This paper seeks a better understanding of these two phenomena through a thorough
computational study of elastic encapsulation in bicomponent stratified flows of viscoelas-
tic fluids. We use an accurate and efficient numerical algorithm, based on a phase-field
model, to explore the coupling between interfacial motion and viscoelastic stresses. Our
results show that the elastic effect can indeed produce the curtate cycloid shape in a
circular pipe, and also cause anomalous encapsulation if the middle layer is thin enough.

Il. THEORETICAL MODEL AND NUMERICAL METHOD

We consider the stratified flow of two viscoelastic fluids in a conduit of arbitrary cross
section, schematically shown in Fig. 1. The encapsulation of one component by the other
is reflected by the axial evolution of the interface (i.e., along the primary flow direction
z). The numerical simulation of this process faces at least three challenges: Tracking the
interfacial motion, including the moving contact lines on the solid walls; incorporating
nonlinear viscoelastic rheology for both components; and the three-dimensionality (3D)
of the geometry.

We meet the first two difficulties with a diffuse-interface method recently developed
for computing interfacial flows of complex fluids [Yue et al. (2004); Feng er al. (2005);
Yue ef al. (2006b)]. The theoretical model and numerical algorithm have been detailed
before, as are numerical experiments that validate both. Here we only briefly outline the
key ideas, list the governing equations, and mention the salient features of the numerical
scheme. Take a system of two immiscible Giesekus fluids, for example. We introduce a
phase-field variable ¢ to describe the thin but diffuse interface between the two compo-
nents; ¢ equals 1 and —1 in the bulk phases of fluid 1 and fluid 2, and changes smoothly
across the interfacial layer. The two components assume concentrations ¢;=(1+¢);2
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FIG. 1. Schematic of the flow channel.

and c,=(1-¢)/2, respectively, and the nominal “interface” is the level set ¢=0. The
governing equations consist of the Cahn—Hilliard equation describing the convection and
diffusion of the interface, the linear momentum equation, the continuity equation, and
constitutive equations for the viscoelastic fluids:

J
_‘ﬁﬂ, -Vé=9V2G, (1)
at
Jv
P(E+v'vv>=v'(—pl+f)+GV¢’ 2)
V.v=0, 3)
)\H,i T .
Tpi+ NgiTpic) + ai,u_(Tp,i ) = Vo + (Vo)'], (i=1,2), )
p.i
where
-1
G=)\[_vz¢+%} 5)

is the chemical potential, y is the Cahn—Hilliard mobility parameter, € is the capillary
width which is around 1/5 of the interfacial thickness, and A is the mixing energy that
determines the interfacial tension [Yue et al. (2004)]: o=(212/3)(\/€). The density p is
the average between the two components p=c;p;+c,p,. The total stress tensor is defined
as
2
=2 cfp (Vo + (Vo)) +7,]. (6)

i=1

Within each component, wu;, &, 7,; Ay, and «; are the solvent viscosity, polymer
viscosity, polymer stress, polymer relaxation time, and mobility parameter in the
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Giesekus model, where subscript i denotes the ith component. The subscript (1) denotes
the upper convected derivative. The Oldroyd-B model is recovered when «;=0. The
Giesekus model is generally appealing because it is molecularly based [Giesekus (1982)]
and strikes a balance between simplicity and realistic predictions [Tirtaatmadja and
Sridhar (1995)]. In our context, in particular, it is perhaps the simplest nonlinear vis-
coelastic model to give a meaningful N, [Bird et al. (1987)].

Several groups have undertaken 3D calculations on the encapsulation in generalized
Newtonian fluids [Karagiannis ef al. (1990); Torres et al. (1993)] and viscoelastic fluids
[Takase et al. (1998); Sunwoo et al. (2001, 2002)]. But computational limitations are
such that the mesh is invariably too coarse—typically with 6 or 7 grid points across the
channel—to yield any information on the structure of the secondary flow. We circumvent
the difficulty by reducing the spatial dependence to two dimensional (2D). Since encap-
sulation is a slow process that occurs over an axial distance of typically more than 100D
[Everage (1975); Khomami and Ranjbaran (1997); Dooley et al. (1998)], a “lubrication
approximation” is appropriate that allows one to simplify the problem to quasi-2D. More
specifically, we assume that all flow variables (except pressure p) vary slowly in the z
direction: d/dz < d/dx,d/dy, and thus neglect the d/dz terms in the governing equa-
tions. Since the flow is driven by an axial pressure gradient, we write:

p(x,y,2) = p(x,y) + p.z, (7)

where the pressure gradient p, that drives the primary flow is assumed constant in keep-
ing with the lubrication approximation. Then the unknown variables—the velocity field
v=(u,v,w), pressure p and the polymer stresses 7, —are all defined on the cross-
sectional x-y plane, even though the vectors and tensors retain their 3D components.
Encapsulation now consists of the evolution of the interface in time, rather than along z,
driven by secondary flows in the cross-sectional plane. To specify the magnitude of the
primary flow, one may either fix p, and allow the flow rate to evolve in time, or fix the

total flow rate [Xue et al. (1995); Debbaut ef al. (1997); Tanoue et al. (2006)]

0= waQ (8)
Q

through the cross section € (Fig. 1). The results to be presented are based on the second
method, although the first has been implemented in our computations as well. In the
finite-element scheme, Eqs. (1)—(8) are solved in a fully coupled manner, and p, plays a
role similar to a Lagrange multiplier in enforcing the constraint of Eq. (8).

Such quasi-2D models have been used successfully by several groups to predict the
secondary flow in single-component pipe flows of viscoelastic fluids [Xue et al. (1995);
Debbaut et al. (1997); Tanoue et al. (2006)]. The theoretical and numerical simplification
comes at a price, however. The neglect of z dependence and the assumption of a constant
p. render the model incapable of predicting purely viscous encapsulation in stratified
Newtonian fluids. This is because after the lubrication approximation, the viscosity strati-
fication affects only the primary flow w, and the x and y components of Egs. (2) and (3)
become independent of w. Thus, for Newtonian and generalized Newtonian fluids, the
viscosity difference will not produce # and v components that would change the interface
shape, and the quasi-2D model is unable to predict encapsulation due to viscosity dispar-
ity. With this caveat, we limit our attention to elastically driven secondary flows.

The governing equations, Egs. (1)—(5), (8), are solved by a finite-element package
AMPHI (Adaptive Meshing for Phase Field ¢) that uses adaptive meshing to resolve the
narrow interface [Yue et al. (2006b)]. P2 elements are used for v and ¢, and P1 elements
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FIG. 2. An example of the computational mesh in a square domain of 1 X 1.

for p and 7,;. Second-order implicit schemes are used for temporal discretization. A
general-purpose mesh generator GRUMMP [Freitag and Ollivier-Gooch (1997)] is
adopted for the adaptive meshing, and ¢ is used as the criterion of mesh refinement.
Figure 2 shows an example of the mesh, with the densest grids deployed in the interfacial
region. At the beginning of the simulation, the interface is specified by an initial ¢ field.
The numerical toolkit has been validated [ Yue e al. (2006b)] and proved to be accurate
and efficient in simulating many interfacial flows in viscoelastic and nematic fluids [ Yue
et al. (2006a); Zhou et al. (2006, 2007), e.g.]. Compared with the AMPHI used in those
studies, the current work entails adding the z components of the unknowns and allowing
both fluid components to be viscoelastic. For Newtonian flows through rectangular pipes,
the code gives highly accurate results even on a coarse mesh of grid size 0.1D. In the
simulations to be presented, we have used a bulk grid size of h;=0.02D and interfacial
grid size of #;=0.003D. Numerical experimentation shows these to be more than suffi-
cient for convergence with respect to grid size. The time step is constrained by interfacial
motion such that the interface moves no more than /4, in one step [Yue er al. (2006b)].

lll. NUMERICAL RESULTS

We simulate the stratified flow of two Giesekus fluids in pipes of circular and noncir-
cular cross sections. All variables and parameters are made dimensionless by using the
characteristic size of the cross section D, the total viscosity of the first component
=M1+ My, and the average axial velocity of the primary flow W=0/A, A being the
cross section area. The following dimensionless groups are involved:

Ca

w
adLs (Capillary number)
g

pWD
M

Re (Reynolds number)
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Ag W N
De=-21" _ 119 (Deborah number)
D AD
WDé€
Pe=——(Peclet number) 9)
Bi= &, i=1,2 (Retardation-relaxation time ratio)
M
uE= la} (Viscosity ratio)
M
Auo L .
N*=—"== (Relaxation time ratio)
H.1

along with the density ratio between the two components, the mobility parameter of
the Giesekus fluids «; and «,, and possible geometric ratios characterizing the cross
section ().

In polymer coextrusion experiments, p~1 g/cm®, u~10* poise, W~ 1 cm/s, D
~1 cm [Debbaut et al. (1997)]. If we assume the interfacial tension to be o
~10 dyne/cm [Elemans et al. (1990)], then Ca~ 10° and Re~ 10*. Thus for typical
materials and flow conditions in coextrusion, inertia and interfacial tension both have
negligible effects. In our simulations, we have set Re to zero, and used a large but finite
Ca. The density ratio drops out along with inertia. Thanks to the diffuse interface model,
contact line motion can be simulated without resorting to ad hoc slip models [Jacqmin
(2000)]. The wetting condition is prescribed through wall-fluid interaction potentials
[Khatavkar er al. (2007)]. In this work, we use the simplest case of zero wall potential,
which produces neutral wetting with an equilibrium contact angle of 7/2.

In the following, we first study the elastic encapsulation between two immiscible
Giesekus components in a circular pipe. This suppresses the geometric effect on second-
ary flows and highlights the effect of elasticity contrast across the interface. Then we will
simulate three-layer coextrusion in rectangular pipes of different aspect ratios. Now that
both effects are present, the interfacial morphology will depend on the outcome of their
competition.

A. Elastic encapsulation in a circular pipe

Figure 3 shows the schematic of coextrusion in a round pipe of diameter D. For the
diffuse interface, we use €=5X 1073, A=1077, and y= 107" in all calculations, which
corresponds to Ca=5.3X 10* and Pe=2500. The two components are assumed to have
the same total viscosity and relaxation time: u*=1, N*=1. All results are at a Deborah
number De=1. The initial interface bisected the circle into two identical parts. Our focus
is on how rheology of the components affects the interfacial shape, and this is examined
by varying the parameters of the Giesekus model.

We will study the effect of N, contrast on the interfacial morphology. To minimize the
effect of viscosity, we set the polymer viscosity to be a small portion of the total viscos-
ity: B81=,=0.9. Therefore the shear viscosity of the two components are almost identical
and the primary flow is nearly axisymmetric. The elasticity contrast is effected via dif-
fering mobility parameters: «;=0.5, @,=0.1. The larger «; endows the top fluid with a
stronger elasticity: [W,()]; <[W¥,(9)],<0. Figure 4 shows contours of the primary flow,
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FIG. 3. Coextrusion in a circular cross section.

normal stress difference, and secondary flow at r=6.79. In this relatively early time, the
polymer stress has fully developed but the interface has undergone little distortion. The
simple kinematics facilitates analysis in the spirit of White et al. (1972), who assumed
axisymmetric flow and a flat interface.

The distribution of the axial velocity w is very close to that of a one-component flow,
with nearly concentric circular contours. In a one-component flow, this would imply
VyXVw=0 and no secondary flow [Yue et al. (2008)]. In the two-component system,
however, the jump of normal stresses across the interface does induce a secondary flow.
The horizontal interface coincides with the shear gradient direction Vw, and the local
gradient direction 2 and neutral direction 3 are illustrated for point B near the wall in Fig.
4(a). Thus, 7,,,~ 7,,, approximates N, along the interface. Across the interface, although

FIG. 4. Flow and stress fields in the circular cross section at t=6.79. Because of symmetry, only the right half
of the cross section is shown, and the interface is delineated by the ¢==0.9 contours (dashed lines). (a)
Contours of the axial velocity w; (b) contours of the normal stress difference 7,,.,~7,,,; (c) contours of a stream
function ¢ defined by di/ dx =—v and di/ dy =u. A positive ¢ indicates counterclockwise secondary flow. «;
=0.5, &,=0.1, B;=£,=0.9.
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(a) w (b) Toza — Toyy ()¢

FIG. 5. Flow field in the circular cross section at t=1.25. u*=0.5, A*=1, a;=a,=0.5, B,=£,=0.1.

v is almost constant, the differing W, in the two bulk components produces a jump in N,
across the interface [Fig. 4(b)]. In fact, N, would be discontinuous in a sharp-interface
representation. From point A to point B along the interface, this jump grows from zero to
maximum which is around 0.02. A negative N, means that the fluid has an extra com-
pressive stress in the 2 direction or equivalently an extra tensile stress in the 3 direction.
Thus the stronger elasticity in the top component produces a stronger upward tensile
stress in fluid 1 than the downward stress in fluid 2. This drives an upward flow near the
wall and accordingly a downward flow near the center, as is evident in Fig. 4(c). This
scenario is consistent with the analysis of White ez al. (1972). As B is close to unity, the
elastic effect is weak in this case and the magnitude of secondary flow Vu?+v? is very
small with a mean of 2.8 X 107 and a maximum of 1.1 X 1073

Real polymer melts and concentrated solutions have much stronger elasticity and shear
thinning than represented by £=0.9, and the two components typically have unequal
shear viscosities. To reflect this, we reduce the retardation-relaxation time ratio to (8
=0.1 so that the polymer contribution dominates the total viscosity, and set the viscosity
ratio to w*=0.5. If all the other parameters are the same between the two components,
fluid 1 will have higher elasticity and viscosity than fluid 2. Figure 5 plots the flow and
stress fields as before. Due to different viscosities in the two components, the w contours
deviate visibly from concentric circles. The maximum w is shifted downward into fluid 2
which has a lower viscosity, as shown in (a). Along the interface, the local gradient
direction varies from vertical at point A near the center to horizontal at point B near the
wall. Although the flow field is more complex than the previous one, the idea of the more
elastic component protruding into the other one still holds. At B, the effect of N, strati-
fication is an upward flow as in the previous case. At A, the stronger N, in fluid 1 is
manifested by a larger downward compressive stress, which further promotes the coun-
terclockwise secondary flow. The streamlines are depicted in Fig. 5(c), with a stronger
circulation than in Fig. 4(c). The mean and maximum velocities are 1.4 X 1072 and 3.0
X 1072, respectively. Accordingly, the interfacial motion occurs at a much faster pace than
in the previous case.

The interfacial motion continues in time, as the more elastic fluid 1 penetrates down-
ward in the center and the less elastic fluid 2 wraps around along the walls (Fig. 6).
Although the fluids obey no-slip boundary conditions on the walls, the three-phase con-
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6

L=71D L=14D

(a) t =7.26 (b) t =13.19

FIG. 6. Interface position and stream function at later times. u*=0.5, A*=1, a;=a,=0.5, B;=8,=0.1. The
insets are interface shapes from the coextrusion experiment [Minagawa and White (1975), Fig. 12]. L is the
distance from die inlet.

tact line is still subject to motion because of the diffusive dynamics in the Cahn—Hilliard
model [Jacqmin (2000)]. This represents an advantage of the diffuse-interface model; a
sharp-interface model will have a pinned contact line unless ad hoc slip conditions are
assigned [White and Lee (1975)]. Because of additional dissipation at the contact line, its
upward motion (or the “apparent slip velocity”) lags that of the secondary flow away
from the wall. Thus, the interface assumes the shape of a hump near the wall.

As our quasi-2D setup excludes viscous encapsulation, this simulation demonstrates
the magnitude of purely elastically driven encapsulation. The average axial velocity being
unity, Figs. 6(a) and 6(b) give an indication of the interface shape roughly 7.26D and
13.19D downstream. The interface exhibits the characteristic curtate cycloid shape ob-
served in experiments [Han, 1973; Lee and White (1974); Minagawa and White (1975);
Southern and Ballman (1975)]. Furthermore, the computed interfaces at r=7.26 and 13.19
closely resemble those experimentally recorded at locations L=7D and 14D by Mina-
gawa and White (1975). This correspondence is subject to two caveats, however. Because
the axial velocity w varies over the cross section, translating the temporal evolution of the
interface into axial evolution is no easy task [Debbaut and Dooley (1999); Anderson er
al. (2006)]. At a given downstream location, for example, the near-wall part of the
interface will have had more time to develop than the central part. So the comparison in
Fig. 6 must be viewed in some average sense. Moreover, it is uncertain whether our
parameters match the polyethylene melts in the experiment, with and without TiO, fillers.
No rheological data were given beyond a viscosity ratio. Nevertheless, Fig. 6 provides
unequivocal evidence that elasticity stratification can become significant within a distance
of roughly 100D, consistent with prior experiment observation [Khomami and Ranjbaran
1997; Debbaut and Dooley (1999); Dooley (2002); Dooley and Rudolph (2003)], and that
it is capable of producing the curtate cycloid interface shape in qualitative, and even
semiquantitative, agreement with experiments.

It is worthwhile to reexamine the available experimental results, which were previ-
ously rationalized by viscous encapsulation, in light of elastic effects. Although Southern
and Ballman (1975) did not supply data on the elasticity for the two polystyrene melts
(PS-A and PS-B) at T=240 °C, at which the curtate cycloid interface was observed, they
did report that PS-B has a larger W, than PS-A at T=180 °C. If we take this to mean that
PS-B is more elastic at all temperatures, then the observed encapsulation of PS-B by
PS-A may be a direct result of elastic encapsulation rather than viscosity crossover. The
experiment at 7=220 °C, which did not produce a curtate cycloid interface even though
the viscosity crossover was present, used a shear rate that is five times smaller than that
at 240 °C. The lack of encapsulation may simply be because melt elasticity is not
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FIG. 7. Three-layer coextrusion in a rectangular cross section.

brought out at such low shear. Similarly Lee and White (1974) observed the curtate
cycloid interface in a polymethylmethacrylate (PMMA)/PS system near the viscosity
crossover. PS, which has a higher |¥,| than PMMA, protrudes into PMMA in the center
of the tube. This is again consistent with elastic encapsulation as simulated here (Fig. 6).
Thus we argue that elastically driven encapsulation is the real reason for the curtate
cycloid interface in these experiments. The viscosity crossover probably serves only to
minimize the viscosity difference and therefore the effect of viscous encapsulation.

B. Anomalous encapsulation in a rectangular die

This calculation is motivated by the experiments of Khomami and Ranjbaran (1997)
on three-layer coextrusion of two viscoelastic fluids in a rectangular channel, schemati-
cally shown in Fig. 7. A high density polyethylene (HDPE) layer is sandwiched between
two polypropylene (PP) layers. The HDPE is less viscous and less elastic than the PP, and
thus is expected to encapsulate PP according to both viscous and elastic encapsulation.
Khomami and Ranjbaran found, however, that this is only true if the HDPE layer is
sufficiently thick. When the HDPE layer is below a critical thickness, it becomes entirely
enclosed by the PP in an “anomalous encapsulation.” Since the reversal cannot be ex-
plained by viscous encapsulation, Khomami and Ranjbaran conjectured that the polymer
normal stresses must have played a significant role here. A later publication by the same
group [Khomami and Su (2000)] indicates that viscous encapsulation is greatly sup-
pressed if the layer thickness of the less viscous fluid is below a critical value, which also
suggests an elastically based mechanism for the anomalous encapsulation. In the follow-
ing, we will give a clearer explanation through simulation of the elasticity-induced sec-
ondary flow.

We consider the three-layer coextrusion of two viscoelastic fluids shown in Fig. 7.
Although the rectangular cross section in the experiment has an aspect ratio of 10
[Khomami and Ranjbaran (1997)], an aspect ratio of 4 is found enough to illustrate the
physics here and is therefore adopted in the following calculations. The two layers of
fluid 1 have a thickness of d; and the layer of fluid 2 has a thickness of d,. Because of
symmetry, we only need to consider the upper right quadrant. The more elastic compo-
nent (fluid 1) is represented by a Giesekus model, while the less elastic component (fluid
2) is taken to be Newtonian for simplicity. The zero-shear viscosity of the Giesekus
component matches the viscosity of the Newtonian component, and we use a large
retardation-relaxation time ratio 8;=0.9 to minimize the effect of shear thinning in fluid
1. Under this setup, the primary flow is little influenced by the viscoelastic rheology of
fluid 1, and the axial velocity distribution does not change much when the layer thickness
ratio d,/d, is varied. In presenting the results, all parameters and variables are made
dimensionless by D, W, and u, as before. The diffuse-interface parameters and finite
element sizes are the same as in the previous subsection.
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FIG. 8. Schematic of secondary flows due to (a) the rectangular cross-sectional geometry; (b) elasticity
stratification.

For a single-component viscoelastic fluid flowing in a rectangular duct, the secondary
flow consists of two counter-rotating vortices in each quadrant [Yue et al. (2008)]. For
stratified flows in a circular pipe, elastic stratification produces a secondary flow into the
less elastic component in the center of the pipe and into the more elastic one near the wall
[cf. Fig. 4(c)]. These two tendencies are both present in the current setup, as schemati-
cally depicted in Fig. 8. Thus the secondary flow and encapsulation depend on the
competition between the geometric effect and effect of elastic stratification. We explore
this competition in a series of computations with varying d,/d,.

The secondary flow of pure fluid 1 is given in Fig. 9(a). The counter-rotating eddies,
as explained by Yue et al. (2008), are driven by tractions in the cross-sectional plane due
to the polymer normal stresses, and the sense of rotation depends on the sign of Vy
X Vw. When d,/d, is increased to 0.5 [Fig. 9(b)], the counterclockwise vortex next to the
sidewall grows at the expense of the central vortex. But still the geometric effect has the
upper hand; the clockwise eddy in the middle dominates and the center of the interface
has an upward velocity. This implies the encapsulation of the Newtonian middle layer by
the Giesekus fluid 1 in time [cf. Fig. 10(a)]. The clockwise central vortex weakens further
as d, increases and nearly disappears at d,/d;=2.0. Now the geometric effect is over-
whelmed by elasticity stratification. For d,/d;=8.0 [Fig. 9(e)], the cross section only
exhibits one counterclockwise eddy similar to Fig. 8(b); the clockwise eddy has disap-

i

(a) d2/d1 = 0 (single-component flow)

(d) dg/dl =2.0 (e) d2/d1 = 8.0

FIG. 9. Secondary flow patterns for different layer thicknesses at t=6.79, depicted by contours of the stream
function . As before, the interface is indicated by dotted lines for the contours ¢==*0.9. De=1, a;=0.5,

B,=0.9, wi=1.
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(a)

FIG. 10. Anomalous encapsulation: Comparison of the interfacial shape between our calculation and the
experiment. (a) Numerical result at 1=76.21 showing the Giesekus fluid (dark) encapsulating the Newtonian
fluid (white), with De=1, «;=0.5, 8,=0.1, u*=1, and initial layer thickness ratio d,/d,=0.35. (b) Experimen-
tal picture from Khomami and Ranjbaran (1997) with d,/d;=0.35. © Springer, used with permission.

peared altogether. The secondary flow is such that the Giesekus layers will be encapsu-
lated by the Newtonian layer, as one would expect from elastic stratification analyzed in
the last subsection (cf. Fig. 6).

If we magnify the elastic effects by employing 8=0.1, the secondary flow gets stron-
ger. Figure 10(a) gives the interface shape at t=76.21 with the initial layer thickness ratio
d,/d;=0.22. The majority of the less elastic fluid 2 is trapped at the center of cross
section, with a small amount attached to the sidewalls, thus forming an anomalous en-
capsulation. The configuration of the core is in qualitative agreement with the experimen-
tal observation [Fig. 10(b)]. The experimental picture only shows the central region away
from the sidewalls, so it is not clear whether a blob of HDPE adheres to the sidewalls as
predicted.

Based on the above, we propose that the “anomalous” encapsulation—that of the less
elastic HDPE by the more elastic PP for sufficiently thin layers of HDPE—is due to the
domination of geometric effect as in a one-phase viscoelastic fluid [ Yue et al. (2008)]. In
the experiment, the reversal of encapsulation occurs at d,/d; ~0.4. In our simulations, if
we use the direction of interfacial motion in the center as the criterion for normal or
anomalous encapsulation, the critical thickness is in the range d,/d;=1.33-2.0, thicker
than the experimental value. This is probably due to our neglecting viscous encapsula-
tion, which in the experiment should act against the geometric effect. Owing to the lack
of N, data in the experiment and the absence of viscous encapsulation in our simulation,
it is difficult to make more quantitative comparisons.

IV. CONCLUSION

We have conducted numerical simulations on interfacial motion in stratified pipe flows
of viscoelastic fluids, with the goal of understanding the elastically driven encapsulation
of one component by the other. Results show that elastic encapsulation arises through two
mechanisms: One due to the mismatch in the second normal stress difference N, between
the two layers (“elastic stratification”), and the other due to noncircular cross-sectional
geometry. These are explained in more specific terms in the following:

1. In a stratified flow of two viscoelastic fluids with negative N,, the more elastic
component protrudes into the other at the center of the duct while being wrapped by
the latter along the sides. In a circular cross section, the interface exhibits a curtate
cycloid shape as has been observed experimentally.

2. For bicomponent flows in noncircular ducts, the geometric effect and elasticity strati-
fication may induce interfacial motion in opposite directions, and the outcome of
their competition determines the interfacial evolution. In particular, in three-layer
coextrusion in a rectangular cross section, normal encapsulation (more elastic com-
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ponent wrapped by the less elastic one) gives way to anomalous encapsulation as the
middle layer becomes sufficiently thin. This is consistent with prior observations.

We must emphasize that the quasi-2D simplifications used here put two caveats on the
results: Viscous encapsulation has been excluded and its interaction with elastic encap-
sulation cannot be explored; and the interpretation of temporal evolution of the interface
as spatial evolution down the pipe is liable to complications [Debbaut and Dooley (1999);
Anderson et al. (2006)]. These will be remedied in fully 3D computations that are un-
derway. Furthermore, we have left unexplored several factors that are important to the
design and optimization of actual extrusion processes, including the composition of the
polymer components and more complex cross-sectional geometry of the die [Dooley er
al. (1998)]. Nevertheless, the current results are not only interesting as a fundamental
contribution to non-Newtonian fluid dynamics, but may also benefit polymer processing
operations.
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