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Synopsis

he second normal stress difference N2 experienced by non-Newtonian fluids flowing in a pipe
ay give rise to secondary flows in the transverse direction. As a result, one component tends to

ncapsulate the other in stratified flows. In multilayer coextrusion, such secondary flows tend to
istort the interface and affect layer uniformity. This paper presents numerical simulations of the
lastically driven encapsulation in two-component stratified viscoelastic fluids. The simulations are
ased on a phase-field theoretical model and use finite elements with adaptive meshing to resolve
he moving interfaces. The results suggest two mechanisms for elastic encapsulation: One due to
he mismatch of N2 between the components and the other due to noncircular geometry of the
ross section. In circular pipes, the more elastic fluid tends to protrude into the other component in
he center of the pipe and become encapsulated. This produces the curtate cycloid interface shape
ommonly seen in experiments. If the cross section is noncircular, both the geometric effect and
he elastic stratification are at work, and the interfacial motion is determined by the competition of
hese two mechanisms. This understanding provides an explanation for the anomalous
ncapsulation of the less elastic component by the more elastic one observed in multilayer
oextrusion. © 2008 The Society of Rheology. �DOI: 10.1122/1.2933436�

. INTRODUCTION

Polymer coextrusion is a key process in manufacturing commercial products such as
icomponent fiber, multilayer flat film, and sandwiched foam composites �Han �1981��.

�
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1028 YUE et al.
he quality of these products is determined, to a large extent, by the uniformity of the
ayer structure and the interfacial morphology. Viscosity and elasticity stratification are
nown to cause interfacial instabilities that develop in the primary flow direction, and
hese have received much experimental and theoretical investigation �Wilson and
homami �1993�; Khomami and Ranjbaran �1997�; Khomami and Su �2000��. The en-

apsulation phenomenon, on the other hand, involves distortion of the interface in the
lane orthogonal to the primary flow, i.e., the cross section. It is much less studied and is
he topic of this paper.

A major factor in the encapsulation phenomenon has been identified as the viscosity
ifference between the two continuous phases. In viscous encapsulation, the less viscous
omponent migrates to the wall and encloses the more viscous component in pipe flows
Lee and White �1974�; Southern and Ballman �1975��. The viscosity contrast determines
oth the direction and the degree of encapsulation �Lee and White �1974��. This phenom-
non came to be widely recognized from the transport of highly viscous heavy crude oil
n pipelines, where the addition of a small amount of water to the crude oil considerably
educes the pressure gradient necessary to drive the flow �Joseph �1997��. A “minimum
iscous dissipation principle” has been invoked to explain the interface shape found in
xperiment �MacLean �1973�; Everage �1973��, although such a variational principle is
ot rigorously justifiable for flows with interfaces, and is known to fail under certain
onditions �Joseph and Renardy �1993��. Everage �1975� carried out both experimental
nd theoretical studies on the transient interface motion in a bicomponent tube flow of a
ylon/nylon system, and identified two stages in viscous encapsulation. The first stage is
haracterized by a rapid interface shift caused by the equilibration of the component
ressures, and ends within 2D �D being the tube diameter� downstream the merging point
f the two components. The second stage involves the gradual movement of the interface
round the tube perimeter, which proceeds downstream for about 120D until complete
ncapsulation is achieved. The mechanism in the second stage is not yet well understood,
ut contact line motion definitely plays an important role �Torres et al. �1993��.

Another factor, specific to non-Newtonian fluids, is the elastic normal stresses. When
on-Newtonian fluids are sheared in a pipe flow, the second normal stress difference N2

mounts to a lateral forcing in the plane of the cross section. This may cause interfacial
otion through two mechanisms. First, if the cross section is noncircular, secondary
ows will arise even within a single-component homogeneous fluid. This is a well-known
ffect and a summary of the literature can be found in Yue et al. �2008�. This geometric
ffect will distort the interface between two polymers regardless of their rheological
ifferences �Dooley et al. �1998��. Second, “elastic stratification” in terms of differing N2

etween the components will produce an imbalance of force and thus interfacial defor-
ation even in a circular pipe. White et al. �1972�, through a simple theoretical analysis,

howed that the component with a higher −�2 tends to protrude into the other one, and
ventually be encapsulated. Note that the second normal stress coefficient �2=N2 / �̇2, �̇
eing the shear rate, is generally negative. In bicomponent coextrusion through noncir-
ular dies �Khomami and Ranjbaran �1997�; Dooley �2002�; Dooley and Rudolph
2003��, both mechanisms are at work. For brevity, we will use the term elastic encap-
ulation to refer to interfacial motion driven by elastic normal stresses, even though the
econdary flow in noncircular channels usually does not lead to complete encirclement of
ne component by the other �Dooley et al. �1998��.

An interesting question is the interplay between viscosity stratification and elasticity
tratification. Coextrusion experiments using polymer pairs suggest the viscosity contrast
s the more dominant factor �Lee and White �1974�; Khan and Han �1976�; Dooley and

udolph �2003��. Analysis and computational results have also been used to argue that
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1029ELASTIC ENCAPSULATION
lasticity has minimal effects on interfacial motion �White and Lee �1975�; Sunwoo et al.
2001, 2002��. Thus elastic effects have been mostly neglected. But some key observa-
ions cannot be explained by viscous effects alone. One such phenomenon is the curtate
ycloid interface shape �Han �1973�; Lee and White �1974�; Minagawa and White �1975�;
outhern and Ballman �1975��; see Fig. 3 of Southern and Ballman �1975� or Fig. 6�a� of

his paper. Coextruding two polystyrene melts through a circular pipe at temperature T
240 °C, Southern and Ballman �1975� attributed this extraordinary interface shape to a
iscosity crossover, i.e., �A��B if �̇��̇c and �A��B if �̇��̇c, where � is the shear
iscosity, �̇c is the shear rate at the crossover, and A and B denote the two components.
hus when the average shear rate in the pipe is around �̇c, component A is less viscous

han B at the tube center where �̇ is low, but more viscous near the wall where �̇ is high.
hey argued that this would lead to opposite interfacial motion in the two regions and
ence the curtate cycloid shape. However, when the same experiment was repeated at
=220 °C, at an average shear rate around the now lower �̇c, the curtate cycloid shape

ailed to appear. Furthermore, Karagiannis et al. �1990� and Torres et al. �1993� simulated
outhern and Ballman’s experiments by matching their shear viscosity data using an

nelastic Carreau model. Again, no curtate cycloid shape was predicted by the three-
imensional �3D� numerical calculations. These cast doubts on the explanation based on
viscosity crossover. Could melt elasticity be the real cause of the curtate cycloid shape?
Another notable phenomenon is the anomalous encapsulation observed by Khomami

nd Ranjbaran �1997�. When two polymer melts are coextruded in three layers �A-B-A�
hrough a slit die, with the middle layer being less viscous, the more viscous component
ncapsulates the less viscous one if the latter is sufficiently thin. The authors suggested
hat this counter-intuitive phenomenon might be due to the elastic effects, but offered no
etailed explanation.

This paper seeks a better understanding of these two phenomena through a thorough
omputational study of elastic encapsulation in bicomponent stratified flows of viscoelas-
ic fluids. We use an accurate and efficient numerical algorithm, based on a phase-field

odel, to explore the coupling between interfacial motion and viscoelastic stresses. Our
esults show that the elastic effect can indeed produce the curtate cycloid shape in a
ircular pipe, and also cause anomalous encapsulation if the middle layer is thin enough.

I. THEORETICAL MODEL AND NUMERICAL METHOD

We consider the stratified flow of two viscoelastic fluids in a conduit of arbitrary cross
ection, schematically shown in Fig. 1. The encapsulation of one component by the other
s reflected by the axial evolution of the interface �i.e., along the primary flow direction
�. The numerical simulation of this process faces at least three challenges: Tracking the
nterfacial motion, including the moving contact lines on the solid walls; incorporating
onlinear viscoelastic rheology for both components; and the three-dimensionality �3D�
f the geometry.

We meet the first two difficulties with a diffuse-interface method recently developed
or computing interfacial flows of complex fluids �Yue et al. �2004�; Feng et al. �2005�;
ue et al. �2006b��. The theoretical model and numerical algorithm have been detailed
efore, as are numerical experiments that validate both. Here we only briefly outline the
ey ideas, list the governing equations, and mention the salient features of the numerical
cheme. Take a system of two immiscible Giesekus fluids, for example. We introduce a
hase-field variable � to describe the thin but diffuse interface between the two compo-
ents; � equals 1 and −1 in the bulk phases of fluid 1 and fluid 2, and changes smoothly

cross the interfacial layer. The two components assume concentrations c1= �1+�� / 2
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1030 YUE et al.
nd c2= �1−�� / 2, respectively, and the nominal “interface” is the level set �=0. The
overning equations consist of the Cahn–Hilliard equation describing the convection and
iffusion of the interface, the linear momentum equation, the continuity equation, and
onstitutive equations for the viscoelastic fluids:

��

�t
+ v · �� = ��2G , �1�

�� �v
�t

+ v · �v� = � · �− pI + �� + G � � , �2�

� · v = 0, �3�

�p,i + �H,i�p,i�1� + 	i
�H,i

�p,i
��p,i · �p,i� = �p,i,��v + ��v�T�, �i = 1,2� , �4�

here

G = ��− �2� +
���2 − 1�


2 � �5�

s the chemical potential, � is the Cahn–Hilliard mobility parameter, 
 is the capillary
idth which is around 1 / 5 of the interfacial thickness, and � is the mixing energy that
etermines the interfacial tension �Yue et al. �2004��: �= �2	2 / 3 ��� / 
 �. The density � is
he average between the two components �=c1�1+c2�2. The total stress tensor is defined
s

� = 

i=1

2

ci��s,i���v + ��v�T�� + �p,i� . �6�

ithin each component, �s,i, �p,i, �p,i, �H,i, and 	i are the solvent viscosity, polymer

FIG. 1. Schematic of the flow channel.
iscosity, polymer stress, polymer relaxation time, and mobility parameter in the
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1031ELASTIC ENCAPSULATION
iesekus model, where subscript i denotes the ith component. The subscript �1� denotes
he upper convected derivative. The Oldroyd-B model is recovered when 	i=0. The
iesekus model is generally appealing because it is molecularly based �Giesekus �1982��

nd strikes a balance between simplicity and realistic predictions �Tirtaatmadja and
ridhar �1995��. In our context, in particular, it is perhaps the simplest nonlinear vis-
oelastic model to give a meaningful N2 �Bird et al. �1987��.

Several groups have undertaken 3D calculations on the encapsulation in generalized
ewtonian fluids �Karagiannis et al. �1990�; Torres et al. �1993�� and viscoelastic fluids

Takase et al. �1998�; Sunwoo et al. �2001, 2002��. But computational limitations are
uch that the mesh is invariably too coarse—typically with 6 or 7 grid points across the
hannel—to yield any information on the structure of the secondary flow. We circumvent
he difficulty by reducing the spatial dependence to two dimensional �2D�. Since encap-
ulation is a slow process that occurs over an axial distance of typically more than 100D
Everage �1975�; Khomami and Ranjbaran �1997�; Dooley et al. �1998��, a “lubrication
pproximation” is appropriate that allows one to simplify the problem to quasi-2D. More
pecifically, we assume that all flow variables �except pressure p� vary slowly in the z
irection: � / �z � � / �x , � / �y , and thus neglect the � / �z terms in the governing equa-
ions. Since the flow is driven by an axial pressure gradient, we write:

p�x,y,z� = p̂�x,y� + pzz , �7�

here the pressure gradient pz that drives the primary flow is assumed constant in keep-
ng with the lubrication approximation. Then the unknown variables—the velocity field
= �u ,v ,w�, pressure p̂ and the polymer stresses �p,i—are all defined on the cross-

ectional x-y plane, even though the vectors and tensors retain their 3D components.
ncapsulation now consists of the evolution of the interface in time, rather than along z,
riven by secondary flows in the cross-sectional plane. To specify the magnitude of the
rimary flow, one may either fix pz and allow the flow rate to evolve in time, or fix the
otal flow rate �Xue et al. �1995�; Debbaut et al. �1997�; Tanoue et al. �2006��

Q = �
�

wd� �8�

hrough the cross section � �Fig. 1�. The results to be presented are based on the second
ethod, although the first has been implemented in our computations as well. In the
nite-element scheme, Eqs. �1�–�8� are solved in a fully coupled manner, and pz plays a
ole similar to a Lagrange multiplier in enforcing the constraint of Eq. �8�.

Such quasi-2D models have been used successfully by several groups to predict the
econdary flow in single-component pipe flows of viscoelastic fluids �Xue et al. �1995�;
ebbaut et al. �1997�; Tanoue et al. �2006��. The theoretical and numerical simplification

omes at a price, however. The neglect of z dependence and the assumption of a constant
pz render the model incapable of predicting purely viscous encapsulation in stratified

ewtonian fluids. This is because after the lubrication approximation, the viscosity strati-
cation affects only the primary flow w, and the x and y components of Eqs. �2� and �3�
ecome independent of w. Thus, for Newtonian and generalized Newtonian fluids, the
iscosity difference will not produce u and v components that would change the interface
hape, and the quasi-2D model is unable to predict encapsulation due to viscosity dispar-
ty. With this caveat, we limit our attention to elastically driven secondary flows.

The governing equations, Eqs. �1�–�5�, �8�, are solved by a finite-element package
MPHI �Adaptive Meshing for Phase Field �� that uses adaptive meshing to resolve the

arrow interface �Yue et al. �2006b��. P2 elements are used for v and �, and P1 elements
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1032 YUE et al.
or p̂ and �p,i. Second-order implicit schemes are used for temporal discretization. A
eneral-purpose mesh generator GRUMMP �Freitag and Ollivier-Gooch �1997�� is
dopted for the adaptive meshing, and � is used as the criterion of mesh refinement.
igure 2 shows an example of the mesh, with the densest grids deployed in the interfacial
egion. At the beginning of the simulation, the interface is specified by an initial � field.
he numerical toolkit has been validated �Yue et al. �2006b�� and proved to be accurate
nd efficient in simulating many interfacial flows in viscoelastic and nematic fluids �Yue
t al. �2006a�; Zhou et al. �2006, 2007�, e.g.�. Compared with the AMPHI used in those
tudies, the current work entails adding the z components of the unknowns and allowing
oth fluid components to be viscoelastic. For Newtonian flows through rectangular pipes,
he code gives highly accurate results even on a coarse mesh of grid size 0.1D. In the
imulations to be presented, we have used a bulk grid size of h0=0.02D and interfacial
rid size of h1=0.003D. Numerical experimentation shows these to be more than suffi-
ient for convergence with respect to grid size. The time step is constrained by interfacial
otion such that the interface moves no more than h1 in one step �Yue et al. �2006b��.

II. NUMERICAL RESULTS

We simulate the stratified flow of two Giesekus fluids in pipes of circular and noncir-
ular cross sections. All variables and parameters are made dimensionless by using the
haracteristic size of the cross section D, the total viscosity of the first component �1

�s,1+�p,1, and the average axial velocity of the primary flow W=Q /A, A being the
ross section area. The following dimensionless groups are involved:

Ca =
�1W

�
�Capillary number�

Re =
�1WD

�Reynolds number�

FIG. 2. An example of the computational mesh in a square domain of 11.
�1
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1033ELASTIC ENCAPSULATION
De =
�H,1W

D
=

�H,1Q

AD
�Deborah number�

Pe =
WD
2

��
�Peclet number� �9�

�i =
�s,i

�i
, i = 1,2 �Retardation-relaxation time ratio�

�* =
�2

�1
�Viscosity ratio�

�* =
�H,2

�H,1
�Relaxation time ratio�

long with the density ratio between the two components, the mobility parameter of
he Giesekus fluids 	1 and 	2, and possible geometric ratios characterizing the cross
ection �.

In polymer coextrusion experiments, ��1 g /cm3, ��104 poise, W�1 cm /s, D
1 cm �Debbaut et al. �1997��. If we assume the interfacial tension to be �
10 dyne /cm �Elemans et al. �1990��, then Ca�103 and Re�10−4. Thus for typical
aterials and flow conditions in coextrusion, inertia and interfacial tension both have

egligible effects. In our simulations, we have set Re to zero, and used a large but finite
a. The density ratio drops out along with inertia. Thanks to the diffuse interface model,
ontact line motion can be simulated without resorting to ad hoc slip models �Jacqmin
2000��. The wetting condition is prescribed through wall-fluid interaction potentials
Khatavkar et al. �2007��. In this work, we use the simplest case of zero wall potential,
hich produces neutral wetting with an equilibrium contact angle of � / 2.
In the following, we first study the elastic encapsulation between two immiscible

iesekus components in a circular pipe. This suppresses the geometric effect on second-
ry flows and highlights the effect of elasticity contrast across the interface. Then we will
imulate three-layer coextrusion in rectangular pipes of different aspect ratios. Now that
oth effects are present, the interfacial morphology will depend on the outcome of their
ompetition.

. Elastic encapsulation in a circular pipe

Figure 3 shows the schematic of coextrusion in a round pipe of diameter D. For the
iffuse interface, we use 
=510−3, �=10−7, and �=10−1 in all calculations, which
orresponds to Ca=5.3104 and Pe=2500. The two components are assumed to have
he same total viscosity and relaxation time: �*=1, �*=1. All results are at a Deborah
umber De=1. The initial interface bisected the circle into two identical parts. Our focus
s on how rheology of the components affects the interfacial shape, and this is examined
y varying the parameters of the Giesekus model.

We will study the effect of N2 contrast on the interfacial morphology. To minimize the
ffect of viscosity, we set the polymer viscosity to be a small portion of the total viscos-
ty: �1=�2=0.9. Therefore the shear viscosity of the two components are almost identical
nd the primary flow is nearly axisymmetric. The elasticity contrast is effected via dif-
ering mobility parameters: 	1=0.5, 	2=0.1. The larger 	1 endows the top fluid with a

˙ ˙
tronger elasticity: ��2����1� ��2����2�0. Figure 4 shows contours of the primary flow,
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1034 YUE et al.
ormal stress difference, and secondary flow at t=6.79. In this relatively early time, the
olymer stress has fully developed but the interface has undergone little distortion. The
imple kinematics facilitates analysis in the spirit of White et al. �1972�, who assumed
xisymmetric flow and a flat interface.

The distribution of the axial velocity w is very close to that of a one-component flow,
ith nearly concentric circular contours. In a one-component flow, this would imply
�̇�w0 and no secondary flow �Yue et al. �2008��. In the two-component system,
owever, the jump of normal stresses across the interface does induce a secondary flow.
he horizontal interface coincides with the shear gradient direction �w, and the local
radient direction 2 and neutral direction 3 are illustrated for point B near the wall in Fig.
�a�. Thus, �pxx−�pyy approximates N2 along the interface. Across the interface, although

FIG. 3. Coextrusion in a circular cross section.

IG. 4. Flow and stress fields in the circular cross section at t=6.79. Because of symmetry, only the right half
f the cross section is shown, and the interface is delineated by the �= �0.9 contours �dashed lines�. �a�
ontours of the axial velocity w; �b� contours of the normal stress difference �pxx−�pyy; �c� contours of a stream

unction � defined by �� / �x =−v and �� / �y =u. A positive � indicates counterclockwise secondary flow. 	1
0.5, 	2=0.1, �1=�2=0.9.
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1035ELASTIC ENCAPSULATION
˙ is almost constant, the differing �2 in the two bulk components produces a jump in N2

cross the interface �Fig. 4�b��. In fact, N2 would be discontinuous in a sharp-interface
epresentation. From point A to point B along the interface, this jump grows from zero to
aximum which is around 0.02. A negative N2 means that the fluid has an extra com-

ressive stress in the 2 direction or equivalently an extra tensile stress in the 3 direction.
hus the stronger elasticity in the top component produces a stronger upward tensile
tress in fluid 1 than the downward stress in fluid 2. This drives an upward flow near the
all and accordingly a downward flow near the center, as is evident in Fig. 4�c�. This

cenario is consistent with the analysis of White et al. �1972�. As � is close to unity, the
lastic effect is weak in this case and the magnitude of secondary flow 	u2+v2 is very
mall with a mean of 2.810−4 and a maximum of 1.110−3.

Real polymer melts and concentrated solutions have much stronger elasticity and shear
hinning than represented by �=0.9, and the two components typically have unequal
hear viscosities. To reflect this, we reduce the retardation-relaxation time ratio to �
0.1 so that the polymer contribution dominates the total viscosity, and set the viscosity

atio to �*=0.5. If all the other parameters are the same between the two components,
uid 1 will have higher elasticity and viscosity than fluid 2. Figure 5 plots the flow and
tress fields as before. Due to different viscosities in the two components, the w contours
eviate visibly from concentric circles. The maximum w is shifted downward into fluid 2
hich has a lower viscosity, as shown in �a�. Along the interface, the local gradient
irection varies from vertical at point A near the center to horizontal at point B near the
all. Although the flow field is more complex than the previous one, the idea of the more

lastic component protruding into the other one still holds. At B, the effect of N2 strati-
cation is an upward flow as in the previous case. At A, the stronger N2 in fluid 1 is
anifested by a larger downward compressive stress, which further promotes the coun-

erclockwise secondary flow. The streamlines are depicted in Fig. 5�c�, with a stronger
irculation than in Fig. 4�c�. The mean and maximum velocities are 1.410−2 and 3.0
10−2, respectively. Accordingly, the interfacial motion occurs at a much faster pace than

n the previous case.
The interfacial motion continues in time, as the more elastic fluid 1 penetrates down-

ard in the center and the less elastic fluid 2 wraps around along the walls �Fig. 6�.

FIG. 5. Flow field in the circular cross section at t=1.25. �*=0.5, �*=1, 	1=	2=0.5, �1=�2=0.1.
lthough the fluids obey no-slip boundary conditions on the walls, the three-phase con-
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1036 YUE et al.
act line is still subject to motion because of the diffusive dynamics in the Cahn–Hilliard
odel �Jacqmin �2000��. This represents an advantage of the diffuse-interface model; a

harp-interface model will have a pinned contact line unless ad hoc slip conditions are
ssigned �White and Lee �1975��. Because of additional dissipation at the contact line, its
pward motion �or the “apparent slip velocity”� lags that of the secondary flow away
rom the wall. Thus, the interface assumes the shape of a hump near the wall.

As our quasi-2D setup excludes viscous encapsulation, this simulation demonstrates
he magnitude of purely elastically driven encapsulation. The average axial velocity being
nity, Figs. 6�a� and 6�b� give an indication of the interface shape roughly 7.26D and
3.19D downstream. The interface exhibits the characteristic curtate cycloid shape ob-
erved in experiments �Han, 1973; Lee and White �1974�; Minagawa and White �1975�;
outhern and Ballman �1975��. Furthermore, the computed interfaces at t=7.26 and 13.19
losely resemble those experimentally recorded at locations L=7D and 14D by Mina-
awa and White �1975�. This correspondence is subject to two caveats, however. Because
he axial velocity w varies over the cross section, translating the temporal evolution of the
nterface into axial evolution is no easy task �Debbaut and Dooley �1999�; Anderson et
l. �2006��. At a given downstream location, for example, the near-wall part of the
nterface will have had more time to develop than the central part. So the comparison in
ig. 6 must be viewed in some average sense. Moreover, it is uncertain whether our
arameters match the polyethylene melts in the experiment, with and without TiO2 fillers.
o rheological data were given beyond a viscosity ratio. Nevertheless, Fig. 6 provides
nequivocal evidence that elasticity stratification can become significant within a distance
f roughly 100D, consistent with prior experiment observation �Khomami and Ranjbaran
997; Debbaut and Dooley �1999�; Dooley �2002�; Dooley and Rudolph �2003��, and that
t is capable of producing the curtate cycloid interface shape in qualitative, and even
emiquantitative, agreement with experiments.

It is worthwhile to reexamine the available experimental results, which were previ-
usly rationalized by viscous encapsulation, in light of elastic effects. Although Southern
nd Ballman �1975� did not supply data on the elasticity for the two polystyrene melts
PS-A and PS-B� at T=240 °C, at which the curtate cycloid interface was observed, they
id report that PS-B has a larger �1 than PS-A at T=180 °C. If we take this to mean that
S-B is more elastic at all temperatures, then the observed encapsulation of PS-B by
S-A may be a direct result of elastic encapsulation rather than viscosity crossover. The
xperiment at T=220 °C, which did not produce a curtate cycloid interface even though
he viscosity crossover was present, used a shear rate that is five times smaller than that

IG. 6. Interface position and stream function at later times. �*=0.5, �*=1, 	1=	2=0.5, �1=�2=0.1. The
nsets are interface shapes from the coextrusion experiment �Minagawa and White �1975�, Fig. 12�. L is the
istance from die inlet.
t 240 °C. The lack of encapsulation may simply be because melt elasticity is not
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1037ELASTIC ENCAPSULATION
rought out at such low shear. Similarly Lee and White �1974� observed the curtate
ycloid interface in a polymethylmethacrylate �PMMA�/PS system near the viscosity
rossover. PS, which has a higher ��2� than PMMA, protrudes into PMMA in the center
f the tube. This is again consistent with elastic encapsulation as simulated here �Fig. 6�.
hus we argue that elastically driven encapsulation is the real reason for the curtate
ycloid interface in these experiments. The viscosity crossover probably serves only to
inimize the viscosity difference and therefore the effect of viscous encapsulation.

. Anomalous encapsulation in a rectangular die

This calculation is motivated by the experiments of Khomami and Ranjbaran �1997�
n three-layer coextrusion of two viscoelastic fluids in a rectangular channel, schemati-
ally shown in Fig. 7. A high density polyethylene �HDPE� layer is sandwiched between
wo polypropylene �PP� layers. The HDPE is less viscous and less elastic than the PP, and
hus is expected to encapsulate PP according to both viscous and elastic encapsulation.
homami and Ranjbaran found, however, that this is only true if the HDPE layer is

ufficiently thick. When the HDPE layer is below a critical thickness, it becomes entirely
nclosed by the PP in an “anomalous encapsulation.” Since the reversal cannot be ex-
lained by viscous encapsulation, Khomami and Ranjbaran conjectured that the polymer
ormal stresses must have played a significant role here. A later publication by the same
roup �Khomami and Su �2000�� indicates that viscous encapsulation is greatly sup-
ressed if the layer thickness of the less viscous fluid is below a critical value, which also
uggests an elastically based mechanism for the anomalous encapsulation. In the follow-
ng, we will give a clearer explanation through simulation of the elasticity-induced sec-
ndary flow.

We consider the three-layer coextrusion of two viscoelastic fluids shown in Fig. 7.
lthough the rectangular cross section in the experiment has an aspect ratio of 10

Khomami and Ranjbaran �1997��, an aspect ratio of 4 is found enough to illustrate the
hysics here and is therefore adopted in the following calculations. The two layers of
uid 1 have a thickness of d1 and the layer of fluid 2 has a thickness of d2. Because of
ymmetry, we only need to consider the upper right quadrant. The more elastic compo-
ent �fluid 1� is represented by a Giesekus model, while the less elastic component �fluid
� is taken to be Newtonian for simplicity. The zero-shear viscosity of the Giesekus
omponent matches the viscosity of the Newtonian component, and we use a large
etardation-relaxation time ratio �1=0.9 to minimize the effect of shear thinning in fluid
. Under this setup, the primary flow is little influenced by the viscoelastic rheology of
uid 1, and the axial velocity distribution does not change much when the layer thickness
atio d2 /d1 is varied. In presenting the results, all parameters and variables are made
imensionless by D, W, and �1 as before. The diffuse-interface parameters and finite

FIG. 7. Three-layer coextrusion in a rectangular cross section.
lement sizes are the same as in the previous subsection.
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1038 YUE et al.
For a single-component viscoelastic fluid flowing in a rectangular duct, the secondary
ow consists of two counter-rotating vortices in each quadrant �Yue et al. �2008��. For
tratified flows in a circular pipe, elastic stratification produces a secondary flow into the
ess elastic component in the center of the pipe and into the more elastic one near the wall
cf. Fig. 4�c��. These two tendencies are both present in the current setup, as schemati-
ally depicted in Fig. 8. Thus the secondary flow and encapsulation depend on the
ompetition between the geometric effect and effect of elastic stratification. We explore
his competition in a series of computations with varying d2 /d1.

The secondary flow of pure fluid 1 is given in Fig. 9�a�. The counter-rotating eddies,
s explained by Yue et al. �2008�, are driven by tractions in the cross-sectional plane due
o the polymer normal stresses, and the sense of rotation depends on the sign of ��̇

�w. When d2 /d1 is increased to 0.5 �Fig. 9�b��, the counterclockwise vortex next to the
idewall grows at the expense of the central vortex. But still the geometric effect has the
pper hand; the clockwise eddy in the middle dominates and the center of the interface
as an upward velocity. This implies the encapsulation of the Newtonian middle layer by
he Giesekus fluid 1 in time �cf. Fig. 10�a��. The clockwise central vortex weakens further
s d2 increases and nearly disappears at d2 /d1=2.0. Now the geometric effect is over-
helmed by elasticity stratification. For d2 /d1=8.0 �Fig. 9�e��, the cross section only

xhibits one counterclockwise eddy similar to Fig. 8�b�; the clockwise eddy has disap-

IG. 8. Schematic of secondary flows due to �a� the rectangular cross-sectional geometry; �b� elasticity
tratification.

IG. 9. Secondary flow patterns for different layer thicknesses at t=6.79, depicted by contours of the stream
unction �. As before, the interface is indicated by dotted lines for the contours �= �0.9. De=1, 	1=0.5,

*
1=0.9, � =1.
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1039ELASTIC ENCAPSULATION
eared altogether. The secondary flow is such that the Giesekus layers will be encapsu-
ated by the Newtonian layer, as one would expect from elastic stratification analyzed in
he last subsection �cf. Fig. 6�.

If we magnify the elastic effects by employing �=0.1, the secondary flow gets stron-
er. Figure 10�a� gives the interface shape at t=76.21 with the initial layer thickness ratio

2 /d1=0.22. The majority of the less elastic fluid 2 is trapped at the center of cross
ection, with a small amount attached to the sidewalls, thus forming an anomalous en-
apsulation. The configuration of the core is in qualitative agreement with the experimen-
al observation �Fig. 10�b��. The experimental picture only shows the central region away
rom the sidewalls, so it is not clear whether a blob of HDPE adheres to the sidewalls as
redicted.

Based on the above, we propose that the “anomalous” encapsulation—that of the less
lastic HDPE by the more elastic PP for sufficiently thin layers of HDPE—is due to the
omination of geometric effect as in a one-phase viscoelastic fluid �Yue et al. �2008��. In
he experiment, the reversal of encapsulation occurs at d2 /d1�0.4. In our simulations, if
e use the direction of interfacial motion in the center as the criterion for normal or

nomalous encapsulation, the critical thickness is in the range d2 /d1=1.33–2.0, thicker
han the experimental value. This is probably due to our neglecting viscous encapsula-
ion, which in the experiment should act against the geometric effect. Owing to the lack
f N2 data in the experiment and the absence of viscous encapsulation in our simulation,
t is difficult to make more quantitative comparisons.

V. CONCLUSION

We have conducted numerical simulations on interfacial motion in stratified pipe flows
f viscoelastic fluids, with the goal of understanding the elastically driven encapsulation
f one component by the other. Results show that elastic encapsulation arises through two
echanisms: One due to the mismatch in the second normal stress difference N2 between

he two layers �“elastic stratification”�, and the other due to noncircular cross-sectional
eometry. These are explained in more specific terms in the following:

. In a stratified flow of two viscoelastic fluids with negative N2, the more elastic
component protrudes into the other at the center of the duct while being wrapped by
the latter along the sides. In a circular cross section, the interface exhibits a curtate
cycloid shape as has been observed experimentally.

. For bicomponent flows in noncircular ducts, the geometric effect and elasticity strati-
fication may induce interfacial motion in opposite directions, and the outcome of
their competition determines the interfacial evolution. In particular, in three-layer

IG. 10. Anomalous encapsulation: Comparison of the interfacial shape between our calculation and the
xperiment. �a� Numerical result at t=76.21 showing the Giesekus fluid �dark� encapsulating the Newtonian
uid �white�, with De=1, 	1=0.5, �1=0.1, �*=1, and initial layer thickness ratio d2 /d1=0.35. �b� Experimen-

al picture from Khomami and Ranjbaran �1997� with d2 /d1=0.35. © Springer, used with permission.
coextrusion in a rectangular cross section, normal encapsulation �more elastic com-



r
s
a
A
d
d
p
a
c
o

A

C
C

R

A

B

D

D

D

D

D

E

E

E

F

F

1040 YUE et al.
ponent wrapped by the less elastic one� gives way to anomalous encapsulation as the
middle layer becomes sufficiently thin. This is consistent with prior observations.

We must emphasize that the quasi-2D simplifications used here put two caveats on the
esults: Viscous encapsulation has been excluded and its interaction with elastic encap-
ulation cannot be explored; and the interpretation of temporal evolution of the interface
s spatial evolution down the pipe is liable to complications �Debbaut and Dooley �1999�;
nderson et al. �2006��. These will be remedied in fully 3D computations that are un-
erway. Furthermore, we have left unexplored several factors that are important to the
esign and optimization of actual extrusion processes, including the composition of the
olymer components and more complex cross-sectional geometry of the die �Dooley et
l. �1998��. Nevertheless, the current results are not only interesting as a fundamental
ontribution to non-Newtonian fluid dynamics, but may also benefit polymer processing
perations.
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