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We use dynamic simulations to explore the pairwise interaction and multiparticle assembly of droplets suspended
in a nematic liquid crystal. The computation is based on a regularized Leslie-Ericksen theory that allows orientational
defects. The homeotropic anchoring on the drop surface is of sufficient strength as to produce a satellite point defect
near the droplet. Based on the position of the defects relative to the host droplet and the far-field molecular orientation,
we have identified five types of pairwise attractive and repulsive forces. In particular, long-range attraction between
two droplets with their line of centers along the far-field orientation decays asR-4, with R being the center-to-center
separation. This agrees with prior static calculations and a phenomenological model that treats the attraction as that
between two dipoles. For interaction in shorter ranges, our simulations agree qualitatively with experimental measurements
and static calculations. However, there is considerable quantitative discrepancy among the few existing studies and
our simulation. We suggest that this is partly due to the dynamic nature of the process, which has never been taken
into account in prior calculations. Multidrop simulations show the formation of linear chains through pairwise interactions
between nearby droplets. Parallel chains repel or attract each other depending on the relative orientation of the
drop-to-defect vector. These are consistent with experimental observations of chain formation and two-dimensional
self-assembly in bulk nematics and smectic-C films.

I. Introduction
Common emulsions involve isotropic liquids such as oil and

water. When the continuous phase is an anisotropic liquid crystal,
the emulsion exhibits unusual microstructures. In their well-
known monograph, de Gennes and Prost1 described the ag-
gregation of bubbles on the free surface of a cholesteric as strings
that delineate the molecular orientation. In nematics, Poulin and
co-workers carried out a series of experimental observations on
pattern formation of suspended particulates.2-5 Water droplets
suspended in the thermotropic liquid crystal pentylcyanobiphenyl
(5CB) in the nematic phase form chains with neighboring drops
separated by a constant distance, and the chains tend to align
with the background nematic orientation.3 This was later
confirmed by experiments using PDMS oil drops in another
thermotropic nematic medium.4,5The formation of parallel chains
requires a strong homeotropic anchoring on the drop surfaces,
i.e., with the directorn normal to the surface. With planar
anchoring or weak homeotropic anchoring, the droplets form
kinked lines at an angle with the background orientation.6-9

Ruhwandl and Terentjev10,11obtained analytical solutions in the

weak anchoring limit for particles bearing the Saturn ring, and
thus provided an explanation for the kinked lines. In the rest of
this paper, we limit ourselves to droplets with strong homeotropic
anchoring.

Poulin et al.3,6 proposed a theoretical framework for under-
standing the self-assembly of droplets into chains. As the water
drop possesses homeotropic anchoring on its surface, its inclusion
in an otherwise uniformly oriented liquid crystal necessitates the
appearance of defects. In this case, a point defect known as a
“hyperbolic hedgehog” accompanies each water droplet, and the
two form a dipole when viewed from a great distance. Attraction
between such dipoles explains the formation of chains of droplets
separated by the satellite point defects. Furthermore, the elastic
energy incurred by the point defect prevents the neighboring
drops from contact and coalescence. Thus, long-range attraction
and short-range repulsion both play roles in the formation and
stability of the self-assembled pattern. Poulin et al.3,6 and
Lubensky et al.12 used phenomenologicalansatzdirector fields
to compute the long-range attraction between neighboring
particles as due to the interaction among effective dipoles and
quadrupoles.

Qualitatively, the above explanation is clear and convincing.
But the nature of pairwise interaction needs to be clarified in a
more rigorous way. For example, the dipole-dipole interaction
accounts for long-range attractions and predictsF ∼ R-4 for R
. a, with F being the attraction force,R being the center-to-
center separation, anda being the particle radius. Both
experimental measurements13,14 and numerical computations15
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have borne out this long-range scaling. What becomes of the
attractive forceas theparticlesmoveclose toeachother?Lubensky
et al.12used the repulsion between quadrupolar moments to predict
a decline of the attraction but could not produce a repulsive force
even whenRf 2a. Data of Poulin et al.13show that the attraction
forceF starts to fall below the scaling atR ≈ 3a. Noël et al.14

measuredF for a wider range ofR. The decline of the attraction
force for short separations is much steeper than predicted by the
model of Lubensky et al. Finally, Fukuda et al.15 computed the
repulsion between two “antiparallel” dipoles, with the two defects
on the outer side of the droplets. They foundF ∼ r-3 in the whole
range ofr from slightly above 2a to 9a, in disagreement with
the r-4 scaling predicted by dipolar interaction. Thus, there is
still much uncertainty about the nature of the pairwise inter-
action.

More recently, two-dimensional (2D) colloidal crystals have
been achieved via nematic-mediated self-assembly.9,16They are
of potential importance as a novel way to control the stability
and structures of colloids17 and as templates for novel optical
materials.18 In particular, Musevic et al.9 identified lateral
interaction between parallel chains as the key mechanism in
governing 2D crystallization. As in the study by Poulin et al.,3

particles with the hedgehog defect form chains along the direction
of the background nematic orientation. If another particle is in
the vicinity of the chain with its dipole parallel and in the same
direction as those in the chain, it is repelled by the chain.
Conversely, if the single particle’s dipole is opposite to that of
the chain (antiparallel configuration), attraction occurs. Hence,
antiparallel chains aggregate and form a regular and robust
hexagonal lattice. Using an energy minimization procedure similar
to that of Fukuda et al.,15Musevic et al.9computed the equilibrium
arrangement of particles, which turns out to be a periodic pattern
similar to observations. But the defect separating particles in the
chain is a small ring instead of the observed point defect.

All the above computations are concerned with thestatic
equilibrium position, which has been sought through a straight-
forward energy minimization procedure. In reality, the particles
move as a result of elastic relaxation, and hence the director field
is not at equilibrium until the motion ceases in the end. The
process cannot be treated as quasi-static in general, and the
dynamic pairwise and multiparticle interaction may differ
appreciably from predictions based on equilibrium director fields.
The dynamic problem is much more difficult than the static one.
The motion of the particles is typically driven by an elastic force
due to nematic distortion. The fluid flow and evolution of the
director field are coupled, and both are in turn dependent on the
position and the motion of the particle surfaces on which velocity
and anchoring boundary conditions are enforced.

This complex task seems to have been first tackled by Stark
and Ventzki19 using the Leslie-Ericksen theory1 to model the
nematic. Up to now, dynamic simulations have been done on the
motion of single particles. Yamamoto20 developed a scheme for
evolving the position of multiple particles by elastic forces in
a quasi-static manner. The director field is equilibrated at every
step and no fluid motion is involved. But there have been no
dynamic simulation on pairwise and multiparticle interactions
in the nematic. Previous experiments and computations on a
single particle21-23 have shown rich dynamics in the approach

to multiple defect configurations and in the transition among
them. For multiple particles, the dynamic evolution will be
important to the self-assembly process and therefore warrants an
indepth study.

In this paper, we present what appears to be the first dynamical
simulation of the self-assembly of multiple droplets in a nematic
liquid crystal. The numerical methodology is based on a phase-
field representation of the interface and employs finite elements
with adaptive meshing to resolve the interfaces as well as defects
in the nematic bulk. After describing the numerical methodology
and the algorithm, we will report axisymmetric and 2D planar
simulations on pairwise interactions and self-assembly of
multiple droplets. In particular, we will explore the nature of
longitudinal and lateral pairwise interaction forces. In view of
prior experimental observations, we will then investigate the
formation of chains, chain-chain attraction and repulsion, and
2D assembly of a cluster of droplets. Where possible, compari-
sons will be made to experiments as well as previous static
computations.

II. Theory and Numerical Method

Recently, we have developed a general finite-element algorithm
AMPHI for simulating interfacial dynamics in two-component
rheologically complex fluids.24 The interfaces are treated as having
a small but finite thickness with a phase-field variable changing
continuously from one phase to the other. Fluid properties, such as
density and viscosity, and flow quantities, such as pressure and
velocity, change steeply yet continuously across the interfaces. Hence,
no discontinuity appears in the system. The phase fieldφ, which
indicates the position of the interfaces, is governed by a mixing
energy consisting of two components, one “hydro”-philic and the
other “hydro”-phobic. This energy-based formulation easily incor-
porates complex rheology as long as the free energies of the
microstructures are known. The package has been extensively
validated24 and applied to simulate drop deformation, coalescence,
and jet breakup in Newtonian and viscoelastic liquids.25,26

The nematic liquid crystal admits a natural energetic description.
Bulk distortions may be described by the Frank energy,1 and surface
anchoring can be described by the Rapini-Papoular anchoring
energy.27,28Thus, the elastic characteristics are easily incorporated
into the phase-field framework of AMPHI. Anisotropic viscosities
may be introduced via Leslie coefficients. Thus, we have recently
adapted AMPHI to explore the defect dynamics around a single
drop rising in a nematic phase.22,29For the multidroplet simulations
to be presented, the code has been generalized to allow periodic
boundary conditions in two directions. Details of the theoretical
model and computational algorithm can be found in reports by Yue
et al.24,27and Zhou et al.22 In the following, we will only summarize
the main ideas and give the governing equations.

Consider a two-component immiscible blend of a Newtonian liquid
and a nematic liquid crystal. For the problem at hand, we may visualize
Newtonian drops of arbitrary shape and size suspended in the nematic
medium. The Newtonian bulk is represented byφ ) -1 and the
nematic byφ ) 1, and the interfaces are simply the level set ofφ
) 0. The governing equations are the continuity and momentum
equations supplemented by the Cahn-Hilliard equation for the
transport of the phase fieldφ27 and the Leslie-Ericksen equations
for the nematic directorn:22
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whereλ,ε, andγ are the interfacial energy density, capillary thickness,
and mobility of the diffuse interface, respectively. The densityF )
((1+φ)/2)F1 + ((1-φ)/2)F2 is an average between the two com-
ponents. The stress tensorσ in the momentum equation is:

whereG is the anchoring stress of the nematic director on the interface,
G ) A(n‚∇φ)n∇φ for planar anchoring andG ) A[(n‚n)∇φ - (n‚
∇φ)n]∇φ for homeotropic anchoring,A is the surface anchoring
energy density,K is the bulk elastic constant of the nematics under
the one-constant approximation, andµ is the Newtonian viscosity.
σ′ is the Leslie viscous stress30,31 in the nematic phase

whereR1-6 are the Leslie viscous coefficients obeying an Onsager
relationR2 + R3 ) R6 - R5, so five of them are independent.1 D
) 1/2[∇V + (∇V)T] is the strain rate tensor,Ω ) 1/2[(∇V)T - ∇V] is
the vorticity tensor, andN ) (dn)/(dt) - Ω‚n is the rotation ofn
with respect to the background flow field. The director fieldnevolves
in the flow field according to a balance between elastic and viscous
torques as given in eq 4. The molecular fieldh, denoting elastic
torque in the nematic phase, derives from the free energies of the
system:1

with g ) A(n‚∇φ)∇φ for planar anchoring andg ) A[((∇φ‚∇φ)n
- (n‚∇φ)∇φ] for homeotropic anchoring. The term involvingδ
arises from regularizing the Frank energy to allow defects:22

Thus, a defect is represented by|n| that falls below unity within a
small area of sizeδ. This regularization is inspired by the Landau-
Ginzburg equation32,33and amounts to a simplified form of Ericksen’s
theory with a variable order parameter,34 with |n| acting as the local
order parameter. We have usedδ ) 4ε since the defect core size
is comparable to the interfacial thickness. Note that in the limit of
ε f 0, the diffuse interface model reverts to the classic Navier-
Stokes sharp-interface hydrodynamics.27In particular, the interfacial
tension σ and Rapini-Papoular anchoring constantW can be
recovered from the diffuse-interface parameters for smallε asσ )
2x2λ/3ε andW ) 2x2A/3ε. We have usedε ) 0.01a for most of
the calculations,a being the radius of the droplets. Previous
computations indicate that such anε is small enough to approximate
the sharp-interface limit in the present simulations,24,25 especially
because they involve no small-scale phenomenon such as surface
rupture.

In axisymmetric and planar 2D geometries, these equations are
discretized on a unstructured grid of triangular elements using the
Petrov-Galerkin formulation with streamline upwinding for the
constitutive equation.24 A critical ingredient of the algorithm is an
adaptive meshing scheme that accurately resolves the drop interfaces
as well as the defect cores at a manageable computational cost. As
the interface and defects move, the mesh quality is monitored and
updated by coarsening and refinement as needed. Time integration
is by an implicit second-order scheme with the time step automatically
adjusted according to the motion of the interface.24 Typical grid
sizes areh1 ) 0.006a on the interface and near defects,h2 ) 0.2a
in the bulk of the drop fluid, andh3 ) 0.5a in the matrix. The
meshing module of the program smooths the transition between
different regions. Numerical experiments have shown that these
grid sizes and the time step used in the simulations are sufficient
for numerical convergence.

As a general numerical algorithm for computing nematic-particle
interactions, our package is versatile and powerful. We should perhaps
mention some of its features, though not all of them will be important
to the computations reported below. First, our code accounts for
several factors that have been largely ignored in the past. These
include the drop deformation, which in some cases may interact
with the nematic order in the vicinity of the surface,29finite anchoring
strength that may conceivably be tuned to manipulate the resultant
colloidal structure, and the fully anisotropic rheology of the nematic
phase, which plays a major role in the motion of dispersed particulates
in a nematic medium.22 Second, the phase-field formulation has the
advantage of simulating topological changes such as interfacial
rupture and coalescence naturally under a short-range force
resembling the van der Waals force.35 There is no need for manual
intervention as in sharp-interface models to effect such events. Finally,
the finite-element method with adaptive meshing makes possible
simulations of multiple interfaces and defects in complex geometries
while maintaining accurate spatial resolution of the large-gradient
regions.

We must note that the code is limited at present to two spatial
dimensions. Some of the geometric setups to be simulated are
axisymmetric and thus can be readily handled by the code. Others,
such as the self-assembly of multiple droplets, occur in 3D, and we
are forced to compute a planar 2D analogy of them. However, this
is not as severe a restriction as it might appear. Considerable
theoretical and experimental work has been done on particle
interaction in freely suspendedsmectic C films, where the dynamics
is essentially 2D. Such results provide direct benchmarking for our
computations. Furthermore, their general similarity to observations
in 3D nematics suggests that the underlying physics is common and
that our 2D numerical simulations are relevant to 3D reality. More
details will be given in the next section.

Some remarks on terminology seem necessary to avoid confusion
in discussing the results. The term “2D” has two meanings in this
paper. One refers to the 2D patterns formed by particles as opposed
to 1D chains. The other refers to the spatial dimensions in the
computations. Similarly, we sometime use the term “dipole” to refer
to the drop-defect ensemble, with the drop-to-defect vector indicating
its orientation. This is to be distinguished from the electrostatic
analogy that treats the particle-particle interaction as that between
“dipolar” and “quadrupolar” moments.12 In fact, an important
conclusion to be drawn from our simulations is that the pairwise
interaction is not of the dipolar nature in general.

III. Results and Discussion

This section has two main parts. The first deals withpairwise
interactions, with each of the droplets bearing a single hyperbolic
hedgehog defect. The two droplets are initially arranged so that
their line of centers is parallel or perpendicular to the far-field
nematic orientation. These will be called, respectively, the
longitudinal and lateral pairs. In each case, the two drop-to-(30) Leslie, F. M.Quart. J. Mech. Appl. Math.1966, 19, 357-370.
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defect dipoles may be in the same direction (parallel) or opposite
to each other (antiparallel). Special attention will be given to the
pairwise interaction forces in connection with the open questions
in the literature regarding the dipolar nature of this interaction.
The second part explores the interaction and self-assembly of
multiple droplets. We will study the formation of linear chains,
interaction between neighboring chains in parallel and antiparallel
orientations, and finally 2D assembly of droplets in a doubly
periodic domain.

For a longitudinal pair of droplets, the geometry is axisym-
metric. For the other configurations, the real physics is 3D and
we are forced to simulate a 2D analogue of it in a planar domain.
With axisymmetry, the computational domain is half of the
meridian plane, as shown in Figure 1. The rectangular domain
has a width ofL ) 15a in the radial direction and lengthH )
24a along the axis of symmetry, wherea is the drop radius. The
two droplets are located on thezaxis with top-bottom symmetry
at some initial separation. The outer boundary atr ) L is a
nonslip wall, and periodic boundary conditions are imposed on
the top and bottom. Thezaxis has symmetric boundary conditions
for all the variables,∂/∂r ) 0. Note that no boundary conditions
are needed on the drop surfaces; velocity and shear-stress
continuities occur naturally, and the interfacial tension is
accounted for by the interfacial stress-λ∇φ∇φ in eq 5. The 2D
domains are rectangles with periodic conditions in the vertical
or both directions. For the former, the nonperiodic boundaries
are nonslip walls with rigid anchoring.

The initial n(r) field is uniformly vertical everywhere except
within a small distance from each drop; in this shelln aligns
radially. Thus, the initial director field has an abrupt jump between
the near-field and far-field orientation. After the simulation starts,
there is a rapid rearrangement in the near field, resulting in a
point defect near each droplet. For all cases except one (cf. Figure
4), this initial transient is short and insignificant to the ensuing
dynamic evolution of the director field. Even though the director
does not distinguish betweenn and-n in reality, we have found
the direction ofn a convenient means to control the location of
the defect. If the far fieldn is upward and the near field is radially
outward, the point defect will nucleate below the drop. Changing
either will put the defect above the drop. This scheme will be
used to produce parallel and antiparallel dipoles in the simulations.

The complete set of dimensionless groups governing our system
is

along with the various length ratios of the geometry and the
ratios between the Leslie viscous coefficients.ReandCa are
definedusingacharacteristic velocityU ) K/(ηa) and theviscosity
η ) (R3 + R4 + R5)/2 that is the average between the largest
and smallest Miesowicz viscosities.1The ratioR3/R2distinguishes
“flow-aligning” nematics from “tumbling” ones in simple shear
flows. In the complex flows due to droplet self-assembly, this
distinction is insignificant. Experiments have also used a wide
range of thermotropic and lyotropic liquid crystals of both aligning
and tumbling types. We have adopted the Leslie viscosities of
a common nematic MBBA at 25°C for all computations:1 R1

) 6.5,R2 ) -77.5,R3 ) -1.2,R4 ) 83.2,R5 ) 46.3, andR6

) -32.4 centipoise (cP). Furthermore, we have assumed that the
isotropic drop phase has the same density as the nematic medium
and the same viscosity as the isotropic part of the nematic
viscosity; R ) 1, â ) 1. For the anchoring energyW, prior
experiments cited “strong anchoring” without giving a value6

while computations typically assumed rigid anchoring.12 In all
the computations, we have used a largeAK ) 100. In addition,
W is typically much smaller than the interfacial tensionσ.36 We
have usedAσ ) 0.2. This, along with a smallCa ) O(10-3),
ensures that the droplets never deviate visibly from the spherical
shape. The Reynolds numberRe ) O(10-2) for all the
computations and inertia is negligible.

In presenting the results, we have used two different methods
to visualize the nematic orientation (Figure 2). The first is a
computed light intensity map through crossed polarizers, which
would correspond to birefringent images recorded in the
experiments. This will be used for the longitudinal pairs in
axisymmetric geometry. The numerical scheme is detailed by
Han and Rey.37 For a satellite point defect near a drop, Figure
2a shows the light intensity map along with vector lines for the
director fieldn(r). The pattern of two bright lobes separated by
a darker line, with the point defect at the tip, closely resembles
experimental pictures in the literature.13,14,23The second pre-
sentation (Figure 2b) uses contours of (nx

2 - 1/2)2 in a 2D planar
domain, wherenx is the horizontal component ofn.20,38 Thus,
bright areas indicate a horizontal or verticaln, while dark areas
haven at a 45° angle. The point defect is clearly marked by the

(36) Sonin, A. A.The Surface Physics of Liquid Crystals, 1st ed.; Gordon and
Breach Publishers: 1995.

(37) Han, W. H.; Rey, A. D.Macromolecules1995, 28, 8401-8405.
(38) Yamamoto, R.; Nakayama, Y.; Kim, K.J. Phys.: Condens. Matter2004,

16, S1945-S1955.

Figure 1. The geometry of the computational domain. The radius
of the drops isa. With axisymmetry around thez axis, the domain
is half of the meridian plane. For 2D computations, the domain is
the entire rectangular box.

R )
F2

F1
(drop-to-matrix density ratio) (9)

â ) µ
R4/2

(drop-to-matrix viscosity ratio) (10)

AK ) Wa
K

(anchoring-to-bulk energy ratio) (11)

Aσ ) W
σ

(anchoring-to-interfacial tension ratio) (12)

Re)
F1Ua

η
(Reynolds number) (13)

Ca ) ηU
σ

(capillary number) (14)
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focal point from which four dark brushes emanate. The gradient
of the grayscale indicates the degree of elastic distortion, which
reaches a maximum at the point defect and dies off in the far
field.

A. Pairwise Interactions. 1. Longitudinal Pairs. Consider
first the interaction of two particles in the parallel configuration,
with a center-to-center distance ofR. The defects are on the line
of centers, which is parallel to the far-field director orientation.
Representing the long-range force by the interaction of dipolar
and quadrupolar moments, Lubensky et al.12 constructed a
phenomenological formula for the attraction forceFP between
the particles:

Note that the dipolar attraction (the first term) dominates the
quadrapolar repulsion (the second term) at large distances.
Mathematically, the repulsive force becomes significant for
smallerR, but the formula is supposed to be used only forR .

a. In the rest of the paper, we will use the same sign convention,
i.e., repulsion being positive and attraction being negative.

In our dynamic simulation in the axisymmetric computational
domain of Figure 1, the two droplets indeed attract each other,
and their separation decreases in time from an initial 7a to a final
equilibrium valueRe) 2.45a (Figure 3a). The speed of approach
increases initially asR shrinks and reaches a maximum around
R ) 3.5a. Afterward, the speed quickly drops to zero. In the
equilibrium state, one point defect is roughly midway between
the two drops, a distance of 1.22a from either drop center.
Compared with the position of the point defect near a single
drop,22 the defect between the droplets is “compressed”. The
other defect is at a greater distance of 1.32a, which is close to
that of a single drop. Note that the equilibrium separation of
2.45a agrees with prior experimental14 and numerical results21

to within 3%. TheR(t) curve closely resembles that of Poulin
et al.13 In the experiment, the particles’ approach takes about 5
s, which corresponds to a dimensionless time of 136 and is
comparable to that in Figure 3a.

Figure 2. Representation of the director field: (a) birefringent pattern for an axisymmetricn field through crossed polarizers; (b) grayscale
representation ofn in 2D geometries with contours of (nx

2 - 1/2)2. White indicates a vertical or horizontaln, while black means a 45° tilt.

Figure 3. Attraction between a longitudinal pair of drops in the parallel configuration. Time is made dimensionless by the elastic relaxation
time τe ) ηa2/K, length is made dimensionless bya, and force is made dimensionless by 4πK. The same nondimensionalization is used for
all later plots. (a) The center-to-center distanceR as a function of time. The insets show the defect configuration, visualized as in Figure
2a, at timet ) 56.1 and 145.1. (b) The attraction forceF(R), computed by integrating the elastic stress around the drop, compared with prior
experimental data (symbols) and theoretical results (lines). The dash line is the drag force estimated from eq 16, and the dash-dot line is
the phenomenologicalFP of eq 15. The long-dash line indicates theR-4 scaling.

FP

4πK
) -24.97(aR)4

+ 62.21(aR)6
(15)
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We have also computed the instantaneous attractive forceF
between the droplets, by integrating theelastic stress components
over the drop surface, and this is plotted in Figure 3b. To extract
an attractive force from the particle trajectory, Poulin et al.13

calculated a Stokes drag with an “effective viscosity”µemeasured
from a capillary tube:

whereV is the instantaneous velocity of the particles. ThenF
is equated toFD by assuming zero inertia for the particles. In our
computations,Re∼ 10-2 and inertia is negligible. But strictly
speaking, the idea of a constant effective viscosity is suspect
since the anisotropic viscosity may vary significantly depending
on the flow field.22 As a test of eq 16, we have computedFD by
takingµe to beη, the average between the largest and the smallest
of the Miesowicz viscosities. This turns out to be a reasonable
approximation ofF; it is about 12% smaller in magnitude but
follows the same trend. The discrepancy comes from the choice
of µe. Since the nematic director is mostly normal to the drop
surface, it is no surprise thatµeunderestimates the local viscosity
and hence the drag forceFD.

For large separations (R > 5a), all computations and
measurements agree with the fact that the attraction forceF
obeys theR-4scaling. This is consistent with the dipolar attraction
in eq 15. The magnitude of ourF is slightly below Lubensky et
al.’s formula and Noe¨l et al.’s data. Poulin et al.’s data, however,
are lower by a factor of about 4. This may be due to their using
a µe in eq 16 that is too low. Prior studies13,14,21put the lower
bound ofR for theR-4 scaling between 3a and 4a, whereas our
F starts to fall below the power law atR ≈ 5a. The reason for
this difference is unclear at present. OurF reaches a maximum
nearR ) 3.6a and then declines with decreasingR. The data of
Noël et al. show a much stronger attraction for smallerRfollowed
by a precipitous drop withinR ≈ 2.5a. Thus, their interaction
is much more “hard-sphere-like”, with a shorter range than in
our case. Equation 15 is a poor approximation for short-range
interaction, as expected. The quadrupolar repulsion is far too
weak to represent the decline of attractive force with decreasing
R. In fact, the formula never predicts much reduction in the
attraction before the drops touch.

If the drops are initially closer than the equilibrium separation
Re, they are expected to repel each other. To explore this scenario,
we simulated the separation of two droplets from an initial
separation of 2.37a. Upon start of the simulation, then field

relaxes into one with two point defects, similar to the insets of
Figure 3a. This elastic relaxation, an artifact due to the initial
condition, produces the anomalous behavior in Figure 4 for the
initial period of the simulation (t j 2). At the beginning,R
decreases momentarily (t j 0.5) before increasing with time.
Then thedropletsseparate fromeachotherwith increasingvelocity
until t ≈ 2. With negligible inertia, the acceleration reflects the
changing forces on the droplets. Indeed, the repulsive forceF
also increases withR in this period, which is counterintuitive.
Since timet is scaled by the elastic relaxation timeτe ) ηa2/K,
the duration of this initial transient (t ≈ 2) being of order one
is reasonable. Only afterward doesF decrease with increasing
R as expected. The motion ceases at an equilibrium separation
of Re ) 2.45a, the same value as that reached in the pairwise
attraction simulation of Figure 3. Therefore, only the latter part
of the simulation, witht > 2 andR > 2.4, can be meaningfully
compared with static measurements ofF(R) (Figure 4b). The
numerical result parallels the trend of the experimental data,14

although is shifted to largerR, again indicating longer range
interaction inourcomputation than in theexperiment. Incidentally,
Noël et al.14reported that pushing the two particles too close will
result in the point defect opening into a ring. Our simulations
show the same transition for initial separations below 2.37a.

We turn our attention now to two droplets in the antiparallel
configuration with the two point defects lying outside of the pair,
one on the top of the upper drop and the other below the lower
drop. The initial center-to-center separation between the drops
is 2.5a. There is a rapid elastic relaxation at the beginning of the
run, but unlike in Figure 4, this transient is insignificant compared
with the length of the simulation. The two droplets separate in
time with a slowly decreasing velocity (Figure 5a). The simulation
is terminated asR reaches 10a, and the droplets get close to the
top and bottom of the computational domain (cf. Figure 1). At
that time, the two are still moving apart very slowly. As before,
we plot the repulsion forceF as a function ofR in Figure 4b.
For R value up to 6a, F decays asR-1/3. For larger separations,
the decline ofF becomes even milder.

Fukuda et al.21 computed the static repulsion between two
antiparallel dipoles fixed in space. Their results show the scaling
F ∼ R-3, which is in disagreement with theR-4 scaling expected,
at least for largeR, from dipolar interactions. Why does ourF
exhibit an even slower decay? For the last part of the simulation,
sayR> 6a, one can imagine that the periodic boundary conditions
on the top and bottom of the domain have introduced an

Figure 4. Interaction between a parallel longitudinal pair of droplets with an initial separation smaller than the equilibrium value. (a) Temporal
evolution of the center-to-center distanceR(t) and elastic forceF(t). F is computed by integrating the elastic stress, and positive values denote
repulsion. (b) Comparison between the computedF(R) and the ones measured by Noe¨l et al.14

FD ) 6πµeaV (16)
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interference. A plausible explanation for the mildR-1/3 initial
decay is the dynamic nature of our simulation. As the droplets
move apart, the surrounding director field is continuously
evolving. This will produce a different elastic force on the droplets
than when the droplets are fixed in space. Even though the total
simulation lasts more than 100τe, the drops move an appreciable
0.1a apart withinτe. Therefore, the velocity of separation is too
high for the process to be considered quasi-static.

To probe the antiparallel repulsion further, we have conducted
an experiment on the interaction among droplets of silicone oil
in the nematic 5CB. Occasionally the antiparallel configuration
appears and repulsion is observed. We present one such scenario
in Figure 6, where a single droplet (at bottom) is repelled by
another (at top) with an opposite dipolar direction, the latter
being the end of a chain of particles with upward dipoles. Over
the entire period of observation, the separationRincreases almost
linearly in time. If we ignore the later portion of the data (say
R > 3.5a) because nearby droplets may have interfered, there
does appear to be a weak power-law decay of the velocityV ∼
R-0.5 for the range of 2.6a < R < 3.5a. This implies that the
repulsion force also decays weakly according toF ∼ R-0.5. That
this power law is much closer to our dynamic computation than
prior static computations lends support to our argument above.

2. Lateral Pairs. When a pair of droplets are placed side by

side, with their line-of-centers orthogonal to the far-field nematic
orientation, the geometry is no longer axisymmetric. Therefore,
we resort to 2D planar simulations for lateral pairwise interactions.
The same is true for the multiple particle interactions in the next
section. Fortunately, 2D dynamics can be realized experimentally
by incorporating relatively large particles or droplets into freely
suspended smectic-C and smectic-C* films.39In fact, considerable
research has been devoted to this special setup as a rare opportunity
to study “anisotropic, two-dimensional emulsions”.40 The 2D
character greatly simplifies theoretical analysis41,42and facilitates
experimental observations.43 For example, in a smectic-C* film
of thickness smaller than the helical pitch, the droplets are
observed to interact through the accompanying point defect and
form chains, in qualitatively the same fashion as in 3D nematics.39

Therefore, our 2D simulations enjoy greater relevance to reality
than can be generally expected.

Consider first, the parallel configuration for a lateral pair with
their dipole direction initially in parallel (Figure 7). The
rectangular computational domain has a horizontal width of 17a
and a height of 10a, and the two drops are initially placed side
by side in the middle with a separation of 3.33a. Upon start of
the simulation, there is again a very brief transient caused by the
initial n(r) field relaxing to lower the elastic distortional energy.
As the two hedgehog defects take shape, they move inward toward
each other. There is no rotation of the drops in this process. Then
the two droplets repel each other and move apart laterally (Figure
7a). This motion slows down in time and eventually stops at a
dimensionless timet ≈ 80. The apparent steady-state has a drop
separationRe ) 4.02a and an angle between the two dipoles of
46.9°.

Musevic et al.9 measured the interaction potential for a single
particle when it is placed beside a chain of particles in 5CB, with
the dipole of the single particle parallel to that of the chain.
Although their result may have involved contributions from
multiple particles in the chain, we have estimated their repulsion
forceF and compared it with our numerical result in Figure 7b.
Two differences stand out. OurF is several times smaller, and
it drops to zero rather abruptly at a relatively short separation.
The largerF in Musevic et al.’s measurement is probably due

(39) Cluzeau, P.; Poulin, P.; Joly, G.; Nguyen, H. T.Phys. ReV. E 2001, 63,
031702.

(40) Völtz, C.; Stannarius, R.Phys. ReV. E 2004, 70, 061702.
(41) Pettey, D.; Lubensky, T. C.; Link, D. R.Liq. Cryst.1998, 25, 579-587.
(42) Cluzeau, P.; Bougrioua, F.; Joly, G.; Lejcek, L.; Nguyen, H. T.Liq. Cryst.

2004, 31, 719-726.
(43) Dolganov, P. V.; Demikhov, E. I.; Dolganov, V. K.; Bolotin, B. M.;

Krohn, K. Eur. Phys. J. E2003, 12, 593-597.

Figure 5. The repulsion between an antiparallel longitudinal pair. (a) The separationR(t) increases from an initial value of 2.5a. (b) The
repulsion forceF has a long range and decays slowly withR.

Figure 6. Experimental observation of the repulsion between an
antiparallel pair of droplets. The insets are images through crossed
polarizers. The drop on top is at the end of a vertical chain (not
shown) with upward dipolar orientation.R and t are made
dimensionless by the drop radiusa andτe ) ηa2/K, with η ) 0.0765
Pa‚s, a ) 50 µ, andK ) 10-11 N.
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to repulsion from neighboring particles in the chain. The short
range of ourF may have to do with the side walls on which fixed
vertical anchoring is imposed. Besides, the drop-to-defect vectors
tilt toward each other as the drops separate. This configuration
promotes attraction between drops (cf. Figure 10), which may
have shortened the range of repulsion relative to that for parallel
dipoles. Note also that the simulation is dynamic in a 2D geometry,
while the experiment is static in 3D next to a substrate. It is
difficult to speculate on the implications of such factors forF.

Additional measurements of Musevic et al.9 suggested that a
lateral pair with their dipoles in antiparallel arrangement will
attract each other. We have simulated such a scenario in the
same computational domain as above, with the droplets initially
side by side at a separation of 2.62a (Figure 8). The droplets not
only approach each other laterally but also shift vertically so as
to move the two point defects closer (see insets). As the line of
centers makes an angle of roughly 23° with the vertical far-field
nematic orientation (t ) 125), the two point defects sit on opposite
sides of the line of centers instead of moving into the gap between
the droplets. Soon afterward, the two drops coalesce att ) 136.
In this process, the attractive forceF varies nonmonotonically
with the separationR, with a peak atR) 2.3a (Figure 8b). With
decreasingR, the attraction initially increases as one would expect.
Then the relative rotation between the droplets changes the defect

configuration and the nature of the attraction. This causes the
decline of the attraction force forR < 2.3a.

In the static measurements of Musevic et al.,9 a single particle
is placed beside a chain of particles, with its dipole antiparallel
to that of the chain. The single particle is not abreast with one
in the chain but rather is staggered between two neighboring
ones (cf. Figure 11a). Thus, the measuredF comes from two or
more particles in the chain, and there is no relative rotation among
the particles as exhibited by our doublet. Subject to these
complications, perhaps only the initial portion of our result, say
R> 2.4 in Figure 8b, is comparable with the experimental data.
Similar to the repulsion between a parallel pair (Figure 7b), our
force is smaller in magnitude and also occurs in a much shorter
range than in the experiment. The apparent agreement in the
humped shape of the curves is probably fortuitous. In the
experiment, the attraction dies down when the single particle is
pushed too close to the chain. In our simulation, on the other
hand, the two drops maneuver in two dimensions. The downturn
in the attraction force with shrinkingR is due to the evolving
defect pattern toward the end.

To summarize the results and discussion in this subsection,
our simulations reproduce the characteristics of pairwise interac-
tions as measured in experiments and predicted by ad hoc models.
For longitudinal doublets, a parallel pair tends to attract each

Figure 7. The interaction between a lateral pair of droplets in the parallel arrangement. (a) The center-to-center distanceR(t) increases as
the droplets repel each other. Then field is visualized as in Figure 2b in the insets. (b) The repulsion forceF as a function ofR in the dynamic
simulation. The data of Musevic et al.9 are also shown for comparison.

Figure 8. The interaction between a lateral pair of droplets in the antiparallel arrangement. (a) The center-to-center distanceR(t) decreases
as the drops approach each other. Their line of centers also rotates clockwise. In the end, the two droplets coalesce. (b) The attractive force
F as a function ofR in the dynamic simulation. The data of Musevic et al.9 are also shown for comparison.
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other while an antiparallel pair repels, unless their initial separation
is very small. For lateral pairs, parallel pairs repel while antiparallel
ones attract. Besides, computations and measurements exhibit
common trends in the magnitude of the forces. For example,
longitudinal interactions are stronger than lateral ones. For longi-
tudinal pairs, the parallel attraction is greater than the antiparallel
repulsion, whereas for lateral pairs, the parallel repulsion and the
antiparallel attraction have comparable magnitudes. These can
be rationalized by the relative position of the point defects, as
it determines the elastic distortion surrounding the droplets.

Quantitatively, the long-range longitudinal attraction between
parallel pairs is the only situation with a well-established scaling
(F ∼ R-4), which is consistent with the simple picture of dipole-
dipole attraction. For closer ranges, the inter-particle force shows
considerable divergence among different computational and
experimental studies. To a large extent, this discrepancy reflects
the dynamic nature of the interaction when the particles are
allowed to move. However, a clearer understanding requires
more careful computations as well as measurements that account
for complicating factors such as differences in spatial dimen-
sionality and the presence of substrates.

B. Multidrop Interactions. 1. Chain Formation. Among
experimental observations, the most prominent feature of self-
assembly is the formation of chains parallel to the far-field director
orientation.6 We simulate this by arranging four droplets in a
regular zigzag pattern in a rectangular domain (Figure 9 inset),
with initial center-to-center separation of 3aand the line of centers
making an angle of 39° with the vertical. The width of the domain
is 20a, and its height is 12.5a. The director is fixed in the vertical
direction on the side walls, where the velocity vanishes. Periodic
boundary conditions are used for the upper and lower boundary.
As before, the initial director field has a thin ribbon of radially
outward orientation around each drop, outside of whichn points
uniformly upward.

Upon start of the simulation, the director field near each droplet
quickly rearranges itself and produces a satellite point defect.
These defects are not directly above or below the drop, as one
would expect for a single droplet in an otherwise vertically
oriented nematic phase. Rather, the droplet-defect dipole points
toward the neighboring drop below it (Figure 9). Then, each
drop experiences attraction from both neighbors, according to
the pairwise attraction force of Figure 3. The net effect is to pull

the drops into a straight line. Since this horizontal force is
proportional to sinθ, whereθ is the angle between the line-
of-centers and the vertical, the motion is fast initially whenθ is
large and slows down toward the end asθ f 0.

The process of chain formation is qualitatively the same as
observed in 3D nematics3,6and 2D smectic C* films.39However,
the periodicity of the computational domain in the vertical
direction introduces an artifact. As the four-particle array is
repeated above and below, the equlibrium interparticle separation
Reis predetermined as1/4of the height of the domain, independent
of the physical parameters of the system. In this case,Re )
3.125a is somewhat higher than the 2D observation of 2.6a.39

Note also that we have used the regular zigzag initial configuration
for ease of analyzing the forces in the droplets. Similar chains
should form from a more random initial configuration. We will
explore such a scenario toward the end.

2. Chain-Chain Interactions. Experiments indicate that
chain-chain interaction is central to the formation of regular 2D
arrays.9 From a fundamental viewpoint, chain-chain interaction
is more complex than pairwise interactions since it involves the
collective motion of multiple particles and defects. Motivated by
the experiment of Musevic et al.,9 we have simulated the
interaction between two chains, each consisting of four droplets,
in the parallel and the antiparallel configurations.

The computation domain has a width of 18a and a height of
13.3a, and the boundary conditions are the same as in Figure 9.
The parallel chains are initially separated by a center-to-center
distance ofR) 3.2a (Figure 10a). The defects are directly below
the droplet and the chains are parallel to the far-field director
orientation. Upon start of the simulation, the two defects at the
bottom of the chains quickly move inward toward each other
(Figure 10a). This is reminiscent of the defect motion in the
lateral pair of Figure 7. Meanwhile, the other three pairs of defects
are confined between the neighboring droplets and are not free
to move. In view of the pairwise repulsion, one expects the two
chains to move laterally away from each other in time. This is
largely true, except for the two droplets at the bottom. By breaking
the mirror symmetry, the left droplet moves downward while the
right one moves upward, with the two forming an attractive
doublet similar to that in Figure 3. At this point, the motion of
the droplets has practically stopped, and a steady-state config-
uration emerges. The symmetry breaking may have been triggered
by numerical noise such as asymmetry in the unstructured grid
but is indicative of the instability of the symmetry pattern. The
branched conformation closely resembles experimentally ob-
served patterns for water droplets in a 3D nematic phase, e.g.,
Figure 11 of Poulin and Weitz.6

We have also computed the repulsive forceF on one of the
upper particles and plottedF(R) in Figure 10b. Based on the
pairwise repulsion shown in Figure 7, we expectF to decline
monotonically withR. The curious rise for 3.2a < R < 3.5a is
not due to the initial elastic relaxation, since its duration is roughly
20 times the elastic timescaleτe. Rather, it is the result of the
complex dynamic interaction between the chains. As the two
bottom drops attract each other, their attraction force “propagates”
up the chains as if along a string. This amounts to an additional
attraction on the upper drops, which weakens the repulsion force
for the initial period. As the two bottom particles approach, their
attraction dies out and so does this effect. Then the repulsion
forceF assumes its normal decay withR. The magnitude ofF
is between that of our pairwise repulsion and Musevic et al.’s
measurement in Figure 7. Therefore, interaction with multiple
particles is responsible, partly at least, for the larger repulsion
force here and in Musevic et al.’s experiment than our pairwise

Figure 9. Four droplets assemble into a vertical chain in a vertically
aligned nematic phase. The height of the domain is 12.5a, with
periodic conditions in the vertical direction. The side walls are 20a
apart and are not shown in the plots. The angleθ, between the
neighboring drops and the vertical axis, decreases from 39° toward
zero.
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repulsion. Note also thatF decays over a longer range than the
pairwise repulsion, and the steady separation is larger. These are
consistent with the idea that for the pairwise interaction in Figure
7, the tilting of the drop-defect vectors toward each other
promotes attraction and suppresses repulsion.

The attraction between antiparallel chains turns out to be
simpler as it does not greatly distort the conformation of each
chain (Figure 11). The initial condition is similar to that of Figure
10a, but the right chain is flipped vertically so that the point
defect is on top of each droplet. The two chains are also offset
vertically by a distance ofa. The initial separation between the
lines of centers is 2.9a. This setup approximates to what Musevic
et al.9 used experimentally. The two chains approach each other
with a velocity that is roughly constant up tot ) 900. Afterward,
the motion slows down, and att ≈ 1300, the chains approach
an equilibrium state with a separation of 2.44a between the
centerlines (Figure 11a). This is reasonably close to the
experimental value of 2.31a.9

The chain-chain attractionF, plotted in Figure 11b, differs
markedly from the pairwise attraction in Figure 8b. First,F(R)
does not show the humped shape. The decline with shrinkingR
should be compared with a similar decline in Musevic et al.’s
data9 in Figure 8b rather than our computed pairwise attraction,
as the latter is due to the rotation of the doublet that is absent
here. Perhaps because our initial separation is too small,F in
Figure 11b does not exhibit the experimentally recorded long-

range regime, where the attraction decays with the chain-chain
separation. Starting from an initial separation of 4a, the chains
barely move in thousands of time units, indicatingF ≈ 0 for R
g 4a. Furthermore,F is some 2 orders of magnitude smaller than
the numerical and experimental data in Figure 8b. This is because
the two antiparallel chains vertically offset bya induce ann field
that is nearly left-right symmetric about the line of centers for
each chain. This is apparent when contrasting the insets in Figure
11a with those in Figure 8a. In the former, the dark brushes are
confined within the gap between neighboring particles in the
chain, while in the latter, they extend to the other particle. Thus,
the antiparallel chain-chain interaction is much weaker than
that between two individual particles. Such symmetry does not
exist for the parallel chains in Figure 10, and thus the chain-
chain repulsion is comparable to the pairwsie repulsion.

3. Multidrop Self-Assembly. We simulate the self-organiza-
tion of eight droplets in a square domain of dimensions 14a ×
14a. Periodic boundary conditions are imposed in both directions;
the lack of a Dirichlet condition forn implies that the director
field will evolve under the influence of the anchoring on the
droplets rather than a far-field alignment. Initially, the droplets
are randomly positioned in the periodic domain (Figure 12a).
Similar to the preceding simulations, the initial director field is
such thatn is radial within a thin ribbon surrounding each droplet
and uniformly vertical outside. After the simulation begins, a

Figure 10. Interaction between two chains in the parallel arrangement. (a) Separation between the second drops from the top. (b) Repulsion
force on the second drop from the top of the right chain.

Figure 11. Interaction between two chains of droplets in the antiparallel arrangement. (a) The separation between the chainsR(t) decreases
from an initial value of 2.9a to an equilibrium one of 2.44a. (b) The attractive forceF, averaged among the droplets, as a function ofR in
the dynamic simulation.
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point defect immediately nucleates near each particle (Figure
12a), which is visualized by the intersection of four dark brushes.

The ensuing self-assembly seems to be driven by the pairwise
interactions discussed in Section III.A. The point defects quickly
move toward the nearest neighbor so the drop-defect dipole
points to the latter, similar to Figure 9. This is seen in Figure
12a for drop 8 (toward drop 6) and drop 1 (toward drop 4). This
is followed, in Figure 12b, by attraction between longitudinal
pairs (drops 1 and 4, 5, and 6 and 6 and 8) as well as repulsion
between lateral pairs (drops 3 and 5 and 5 and 7). The repulsion
between 3 and 5 is short-lived, however, as the drop-to-defect
dipole for drop 5 rotates clockwise until it points toward drop
3. Afterward the two attract in a similar way to the two bottom
droplets of Figure 10a. Toward the end of the simulation (t )
547.8), a predominant chain has taken shape, consisting of drops
8, 6, 5, 3, and possibly 1 (Figure 12d), oriented diagonally. Drops
1, 4, and 2 are forming a minor chain along the vertical direction.
Drop 7 is the only “free” droplet at this moment but may eventually
be absorbed into the diagonal chain by attraction from drops 1
and 3. Because of the double periodicity of the computational
domain, the interaction among the droplets are not guided by a
fixed far-field orientation, and the assembly proceeds slowly,
especially in the late stage. Because of the modest number of
droplets, chain-chain interaction is absent and the formation of
2D arrays cannot be simulated.

Qualitatively, the self-assembly of droplets into chains is in
agreement with experimental observations in 3D nematics3,4,9

and 2D smectic-C films.39,42Quantitatively, we can compare the
time required for the self-assembly and the equilibrium drop
spacing in the chain. Cluzeau et al.39 reported chain formation
in 2.8 s in their experiment, which translates to a dimensionless
time of roughly 110. This is comparable to the timescale of chain
formation in Figure 12. In the diagonal chain of Figure 12d, the
point defect is more or less midway between the neighboring
particles, with a distance of 1.37a to the drop center. Thus, the
drop spacing isRe ) 2.74a. This is in reasonable agreement with
the experimental measurements for chains both in 3D nematic
(Re ) 2.6a)3 and in 2D smectic-C films (Re ) 2.6a ( 0.2a).39

The most comparable computational study seems to be that
of Yamamoto and co-workers.20,38 As mentioned in the Intro-
duction, their scheme is quasi-static and ignores hydrodynamic
effects. It amounts to assuming that the flow is much slower than
elastic relaxation and thus decouples the particle motion from
flow in the limit of a vanishing Ericksen number. This is perhaps
justifiable in the final stage of the self-assembly, but the dynamics
can be important early on as shown by our simulation of pairwise
interactions. There is a second and perhaps more significant
difference. The theoretical model of Yamamoto20is such that the
satellite point defect is unstable in 2D and the pairwise interaction
is of the “quadrupolar” type rather than the “dipolar” type seen

Figure 12. Self-assembly of eight drops in a doubly periodic domain. Note that the time is made dimensionless byηa2/K.
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here and in most experiments. Consequently, the particles
aggregate into clusters that tend to assume an angle with the
far-field orientation, which is fixed in his computation. These
clusters should be compared with the “kinked chains” formed
of droplets bearing Saturn rings9 or particles with planar
anchoring.6 The straight chains linked by point defects, prevalent
in experiments with 3D nematics as well as 2D smectic-C films,
cannot be realized using his theoretical model. In a more recent
work, Yamamoto et al.38 presented results for a smectic-C film.
The free energy appears slightly different, and a stronger
anchoring parameter is used. This produces satellite point defects
near individual particles, which assemble into chains that are
similar to ours in Figure 12. The final center-to-center separation
Re ) 2.88a is somewhat larger than our and previously reported
experimental values. The timescale of self-assembly cannot be
compared because of the quasi-static nature of their computation.

IV. Conclusion

Through dynamic simulations, we have explored the interaction
of particles in a nematic medium using a more or less rigorous
theory of nematohydrodynamics. The goal is to gain a more
rational understanding of the self-assembly process than that has
previously been achieved through analogies and ad hoc models.
The results on pairwise and multiparticle interactions can be
summarized as follows.

(a) The long-range attraction force between pairs of droplets,
each having a point defect that is on the line-of-centers of the
droplets and facing the same direction, obeys a scalingF ∼ R-4

with the drop separationR. This is the most well-established fact
about pairwise interaction and is consistent with the idea of
attraction between dipoles.

(b) Pairwise interaction in shorter range is poorly documented,
and there is considerable discrepancy among the few theoretical
and experimental studies. We have examined several configura-
tions for the drop-defect ensemble in which the droplets attract

or repel each other. The dynamic nature of the interaction is
important, especially in the early stage, and the force between
droplets cannot be represented by that between dipolar and
quadrupolar moments.

(c) Multiple droplets form linear chains via pairwise attraction
and repulsion between neighboring droplets. Preformed parallel
chains repel each other if their drop-to-defect vectors are in the
same direction. They attract if their orientations are reversed.

We have compared our simulations with prior static calculations
and experiments to the greatest extent possible. There is
qualitative, and sometimes semiquantitative, agreement. More
detailed comparison is hampered by experimental complications
such as the presence of substrates and difficulties in quantifying
anchoring strength as well as two limitations in our simulations:
two-dimensionality and the small number of particles. On a more
fundamental level, a vector-based theory such as the Leslie-
Ericksen model cannot describe the structure of the defect core,
which may play a role in the interaction between particles in
close proximity.9 Clearly, more carefully designed experiments
and sophisticated computations are needed to establish a coherent
and detailed understanding of particle interaction and assembly
in nematics.

Acknowledgment. Acknowledgment is made to the donors
of The Petroleum Research Fund, administered by the American
Chemical Society, for partial support of this research. J.J.F. was
also supported by the NSERC, the Canada Research Chair
program, the Canada Foundation for Innovation, and the NSFC
(No. 50390095). C.Z. acknowledges partial support by a
University Graduate Fellowship from UBC. We thank Siddharth
Khullar for the experimental images in Figure 6 and Carl Ollivier-
Gooch for help with implementing periodic boundary conditions
in the code.

LA703312F

3110 Langmuir, Vol. 24, No. 7, 2008 Zhou et al.


