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We use dynamic simulations to explore the pairwise interaction and multiparticle assembly of droplets suspended
in anematic liquid crystal. The computation is based on a regularized tésfieksen theory that allows orientational
defects. The homeotropic anchoring on the drop surface is of sufficient strength as to produce a satellite point defect
near the droplet. Based on the position of the defects relative to the host droplet and the far-field molecular orientation,
we have identified five types of pairwise attractive and repulsive forces. In particular, long-range attraction between
two droplets with their line of centers along the far-field orientation decay §swith R being the center-to-center
separation. This agrees with prior static calculations and a phenomenological model that treats the attraction as that
between two dipoles. For interaction in shorter ranges, our simulations agree qualitatively with experimental measurements
and static calculations. However, there is considerable quantitative discrepancy among the few existing studies and
our simulation. We suggest that this is partly due to the dynamic nature of the process, which has never been taken
into accountin prior calculations. Multidrop simulations show the formation of linear chains through pairwise interactions
between nearby droplets. Parallel chains repel or attract each other depending on the relative orientation of the
drop-to-defect vector. These are consistent with experimental observations of chain formation and two-dimensional
self-assembly in bulk nematics and smectic-C films.

[. Introduction weak anchoring limit for particles bearing the Saturn ring, and

Common emulsions involve isotropic liquids such as oil and thus provided an explanation for the kinked lines. In the rest of
water. When the continuous phase is an anisotropic liquid crystal, thiS paper, we limit ourselves to droplets with strong homeotropic
the emulsion exhibits unusual microstructures. In their well- &nchoring. ,
known monograph, de Gennes and Prasgtscribed the ag- POL_Jlln et al® proposed a theoretlca! framevyork for under-
gregation of bubbles on the free surface of a cholesteric as stringsStanding the self-assembly of droplets into chains. As the water
that delineate the molecular orientation. In nematics, Poulin and 9roP Possesses homeotropic anchoring onits surface, its inclusion
co-workers carried out a series of experimental observations on!n @n otherwise uniformly oriented liquid crystal necessitates the
pattern formation of suspended particuldtesWater droplets ~ @Ppearance of defects. In this case, a point defect known as a
suspended in the thermotropic liquid crystal pentylcyanobiphenyl NyPerbolic hedgehog”accompanies each water droplet, and the

(5CB) in the nematic phase form chains with neighboring drops

two form a dipole when viewed from a great distance. Attraction

separated by a constant distance, and the chains tend to a”grlpetween such dipoles explains the formation of chains of droplets

with the background nematic orientatiénThis was later
confirmed by experiments using PDMS oil drops in another
thermotropic nematic mediufi® The formation of parallel chains

requires a strong homeotropic anchoring on the drop surfaces,

i.e., with the directom normal to the surface. With planar
anchoring or weak homeotropic anchoring, the droplets form
kinked lines at an angle with the background orientafich.
Ruhwandl and Terentjé¥%!1obtained analytical solutions in the
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separated by the satellite point defects. Furthermore, the elastic
energy incurred by the point defect prevents the neighboring
drops from contact and coalescence. Thus, long-range attraction
and short-range repulsion both play roles in the formation and
stability of the self-assembled pattern. Poulin ef&land
Lubensky et al? used phenomenologicahsatzdirector fields

to compute the long-range attraction between neighboring
particles as due to the interaction among effective dipoles and
qguadrupoles.

Qualitatively, the above explanation is clear and convincing.
But the nature of pairwise interaction needs to be clarified in a
more rigorous way. For example, the dipolgipole interaction
accounts for long-range attractions and predicts R~ for R
> a, with F being the attraction forceR being the center-to-
center separation, and being the particle radius. Both
experimental measuremehit* and numerical computatiots
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have borne out this long-range scaling. What becomes of the

Zhou et al.

to multiple defect configurations and in the transition among

attractive force as the particles move close to each other? Lubenskyhem. For multiple particles, the dynamic evolution will be
etall?used the repulsion between quadrupolar moments to predictimportant to the self-assembly process and therefore warrants an

adecline of the attraction but could not produce a repulsive force
even wherR— 2a. Data of Poulin et al¥show that the attraction
force F starts to fall below the scaling & ~ 3a. Nod et all*
measuredr for a wider range oR. The decline of the attraction

indepth study.

In this paper, we present what appears to be the first dynamical
simulation of the self-assembly of multiple droplets in a nematic
liquid crystal. The numerical methodology is based on a phase-

force for short separations is much steeper than predicted by thefield representation of the interface and employs finite elements

model of Lubensky et al. Finally, Fukuda et'&lcomputed the
repulsion between two “antiparallel” dipoles, with the two defects
onthe outer side of the droplets. They founet r—3in the whole
range ofr from slightly above 2 to 9a, in disagreement with
ther= scaling predicted by dipolar interaction. Thus, there is
still much uncertainty about the nature of the pairwise inter-
action.

More recently, two-dimensional (2D) colloidal crystals have
been achieved via nematic-mediated self-assef§iyhey are
of potential importance as a novel way to control the stability
and structures of colloid$and as templates for novel optical
materialst® In particular, Musevic et dl.identified lateral
interaction between parallel chains as the key mechanism in
governing 2D crystallization. As in the study by Poulin ef3al
particles with the hedgehog defect form chains along the direction
of the background nematic orientation. If another particle is in
the vicinity of the chain with its dipole parallel and in the same
direction as those in the chain, it is repelled by the chain.
Conversely, if the single particle’s dipole is opposite to that of
the chain (antiparallel configuration), attraction occurs. Hence,

antiparallel chains aggregate and form a regular and robust

hexagonal lattice. Using an energy minimization procedure similar
to that of Fukuda et at3Musevic et aP computed the equilibrium
arrangement of particles, which turns out to be a periodic pattern
similar to observations. But the defect separating particles in the
chain is a small ring instead of the observed point defect.

All the above computations are concerned with ttatic
equilibrium position, which has been sought through a straight-
forward energy minimization procedure. In reality, the particles
move as aresult of elastic relaxation, and hence the director field
is not at equilibrium until the motion ceases in the end. The

with adaptive meshing to resolve the interfaces as well as defects
in the nematic bulk. After describing the numerical methodology
and the algorithm, we will report axisymmetric and 2D planar
simulations on pairwise interactions and self-assembly of
multiple droplets. In particular, we will explore the nature of
longitudinal and lateral pairwise interaction forces. In view of
prior experimental observations, we will then investigate the
formation of chains, chainchain attraction and repulsion, and
2D assembly of a cluster of droplets. Where possible, compari-
sons will be made to experiments as well as previous static
computations.

II. Theory and Numerical Method

Recently, we have developed a general finite-element algorithm
AMPHI for simulating interfacial dynamics in two-component
rheologically complex fluidg? The interfaces are treated as having
a small but finite thickness with a phase-field variable changing
continuously from one phase to the other. Fluid properties, such as
density and viscosity, and flow quantities, such as pressure and
velocity, change steeply yet continuously across the interfaces. Hence,
no discontinuity appears in the system. The phase fieldthich
indicates the position of the interfaces, is governed by a mixing
energy consisting of two components, one “hydro”-philic and the
other “hydro”-phobic. This energy-based formulation easily incor-
porates complex rheology as long as the free energies of the
microstructures are known. The package has been extensively
validated* and applied to simulate drop deformation, coalescence,
and jet breakup in Newtonian and viscoelastic liqufd®.

The nematic liquid crystal admits a natural energetic description.
Bulk distortions may be described by the Frank enérayd surface
anchoring can be described by the RapiRapoular anchoring
energy?’28 Thus, the elastic characteristics are easily incorporated
into the phase-field framework of AMPHI. Anisotropic viscosities

process cannot be treated as quasi-static in general, and thenay be introduced via Leslie coefficients. Thus, we have recently

dynamic pairwise and multiparticle interaction may differ
appreciably from predictions based on equilibrium director fields.
The dynamic problem is much more difficult than the static one.
The motion of the particles is typically driven by an elastic force
due to nematic distortion. The fluid flow and evolution of the
director field are coupled, and both are in turn dependent on the
position and the motion of the particle surfaces on which velocity
and anchoring boundary conditions are enforced.

This complex task seems to have been first tackled by Stark
and Ventzk}® using the Leslie-Ericksen theoryto model the
nematic. Up to now, dynamic simulations have been done on the
motion of single particles. Yamamdfeveloped a scheme for
evolving the position of multiple particles by elastic forces in
a quasi-static manner. The director field is equilibrated at every
step and no fluid motion is involved. But there have been no
dynamic simulation on pairwise and multiparticle interactions

in the nematic. Previous experiments and computations on ay

single particlé*~23 have shown rich dynamics in the approach
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adapted AMPHI to explore the defect dynamics around a single
drop rising in a nematic phagé?°For the multidroplet simulations

to be presented, the code has been generalized to allow periodic
boundary conditions in two directions. Details of the theoretical
model and computational algorithm can be found in reports by Yue
et al?*27and Zhou et a#? In the following, we will only summarize

the main ideas and give the governing equations.

Consider atwo-componentimmiscible blend of a Newtonian liquid
and a nematic liquid crystal. For the problem at hand, we may visualize
Newtonian drops of arbitrary shape and size suspended in the nematic
medium. The Newtonian bulk is representeddpy= —1 and the
nematic byp = 1, and the interfaces are simply the level seof
= 0. The governing equations are the continuity and momentum
equations supplemented by the Catfilliard equation for the
transport of the phase fieltf” and the Leslie-Ericksen equations
for the nematic directon:??
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wherek, €, andy are the interfacial energy density, capillary thickness,
and mobility of the diffuse interface, respectively. The dengity
((A+¢)/2)p1 + ((1—¢)/2)p2 is an average between the two com-
ponents. The stress tensoiin the momentum equation is:

0= —AV¢V¢ — kL er ¢Vn-(Vn)T -

G+#a’+

2 buvu+ (7)1 (5)
whereG is the anchoring stress of the nematic director on the interface,
G = A(n-V¢)nVe for planar anchoring an@ = A[(n-n)V¢ — (n-
V¢)n]| Ve for homeotropic anchorind is the surface anchoring
energy densityK is the bulk elastic constant of the nematics under
the one-constant approximation, amds the Newtonian viscosity.

o' is the Leslie viscous stre¥s!in the nematic phase

o' = a,D:nnnn+ a,NN + 0NN+ a,D + asnnD + agD-nn (6)

wherea, ¢ are the Leslie viscous coefficients obeying an Onsager
relationa, + a3 = o — as, so five of them are independenb
=1Y[Vv + (Vv)T] is the strain rate tensof2 = /,[(Vv)T — Vo] is

the vorticity tensor, and = (dn)/(dt) — Q-n is the rotation ofn

with respect to the background flow field. The director fiek/olves

in the flow field according to a balance between elastic and viscous
torques as given in eq 4. The molecular figlddenoting elastic
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In axisymmetric and planar 2D geometries, these equations are
discretized on a unstructured grid of triangular elements using the
Petrov-Galerkin formulation with streamline upwinding for the
constitutive equatiof* A critical ingredient of the algorithm is an
adaptive meshing scheme that accurately resolves the drop interfaces
as well as the defect cores at a manageable computational cost. As
the interface and defects move, the mesh quality is monitored and
updated by coarsening and refinement as needed. Time integration
is by animplicit second-order scheme with the time step automatically
adjusted according to the motion of the interfat&ypical grid
sizes areh; = 0.006 on the interface and near defedts,= 0.2a
in the bulk of the drop fluid, andi; = 0.5a in the matrix. The
meshing module of the program smooths the transition between
different regions. Numerical experiments have shown that these
grid sizes and the time step used in the simulations are sufficient
for numerical convergence.

As a general numerical algorithm for computing nematic-particle
interactions, our package is versatile and powerful. We should perhaps
mention some of its features, though not all of them will be important
to the computations reported below. First, our code accounts for
several factors that have been largely ignored in the past. These
include the drop deformation, which in some cases may interact
with the nematic order in the vicinity of the surfafdinite anchoring
strength that may conceivably be tuned to manipulate the resultant
colloidal structure, and the fully anisotropic rheology of the nematic
phase, which plays a major role in the motion of dispersed particulates
in a nematic mediur® Second, the phase-field formulation has the
advantage of simulating topological changes such as interfacial
rupture and coalescence naturally under a short-range force
resembling the van der Waals for&There is no need for manual
intervention as in sharp-interface models to effect such events. Finally,
the finite-element method with adaptive meshing makes possible
simulations of multiple interfaces and defects in complex geometries
while maintaining accurate spatial resolution of the large-gradient
regions.

We must note that the code is limited at present to two spatial

torque in the nematic phase, derives from the free energies of thedimensions. Some of the geometric setups to be simulated are

systemt

1+ -1)
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2

n
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with g = A(n-V¢) V¢ for planar anchoring and = A[((V¢*V¢)n

— (n-V¢)Vg¢] for homeotropic anchoring. The term involviny
arises from regularizing the Frank energy to allow defétts:

2 4\2
fedr) = ¢ vn + L2 1)] ®)

Thus, a defect is represented oy that falls below unity within a
small area of sizé. This regularization is inspired by the Landau
Ginzburg equatiof#-33and amounts to a simplified form of Ericksen’s
theory with a variable order parame#éwyith |n| acting as the local
order parameter. We have us&d= 4¢ since the defect core size
is comparable to the interfacial thickness. Note that in the limit of
€ — 0, the diffuse interface model reverts to the classic Navier
Stokes sharp-interface hydrodynamiék particular, the interfacial
tension o and Rapini-Papoular anchoring constail¥ can be
recovered from the diffuse-interface parameters for seaflo =
2v/24/3¢ andW = 2/2A/3¢. We have used = 0.01a for most of
the calculations,a being the radius of the droplets. Previous
computations indicate that sucheais small enough to approximate
the sharp-interface limit in the present simulatiéh®, especially

axisymmetric and thus can be readily handled by the code. Others,
such as the self-assembly of multiple droplets, occur in 3D, and we
are forced to compute a planar 2D analogy of them. However, this
is not as severe a restriction as it might appear. Considerable
theoretical and experimental work has been done on particle
interaction in freely suspendsdectic C filmswhere the dynamics

is essentially 2D. Such results provide direct benchmarking for our
computations. Furthermore, their general similarity to observations
in 3D nematics suggests that the underlying physics is common and
that our 2D numerical simulations are relevant to 3D reality. More
details will be given in the next section.

Some remarks on terminology seem necessary to avoid confusion
in discussing the results. The term “2D” has two meanings in this
paper. One refers to the 2D patterns formed by particles as opposed
to 1D chains. The other refers to the spatial dimensions in the
computations. Similarly, we sometime use the term “dipole” to refer
to the drop-defect ensemble, with the drop-to-defect vector indicating
its orientation. This is to be distinguished from the electrostatic
analogy that treats the partietparticle interaction as that between
“dipolar” and “quadrupolar” moment&. In fact, an important
conclusion to be drawn from our simulations is that the pairwise
interaction is not of the dipolar nature in general.

I1l. Results and Discussion

This section has two main parts. The first deals \piiirwise
interactions with each of the droplets bearing a single hyperbolic

because they involve no small-scale phenomenon such as surfacdéiedgehog defect. The two droplets are initially arranged so that

rupture.

(30) Leslie, F. M.Quart. J. Mech. Appl. Math1966 19, 357—370.
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(33) Liu, C.; Walkington, N. JSIAM J. Numer. Anal200Q 37, 725-741.
(34) Ericksen, J. LArch. Rat. Mech. Anall991, 113 97—-120.

their line of centers is parallel or perpendicular to the far-field
nematic orientation. These will be called, respectively, the
longitudinal and lateral pairs. In each case, the two drop-to-

(35) Yue, P.; Feng, J. J.; Liu, C.; ShenJJColloid Interface Sci2005 290,
281-288.
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A\ 2 The complete set of dimensionless groups governing our system
i is
LA
’ !
: o= % (drop-to-matrix density ratio) 9)
‘ 1
I
i 1
! p= . (drop-to-matrix viscosity ratio) (20)
i 0,2
H
A= Vv?a(anchoring-to-bulk energy ratio) (11)
B w
: A= . (anchoring-to-interfacial tension ratio) (12)
i
! p,Ua
v [ 2 Re= T (Reynolds number) (13)
- I -

t~

=Y (capi
Figure 1. The geometry of the computational domain. The radius Ca= o (capillary number) (14)

of the drops isa. With axisymmetry around theaxis, the domain
is half C_)f the meridian plane. For 2D computations, the domain is along with the various length ratios of the geometry and the
the entire rectangular box. ratios between the Leslie viscous coefficieriRe and Ca are

) . o . defined using a characteristic velodily= K/(1a) and the viscosity
defect dipoles may be in the same direction (parallel) oropposne77 = (0 + o + ag)/2 that is the average between the largest

to each other (antiparallel). Special attention will be given to the 54 smallest Miesowicz viscositiéghe rationg/o, distinguishes
pairwise interaction forces in connection with the open questions “flow-aligning” nematics from “tumbling” ones in simple shear
in the literature regarding the dipolar nature of this interaction. fows. In the complex flows due to droplet self-assembly, this
The second part explores the interaction and self-assembly ofistinction is insignificant. Experiments have also used a wide
rnultlplg dropletsWe WI|| stuqy the fgrmatlon of linear ch_alns, range of thermotropic and lyotropic liquid crystals of both aligning
interaction between neighboring chains in parallel and antiparallel 5,4 tumbling types. We have adopted the Leslie viscosities of
orientations, and finally 2D assembly of droplets in a doubly 5 ~ommon nematic MBBA at 25C for all computationd: oy
periodic domain. o — 6.5,0p= —77.5,03 = —1.2, 04 = 83.2,065 = 46.3, andug

For a longitudinal pair of droplets, the geometry is axisym- — _35 4 centipoise (cP). Furthermore, we have assumed that the

metric. For the other configurations, the real physics is 3D and igotropic drop phase has the same density as the nematic medium
we are forced to simulate a 2D analogue of itin a planar domain. 3nq the same viscosity as the isotropic part of the nematic

With gxisymmetry, the compgtational domain is half of thel viscosity;o. = 1, # = 1. For the anchoring energy, prior
meridian plane, as shown in Figure 1. The rectangular domain gxperiments cited “strong anchoring” without giving a vélue
has a width of. = 15a in the radial direction and lengtH = while computations typically assumed rigid anchortdn all
24aalong the axis of symmetry, wheags the drop radius. The e computations, we have used a lafge= 100. In addition,
two droplets are located on tRexis with top-bottom symmetry  yyis typically much smaller than the interfacial tensia?f We

at some initial separation. The outer boundary & L is a have used\, = 0.2. This, along with a smalCa = O(10°9),

nonslip wall, and periodic boundary conditions are imposed on gngres that the droplets never deviate visibly from the spherical
the top and bottom. Theaxis has symmetric boundary conditions shape. The Reynolds numb&e = O(10°2) for all the

for all the variablesy/or = 0. Note that no boundary conditions computations and inertia is negligible.

are needed on the drop surfaces; velocity and shear-stress | presenting the results, we have used two different methods
continuities occur naturally, and the interfacial tension is 4 visualize the nematic orientation (Figure 2). The first is a

accounted for by the interfacial stresdVpVe ineq 5. The 2D compyted light intensity map through crossed polarizers, which
domains are rectangles with periodic conditions in the vertical ;419 correspond to birefringent images recorded in the
or both directions. For the former, the nonperiodic boundaries experiments. This will be used for the longitudinal pairs in

are nonslip walls with rigid anchoring. axisymmetric geometry. The numerical scheme is detailed by
.The initial n(r).fleld is uniformly vertical gverywhere except  Han and Rey’ For a satellite point defect near a drop, Figure
within a small distance from each drop; in this shelligns 2a shows the light intensity map along with vector lines for the

radially. Thus, the initial director field has an abruptjump between giractor fieldn(r). The pattern of two bright lobes separated by
the near-field and far-field orientation. After the simulationstarts, 5 garker line. with the point defect at the tip, closely resembles

there is a rapid rearrangement in the near field, resulting in a gynerimental pictures in the literatu#®423The second pre-
pointdefect near each droplet. For all cases except one (cf. Figuresantation (Figure 2b) uses contoursmf(— Y-)2in a 2D planar
4), this initial transient is short and insignificant to the ensuing  yomain wheren is the horizontal component o£2:38 Thus

dynamic evolution of the director field. Even though the director bright areas indicate a horizontal or verticaWwhile dark areas

does not distinguish betweerand—nin reality, we have found  1ayen at a 45 angle. The point defect is clearly marked by the
the direction ofn a convenient means to control the location of

the defect. If the far fieldhis upward and the near field is radially (36) Sonin, A. AThe Surface Physics of Liquid Crystalst ed.; Gordon and
outward, the point defect will nucleate below the drop. Changing Bfe(g%‘ S:E“\S/CES{ Flzz?/SA DMacromolecule< 995 26, 84018405

either will put the defect above the drop. This scheme will be (38) Yamamoto, R ; Nakayama, Y. Kim. B. Phys.: Condens. Matt&004

used to produce parallel and antiparallel dipoles in the simulations. 16, $1945-51955.
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(a) (b)

Figure 2. Representation of the director field: (a) birefringent pattern for an axisymnrefietd through crossed polarizers; (b) grayscale
representation af in 2D geometries with contours of,¢ — 1/,)2. White indicates a vertical or horizonta) while black means a 4%ilt.
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Figure 3. Attraction between a longitudinal pair of drops in the parallel configuration. Time is made dimensionless by the elastic relaxation
time 7. = ya?K, length is made dimensionless yand force is made dimensionless by The same nondimensionalization is used for

all later plots. (a) The center-to-center distaitas a function of time. The insets show the defect configuration, visualized as in Figure

2a, attime = 56.1 and 145.1. (b) The attraction fore€R), computed by integrating the elastic stress around the drop, compared with prior
experimental data (symbols) and theoretical results (lines). The dash line is the drag force estimated from eq 16, and the dash-dot line is
the phenomenologicdp of eq 15. The long-dash line indicates tRe* scaling.

focal point from which four dark brushes emanate. The gradient a. In the rest of the paper, we will use the same sign convention,
of the grayscale indicates the degree of elastic distortion, whichi.e., repulsion being positive and attraction being negative.
reaches a maximum at the point defect and dies off in the far
field.

A. Pairwise Interactions. 1. Longitudinal Pairs. Consider

In our dynamic simulation in the axisymmetric computational
domain of Figure 1, the two droplets indeed attract each other,
first the interaction of two particles in the parallel configuration, and_:_rl\:)eyr sepalranon_dze Zr;af:(_as n tgne f_:%m an m?&?h final h
with a center-to-center distanceRfThe defects are on the line ,equ” ”“”?V,? UeRe = 2. X (Figure 3a). The spee ,O approac
of centers, which is parallel to the far-field director orientation. Ncreases initially a& shrinks and reaches a maximum around
Representing the long-range force by the interaction of dipolar R = 3.52. Afterward, the speed quickly drops to zero. In the
and quadrupolar moments, Lubensky efZatonstructed a  equilibrium state, one point defect is roughly midway between
phenomenological formula for the attraction foféebetween  the two drops, a distance of 122rom either drop center.

the particles: Compared with the position of the point defect near a single
drop?? the defect between the droplets is “compressed”. The

Fo a\4 a\6 other defect is at a greater distance of h,3&hich is close to
Ak _24-9‘{§) + 62-2](§) (15) that of a single drop. Note that the equilibrium separation of

2.45 agrees with prior experimentaland numerical results
Note that the dipolar attraction (the first term) dominates the t0 within 3%. TheR(t) curve closely resembles that of Poulin
quadrapolar repulsion (the second term) at large distances.et al’® In the experiment, the particles’ approach takes about 5
Mathematically, the repulsive force becomes significant for s, which corresponds to a dimensionless time of 136 and is
smallerR, but the formula is supposed to be used onlyRer comparable to that in Figure 3a.
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Figure 4. Interaction between a parallel longitudinal pair of droplets with an initial separation smaller than the equilibrium value. (a) Temporal
evolution of the center-to-center distariRig) and elastic forc&(t). F is computed by integrating the elastic stress, and positive values denote
repulsion. (b) Comparison between the compuEée) and the ones measured by Ne¢ al 14

We have also computed the instantaneous attractive force
between the droplets, by integrating tastic stress components
over the drop surface, and this is plotted in Figure 3b. To extract
an attractive force from the particle trajectory, Poulin etal.
calculated a Stokes drag with an “effective viscosityiheasured
from a capillary tube:

Fp = 6zuaVv (16)
whereV is the instantaneous velocity of the particles. Tlken
is equated tép by assuming zero inertia for the particles. In our
computationsRe~ 1072 and inertia is negligible. But strictly
speaking, the idea of a constant effective viscosity is suspect
since the anisotropic viscosity may vary significantly depending
on the flow field?2 As a test of eq 16, we have computésiby
takingueto ben, the average between the largest and the smallest
of the Miesowicz viscosities. This turns out to be a reasonable
approximation off; it is about 12% smaller in magnitude but
follows the same trend. The discrepancy comes from the choice
of ue. Since the nematic director is mostly normal to the drop
surface, itis no surprise that underestimates the local viscosity
and hence the drag ford&.

For large separationsR( > 5a), all computations and
measurements agree with the fact that the attraction fbrce
obeys th&R“scaling. This is consistent with the dipolar attraction
in eq 15. The magnitude of otris slightly below Lubensky et
al.’sformula and Noket al.’s data. Poulin et al.’s data, however,
are lower by a factor of about 4. This may be due to their using
aue in eq 16 that is too low. Prior studi€sl421put the lower
bound ofR for the R~ scaling between®and 4, whereas our
F starts to fall below the power law & ~ 5a. The reason for
this difference is unclear at present. Gureaches a maximum
nearR = 3.6a and then declines with decreasiRgThe data of
Nod et al. show a much stronger attraction for smaRéollowed
by a precipitous drop withifR ~ 2.5a. Thus, their interaction
is much more “hard-sphere-like”, with a shorter range than in
our case. Equation 15 is a poor approximation for short-range
interaction, as expected. The quadrupolar repulsion is far too

relaxes into one with two point defects, similar to the insets of
Figure 3a. This elastic relaxation, an artifact due to the initial
condition, produces the anomalous behavior in Figure 4 for the
initial period of the simulationt(< 2). At the beginningR
decreases momentarily £ 0.5) before increasing with time.
Then the droplets separate from each other with increasing velocity
until t ~ 2. With negligible inertia, the acceleration reflects the
changing forces on the droplets. Indeed, the repulsive férce
also increases witR in this period, which is counterintuitive.
Since timet is scaled by the elastic relaxation time= 7a%/K,

the duration of this initial transient & 2) being of order one

is reasonable. Only afterward doeslecrease with increasing

R as expected. The motion ceases at an equilibrium separation
of Re = 2.45, the same value as that reached in the pairwise
attraction simulation of Figure 3. Therefore, only the latter part
of the simulation, witht > 2 andR > 2.4, can be meaningfully
compared with static measurements/gR) (Figure 4b). The
numerical result parallels the trend of the experimental Hata,
although is shifted to largeR, again indicating longer range
interaction in our computation than in the experiment. Incidentally,
Nod et al*reported that pushing the two particles too close will
result in the point defect opening into a ring. Our simulations
show the same transition for initial separations below 2.37

We turn our attention now to two droplets in the antiparallel
configuration with the two point defects lying outside of the pair,
one on the top of the upper drop and the other below the lower
drop. The initial center-to-center separation between the drops
is 2.5. There is a rapid elastic relaxation at the beginning of the
run, but unlike in Figure 4, this transient is insignificant compared
with the length of the simulation. The two droplets separate in
time with a slowly decreasing velocity (Figure 5a). The simulation
is terminated aR reaches 18, and the droplets get close to the
top and bottom of the computational domain (cf. Figure 1). At
that time, the two are still moving apart very slowly. As before,
we plot the repulsion forc& as a function oR in Figure 4b.
ForRvalue up to @, F decays a®k 13, For larger separations,
the decline ofF becomes even milder.

weak to represent the decline of attractive force with decreasing Fukuda et af! computed the static repulsion between two
R. In fact, the formula never predicts much reduction in the antiparallel dipoles fixed in space. Their results show the scaling
attraction before the drops touch. F ~ R3, whichis in disagreement with tfe“ scaling expected,

If the drops are initially closer than the equilibrium separation at least for largdR, from dipolar interactions. Why does obr
Re, they are expected to repel each other. To explore this scenariogxhibit an even slower decay? For the last part of the simulation,
we simulated the separation of two droplets from an initial sayR> 6a, one canimagine thatthe periodic boundary conditions
separation of 2.3 Upon start of the simulation, the field on the top and bottom of the domain have introduced an
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Figure 5. The repulsion between an antiparallel longitudinal pair. (a) The sepafdtipmcreases from an initial value of 25(b) The
repulsion force- has a long range and decays slowly with

side, with their line-of-centers orthogonal to the far-field nematic
orientation, the geometry is no longer axisymmetric. Therefore,
we resortto 2D planar simulations for lateral pairwise interactions.
The same is true for the multiple particle interactions in the next
section. Fortunately, 2D dynamics can be realized experimentally
by incorporating relatively large particles or droplets into freely
suspended smectic-C and smectic-C* filffis fact, considerable
research has been devoted to this special setup as a rare opportunity
to study “anisotropic, two-dimensional emulsiori€The 2D
character greatly simplifies theoretical anal§sfdand facilitates
experimental observatiodtdFor example, in a smectic-C* film

of thickness smaller than the helical pitch, the droplets are
observed to interact through the accompanying point defect and
form chains, in qualitatively the same fashion as in 3D nemétics.
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) 50 700 150 Therefore, our 2D simulations enjoy greater relevance to reality
t than can be generally expected.
Figure 6. Experimental observation of the repulsion between an  Consider first, the parallel configuration for a lateral pair with
antiparallel pair of droplets. The insets are images through crossedtheir dipole direction initially in parallel (Figure 7). The

polarizers. The drop on top is at the end of a vertical chain (not
shown) with upward dipolar orientatiorR and t are made
dimensionless by the drop radiasndz. = na%/K, with = 0.0765

rectangular computational domain has a horizontal width af 17
and a height of 18 and the two drops are initially placed side

Pas,a = 50 4, andK = 10711 N. by side in the middle with a separation of 3a83®)pon start of
the simulation, there is again a very brief transient caused by the
interference. A plausible explanation for the mid/3 initial initial n(r) field relaxing to lower the elastic distortional energy.

decay is the dynamic nature of our simulation. As the droplets Asthe two hedgehog defects take shape, they move inward toward
move apart, the surrounding director field is continuously each other. There is no rotation of the drops in this process. Then
evolving. This will produce a different elastic force on the droplets  the two droplets repel each other and move apart laterally (Figure
than when the droplets are fixed in space. Even though the total7a). This motion slows down in time and eventually stops at a
simulation lasts more than 18Qthe drops move an appreciable dimensionless time~ 80. The apparent steady-state has a drop
0.1a apart withinze. Therefore, the velocity of separation is too ~ separatiorRe = 4.02a and an angle between the two dipoles of
high for the process to be considered quasi-static. 46.9.

To probe the antiparallel repulsion further, we have conducted  Musevic et aP measured the interaction potential for a single
an experiment on the interaction among droplets of silicone oil particle when itis placed beside a chain of particles in 5CB, with
in the nematic 5CB. Occasionally the antiparallel configuration the dipole of the single particle parallel to that of the chain.
appears and repulsion is observed. We present one such scenarilthough their result may have involved contributions from
in Figure 6, where a single droplet (at bottom) is repelled by multiple particles in the chain, we have estimated their repulsion
another (at top) with an opposite dipolar direction, the latter forceF and compared it with our numerical result in Figure 7b.
being the end of a chain of particles with upward dipoles. Over Two differences stand out. O#ris several times smaller, and
the entire period of observation, the separaamcreases almost it drops to zero rather abruptly at a relatively short separation.
linearly in time. If we ignore the later portion of the data (say The largerF in Musevic et al.’s measurement is probably due
R > 3.58) because nearby droplets may have interfered, there
does appear to be a weak power-law decay of the velacity (39) Cluzeau, P.; Poulin, P.; Joly, G.; Nguyen, HPhys. Re. E 2001, 63,
R70% f(.)r the range of 2.6 < R < 3.5, This implies that the Og%zg)szz, C.; Stannarius, RPhys. Re. E 2004 70, 061702.
repulsion force also decays weakly according to R°5. That (41) Pettey, D.; Lubensky, T. C.; Link, D. Rig. Cryst.1998 25, 579-587.
this power law is much closer to our dynamic computation than 20(()12%?%333,22-: Bougrioua, F.; Joly, G.; Lejeek, L.; Nguyen, H.ig. Cryst.
prior static computations lends support to our argument above. ™ 43) Boiganov, P. V.: Demikhov, E. I.; Dolganov, V. K.: Bolotin, B. M.:

2. Lateral Pairs. When a pair of droplets are placed side by Krohn, K. Eur. Phys. J. E2003 12, 593-597.
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Figure 7. The interaction between a lateral pair of droplets in the parallel arrangement. (a) The center-to-centerR(igtarceases as

the droplets repel each other. Tinéeld is visualized as in Figure 2b in the insets. (b) The repulsion fBras a function oRin the dynamic
simulation. The data of Musevic et @hre also shown for comparison.
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Figure 8. The interaction between a lateral pair of droplets in the antiparallel arrangement. (a) The center-to-centeR{3@eoeases

as the drops approach each other. Their line of centers also rotates clockwise. In the end, the two droplets coalesce. (b) The attractive force
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to repulsion from neighboring particles in the chain. The short configuration and the nature of the attraction. This causes the
range of ouF may have to do with the side walls on which fixed decline of the attraction force fdR < 2.3a.
vertical anchoring isimposed. Besides, the drop-to-defect vectors  In the static measurements of Musevic efal single particle
tilt toward each other as the drops separate. This configurationis placed beside a chain of particles, with its dipole antiparallel
promotes attraction between drops (cf. Figure 10), which may to that of the chain. The single particle is not abreast with one
have shortened the range of repulsion relative to that for parallelin the chain but rather is staggered between two neighboring
dipoles. Note also that the simulation is dynamic ina 2D geometry, ones (cf. Figure 11a). Thus, the measufezbmes from two or
while the experiment is static in 3D next to a substrate. It is more particles inthe chain, and there is no relative rotation among
difficult to speculate on the implications of such factors for the particles as exhibited by our doublet. Subject to these
Additional measurements of Musevic efauggested thata  complications, perhaps only the initial portion of our result, say
lateral pair with their dipoles in antiparallel arrangement will R> 2.4 in Figure 8b, is comparable with the experimental data.
attract each other. We have simulated such a scenario in theSimilar to the repulsion between a parallel pair (Figure 7b), our
same computational domain as above, with the droplets initially force is smaller in magnitude and also occurs in a much shorter
side by side at a separation of 2z6Figure 8). The droplets not ~ range than in the experiment. The apparent agreement in the
only approach each other laterally but also shift vertically so as humped shape of the curves is probably fortuitous. In the
to move the two point defects closer (see insets). As the line of experiment, the attraction dies down when the single particle is
centers makes an angle of roughly 28th the vertical far-field pushed too close to the chain. In our simulation, on the other
nematic orientatiort & 125), the two point defects siton opposite hand, the two drops maneuver in two dimensions. The downturn
sides of the line of centers instead of moving into the gap betweenin the attraction force with shrinking is due to the evolving
the droplets. Soon afterward, the two drops coaleste=&it36. defect pattern toward the end.
In this process, the attractive for€evaries nonmonotonically To summarize the results and discussion in this subsection,
with the separatioR®, with a peak aR = 2.3a (Figure 8b). With our simulations reproduce the characteristics of pairwise interac-
decreasing, the attraction initially increases as one would expect. tions as measured in experiments and predicted by ad hoc models.
Then the relative rotation between the droplets changes the defecEor longitudinal doublets, a parallel pair tends to attract each
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40 the drops into a straight line. Since this horizontal force is
proportional to sind, where@ is the angle between the line-
of-centers and the vertical, the motion is fast initially witeis

large and slows down toward the endés> 0.

The process of chain formation is qualitatively the same as
observed in 3D nemati#8and 2D smectic C* films$®However,
the periodicity of the computational domain in the vertical
direction introduces an artifact. As the four-particle array is
repeated above and below, the equlibrium interparticle separation
Reis predetermined a4, of the height of the domain, independent
of the physical parameters of the system. In this c&es
3.12% is somewhat higher than the 2D observation 0a2%
Note also that we have used the regular zigzag initial configuration
. : for ease of analyzing the forces in the droplets. Similar chains
600 800 should form from a more random initial configuration. We will
! explore such a scenario toward the end.
Fligure dgl Fourt_dropr)]letsagl_sr:amﬁleimoe}\;ﬁrti%al chainin ;"g’gtﬂca"y 2. Chain—Chain Interactions. Experiments indicate that
alilgned nematic ase. e nel (0) e aomain Is . P . . .
pe?iodic conditiong in the vertical%irection. The side walls are 20 chain—chain interaction is ceqtral to.the forr.natlc.)n.of regulgr 2D
apart and are not shown in the plots. The angjldetween the f’:lrrays? From afundamentalyleyvpo|nt, (}harnham |.nt.eract|on
neighboring drops and the vertical axis, decreases frohid¥ard is more complex than pairwise interactions since it involves the
zero. collective motion of multiple particles and defects. Motivated by
the experiment of Musevic et &.we have simulated the
other while an antiparallel pair repels, unless their initial separation interaction between two chains, each consisting of four droplets,
is very small. For lateral pairs, parallel pairs repel while antiparallel in the parallel and the antiparallel configurations.
ones attract. Besides, computations and measurements exhibit The computation domain has a width ofal8nd a height of
common trends in the magnitude of the forces. For example, 13.3a, and the boundary conditions are the same as in Figure 9.
longitudinal interactions are stronger than lateral ones. For longi- The parallel chains are initially separated by a center-to-center
tudinal pairs, the parallel attraction is greater than the antiparallel distance oR= 3.2a (Figure 10a). The defects are directly below
repulsion, whereas for lateral pairs, the parallel repulsion and thethe droplet and the chains are parallel to the far-field director
antiparallel attraction have comparable magnitudes. These carprientation. Upon start of the simulation, the two defects at the
be rationalized by the relative position of the point defects, as pottom of the chains quickly move inward toward each other
it determines the elastic distortion surrounding the droplets.  (Figure 10a). This is reminiscent of the defect motion in the
Quantitatively, the long-range longitudinal attraction between lateral pair of Figure 7. Meanwhile, the other three pairs of defects
parallel pairs is the only situation with a well-established scaling are confined between the neighboring droplets and are not free
(F ~ R, whichis consistent with the simple picture of dipele  to move. In view of the pairwise repulsion, one expects the two
dipole attraction. For closer ranges, the inter-particle force shows chains to move laterally away from each other in time. This is
considerable divergence among different computational and largely true, except for the two droplets at the bottom. By breaking
experimental studies. To a large extent, this discrepancy reflectsthe mirror symmetry, the left droplet moves downward while the
the dynamic nature of the interaction when the particles are right one moves upward, with the two forming an attractive
allowed to move. However, a clearer understanding requires doublet similar to that in Figure 3. At this point, the motion of
more careful computations as well as measurements that accounthe droplets has practically stopped, and a steady-state config-
for complicating factors such as differences in spatial dimen- uration emerges. The symmetry breaking may have been triggered
sionality and the presence of substrates. by numerical noise such as asymmetry in the unstructured grid
B. Multidrop Interactions. 1. Chain Formation. Among but is indicative of the instability of the symmetry pattern. The
experimental observations, the most prominent feature of self- branched conformation closely resembles experimentally ob-
assembly is the formation of chains parallel to the far-field director served patterns for water droplets in a 3D nematic phase, e.g.,
orientation® We simulate this by arranging four droplets in a Figure 11 of Poulin and Weitz.
regular zigzag pattern in a rectangular domain (Figure 9 inset), We have also computed the repulsive foFcen one of the
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with initial center-to-center separation a&nd the line of centers
making an angle of 39with the vertical. The width of the domain
is 20g, and its heightis 12& The director is fixed in the vertical

upper particles and plottel(R) in Figure 10b. Based on the
pairwise repulsion shown in Figure 7, we expécto decline
monotonically withR. The curious rise for 32< R < 3.5ais

direction on the side walls, where the velocity vanishes. Periodic not due to the initial elastic relaxation, since its duration is roughly
boundary conditions are used for the upper and lower boundary.20 times the elastic timescate Rather, it is the result of the

As before, the initial director field has a thin ribbon of radially
outward orientation around each drop, outside of whigloints
uniformly upward.

complex dynamic interaction between the chains. As the two
bottom drops attract each other, their attraction force “propagates”
up the chains as if along a string. This amounts to an additional

Upon start of the simulation, the director field near each droplet attraction on the upper drops, which weakens the repulsion force
quickly rearranges itself and produces a satellite point defect. for the initial period. As the two bottom particles approach, their
These defects are not directly above or below the drop, as oneattraction dies out and so does this effect. Then the repulsion

would expect for a single droplet in an otherwise vertically
oriented nematic phase. Rather, the droptigfect dipole points

force F assumes its normal decay with The magnitude oF
is between that of our pairwise repulsion and Musevic et al.’s

toward the neighboring drop below it (Figure 9). Then, each measurement in Figure 7. Therefore, interaction with multiple
drop experiences attraction from both neighbors, according to particles is responsible, partly at least, for the larger repulsion

the pairwise attraction force of Figure 3. The net effect is to pull

force here and in Musevic et al.’s experiment than our pairwise
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Figure 10. Interaction between two chains in the parallel arrangement. (a) Separation between the second drops from the top. (b) Repulsion
force on the second drop from the top of the right chain.
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Figure 11. Interaction between two chains of droplets in the antiparallel arrangement. (a) The separation between tRéctearsases

from an initial value of 2.8 to an equilibrium one of 2.4 (b) The attractive forc&, averaged among the droplets, as a functioR of
the dynamic simulation.

repulsion. Note also thd&t decays over a longer range than the range regime, where the attraction decays with the chetiain
pairwise repulsion, and the steady separation is larger. These arageparation. Starting from an initial separation af the chains
consistent with the idea that for the pairwise interaction in Figure barely move in thousands of time units, indicatfg- 0 for R
7, the tilting of the drop-defect vectors toward each other > 4a. Furthermoref is some 2 orders of magnitude smaller than
promotes attraction and suppresses repulsion. the numerical and experimental data in Figure 8b. This is because
The attraction between antiparallel chains turns out to be the two antiparallel chains vertically offset Bynduce am field
simpler as it does not greatly distort the conformation of each that is nearly left-right symmetric about the line of centers for
chain (Figure 11). The initial condition is similar to that of Figure - each chain. This is apparent when contrasting the insets in Figure
10a, but the right chain is flipped vertically so that the point 113 with those in Figure 8a. In the former, the dark brushes are
defect is on top of each droplet. The two chains are also offset ¢onfined within the gap between neighboring particles in the
vertically by a distance od. The initial separation between the  ,ain \while in the latter, they extend to the other particle. Thus,
lines of centersis 280 This setup approximates towhatMusevic o antinarallel chainchain interaction is much weaker than
et al? used (_axperlmentally. The two chains approach each Otherthat between two individual particles. Such symmetry does not
with avglouty thatis roughly constant uptte- 900'. Afterward, exist for the parallel chains in Figure 10, and thus the chain
the motion slows down, and &t 1300, the chains approach chain repulsion is comparable to the pairwsie repulsion.

an equilibrium state with a separation of 2a4#etween the ) ] )
centerlines (Figure 11a). This is reasonably close to the S3-Multidrop Sel-Assembly. We simulate the self-organiza-

experimental value of 2.31° tion of eight droplets in a square domain of dimensiona %4
The chain-chain attractiorF, plotted in Figure 11b, differs ~ 14a. Periodic boundary conditions are imposed in both directions;
marked|y from the pairwise attraction in Figure 8b. F|@R) the lack of a Dirichlet condition fon Implles that the director

does not show the humped shape. The decline with shrirRing field will evolve under the influence of the anchoring on the
should be compared with a similar decline in Musevic et al.’s droplets rather than a far-field alignment. Initially, the droplets
dat# in Figure 8b rather than our computed pairwise attraction, are randomly positioned in the periodic domain (Figure 12a).
as the latter is due to the rotation of the doublet that is absentSimilar to the preceding simulations, the initial director field is
here. Perhaps because our initial separation is too skatl, such thahis radial within a thin ribbon surrounding each droplet
Figure 11b does not exhibit the experimentally recorded long- and uniformly vertical outside. After the simulation begins, a
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(¢) t= 33.1 (d) t= 547.8
Figure 12. Self-assembly of eight drops in a doubly periodic domain. Note that the time is made dimensioniegiby

point defect immediately nucleates near each particle (Figure Qualitatively, the self-assembly of droplets into chains is in
12a), which is visualized by the intersection of four dark brushes. agreement with experimental observations in 3D nenvatits
The ensuing self-assembly seems to be driven by the pairwiseand 2D smectic-C film&242Quantitatively, we can compare the
interactions discussed in Section I1.A. The point defects quickly time required for the self-assembly and the equilibrium drop
move toward the nearest neighbor so the drdgfect dipole spacing in the chain. Cluzeau et®8keported chain formation
points to the latter, similar to Figure 9. This is seen in Figure in 2.8 s in their experiment, which translates to a dimensionless
12a for drop 8 (toward drop 6) and drop 1 (toward drop 4). This time of roughly 110. This is comparable to the timescale of chain
is followed, in Figure 12b, by attraction between longitudinal formation in Figure 12. In the diagonal chain of Figure 12d, the
pairs (drops 1 and 4, 5, and 6 and 6 and 8) as well as repulsionPoint defect is more or less midway between the neighboring
between lateral pairs (drops 3and5and5 and 7) The repu]sionpartides, with a distance of 1.870 the drop center. ThUS, the
between 3 and 5 is short-lived, however, as the drop-to-defectdrop spacing ie= 2.74a. This is in reasonable agreement with
dipo|e for drop 5 rotates clockwise until it points toward drop the experimental measurements for chains both in 3D nematic
3. Afterward the two attract in a similar way to the two bottom (Re = 2.68)% and in 2D smectic-C filmsRe = 2.6a + 0.28).%
droplets of Figure 10a. Toward the end of the simulatio ( The most comparable computational study seems to be that
547.8), a predominant chain has taken shape, consisting of drop®f Yamamoto and co-workef8:38 As mentioned in the Intro-
8, 6,5, 3,and possibly 1 (Figure 12d), oriented diagonally. Drops duction, their scheme is quasi-static and ignores hydrodynamic
1,4, and 2 are forming a minor chain along the vertical direction. effects. Itamounts to assuming that the flow is much slower than
Drop 7 isthe only “free” droplet at this moment but may eventually elastic relaxation and thus decouples the particle motion from
be absorbed into the diagonal chain by attraction from drops 1 flow in the limit of a vanishing Ericksen number. This is perhaps
and 3. Because of the double periodicity of the computational justifiable in the final stage of the self-assembly, but the dynamics
domain, the interaction among the droplets are not guided by acan be important early on as shown by our simulation of pairwise
fixed far-field orientation, and the assembly proceeds slowly, interactions. There is a second and perhaps more significant
especially in the late stage. Because of the modest number ofdifference. The theoretical model of Yaman®is such that the
droplets, chair-chain interaction is absent and the formation of satellite point defectis unstable in 2D and the pairwise interaction
2D arrays cannot be simulated. is of the “quadrupolar” type rather than the “dipolar” type seen
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here and in most experiments. Consequently, the particlesor repel each other. The dynamic nature of the interaction is
aggregate into clusters that tend to assume an angle with themportant, especially in the early stage, and the force between
far-field orientation, which is fixed in his computation. These droplets cannot be represented by that between dipolar and
clusters should be compared with the “kinked chains” formed quadrupolar moments.

of droplets bearing Saturn rinyor particles with planar (c) Multiple droplets form linear chains via pairwise attraction

gnchonng@ The st!ralght chalns_llnked by pomtdefects,.prevglent and repulsion between neighboring droplets. Preformed parallel
in experiments with 3D nematics as well as 2D smectic-C films, chains repel each other if their drop-to-defect vectors are in the
cannot be realized using his theoretical model. In a more recentsame direction. They attract if their orientations are reversed.

work, Yamamoto et a8 presented results for a smectic-C film. . . . . . .
The free energy appears slightly different, and a stronger We have_comparedour5|mulat|onSW|th prlorstatllccalculatlons_
anchoring parameter is used. This produces satellite pointdefectsa ndl_te>t(_per|me(;1ts to :he greatgst e>t<_'ie:1_t possible. Tt:e;: IS
near individual particles, which assemble into chains that are qual_a ve, an _somfa Imes semiquantta |_ve, agreemen : _ore
detailed comparison is hampered by experimental complications

similarto ours in Figure 12. The final center-to-center separation e e e
R. = 2.88is somewhat larger than our and previously reported such as the presence of substrates and difficulties in quantifying
anchoring strength as well as two limitations in our simulations:

experimental values. The timescale of self-assembly cannot be X . . X
two-dimensionality and the small number of particles. On a more

compared because of the quasi-static nature of their computation, -
fundamental level, a vector-based theory such as the Leslie
IV. Conclusion Ericksen model cannot describe the structure of the defect core,
which may play a role in the interaction between particles in
of particles in a nematic medium using a more or less rigorous close pro.xn.’mtyﬁ? Clearly, more carefully designed experlments
and sophisticated computations are needed to establish a coherent

theory of nematohydrodynamics. The goal is to gain a more . . o -
rational understanding of the self-assembly process than that ha%n:éjrigilfsd understanding of particle interaction and assembly

previously been achieved through analogies and ad hoc models.

The results on pairwise and multiparticle interactions can be .
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Through dynamic simulations, we have explored the interaction



