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This paper presents a two-dimensional particle-based model for the red blood cell, and
uses it to compute cell deformation in simple shear and pressure-driven flows. The cell
membrane is replaced by a set of discrete particles connected by nonlinear springs; the
spring law enforces conservation of the membrane area to a high accuracy. In addition, a
linear bending elasticity is implemented using the deviation of the local curvature from
the innate curvature of the biconcave shape of a resting red blood cell. The cytoplasm
and the external liquid are modeled as homogeneous Newtonian fluids, and discretized by
particles as in standard smoothed-particle-hydrodynamics (SPH) solution of the Navier-
Stokes equations. Thus, the discrete particles serve not only as a numerical device for
solving the partial differential equations, but also as a means for incorporating micro-
scopic physics into the model. Numerically, the fluid flow and membrane deformation are
computed, via the particle motion, by a two-step explicit scheme. The model parameters
are determined from experimental measurements of cell viscosity and elastic moduli for
shear, areal dilatation and bending. In a simple shear flow, the cell typically deforms to
an elongated shape, with the membrane and cytoplasm undergoing tank-treading mo-
tion. In a Poiseuille flow, the cell develops the characteristic parachute shape. These are
consistent with experimental observations. Comparison with prior computations using
continuum models shows quantitative agreement without any fitting parameters, which
is taken to be a validation of the particle-based model and the numerical algorithm.

1. Introduction

Several human diseases are caused by pathological changes in the mechanical properties
of cells (Suresh et al. 2005; Lee & Lim 2007). In malaria, the changes are brought on
by external factors such as parasites and bioactive lipids. In cancer, the changes are due
to internal factors (genetic mutation). These factors change the internal structure and
mechanical behavior of living cells through biochemical reactions. The disease progression
is often facilitated by altering in mechanical behavior of living cells such as large changes
of elastic modulus. For instance, the Young’s modulus of cancerous cells is about one-
tenth that of healthy cells (Lee & Lim 2007). This will increase the deformability of
cancerous cells so they can migrate through size-limited pores in the basal membrane
and endothelium during metastasis. Healthy red blood cells (RBCs) squeeze through
tiny capillaries to deliver oxygen to various parts of the body. When they are infected by
the protozoan Plasmodium falciparum, intracellular structural changes may increase the
elastic modulus of the red cell by more than a factor of 10 (Suresh 2006). The stiffened
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RBCs can no longer deform sufficiently to traverse narrow capillaries. Instead they block
the capillaries and disrupt the blood flow, possibly leading to coma and even death.

Studying the exact changes in mechanical behavior of infected cells illuminates the
mechanism behind disease progression and provides important knowledge in the fight
against these diseases. By understanding the alteration in mechanical behavior of infected
cells it will be possible to design new diagnostic devices and techniques to detect diseases
in an early stage. For interpreting and predicting the mechanical behavior of living cells,
theoretical modeling has followed two main directions: the continuum approach and the
microstructural approach (Lim et al. 2006).

The continuum approach treats the whole cell or its components as homogeneous ma-
terials represented by appropriate constitutive equations. The relevant model parameters
are determined from experimental observations and measurements. The simplest contin-
uum model is the Newtonian liquid drop model (Yeung & Evans 1989; Drury & Dembo
1999), which treats the cell as a liquid drop with a constant cytoplasmic viscosity and
a constant surface tension, the latter representing cell membrane elasticity. More com-
plex constitutive equations, accounting for shear-thinning and viscoelasticity, e.g., have
also been proposed. Still more sophisticated continuum models seek to reflect the multi-
phase nature of the cellular components, either through mixture-type “biphasic models”
(Herant et al. 2003) or an explicitly two-phase treatment of the cell as a deformable
capsule, with liquid cytoplasm enclosed by an elastic or viscoelastic membrane. The lat-
ter approach is related to fluid-structure interactions in mechanical systems, and thus is
especially appealing to fluid dynamicists (Eggleton & Popel 1998; Pozrikidis 2005b; Li
& Sarkar 2008; Pappu & Bagchi 2008; Pan & Wang 2008).

The advantage of the continuum models is that they are amenable to computational
methods developed for fluid and solid mechanics. However, they do not reflect the mi-
crostructural changes inside the cell that sometimes take place in response to mechanical
stimulation. One example is the activation of white blood cells, which may drastically
alter the cells’ mechanical properties (Yap & Kamm 2005a,b). Such changes cannot be
faithfully represented by, say, the relaxation time of a viscoelastic model of leukocytes
(Dong & Skalak 1992).

The microstructural models seek to account for the interplay between microstructural
remodeling inside the cell and its mechanical behavior as a whole. So far, the most popular
and successful models are the network models, which treat the cytoskeleton as the main
structural component of the cell that determines its mechanics. For instance, Stamenovic
& Coughlin (2000) modeled the elastic response of the cell by a network of struts and
cables that represent the microtubules and actin filaments. Boey et al. (1998) proposed
a three-dimensional network model inspired by the spectrin network in erythrocytes. An
elastically based network free energy may then be minimized to determine the equilibrium
shape of the red cell, as well as its deformation subject to external stretching (Li et al.

2005). Allowing the cytoskeletal network to undergo active polymerization, Herant et al.

(2003) incorporated the kinetics and network-membrane interaction through convection-
diffusion equations. Here, the network is described as a pseudo-continuum having statistic
properties. One obvious advantage of network models is the knowledge, to a certain degree
of approximation, of the configuration of the intracellular components. If the network is
discrete with a large but finite number of links, that physical discretization can be used
directly as a numerical discretization for computation (Bottino 1998; Secomb et al. 2007).

Recently, several research groups have experimented with particle-based representations

of cells, and proposed what may be seen as a new class of discrete microstructural models.
Boryczko et al. (2003) and Dzwinel et al. (2003) treated an erythrocyte as an elastic object
of uniform properties, which is represented by a rectangular lattice of particles connected
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by elastic springs. Postulating conservative and dissipative forces among particles of the
same (liquid-liquid or solid-solid) and different (solid-liquid) species, they solved for the
flow of the suspending plasma and the solid deformation by a variant of the dissipative
particle dynamics (DPD) method. Inspired by the smoothed particle hydrodynamics
(SPH) method, Tanaka & Takano (2005) and Tsubota et al. (2006a,b) represented the cell
membrane by particles connected by springs that produce resistance to both stretching
and bending. With the fluid particles exerting forces on the membrane particles, the
motion and deformation of the cell can be computed using SPH algorithms. Most recently,
Pivkin & Karniadakis (2008) presented a three-dimensional DPD model for RBCs based
on coarse-graining the spectrin network models.

Obviously, the discrete particle models are in their infancy and not nearly as sophis-
ticated as the network models. In fact, one can easily point out several flaws with these
models. For example, treating the whole cell as a homogeneous lattice (Dzwinel et al.

2003) makes it impossible to account for any organelle in the cytoplasm, much less dy-
namic changes of the microstructure as happen during neutrophil activation. In this
sense, the cell is more like an elastic continuum. Besides, the effective elasticity of the
lattice depends not only on the spring constant, but also on the specific shape, size and
topology of the grid. This makes it difficult to compare between different models and with
experiments. The SPH-based models are flawed in their representation of membrane-fluid
interaction. The model of Tsubota et al. (2006a) does not have any cytoplasm at all, and
thus one cannot speak of conserving the cell volume or mass. Instead an ad hoc constraint
is placed on the overall area (or arc length in 2D) of the membrane to discourage severe
expansion or contraction of the cell. The model of Tanaka & Takano (2005) includes
the cytoplasm, but it tends to leak through the membrane. Apparently the inter-particle
forces are not properly designed (Nakamura et al. 2006). Moreover, the particle-level
model parameters have not been systematically related to physiological measurements;
they have to assume unrealistic values for the prediction to be quantitatively comparable
with reality (Tanaka & Takano 2005).

In spite of these problems, we see a unique potential for discrete particle models. In
comparison with the network, the particles offer far more freedom in modeling the in-
ternal structure of cells. For instance, clusters of particles having common properties
that differ from the surroundings may represent various organelles, and the interaction
among different particles may be dynamically evolved to reflect, say, the remodeling of
the cytoskeleton triggered by internal or external factors as alluded to at the begin-
ning. From a computational standpoint, particle methods are meshless, and particularly
suitable for simulating large deformation of soft matter. Thus, it seems worthwhile to
develop the ideas of discrete particle models further, and potentially into a tool for
studying the structural-property-disease coupling that sometimes comes under the name
of nanobiomechanics (Lee & Lim 2007).

This paper represents a first step in that direction. We adapt the SPH picture of par-
ticles, which have overlapping regions of influence for smoothing and interpolation, by
adding extensional and bending elasticity between the particles representing the RBC
membrane. As indicated above, the discrete nature of the model allows one to go be-
yond the continuum framework to probe micro- and nanostructural responses to external
stimulation. However, we limit ourselves in this paper to establishing a basic cell model
without active reconfiguration of the microstructures. These features will be incorpo-
rated in future studies. Thus, we set two objectives for this work: (a) to present a 2D
particle-based model for the erythrocyte with a Newtonian-liquid cytoplasm and an elas-
tic membrane having both extensional and bending moduli; (b) to validate this model
by computing RBC motion and deformation in 2D shear and pressure-driven flows, and
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(a) (b)

Figure 1. (a) Particle-based model for the red blood cell, with fluid particles representing
the cytoplasm and the suspending plasm, and spring-connected solid particles representing the
cell membrane. (b) Schematic of extensional and bending elasticity between particles in the
membrane.

comparing the numerical predictions to experimental data and continuum-based compu-
tations in the literature.

2. Physical model and numerical scheme

Consider an RBC suspended in a Newtonian plasma. Similar to previous discrete-
particle models, we deal only with 2D planar geometry here, and leave the extension to
3D to a future endeavor. We view the RBC as a capsule made of an elastic membrane
enclosing a Newtonian cytoplasm. The plasma and the cytoplasm flow according to the
Navier-Stokes equations. Thus each is discretized by “fluid particles” in the SPH sense,
the two kinds having different properties tuned to reflect the density and viscosity of
the two liquids. The membrane is replaced by a collection of “solid particles”, connected
by elastic springs obeying a nonlinear spring law (Fig. 1). In addition, we introduce a
separate bending elasticity that controls the variation of the membrane curvature. Note
that in 2D, shearing in the tangential plane of the membrane is excluded; membrane
deformation is limited to stretching and compression tangential to the membrane and
bending.

It seems appropriate at this point to briefly review the ideas underlying the SPH
method and clarify the relationship between these and our cell model. SPH originated in
astrophysics some three decades ago (Gingold & Monaghan 1977; Lucy 1977), and was
later adapted for solving hydrodynamic problems (Morris et al. 1997). In this form, SPH
is mostly a numerical device for discretizing the Navier-Stokes equations in Lagrangian
coordinates. The particles are interpolation points from which the fluid properties may
be calculated by “smoothing” over neighboring particles. Although the particles have
mass and move according to Newton’s law of motion, the forcing terms stem directly
from discretizing the continuum governing equations. Solid boundaries are discretized by
solid particles, and the fluid-solid interaction may be defined so as to satisfy the no-slip
boundary condition. Being completely meshless, the method does not require connectivity
data as do finite volume and finite element methods. Thus, SPH is convenient in dealing
with complex flows exhibiting large deformations, and especially fluid-solid interactions
with large interfacial deformation (Hosseini & Amanifard 2007).

In our cell model of Fig. 1, the fluid components inside and outside the membrane are
represented by classical SPH particles. For the membrane particles, however, we insert
additional physics on the particle level in the form of elastic forces that on the cell level
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amount to the appropriate elastic properties of the membrane. Specifically, we introduce
a set of nonlinear springs between each pair of neighboring particles on the membrane to
account for compression and stretching (Fig. 1b). The spring law, to be detailed in the
following, reflects the areal conservation and strain-hardening nature of the RBC mem-
brane (Skalak et al. 1973). In addition, we introduce a bending elasticity that penalizes
deviations of the local curvature from that of the biconcave “resting shape” of RBCs.
This way, the particles representing the membrane not only play their conventional role in
SPH as interpolating points, but also carry new physics that define membrane elasticity.
As mentioned above, it is the latter role that makes the discrete-particle approach par-
ticularly suitable for modeling the coupling between cell mechanics and microstructural
evolution inside the cell.

2.1. Constitutive models for the membrane

The lipid-bilayer structure of the red blood cell membrane endows it with a very high
modulus against areal expansion or contraction, so the surface area is essentially con-
served (Skalak et al. 1973; Eggleton & Popel 1998). In the meantime, the membrane
is very flexible with respect to shear deformation and bending, such that the RBC can
deform readily to pass through narrow capillaries. The membrane is so thin compared
with the cell size that it may be considered a 2D elastic shell. A constitutive equation
for such a membrane can be obtained by adapting 3D elasticity or by postulating a
2D relationship directly. Barthès-Biesel et al. (2002), among others, have compared the
constitutive equations that have been proposed for RBC membrane. The 2D version of
Hooke’s law is the simplest constitutive law; it assumes a linear dependence of tension
on surface deformations, and is applicable only for small deformations. The neo-Hookean
and Mooney-Rivlin models are classical hyperelastic models for rubber-like materials. But
their lack of membrane areal conservation and strain-softening behavior for large defor-
mation make them inappropriate for RBC membrane modeling (Barthès-Biesel et al.

2002).
So far, the most successful constitutive model for RBC membranes appears to be that

of Skalak et al. (1973). When a 2D elastic shell is subject to in-plane stretching, with
extensional ratio λ1 and λ2 along the principal directions, Skalak et al. (1973) proposed
the following strain-energy function:
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Any changes in the area produces a deviation of λ1λ2 from unity, which will result in
a large elastic tension due to the large magnitude of ED relative to ES . As a result,
the membrane area is kept approximately constant during deformation. In addition, the
Skalak constitutive model exhibits strain-hardening for large deformation (Barthès-Biesel
et al. 2002). Based on these features, we have decided to adopt the Skalak constitutive
model for the extensional springs in our particle model.

In our 2D simulation, the RBC membrane is a closed planar curve instead of a 2D
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curved surface. By putting the out-of-plane stress component T2 to zero, one obtains
an expression of λ2 in terms of λ1. When plugged into Eq. (2.2), this yields the one-
dimensional stress for stretching the membrane (Barthès-Biesel et al. 2002):
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where C = ED/ES , the ratio between the dilatation and shear moduli, is above 104 for
healthy RBC (Skalak et al. 1973). For our extensional springs between the membrane
particles, λ1 will be the ratio between the deformed and resting lengths.

The bending elasticity is reflected by a resistance against deviation from the equilib-
rium membrane curvature corresponding to the biconcave natural shape of the RBC.
Following Evans & Fung (1972), we describe this biconcave shape by the following equa-
tion:

ȳ = 0.5 (1 − x̄2)1/2(c0 + c1x̄
2 + c2x̄

4), −1 ≤ x̄ ≤ 1, (2.5)

where c0 = 0.207, c1 = 2.002, c2 = 1.122, and the non-dimensional coordinates (x̄, ȳ) are
scaled by the radius of a human RBC a = 3.9 µm.

Almost all prior continuum models for the RBC membrane have used a linear bending
elasticity (Pozrikidis 2003; Bagchi 2007; Zhang et al. 2007):

m = EB(κ − κ0), (2.6)

where m is an external bending moment exerted on a infinitesimal segment of the mem-
brane, EB is the bending modulus, and κ and κ0 are the local curvature in the deformed
and resting states. The sign conventions for m and κ are that m is positive if it squeezes
the outside of the membrane and stretches the inside, and κ is positive if the membrane is
locally concave, with the center of the osculating circle lying outside the cell. This is the
case at the center of the RBC, while near the edge κ < 0. To implement Eq. (2.6) for our
particle-based membrane, κ will be computed from the position of neighboring particles
and m must be converted to nodal forces. Details will be given below in subsection §2.5.

2.2. Governing equations for fluid flow

In the SPH algorithm, incompressibility is approximated by a small artificial compress-
ibility. Thus, the governing equations may be written in a Lagrangian framework as:

Dρ

Dt
= −ρ∇ · v, (2.7)
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1
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]

, (2.9)

where t is time, g is the gravitational acceleration, p is pressure, v is the velocity vector,
τ is the viscous stress tensor and D/Dt refers to the material derivative. Although body
force will not be important for the computations to be presented here, we will include g

in discussing the algorithm for completeness.
The artificial compressibility is a device for coupling the particle pressure to their

motion (Monaghan 1992). The motion of particles, if not observing the constraint ∇·v =
0, produces a variation in the particle density ρ through Eq. (2.7). In turn, this causes
a pressure disturbance through the artificial equation of state (Eq. 2.9), which can then
be used to correct the velocity field and make it solenoidal. In the equation of state
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(Batchelor 1999), ρ0 and p0 are reference quantities, and the large exponent γ = 7
produces a strong pressure response to density variations and keeps the density variations
negligibly small (below 1%), even at high Reynolds numbers (Morris et al. 1997; Cleary
et al. 2002).

2.3. Discretization using SPH

The SPH method allows any function to be interpolated from its values at a set of
discrete points—the SPH particles—using a kernel or weighting function W (r − r

′, h),
which specifies the contribution to any field variable at r by a particle at r

′ that lies
within 2h of r. The weighting function is normalized such that (Monaghan 1992)

∫
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′), (2.10)
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where ∆Vj is the volume element at r
′

j , and has been replaced by the ratio between the
mass and density of the jth particle: ∆Vj = mj/ρj. The summation is over all particles
that lie within a circle of radius 2h centered at r, and Aj is a shorthand for A(r′

j).
The gradient ∇A(r) is evaluated through an integration by parts to transfer the gra-

dient operator onto W (Hosseini et al. 2007):
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N
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Note that calculating the spatial derivatives in SPH requires no mesh information, and
this gives a straightforward way to construct gradient of a function from its values at the
SPH particles. In this paper we adopt a popular spline-based kernel function

W (r, h) =
σ

hν
×
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where s = |r|/h, ν is the number of dimensions (ν = 2 here) and σ = 2/3, 10/7π or
1/π in one, two and three dimensions, respectively. This kernel has compact support so
that its interactions are exactly zero for r > 2h. The second derivative of this kernel is
continuous and the leading-order error in an interpolation is O(h2). Higher-order splines
can be used, but they interact at larger distances and thus are computationally costlier.

2.4. Solution algorithm

Through the interpolation operation outlined above, any partial differential equation can
be discretized into ordinary differential equations governing the motion of SPH particles.
In particular, the momentum equation (Eq. 2.8) may be discretized for fluid particles as
(Monaghan 1992):
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ρ2
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)∇iWij + Πij , (2.14)
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where Wij is a shorthand for W (ri−r
′

j , h) and ∇i designates the derivative with respect
to ri. Πij represents the viscous stress term, and we employ the formula suggested by
Morris et al. (1997):

Πij =
∑

j

mj
(µi + µj)rij · ∇iWij

ρiρj r2

ij

vij , (2.15)

with vij = vi − vj , rij = ri − rj and rij = |rij | is the distance between particles i
and j, whose viscosities µi and µj may differ if they represent different phases or fluid
components.

The momentum equation has three forcing terms on the right-hand-side: body force,
the pressure gradient and the viscous force. These must be treated properly, along with
the continuity equation and equation of state, to approximate incompressibility. At each
time step, the governing equations are solved for each particle to update its position,
velocity and pressure. The sequence in which the forcing terms are incorporated can
differ from one algorithm to another. Here we use a fully explicit two-step algorithm
(Hosseini et al. 2007). In the first step, the momentum equation is solved with body
force g and viscous force Π but not the pressure gradient. Thus, an intermediate velocity
ṽ is generated and the particle positions are updated accordingly. Because this step is
not subject to the incompressibility constraint, we expect it to perturb the density of
some particles away from the reference value ρ0. The density variation can be computed
directly from the updated particle position (Monaghan 1992)

ρ(r) =
∑

j

mj W (r − r
′

j , h). (2.16)

This is equivalent, within the interpolation errors of the scheme, to the continuity equa-
tion Eq. (2.7) (Monaghan 1992; Morris et al. 1997).

In the second step of the algorithm, the pressure is calculated, using the equation of
state (Eq. 2.9), from the perturbed ρ field. Thus, areas with denser particles have a larger
ρ and a higher p that would tend to disperse them, and vice versa. The latter action is
achieved through correcting the velocity field by solving the momentum equation again,
with only the pressure gradient term on the right-hand-side:

v̂i =
∑

j

mj

(

Pi

ρ2

i

+
Pj

ρ2

j

)

∇iWij . (2.17)

For each particle, the velocity vi = ṽi + v̂i is taken to be the new velocity at the end
of the time step, and it should be approximately divergence-free. Finally, the position of
the particles are updated by a central differencing scheme:

ri(t + ∆t) = ri(t) +
∆t

2
[vi(t) + vi(t + ∆t)]. (2.18)

The procedure is repeated for the next time step till a specified time is reached.
Numerical stability of the explicit scheme puts a limit on the time step. The following

criterion, due to Morris et al. (1997), works well for our computations:

∆t ≤ 0.125
ρh2

µ
. (2.19)

In addition, SPH algorithms are susceptible to a well-known numerical instability known
as the tensile instability, whereby particles tend to form clumps and cause unrealistic
fracture in the material when it is being stretched (Monaghan 2005). We suppress this
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Figure 2. Element bending groups (EBGs) used to convert the bending moment to pairs of
forces acting on particles in the membrane. The line and arrow styles distinguish pairs of forces
used to replace the bending moment on each line segment.

instability by using the scheme of Monaghan (1994), which introduces a small repulsive
force between nearby particles when they are in a state of tensile stress.

2.5. Bending moment

In representing the bending elasticity in our particle-based model, the moment m needs to
be transformed to forces acting on the membrane particles. This is accomplished by using
the element bending group (EBG) idea for elastic shells (Zhou & Wagoner 1995). In our
2D membrane, the EBG for a membrane particle is made of two adjacent line segments
connecting it to the two neighboring particles. Thus, a membrane with n particles has n
line segments and n overlapping EBGs. Figure 2 depicts the EBG centered at membrane
particle P3 that involves 2 line segments connecting 3 membrane particles. At each time
step the membrane curvature at each particle is calculated by passing a circle over three
neighboring particles. For instance, the curvature at point P3 will be the inverse of the
radius of the circle passing through points P2, P3 and P4. Equation (2.6) then gives the
bending moment m3 at P3. In the EBG scheme, m3 acts on both line segments that
meet at P3. For the segment between P2 and P3, m3 is replaced by a pair of equal and
opposite forces: F32 = m3/r23 on P3 and −F32 on P2. For the segment between P3 and
P4, similarly, m3 generates F34 on P3 and −F34 on P4. This amounts to two forces on
P3. But P3 is also the end point of two other EBGs centered at P2 and P4. Thus, m2

and m4 will produce a force −F23 and −F43, respectively, on P3. In the end, the particle
P3, and every other membrane particle, receives 4 nodal forces as a result of bending
elasticity. Finally, the equation of motion for the membrane particles is:

Dvi

Dt
= g −

∑

j

mj(
pi

ρ2

i

+
pj

ρ2

j

)∇iWij + Πij +

4
∑

n=1

Fi,n +

2
∑

n=1

Ti,n, (2.20)

where the index n refers to neighboring particles on the membrane. This is similar to
Eq. (2.14) except for the 4 bending-based nodal forces Fi,n and 2 extensional spring
forces Ti,n along the line segments.

In summary, the main idea underlying our model is the same as in prior models by
Tanaka & Takano (2005) and Tsubota et al. (2006b), which is to produce realistic dy-
namics on the cell level by manipulating the physics on the particle level. However, our
model represents advances beyond prior work in two key aspects: (i) Our model prop-
erly implements liquid-membrane interactions, in a way that is consistent with the SPH
algorithm. The membrane particles interact with the liquid particles in the cytoplasm
and the suspending plasma according to Eq. (2.20), with an inter-particle pressure that
moderates the repulsion and attraction between particles. As such, the fluid motion and
membrane deformation is fully coupled (Tsubota et al. 2006a). Moreover, since the mem-
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brane particles are held together by extensional elasticity, the particle pressure prevents
the fluid particles from leaking through the membrane (Nakamura et al. 2006). (ii) We
use more realistic constitutive equations for the extensional and bending elasticity, as
well as model parameter values that correspond to physiologically realistic values in the
literature. As will be shown in the next section, this makes possible direct comparisons
with experimental data as well as numerical results based on continuum models. Such
comparisons were not possible with the earlier particle models. For instance, Tanaka &
Takano (2005) had to treat the membrane bending elasticity as an adjustable parameter
when comparing with experiments.

3. Results and analysis

In this section, we study two benchmark problems to demonstrate the capability of
our particle-based model: cell deformation in shear flows and Poiseuille flows. The cell
deformation can be viewed as the outcome of the competition between viscous forces
from the external flow and elastic resistance of the membrane, which is embodied by the
dimensionless group

G =
µUm

ES
, (3.1)

where µ is the plasma viscosity, and the characteristic velocity Um is the mean velocity
for a Poiseuille flow and ka for a simple shear at shear rate k, a being the radius of the
RBC. G can be likened to the capillary number in drop dynamics (Zhou et al. 2008, e.g.).
We can also define two ratios between the moduli:

ÊB =
EB

a2ES
, C =

ED

ES
. (3.2)

Note that in our 2D simulation, ES and ED have the dimension of force over length,
while EB has that of energy. The last independent dimensionless group is the Reynolds
number

Re =
ρUma

µ
, (3.3)

which is on the order of 10−4 for RBC motion in microcirculation as well as in the
computations to be described below. Thus, inertia will be negligible.

3.1. Cell in shear flows

Fischer et al. (1978) observed the deformation of an RBC in simple shear in an experimen-
tal setup that keeps the center of the RBC stationary. For sufficiently high shear rates,
the cell deforms from its biconcave rest shape to an ellipsoid and then to an elongated
spindle-like shape oriented at an angle with the undisturbed flow direction. Meanwhile,
the membrane and cytoplasm execute a rotating motion around the center of the cell,
which is well known as “tank-treading”.

To mimic that experimental setup, we place an RBC in the center of an 8a × 4a
rectangular domain with top and bottom walls moving in opposite directions. Periodic
boundary conditions are imposed at the left and right boundaries such that particles
exiting from one end will emerge from the other. The simulations to be presented use
some 12,000 SPH particles in the domain, and 96 particles on the membrane. In this and
previous calculations (Hosseini et al. 2007), we have confirmed that the spatial resolution
is adequate; doubling the number of particles causes a change in the result on the order
of 1%.

The computations have used model parameters from physiological data for real human
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Figure 3. Deformation of an RBC in shear flow. C = 2×104, G = 0.234 and ÊB = 2.63×10−3 .
The snapshots are for dimensionless times kt = 0, 2, 3, 4 and 10, and the last frame depicts the
flow field surrounding the cell in the steady state.

RBC, with ES = 5.0 × 10−6 N/m, ED = 0.1 N/m and EB = 2.0 × 10−19 N·m (Skalak
et al. 1989). The large ratio of C = 2×104 ensures that little surface areal dilation occurs
and the membrane area is essentially conserved. We have examined differing viscosities
for the cytoplasm and the suspending fluid, but the results presented will have equal
viscosity for the two liquids: µ = 6.0 × 10−3 Pa·s. These are the baseline parameters for
the simulations. We have also systematically varied G and ÊB to probe the effects of the
membrane elasticity; in these exercises C = 2 × 104 is kept constant.

Figure 3 depicts a typical simulations by a sequence of snapshots of the particles in the
domain. One of the membrane particles is drawn in larger size to serve as a marker to
illustrate the tank treading motion. In the final frame, which is essentially steady state,
the cell has an aspect ratio of 6.22 and assumes an angle of θ = 13◦ with respect to
the far-field flow, and exhibits the tank-treading motion. Note that the cell deforms on
the flow time scale 1/k, rather than on a time scale defined by membrane elasticity, say
µa3/EB. This is because at G/ÊB = 90, the bending elasticity is overwhelmed by the
flow. Indeed, the final shape of the cell is an almost symmetric cigar shape; the native
curvature of the membrane is barely manifested. The steady-state circumference of the
cell has increased 3.6% from the rest state. The 2D version of the Skalak constitutive law
(Eq. 2.4) assumes that in-plane extension is accompanied by out-of-plane contraction.
Thus areal conservation does not imply constant circumference of the cell in the plane.

The steady-state configuration of the cell is sensitive to ÊB and G. Increasing ÊB

amounts to stronger resistance to bending of the membrane. As a result, the deformed
shape of the RBC bears a more distinct signature of the biconcave resting shape (Fig. 4).
In fact, for higher ÊB values, the tank-treading amounts to a periodic rather than steady
solution; the high curvature at the edge of the undeformed RBC convects around the
membrane. At sufficiently large ÊB (e.g., ÊB = 0.262), tank-treading can no longer be
achieved; instead the cell tumbles as if it were a rigid particle. In comparison, the effect
of G is less spectacular. Increasing G while keeping all other parameters unchanged tends
to increase the aspect of the elongated cell, and decrease its angle of inclination (Fig. 5).
Both are rather mild effects as G varies by a factor of 25.

Zhang et al. (2007) computed the behavior of an RBC in simple shear using a con-
tinuum model. The membrane is treated as a neo-Hookean viscoelastic material, and
the fluid-membrane interaction is accounted for by the immersed boundary method. Al-
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Figure 4. Effect of increasing the bending elasticity on cell deformation. ÊB = 1.31×10−2 (first
row), 2.62 × 10−2 (second row) and 5.26 × 10−2 (third row) correspond to a bending elasticity
5, 10 and 20 times that of the real RBC. The three columns are for kt = 3, 5 and 7. G and C
have the same value as in Fig. 3.

Figure 5. The steady shape of the RBC gets more elongated with increasing G values. All other
dimensionless parameters have the same value as in Fig. 3. Note the quantitative agreement
with the numerical result of Zhang et al. (2007) at G = 0.234, who used the immersed boundary
method and a continuum model for the cell.

though the membrane constitutive equations differ between their study and ours, both
used measured membrane properties to determine the model parameters. Thus, there is
close agreement between the two studies. For instance, the evolution of the cell shape and
the tank-treading motion in Fig. 3 are essentially identical to the predictions of Zhang
et al. (2007). The steady-state cell shape, computed for identical dimensionless param-
eters, is in quantitative agreement between the two (Fig. 5). This serves as a validation
of our particle-based model as well as our SPH algorithm.

Another feature of the simulation that can be quantitatively compared with previous
work is the tank-treading frequency f , defined as the inverse of the period of tank tread-
ing. The data of Tran-Son-Tay et al. (1984) and Fischer (2007) show the frequency f ,
scaled by the shear rate k, to be in the range f/k = 0.02 – 0.038. Our results show a
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higher frequency; for example, f/k = 0.163 for the conditions in Fig. 3. An obvious cause
of this discrepancy is the two-dimensionality in our simulation. In a Stokes flow, a 2D
solid cylinder rotates with a period of 2/k while a sphere has a much longer period 4π/k
(Cox et al. 1968; Poe & Acrivos 1975). The factor of 2π is roughly the difference in f/k
between our 2D computation and 3D measurements. In addition, our representation of
the membrane is simplistic. Membrane viscosity may have also been a factor.

3.2. Cell in Poiseuille flows

Pressure-drive flow in a tube is a close analogy for blood flow in capillaries. Thus the
deformation of an RBC in Poiseuille flow not only constitutes a benchmark problem
for our model and numerical method, but has direct relevance to microcirculation. It is
the latter connection that has motivated numerous previous studies. Perhaps the most
profound discovery is that the red blood cell deforms into a characteristic parachute
shape in order to traverse capillaries smaller than its undeformed diameter (Skalak &
Branemark 1969). Numerical computations have mostly employed the continuum repre-
sentation of an elastic shell enclosing a viscous liquid. Zarda et al. (1977) published one
of the earliest finite-element computations of RBC deformation. Secomb (2003) modeled
RBC deformation in a capillary using lubrication theory, for both axisymmetric and fully
3D geometries. The amount of deformation is studied as a function of the tube diameter
and the flow velocity. Pozrikidis (2005a) computed the axisymmetric motion of a file of
red blood cells in the Stokes regime using the boundary-integral method. The cell mem-
brane was modeled by an elastic shell obeying the Skalak constitutive law (Skalak et al.

1973).
Against this backdrop, we test our particle-based model by computing the deformation

of a initially biconcave RBC in a pressure-driven flow in a 2D channel. The channel width
is 2.15a, 7.7% wider than the diameter of the undeformed RBC, and its length is 10a.
The RBC is initially placed in the middle of the channel with its broad side facing the
flow direction (Fig. 8), and a parabolic velocity field is imposed initially throughout the
domain. For the two ends of the domain, periodic conditions are used such that particle
exiting one end re-enters the other. The number of SPH particles is comparable with
that for the shear-flow computations, and we adopt similar physical parameters based on
experimental measurements of cell membrane moduli. For simplicity, we again assume
equal viscosity for the cytoplasm and the suspending liquid.

Figure 6 depicts the deformation of an RBC in a capillary, with the dimensionless
parameters being C = 2 × 104, G = 0.024 and ÊB = 1.97 × 10−3. These values have
been chosen to match those of Secomb (2003), who assumed a somewhat smaller bending
modulus EB = 1.5 × 10−19 N·m. The higher flow velocity in the middle of the channel
causes the center of the cell to bulge forward. This counters and quickly overcomes the
native curvature of the membrane in the front (Umt/a = 3.85) and eventually leads to
the 2D version of the parachute shape in steady state. Note that most of the deformation
occurs within the first few cell radii that the cell center travels. Similar to the simulation
in Fig. 3, the bending elasticity is weak and the cell deforms with the fluid more or less
affinely. Since the parameters G and ÊB were chosen to be consistent with real RBC
properties and typical flow conditions in the capillary, the shape evolution in Fig. 6
being in general agreement with in vivo observations (Skalak & Branemark 1969, e.g.)
is encouraging. One may also notice the slight top-bottom asymmetry in the cell shape.
This is a numerical artifact due to updating the particle positions sequentially in an
explicit scheme, and diminishes with reduced time step.

A more quantitative comparison is done in Fig. 7 with the numerical result of Secomb
(2003). Both studies used the same dimensionless parameters G, ÊB , C and the same
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Figure 6. Deformation of a red blood cell in a Poiseuille flow. The flow is from left to right,
and the five snapshots are taken at dimensionless time Umt/a = 0, 1.28, 3.85, 6.40 and 8.95, the
last approaching the steady state. Despite the considerable change in shape, the circumference
of the cell has increased a mere 1.05% relative to the undeformed state.

Figure 7. Comparison of the steady-state cell shape in a Poiseuille flow between our
simulation (black dots) and the result of Secomb (2003) (continuous curve).

cell-to-tube diameter ratio. The steady-state RBC shape is in close agreement between
the two. However, Secomb’s cell appears to enclose more area than ours. This is a geo-
metric effect. His calculation was for an axisymmetric cell while ours is planar. Thus, the
conservation of membrane area corresponds to differing contour lengths in the plane. Be-
sides, the membrane curvature is computed differently; the axisymmetric membrane has
two principal curvature while our planar contour has one. Thus, the bending elasticity is
represented differently in the two geometries, even though the material parameters are
matched. Finally, Secomb (2003) used the viscoelastic Kelvin model for the membrane
while we used the nonlinear elastic Skalak model. These factors have given rise to the
small differences in Fig. 7.

We have also varied G and ÊB from physiologically based values to explore their effects
on the deformed RBC shape. As expected, greater G produces more deformation, with the
parachute taking on a deeper dome shape (Fig. 8a). Since inertia is negligible, changing
G can be visualized as changing the velocity and viscous shearing in the external flow,
the direct cause of cell deformation. The effect of ÊB is subtler. While smaller bending
modulus leads to more pointed ends at the edge of the cell, the center also becomes
thicker, and in a sense less deformed (Fig. 8b). In the undeformed resting shape, the cell
has a “dimple” at the center. As the bending modulus is weakened, it becomes easier to
override the innate concavity at the dimple. Thus, as the stronger shear near the channel
walls produces narrow and pointed edges, the cytoplasm is squeezed into the central part
and causes it to swell.

Finally, Fig. 9 shows a simulation of an RBC entering a contraction in the capillary.
This geometry is relevant to both the microcirculatory network and recent studies of cell
mechanics in microfluidic channels (Shelby et al. 2003; Yap & Kamm 2005b; Zhou et al.
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(a) (b)

Figure 8. Effects of (a) G and (b) ÊB on the steady state deformation of the RBC in a
Poiseuille flow.

Figure 9. Deformation of a red blood cell as it goes through a contraction in the channel. The
flow is from left to right. The width ratio between the narrow and wide channels is 0.4. Defined
using the mean velocity in the wide channel, all flow and membrane parameters are the same as
in Fig. 6. The snapshots are at dimensionless time Umt/a = 0, 0.641, 1.60, 1.92, 2.24 and 2.88.

2007). The channel width is 2.15a in the upstream portion and 0.86a in the narrower part
downstream. The extensional flow at the contraction deforms the cell into a boomerang.
As the RBC enters the narrow tube, the two wings fold toward each other, increasing
the bending of the membrane at the crotch in between. This causes the crotch to move
back, shortening the wings and lengthening the front part of the RBC as it settles into a
steady shape in the narrower tube. This steady shape bears a close resemblance to in vivo
observations (Secomb et al. 2006, e.g.). Note that from the third frame (Umt/a = 1.60)
onward, the thin gap between the RBC and the corner or inner wall of the channel
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contains only one layer of particles. Thus the local details of the flow are not adequately
resolved in the computation.

4. Summary

We have proposed a particle-based model for the red blood cell as the basis for devel-
oping more general discrete-particle microstructural models for various cell types. The
main goals of this study are to describe the model and present solutions on benchmark
problems as validations. The cell membrane is represented by particles connected by non-
linear springs. A linear bending elasticity is implemented by using the local curvature.
The inner and outer liquids are discretized by particles in the standard smoothed-particle-
hydrodynamics (SPH) procedure. Thus, the model is an adaptation of SPH ideas; the
particle-level physics is designed so as to produce the proper membrane elasticity. The
particles are a numerical device for solving the partial differential equations as well as a
vehicle for incorporating microscopic physics.

The model predictions of tank-treading in shear and the parachute shape in Poiseuille
flows are in excellent agreement with experimental data and prior continuum-based com-
putations. The model parameters are determined according to physiological measure-
ments of cell viscosity and membrane elasticity, and no curve-fitting is involved. This
agreement provides support for both the particle-based RBC model and the SPH-based
numerical algorithm.

As the first step toward particle-based cellular modeling, this work employs a num-
ber of simplifications. For example, it is limited to two-dimensional geometry, and the
cytoplasm is treated as a homogeneous liquid having the same viscosity as the suspend-
ing fluid. While such shortcomings do not hamper the objectives of the present study,
which is mainly concerned with methodology and validation, they have to be remedied
when such models are applied to explore new physical and physiological mechanisms in
microcirculation.

A more ambitious generalization is to used discrete particles to represent intracellu-
lar microstructures, and probe their evolution in response to chemical and mechanical
stimuli. If successful, this approach promises a unique route to understanding the mi-
crostructural remodeling inside the cell as a consequence of biochemical reactions on the
one hand, and as the cause for pathological changes of cell property on the other.
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