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Abstract - We simulate the breakup of cylindrical fibers of a nematic liquid crystal

surrounded by a quiescent Newtonian fluid. The nematic is described by the Leslie-Ericksen

theory, and the interfacial motion is captured by a phase-field method from the initial

linear instability to final breakup. The focus is on the coupling between liquid crystal

molecular orientation and the evolution of the interface. In particular, we examine how

molecular anchoring on the interface and orientational distortion in the bulk affect the

growth of capillary waves. Results show that the nematic order tends to hinder capillary

wave development, in qualitative agreement with prior linear instability analysis. For typical

materials, however, the effect becomes prominent only for nano-scale fibers. In addition,

anisotropic viscosity plays a significant role in the growth rate of the capillary wave. In the

nonlinear stage of the instability, neighboring waveforms grow at different speeds and lead

to daughter drops of nonuniform sizes, which typically display the bipolar configuration

with two boojum defects. Despite quantitative differences, the breakup of nematic fibers

proceeds in mostly the same way as Newtonian ones. The numerical simulations are in

general agreement with previous experimental observations.
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I. INTRODUCTION

Immiscible blends of nematic liquid crystals (LCs) and isotropic liquids occur in several

contexts. In optical applications such as polymer-dispersed liquid crystals,1 the desirable

phase morphology is liquid crystal droplets suspended in a polymer matrix. In liquid-

crystalline polymer (LCP) composites, on the other hand, it is essential to have the minor

LCP phase stretched into thin fibers with strong molecular alignment in the axial direc-

tion.2, 3 If the composite is rapidly frozen to retain the fibrous morphology in the solid state,

the LCP fibers act as ultra-strong in-situ reinforcement.4 In addition, LCP nanofibers,5 with

diameters on the order of tens of nanometers, form an essential building block in many areas

of nanotechnology. Although these are typically electrospun in a gaseous medium, the fiber

surface morphology is a central concern as well.6 More recently, LC filament breakup has

been used in microfluidic devices for making monodisperse nematic droplets.7 The nematic

order is a significant determinant of the speed of drop pinchoff and the drop size. Therefore,

it is important to understand the capillary stability of the LC fiber and its breakup process.

From a fundamental viewpoint, the breakup of a nematic LC fiber is an interesting pro-

cess. As the physical dimension of the fiber narrows down to the micro- or nano-meter scale,

interfacial effects become increasingly dominant.8 Aside from the conventional isotropic in-

terfacial tension, the anchoring of LC molecules on the interface contributes in effect an

anisotropic part to the interface tension, which may play a significant role in the phase

morphology and fluid dynamics of nematic-isotropic two-phase systems.9, 10 This has been

illustrated by recent work on bubble and drop behavior in a nematic matrix.11–13 Typically

the coupling between surface anchoring and fluid flow is mediated by bulk elasticity of the

LC. For example, enforcing the anchoring condition leads to bulk distortion that modifies

the anisotropic rheology of the LC bulk. Evidently, surface anchoring and bulk elasticity are

the two major factors governing the energetics of LC-isotropic interfaces. When consider-

ing the dissipative dynamics of interfacial deformation and flow, a third factor—anisotropic

viscosity—must be considered as well.

Previous experimental work on nematic fiber breakup seems to consist of two quali-

tative observations of the evolving interface and the birefringent pattern inside the fiber.

For a lyotropic liquid-crystalline polymer fiber about 50 µm in initial diameter, Tsakalos
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et al.14 reported Rayleigh instability that proceeds much as for Newtonian fluids. Bire-

fringent patterns do reflect effects of the flow field, however, with the uniaxial elongation

at the neck producing strong orientational order. Eventually, fiber breakup gives rise to

bipolar droplets with a range of sizes. Machiels et al.15 observed similar breakup of ther-

motropic liquid-crystalline polymer fibers. Neither study was able to shed much light on

the coupling between capillary breakup and molecular orientation, and polydomains may

have complicated the microstructural order.

Theoretical studies are limited to linear instability analysis based on simplified models.

Rey16 did the first linear analysis on an infinite nematic fiber. The nematic director field

n(r) is uniform and fixed along the axis of the fiber, unperturbed by the capillary waves.

But undulation of the interface forces n to deviate from the planar easy direction and is

penalized by a Rapini-Papoular anchoring energy.17 Thus, surface anchoring is accounted

for in the weak anchoring limit, since it does not modify the bulk orientation. But in

the bulk, Ericksen’s transversely isotropic fluid (TIF) model is used that does not allow

distortional elasticity. Results show that the anchoring tends to stabilize the fiber against

capillary waves; the threshold for unstable wavelengths is raised and the growth rate of

the fastest growing mode is damped when compared with Newtonian fibers of the same

viscosity. Similar conclusions were reached by Wang18 using the Doi theory. Bulk elasticity

is omitted, and anchoring is accounted for by an anisotropic surface energy. More recently,

Cheong and Rey19–21 have extended linear analysis to “onion” and radial director fields and

non-axisymmetric instability modes.

In spite of the progress made, our theoretical understanding of capillary breakup of

nematic fibers suffers from several limitations. First, only linear instability modes have been

analyzed, and we have no knowledge of nonlinear growth of capillary waves and the eventual

breakup. Second, theoretical analysis has necessitated the use of drastically simplified

models. These may capture one or two of the key factors: surface anchoring, bulk elasticity

or anisotropic viscosity, but not all three. Finally, the flow field and director field are almost

always decoupled to simplify analysis. The motivation for our work is to carry out a fully

coupled fluid-dynamic simulation of nematic fiber breakup using the Leslie-Ericksen theory

of nemato-hydrodynamics.
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The complex rheology of LCs and the need to capture an evolving interface make this

a challenging computation. We overcome these difficulties using a finite-element algorithm

based on a diffuse-interface model.22 The methodology was developed for simulating interfa-

cial flows of complex fluids in general. In the current application, we will analyze the effects

of surface anchoring, bulk elasticity and anisotropic viscosity separately, with an emphasis

on the coupling between nano-scale molecular order and micro-scale fiber morphology.

II. THEORY AND NUMERICAL METHOD

We treat the nematic-isotropic interface as a thin diffuse layer across which physical

properties change rapidly but continuously. The diffuse-interface theory uses a varia-

tional formulation based on the free energy of the two-phase system. This is most con-

venient for the current application where bulk distortion of LCs can be represented by the

Frank energy,23 and surface anchoring by the Rapini-Papoular anchoring energy.17 Finally,

anisotropic viscosity is incorporated by Leslie’s viscous stress tensor. Thus, our algorithm

integrates the Leslie-Ericksen theory naturally into an interface-capturing flow solver, bridg-

ing the gap between molecular orientation and macroscopic hydrodynamics. Another ad-

vantage of the diffuse-interface model, essential to the current simulation, is that it handles

topological changes such as interfacial rupture and coalescence rationally via a short-range

force resembling the van der Waals force. There is no need for manual intervention as in

sharp-interface models to effect such events. The numerical package has been extensively

validated,22 and applied to simulate drop deformation, breakup and coalescence in poly-

meric and nematic liquids.9, 11, 12, 24–28 Thus, we will briefly summarize the main ideas in

the following, and refer the reader to prior publications for details of the theoretical model

and computational algorithm.

We employ a scalar phase field φ(r) to represent the composition of a Newtonian-nematic

two-component system. The Newtonian bulk is represented by φ = −1 and the nematic by

φ = 1, and the interfaces are simply the level set of φ = 0. The governing equations are

the continuity and momentum equations, supplemented by the Cahn-Hilliard equation for
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the transport of the phase field φ and the Leslie-Ericksen equations of nematohydrodynam-

ics:12, 24

∇ · v = 0, (1)

ρ

(

∂v

∂t
+ v · ∇v

)

= −∇p+∇ · σ, (2)

∂φ

∂t
+ v · ∇φ = γλ∇2

[

−∇2φ+
φ(φ2 − 1)

ǫ2

]

, (3)

h = γ1N + γ2D · n, (4)

where λ, ǫ and γ are the interfacial energy density, capillary thickness and mobility of the

diffuse interface, respectively. The density ρ = 1+φ
2

ρ1 +
1−φ
2

ρ2 is an average between the

two components. The stress tensor σ in the momentum equation is:

σ = −λ∇φ∇φ−K
1 + φ

2
∇n · (∇n)T −G+

1 + φ

2
σ′ +

1− φ

2
µ[∇v + (∇v)T ], (5)

where K is the Frank elastic constant of the bulk nematic under the one-constant approxi-

mation, and µ is the Newtonian viscosity. G is the anchoring stress of the nematic director

on the interface, G = A(n · ∇φ)n∇φ for planar anchoring, A being the surface anchoring

energy density. Homeotropic anchoring can be readily modeled but is not as relevant here

since stretched LC fibers tend to have n aligned axially.14, 16 σ′ is the Leslie viscous stress29

in the nematic phase

σ′ = α1D : nnnn+ α2nN + α3Nn+ α4D + α5nn ·D + α6D · nn, (6)

where α1−6 are the Leslie viscous coefficients obeying an Onsager relation α2+α3 = α6−α5

so five of them are independent.23 D = 1
2
[∇v + (∇v)T ] is the strain rate tensor, Ω =

1
2
[(∇v)T −∇v] is the vorticity tensor, and N = dn

dt
−Ω ·n is the rotation of n with respect

to the background flow field. The director field n evolves in the flow field according to

a balance between elastic and viscous torques as given in Eq. (4). The molecular field h,

denoting elastic torque in the nematic, derives from the free energies of the system:23

h = K

[

∇ ·
(

1 + φ

2
∇n

)

− 1 + φ

2

(n2 − 1)n

δ2

]

− g, (7)

with g = A(n · ∇φ)∇φ for planar anchoring. The term involving δ arises from an energy

penalty added to the Frank energy to allow defects to be represented by reduced |n| values
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within a small area of size δ.30 Thus, |n| acts like a local order parameter, and the model

closely resembles Ericksen’s generalization of the Leslie-Ericksen theory by a variable order

parameter.31 We have used δ = 4ǫ since the defect core size is comparable to the interfacial

thickness. Note that in the limit of ǫ → 0, the diffuse interface model reduces to the

classic sharp-interface hydrodynamics.24 In particular, the interfacial tension σ and Rapini-

Papoular anchoring constant W can be recovered from the diffuse-interface parameters for

small ǫ: σ = 2
√
2λ/3ǫ and W = 2

√
2A/3ǫ. To faithfully approximate the sharp-interface

limit, ǫ needs to be O(10−2a), a being the macroscopic length scale of typical problems.

Although non-axisymmetric instability modes have been considered before,20 experi-

ments have shown only axisymmetric capillary waves and drop pinchoff.7, 14, 15 Thus, we

will assume axisymmetry throughout this study. The governing equations are discretized

on a unstructured grid of triangular elements using the Petrov-Galerkin formulation.22 A

critical ingredient of the algorithm is an adaptive meshing scheme that accurately resolves

the evolving interface and any orientational defects. Typical grid sizes are h1 = 0.006a at

the interface and near defects, h2 = 0.2a inside the fiber and h3 = 0.5a in the matrix, with

smooth transitions between different regions. Time integration is by an implicit second-

order scheme with the time step automatically adjusted according to the motion of the

interface. Numerical experiments have shown that the grid sizes and the time step used in

the simulations are sufficient for numerical convergence.

III. RESULTS AND DISCUSSIONS

The geometry of the axisymmetric computational domain is shown in Fig. 1, with the

nematic LC fiber surrounded by a quiescent Newtonian fluid. We apply periodic boundary

conditions along the z direction, and no slip boundary conditions on the outer boundary

(r = R). On the axis of symmetry r = 0, n is in the z direction and the radial velocity

vanishes. Note that the velocity, stress and anchoring conditions on the nematic-isotropic

interface have been embedded into the diffuse-interface formulation and do not constitute

boundary conditions. Initially both phases are at rest, the interface is a perfect cylinder

and the molecular orientation is uniform and axial inside the fiber. Surface disturbances

arise spontaneously from numerical noise.
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Figure 1: Schematic of the computational domain, which is half of the meridian plane of the
axisymmetric geometry.

Most results presented are for a domain length H = 25a and width R = 3.33a. Since

the dominant capillary wavelength is not known a priori, and in any event varies with the

physical parameters, imposing periodicity over a finite H necessarily introduces errors to

the result. Comparison with simulations in longer domains, with H up to 60a, shows that H

affects the results quantitatively but does not modify the qualitative trend. Thus, H = 25a

represents a tradeoff between computational cost and accuracy. For Newtonian fluids, the

confinement effect of the outer boundary on capillary instability of a filament has been

studied by Mikami and Mason.32 For R = 3.33a, the growth rate of the dominant mode

should decrease by approximately 10%. For our nematic fiber, comparing the result with

that in a wider domain with R = 10a shows that the confinement reduces the growth rate by

4.6%. Therefore, the finite size of the computational domain, while exerting a quantitative

influence, does not hinder the main purpose of the simulations.
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The complete set of dimensionless groups governing our system is:

α =
ρ1
ρ2

(nematic-to-matrix density ratio), (8)

β =
α4/2

µ
(nematic-to-matrix viscosity ratio), (9)

AK =
K

σa
(bulk elasticity-to-interfacial tension ratio), (10)

AW =
W

σ
(anchoring-to-interfacial tension ratio), (11)

Ca =
ηU

σ
(capillary number), (12)

Re =
ρ1Ua

η
(Reynolds number), (13)

along with the various length ratios of the geometry and ratios between the Leslie viscous

coefficients. Re and Ca are defined using the visco-capillary velocity U = σ/η. Therefore

the capillary number is 1, and the Reynolds number is kept at 150 throughout this study.

Note that the typical velocity during the fiber breakup is roughly 1% of U , and the actual

Ca and Re are much smaller. The viscosity η = (α3 + α4 + α5)/2 is the average between

the largest and smallest Miesowicz viscosities.23 The ratio α3/α2 determines whether the

nematic “tumbles” or “flow-aligns” in simple shear flows. But the distinction is unimportant

here as fiber breakup engenders predominantly elongational flows. Thus we adopt the

Leslie viscosities of a common nematic MBBA at 25◦C as the basis for the computations:23

α1 = 6.5 centipoise (cp), α2 = −77.5 cp, α3 = −1.2 cp, α4 = 83.2 cp, α5 = 46.3 cp,

α6 = −32.4 cp. Furthermore, we match the density and isotropic viscosity of the nematic

with the surrounding fluid: α = 1, β = 1. In the following subsections, we study the effects

of the bulk elasticity, interface anchoring and anisotropic viscosity in turn, by varying AK ,

AW and the viscosity ratios, respectively.

A. Bulk elasticity

With the anchoring energy fixed at AW = 1, Fig. 2 compares the development of cap-

illary waves at different strengths of bulk elasticity. Note that the baseline case (Fig. 2a)

is not for a Newtonian fluid; the fiber still retains the same anisotropic viscosity and sur-

face anchoring. In our periodic domain of length 25a, the dominant mode has three wave

forms, with a wavelength of 8.33a. In comparison, an infinitely long Newtonian fiber of

the same viscosity would have a fastest growing wavelength of 9.66a according to Mikami
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Figure 2: Effect of bulk elasticity on capillary waves on a nematic fiber. The domain is 25a in length
and 6.66a in width. The viscosity coefficients are those of MBBA, and surface anchoring is fixed at
AW = 1. The bulk elasticity K increases from left to right: (a) AK = 0, t = 491; (b) AK = 0.0167,
t = 497; (c) AK = 0.833, t = 547; (d) AK = 1.67, t = 575. Time is made dimensionless by ηa/σ.

and Mason’s model.32 For a nematic fiber with a weak bulk elasticity, AK = 0.0167, the

modification to the dominant wavelength is too small to be manifested, and the three wave

forms persist (Fig. 2b). At AK = 0.833, however, the dominant wavelength has lengthened

to 12.5a with two wave forms (Fig. 2c). Further doubling the bulk elasticity to AK = 1.67

does not change the wavelength in Fig. 2(d).

One observation is that bulk elasticity tends to increase the wavelength of the capillary

waves. This is in qualitative agreement with the predictions of linear stability analysis.

Cheong and Rey21 showed that the fastest growing wavelength on an infinitely long inviscid

nematic fiber is

λmax = 2
√
2πa

√

1 + 2AK , (14)

which reduces to Rayleigh’s classical result for an inviscid fiber at K = 0. This formula

predicts that the bulk elasticity would increase λmax by 1.7%, 63% and 108% for the three

cases in Fig. 2(b–d), which is consistent with the numerical results considering the constraint

of the forced periodicity over H = 25a. However, further increasing AK up to 10 does not

produce a single wave form in our domain, as expected from the linear formula above. We

will return to this discrepancy shortly. A second observation is that the bulk elasticity

tends to dampen the growth of the capillary waves. The four panels in Fig. 2 correspond to

roughly the same wave amplitude. The time needed for reaching this amplitude increases
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with increasing AK . Again, this may be compared with the linear growth rate on an inviscid

nematic fiber:21

αmax =

√

σ
8ρa3√

1 + 2AK

. (15)

For our three cases (Fig. 2b–d), this predicts a reduction in αmax of 2%, 39% and 52%,

respectively. The actual damping of the growth rate in the simulations is smaller in mag-

nitude: 1.2%, 10% and 15% for the three cases.

It is perhaps unreasonable to expect a closer correspondence between our numerical

results and Eqs. (14) and (15). Besides the aforementioned constraints of H = 25a, R =

3.33a and the nonlinear nature of our results, the physical models differ in that Cheong and

Rey21 assumed inviscid fibers and rigid anchoring on the interface. Rigid anchoring tends

to amplify the effects of bulk elasticity since it couples the interfacial deformation to bulk

distortion more directly, without the “buffering” effect of the anchoring energy. Therefore,

it is not surprising that in our simulations using a finite W = σ, the dominant wavelength

does not increase as much as predicted by Eq. (14), and the growth rate does not decrease

as much as predicted by Eq. (15).

A nonlinear feature of Fig. 2 is that the waves are not precisely periodic along the

axial direction. The thinning of the fiber proceeds more rapidly at the upper “neck” than

the lower. This can be easily understood from the capillary pressure in the fiber. Let us

assume that two neighboring wave forms are initially identical. The high capillary pressure

at the neck drives the fluid toward the crest of the wave. If some small disturbance should

slightly delay the thinning of one neck relative to the next, the thinner neck experiences a

greater capillary pressure that more effectively pumps fluid away, thereby further widening

the difference between the two necks. Thus, the uneven growth among the waveforms is a

natural outcome of capillary instability. This behavior has been observed in Newtonian33

and nematic fiber breakup experiments,14, 15 and is related to “volume scavenging” between

coupled spherical-cap droplets.34 As a result, polydisperse drops are produced. To produce

monodisperse droplets, one can resort to strongly elongational flows, as have been used in

microfluidic devices.7, 27

Figure 3 depicts the late stage of fiber breakup for a nematic fiber with AK = 0.0167

and AW = 1. Since AW/AK = Wa/K ≫ 1, one expects the anchoring effect to dominate
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(a) (b) (c) (d) (e) (f )

Figure 3: Evolution of the interface and the director field during breakup. AW = 1.0, AK = 0.0167.
The snapshots are at different times: (a) t = 476, (b) 502, (c) 507, (d) 512, (e) 566, (f ) 658. Note
that n is shown only on a small number of interpolation points; the finite-element mesh is much
denser.

the bulk elasticity in determining the director field.11 Indeed, throughout the breakup

process, n follows the undulation of the interface except near the centerline, where the

elongational flow aligns n axially. The same elongational flow stretches the neck into a

thread (Fig. 3b), which then pinches off at both ends to form a satellite drop between the

two daughter drops (Fig. 3c-d). The pinchoff produces pointed tips where the director

field converges. The high curvature there induces a large capillary force that pulls the tips

back sharply, giving rise to flat ends (Fig. 3d) or even flattened drops (Fig. 3e). In the

meantime, the converging director field develops “boojums” defects at the ends. Finally,

the thread breaks up into three primary droplets and three satellite droplets. The drops

display a bipolar configuration (Fig. 3f ) with two boojums at the poles. The shape is nearly

spherical in this case, but becomes more prolate with increasing AW and AK , similar to

previous observations.9 As anticipated earlier, the primary drops are not monodisperse;

the bottom drop is some 5.7% smaller than the other two. Note also that the satellite

drops shrink in time and eventually disappear owing to the Cahn-Hilliard diffusion. The

implications of this diffuse-interface phenomenon has been examined at length.35

The nematic fiber breakup process, as simulated and discussed above, may be compared

with experimental observations.14, 15 First, the simulation and experiments agree in that
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Figure 4: Thinning of the minimum neck radius at different levels of bulk elasticity.

the breakup of a nematic fiber does not differ markedly from that of a Newtonian fiber. The

uneven wave growth, the pinchoff at the neck and even the formation of satellite drops are

qualitatively the same as in Newtonian fluids.36 There is nothing as spectacular as, say, the

bead-on-string morphology for highly viscoelastic polymeric threads.37 Quantitatively, the

nematic order makes the breakup proceed more slowly, and we will amplify this point shortly

in connection to the thinning of the neck. Second, the general features of the experiments are

captured by the simulations, including the highly aligned n field at the necks, the formation

of satellite drops, the bipolar configuration and the polydispersity of the primary drops.14

Finally, there are a few observations that the computation fails to reproduce. For instance, a

“banded structure”, visible through crossed polarizers, sometimes emerges prior to capillary

instability.14 This is probably due to the relaxation of the molecular order that has been

elevated during the formation of the fibers by stretching. Our Leslie-Ericksen theory does

not account for such molecular relaxation. Furthermore, thermotropic LCP fibers often

break up into spherical drops containing polydomains whose disordered orientation renders

the drop essentially isotropic on the whole.15, 38 The origin of defects and polydomains is a

long-standing problem in LCP dynamics, and requires more sophisticated models than that

used here.

To examine more quantitatively the effect of bulk elasticity on the breakup process,

we plot in Fig. 4 the minimum neck radius Rn for several values of AK , which decreases
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in time until pinchoff. Interestingly, the initial growth of the capillary waves (t < 300)

is little influenced by the differing bulk elasticity. At the beginning of the simulations,

the nematic director n is aligned axially in the bulk and tangentially on the interface,

which induces neither bulk elastic energy nor surface anchoring energy. As the capillary

wave develops, surface undulation causes both surface and bulk distortion and the energy

penalties amount to an elastic force that resists the growth of the capillary wave. This is

the explanation for the stabilizing effects of the nematic order. As a reaction to interfacial

deformation, however, the effect only becomes significant as the capillary wave reaches a

certain amplitude. As measured in Fig. 4, the amplitude is only about 0.05a at t = 300, and

thus the director field has yet to exert a significant effect on the capillary wave development.

Later, with growing capillary waves, the interfacial and bulk distortion continue to absorb

some of the energy released from interfacial area reduction. As a result, less is available

to drive capillary breakup against viscous dissipation and inertia. This explains the longer

pinchoff time for larger AK values in Fig. 4.

Finally, it is important to note that real liquid crystals typically have a weak K ∼ 10−11

N.23 With a surface tension σ ∼ 10−3 N/m,39, 40 for example, AK = 0.01 for a fiber 1

µm in radius. Thus, LC bulk elasticity plays a significant role only for nanofibers, such as

produced by electrospining.5, 6 However, certain lyotropic systems possess exceedingly low

interfacial tensions,41 for which bulk elasticity effect may be manifested at larger length

scales.

B. Interface anchoring

We have chosen to discuss bulk elasticity and surface anchoring separately, but obviously

the two must cooperate for either to have an effect. It is perhaps appropriate to say that

the surface anchoring communicates interfacial deformation to the director field in the

bulk. In previous linear instability analyses, Rey16 isolated the effect of surface anchoring

by making the bulk elasticity infinitely strong, and Cheong and Rey21 isolated the effect of

bulk elasticity by making surface anchoring rigid. In this subsection, we fix bulk elasticity

at AK = K/σa = 0.833, and vary the anchoring strength through AW = W/σ.

The effect of AW is illustrated by Table 1 that compares the wavelength and pinchoff

time for AW values ranging from 0 to 10. Thus, the surface anchoring tends to raise

13



C. Zhou et al., J. Comput. Theor. Nanosci. 7 (2010) 683–692

AW 0 0.1 0.5 1 2 5 10 Newtonian

Wavelength 8.33a 8.33a 8.33a 12.5a 12.5a 12.5a 12.5a 8.33a

pinchoff time 520 524 536 560 614 638 704 686

Table 1: Wavelength and pinchoff time at various surface anchoring energies, with AK = 0.833,
Ca = 1 and Re = 150. Time is made dimensionless by ηa/σ. The last column, for an isotropic
Newtonian fluid with a viscosity equal to the average viscosity η of the LC’s, will be cited in the
next subsection.

the threshold wavelength for unstable modes, and reduce their growth rates. In terms of

hindering the growth of capillary instability, AW is similar to AK . This is no surprise

because, as we alluded to above, the surface anchoring and bulk distortion are allied in

bringing about the stabilizing effect on capillary waves.

For an infinite nematic fiber with AK = ∞ but a finite AW , Rey’s analysis16 gives the

fastest growth wavelength

λ = 2
√
2πa

√

1 +AW + 2

√

Ca

Re

√

1 +AW (16)

and the fastest growth rate

αmax =

√

σ

8ρa3
1

√
1 +AW +

√

Ca
Re

. (17)

For Ca = 1, Re = 150 and AW = 1, for example, the above formulae predict a 49% increase

of the fastest-growing wavelength due to the interface anchoring, and a 34% decrease of

its growth rate. Table 1 gives, for the corresponding conditions, a 50% lengthening of

the wavelength and 7.1% decrease in the growth rate (estimated from the inverse of the

total pinchoff time). Considering the differences in the physical models, parameters and

geometric setup, the qualitative agreement is reasonable. Wang18 carried out a similar

normal mode analysis using the Doi theory for liquid-crystalline polymers in the limit of

vanishing bulk elasticity. At a capillary number of unity, with AW increasing from 0 to 10,

the most dangerous wavelength is roughly doubled, and its grow rate decreases by 40%.

These numbers are again consistent with our results in Table 1.

The later stage of the fiber breakup process does not vary qualitatively for the AW range

simulated. Necking, drop pinchoff and satellite drop formation are similar to those depicted
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(a) (b)

Figure 5: Effect of AW on the director field (a) inside the fiber during breakup and (b) inside
a daughter drop. The radial dimension in (a) is amplified by a factor of 3 for a clearer view. In
each plot, the left image corresponds to weak anchoring at AW = 0.1, with time t = 113 in (a)
and t = 694 in (b), while the right to AW = 6 with t = 170 in (a) and t = 780 in (b). All other
parameters are the same as in Table 1.

in Fig. 3. In fact, these feature are basically the same as in Newtonian fiber breakup, as

noted in previous experimental observations.14, 15 But the molecular orientation inside the

fiber and later inside the drops does reflect the anchoring strength as shown in Fig. 5. For

weak anchoring, n readily deviates from the easy direction on the interface so as to avoid

comparatively expensive bulk distortions. During the growth of capillary waves (Fig. 5a),

therefore, the interfacial undulation only affects the outer layer of the nematic. In the

daughter drops that result from the breakup (Fig. 5b), n does not nucleate boojum defects

on the surface but maintains a relatively uniform orientation. For strong anchoring, the

interfacial contour has a much greater impact on the bulk n field, both in the fiber and the

final bipolar daughter drops.

C. Anisotropic viscosity

The foregoing discussion on anchoring and bulk elasticity concern energetic interactions.

In the later stage of breakup, fluid flow introduces considerable dissipation into the system.

Thus, anisotropic viscosity, a key rheological feature of nematic LCs, becomes a factor in

the development of finite-amplitude capillary waves and final breakup. In fact, that is

why in the preceding subsections, we compared the nematic fibers not against an isotropic
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Newtonian baseline, but one with nil bulk or anchoring energy and the same anisotropic

viscosity. The latter being kept the same, the effects of AK and AW were thus isolated. For

a truly Newtonian fiber with an isotropic viscosity matching the LC average viscosity η, the

pinchoff time is 686 in Table 1. Comparing this with the nematic fibers having AW = 0 and

AW = 10 in the same table, it is apparent that the viscous anisotropy may have as great

an effect on LC fiber breakup as AW (and AK). To quantify this systematically, we fix the

surface anchoring and bulk elasticity at Aσ = 1 and AK = 0.833 and vary the degree of

viscous anisotropy through the Leslie coefficients. Note that this is essentially a nonlinear

effect in that it does not affect the initial stages of linear instability.

Given the five independent Leslie coefficients, it is not obvious how to quantify viscous

anisotropy. In simple shear flows, a convenient gauge is the Miesowicz viscosities measured

with the director n uniformly fixed perpendicular or parallel to the flow direction:12, 23

η⊥ =
−α2 + α4 + α5

2
, (18)

η‖ =
α3 + α4 + α6

2
. (19)

Borrowing the same idea to the fiber breakup problem, we have kept the average LC viscosity

η = (η⊥ + η‖)/2 constant, and varied the viscous anisotropy via the ratio ν = η⊥/η‖. Using

the Onsager relationship α2 + α3 = α6 − α5, we rewrite ν as

ν =
2η − α2 − α3

2η + α2 + α3

=
4η

2η + α2 + α3

− 1, (20)

which shows that ν can be manipulated via either α2 or α3. To keep η constant, α6 or

α5 have to be adjusted accordingly. In the following, we vary α2 or α3 on the basis of the

Leslie coefficients of MBBA, which has η = 64.15 cp and ν = 4.34.

Figure 6 plots thinning of the neck radius for various degrees of viscous anisotropy.

First, note that in the parameter ranges explored, the effect of ν on the pinchoff time

is comparable to that of AK (Fig. 4) and AW (Table 1). With varying α2, Fig. 6(a)

shows a monotonic trend, with the fiber breaking up faster for larger ν (or smaller α2).

Naively, one might rationalize this by the fact that in the neck region, the LC molecules are

predominantly aligned to the fiber axis. Thus, the viscosity η‖ should matter much more

than η⊥. Increasing the viscosity ratio ν then amounts to reducing η‖ and consequently
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(a) (b)

Figure 6: Effect of viscous anisotropy on the thinning of the neck during the breakup of nematic
fibers. The average LC viscosity η is fixed such that Ca = 1, Re = 150. In addition, AW = 1,
AK = 0.833. (a) Varying α2; (b) varying α3.

the “effective viscosity” of the ordered LC. The same argument fails for Fig. 6(b), however,

where the pinchoff time does not depend on ν or α3 monotonically.

The solution to this puzzle is that the flow within the fiber has both elongation and

shear components. While the former dominates at the thinning neck, the higher capillary

pressure there drives the fluid toward the wave crest, creating a shear flow that may be

likened to the Poiseuille flow. This is illustrated by the axial velocity profiles in Fig. 7. The

radial variation ∂vz/∂r gives the degree of shear while the axial one ∂vz/∂z indicates the

stretching or compression. Therefore, it is necessary to consider the elongational viscosity of

the nematic as well. Assuming a uniform director field perfectly aligned with the stretching

direction, n = (0, 0, 1) in cylindrical coordinates, the stress tensor in the nematic undergoing

uniaxial elongation along z can be calculated from Eq. (6):

σ′ = diag

[

−α4ǫ̇

2
,−α4ǫ̇

2
, (α1 + α4 + α5 + α6)ǫ̇

]

, (21)

where ǫ̇ is the strain rate. Note that α2 and α3 represent rotational friction and do not

appear here. Thus, an elongational viscosity can be defined from the normal stress difference

ηe‖ = α1 +
3

2
α4 + α5 + α6 =

(

4η + α1 −
α4

2

)

+ α2 − α3, (22)

where we have invoked the average shear viscosity η and the Onsager relation. When we

increase ν by decreasing α2 in Fig. 6(a), the elongational viscosity ηe‖ decreases together
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Figure 7: Axial velocity profiles vz(z) at two radial positions r = 0.2a and 0.65a at dimensionless
time t = 499. AW = 1, AK = 0.833, and the viscosities correspond to ν = 4.34 in Fig. 6(a). The
velocity is made dimensionless by σ/η, and the outline of the fiber at this instant is also shown.

with the “effective shear viscosity” mentioned above. The consequence is unequivocal: the

fiber breaks up more rapidly. In Fig. 6(b), on the other hand, increasing ν by decreasing

α3 tends to reduce the effective shear viscosity, but in the meantime raises the elongational

viscosity. The non-monotonic effect on the breakup of the nematic fiber, therefore, can be

interpreted as the outcome of the competition between these two mechanisms.

IV. CONCLUSION

In this paper we have investigated the breakup of nematic fibers with planar anchoring

on the surface and initially axial molecular orientation in the bulk. The process is simulated

from the onset of linear disturbances to nonlinear growth and finally to formation of drops.

The main findings can be summarized as follows:

(a) Interface anchoring and bulk elasticity conspire to dampen the growth of capillary

waves and the breakup process. In particular, the threshold wavelength for instability is

raised and the growth rate of unstable modes is suppressed.

(b) Anisotropic viscosity plays a significant role in the growth of the capillary wave. The

effect of individual Leslie coefficents depends on how it changes the elongational and shear

viscosities of the nematic liquid crystal separately since both types of flow are involved in

the breakup.
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(c) The nonlinear growth of the capillary waves leads to the loss of axial periodicity

and eventually the formation of polydisperse daughter drops. The nematic order within the

fiber does not change the main features of the breakup, besides the quantitative effect of

slowing down the process. On the other hand, the interfacial deformation and fluid flow do

have a direct effect on the molecular orientation: the nematic is highly aligned in the neck

region, and typically displays the bipolar configuration in the daughter drops.

(d) The numerical results are in reasonable agreement with prior work in the literature

where comparisons can be made. Specifically, the effect of bulk elasticity and anchoring

in suppressing capillary instability is in qualitative agreement with linear analysis. The

numerically predicted breakup process captures the main features of experimental observa-

tions, and agrees with the latter in that nematic fibers break up in basically the same way

as Newtonian ones.

In comparison with linear instability analysis, numerical simulations have the advantage

of accessing the later stage of the breakup process. A disadvantage, however, is that the

finite domain size tends to influence the wavelength that emerges. Comparison with linear

analysis shows quantitative differences because of this restriction. Besides, this work leaves

out several physical factors, including homeotropic or more general anchoring directions,

bulk textures (radial or onion), non-axisymmetric modes of instability and finally the role

of molecular order parameter. The first 3 have been analyzed in the linear limit.21 The last

is known to be relevant to the banded textures observed in nematic fiber breakup.14 These

are open issues that future work should explore.

Nevertheless, this study appears to be the first to explore the nonlinear stage of the cap-

illary breakup and drop pinchoff, and to include all the three factors—anchoring, bulk elas-

ticity and viscous anisotropy—in a self-contained nemato-hydrodynamic theoretical frame-

work. The results will be particularly relevant to the processing and manipulation of nano-

scale nematic fibers whose small dimension accentuates distortional elasticity relative to

interfacial tension.
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