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Selective withdrawal of polymer solutions: experiments
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Abstract - Selective withdrawal refers to the process of drawing one or both compo-

nents of stratified fluids through a tube placed near their interface. This paper reports

an experimental study of selective withdrawal of viscous and viscoelastic liquids under air.

The key mechanism of interest is how the viscoelasticity in the bulk liquid affects the evolu-

tion of the free surface. This is investigated by comparing the interfacial behavior between

a Newtonian silicone oil and two dilute polymer solutions. While the surface undergoes

smooth and gradual deformation for Newtonian liquids, for the polymer solutions there is a

critical transition where the surface forms a cusp from which an air jet emanates toward the

suction tube. This transition shows a hysteresis when the flow rate or location of the tube

is varied. In the subcritical state, the surface of polymer solutions deform much more than

its Newtonian counterpart but the deformation is more localized. The interfacial behavior

of the polymer solutions can be attributed to the large polymer stress that develops under

the surface because of predominantly extensional deformation.
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1 Introduction

The term “selective withdrawal” originated from drawing a fluid from a container holding

stratified layers of immiscible fluids. In more recent literature, it refers to the flow in the

neighborhood of a liquid-liquid or liquid-gas interface induced by suction through a tube.

Figure 1 shows photographs of the steady-state interface when the suction tube sits at

a fixed distance above the undisturbed interface. With increasing suction flow rate, the

interface deforms more and eventually the lower fluid is withdrawn together with the upper

fluid in the form of a thin thread.

Historically, selective withdrawal has been an important process in water quality control

[2]. Toward a fundamental understanding of the hydrodynamics, some authors treated the

fluids as inviscid on account of the low viscosity of water [3, e.g.]. Lister’s [4] theoretical

and numerical analysis showed that liquid viscosity, buoyancy and surface tension are all

important for an accurate description of viscous selective withdrawal. In his work, the

suction is represented by a point sink. More recently, several experimental and numerical

studies have dealt with well-controlled Newtonian liquid-liquid systems [1, 5–7] and gas-

liquid systems [8–10]. For liquid-liquid systems, the flow behavior may be classified into

three regimes: subcritical, critical and supercritical (Fig. 1). In the subcritical regime, the

interface is deformed into a steady hump and one only withdraws one fluid from the tube. In

the supercritical state, the interface forms a spout into the tube and both fluid components

are withdrawn. The critical state is the threshold for the uptake of the interface. The

hump height in the subcritical regime and the critical flow rate have been measured and

computed [1, 5, 7].

Figure 1: The steady-state interface in a selective withdrawal experiment. From left to right, the
flow rate Q increases and the system is in the subcritical, critical and supercritical regimes. Adapted
from Cohen [1] with permission, c©American Physical Society.
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It turns out that the appearance of the supercritical regime depends on the viscosity

ratio of the components, and in a gas-liquid system, it depends on whether the suction tube

sits in the gas or the liquid. If the tube is in the gas, then a supercritical liquid jet can

be formed as in liquid-liquid systems [8]. On the other hand, if the tube is in the liquid,

only the subcritical state obtains [10]; the free surface always attains a smooth steady-state

shape, and no gas can be drawn into the tube regardless of the flow rate.

Meanwhile, new applications have been suggested for selective withdrawal, such as coat-

ing of microparticles [11,12] and fabrication of thin glass fibers [13,14]. In such applications,

the fluids are usually non-Newtonian and exhibit large elastic stresses. But non-Newtonian

rheology has so far not been investigated in selective withdrawal. The initial motivation

of our work was to elucidate the effects of viscoelasticity on selective withdrawal. Since

the flow near the interface is largely extensional, one expects strong manifestation of the

viscoelastic stresses. In particular, the coupling between polymer stretching and interfa-

cial deformation will be a focus of our attention. In this context, selective withdrawal is

an attractive flow situation in which to explore the interaction between bulk rheology and

interfacial deformation.

Moreover, selective withdrawal in the subcritical state offers a balance between hydro-

dynamic forces and interfacial tension. After some preliminary numerical simulations of

selective withdrawal in viscoelastic system, we have realized a new dimension of this prob-

lem: the setup, operated in the subcritical state, may potentially be used as an extensional

rheometer to measure the elongational viscosity of the component being withdrawn. On

the one hand, the flow near the tip of the interface is very close to homogeneous uniaxial

extension. We can obtain the local strain rate near the tip from control parameters such

as flow rate and the geometric setup. On the other hand, the force balance at the interface

allows us to calculate the first normal stress difference from the interfacial tension. Thus

we can measure the extensional viscosity of the fluid.

This paper reports our experimental study of selective withdrawal of viscous and vis-

coelastic liquids below a free surface (i.e., in gas-liquid systems). The accompanying pa-

per [15] deals with numerical simulations of the same process. The investigation of the

potential use of selective withdrawal for extensional rheometry has more to do with the

computations than the experiments, and is thus deferred to the computational paper [15].
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(a) (b)

Figure 2: Schematic of the experimental setup. Plot (a) shows the whole setup of the experiment,
with the arrows showing the direction of flow. Plot (b) magnifies the central portion of the test tank
and defines the geometric quantities H , h and R.

2 Experimental setup

The experimental setup, shown in Fig. 2(a), is modeled after that of Courrech du Pont and

Eggers [9] in their experiment with Newtonian fluids. It consists of a test tank connected

to a control tank by a tube. The test tank has a 3 cm × 3 cm square cross section and a

height of 21 cm. The control tank is much wider and shallower, with a rectangular cross

section of 20 cm × 30 cm and a height of 5 cm. These two tanks are connected by a

tube of 0.95 cm inner diameter. In the test tank, there is a vertical circular tube of inner

diameter 0.95 cm and outer diameter 1.27 cm. The top of the tube, which is 12 cm above

the bottom of the test tank, is sealed by a thin circular disk having a 1 mm hole at the

center (Fig. 2b). Through this hole, the liquid in the test tank drains down into a reservoir,

driven by gravity, and the flow rate is controlled by a valve. Lowering of the free surface

in the test tank induces a flow from the control tank through the connecting tube, which

to a degree synchronizes the free surface in both tanks. Thus, the control tank serves to

increase effectively the cross sectional area of the test tank, without enlarging the viewing

depth for the camera.

Two factors are important for the flow-control scheme. Because the cross section of the

control tank is large and the liquid flow rate is low (below 0.01 ml/s), the liquid level in both

tanks changes very slowly during the experiment such that the flow can be considered quasi-

steady at all times. At any moment, the interface and flow field correspond to the steady-

state situation at the instantaneous flow rate and water level. Thus, the experimental results
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may be compared with steady-state computations [15]. The only exception is for polymer

solutions undergoing transition to the supercritical state; the time scale of this transition is

comparable to the polymer relaxation time so the polymers may not achieve steady-state

stretching. Second, the flow rate Q is essentially constant during the experiment. Q is

determined by the opening of the valve and the pressure head from the free surface down to

the valve, a vertical height of approximately 50 cm. Since the free surface in the test tank

lowers at most 5 mm during an experiment, this has little effect on Q as long as the valve

remains at a fixed position. Between experiments, of course, we adjust the valve to achieve

different Q values. In all experiments, Q remains sufficiently small such that Re ≪ 1 and

inertia is negligible.

Therefore, the control parameters for our experiment are the flow rate Q and the liquid

level indicated by the position of the free surface in the test tank H. At the beginning

of each experiment, we fill up both tanks to an initial H ∼ 1 cm. Then the valve at the

bottom is opened to a certain position and the flow rate Q is measured by a stopwatch

and balance every 10 minutes until it reaches a steady state. Then we use a digital camera

mounted orthogonal to the plane of the page in Fig. 2 to monitor the slow decline of H in

time. Meantime, the position of the interface is recorded by a CCD camera (Watec WAT-

902B or Pixelink PL-B959U) mounted on a translation stage, which can move horizontally

and vertically at a step size of 0.01 mm and a maximum range of 5 mm in each direction.

The camera is kept roughly level with the tip of the interface, within a viewing angle of

2◦, and captures the location of the tip, indicated by h, as well as the interfacial shape

from which the curvature κ at the tip can be computed. The flow loop and cameras are

mounted on an optic table and all experiments are done in an air-conditioned laboratory

with room temperature fixed at 21◦C. After the flow becomes quasi-steady, subsequent

recording typically lasts 30 minutes.

Still images are extracted from the video, and the location of the interface is determined

using “edge-detection” by MATLAB, with a maximum error of round 5 pixels. Subse-

quently, h and κ are determined from the interface. The nadir of the interface (or the

“tip”) is located and its two neighbors—points that are vertically 1 pixel above the tip—

are also marked. The distance between the tip and the orifice of the tube h is determined

within 1 pixel, which, depending on optical resolution, amounts to 1 to 10 µm. A second-

order polynomial through the three points gives the tip curvature κ. The error in κ stems

from that in locating the interface, and is around 12.5%.
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3 Test fluids: composition and rheology

The experiments have used two polymer solutions of polyisobutene (PIB, with molecular

weight MW ∼ 2×106, Oppanol B, BASF) in heptane and polybutene (PB-H35, MW ∼ 700,

INDOPOL H-35; PB-H50, MW ∼ 800, INDOPOL H-50; PB-H100, MW ∼ 910, INDOPOL

H-100, all from BP Amoco). All materials are used as received with no further processing or

refinement. As a Newtonian baseline, we have also done the selective withdrawal experiment

with a silicone oil of density 760 kg/m3 and shear viscosity 9.5 Pa·s. The composition of

the two polymer solutions, termed “strongly elastic” (SE) and “weakly elastic” (WE), is

given in Table 1.

Solution PIB heptane PB-H35 PB-H50 PB-H100

SE fluid 0.17% 4.3% 52.3% 21.7% 21.5%

WE fluid 0.034% 1.03% 0 99% 0

Table 1: The composition of the polymer solutions. PB-H35, PB-H50 and PB-H100 are
three types of PB with molecular weight of 700, 800 and 910.

We have measured the surface tension σ of the liquids at 21◦C using the ring method

(Cole-Parmer, Surface Tensiomat Model 21), and obtained the following values: σ = 21.3

mN/m for silicone oil, 27.3 mN/m for the SE fluid and 32.1 mN/m for the WE fluid.

During the experiment, surface adsorption of contaminants is possible. But our Newtonian

experimental results match very well with Courrech du Pont and Eggers’ work [9] as well as

our own computations [15]. This indicates that any effect of surfactants on our experiment is

negligible. Thus, we have not used any surface-cleaning procedure during the experiments.

Comparing the PIB molecular weight and the concentration of our polymer solutions

with those in the literature, we expect them to be Boger fluids [16,17]. Their shear rheology

measured on a Bohlin CVO-R rheometer largely bears this out (Fig 3). For both fluids,

the shear viscosity η remains essentially constant for 0.1 s−1 < γ̇ < 30 s−1. For higher

shear rates, shear thinning becomes appreciable. Below 0.1 s−1, the data are noisy and

unreliable; this is near the lower limit of the testing range for the transducer used. Data for

first normal stress difference N1 are reliable for γ̇ > 1 s−1, above which N1 scales with γ̇2

as expected for Boger fluids. At higher shear rates, the N1(γ̇) dependence becomes milder,

consistent with the onset of shear-thinning in η. The minimum shear rates for reliable η
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Figure 3: Shear rheology of our polymer solutions at three temperatures. (a) and (b) show the
shear viscosity and first normal stress difference for the WE fluid, while (c) and (d) are for the SE
fluid. The straight lines in (b) and (d) indicate the slope for a N1 ∝ γ̇2 scaling on the log-log scale.

and N1 are consistent with earlier reports [18]. Both η and N1 decrease with temperature,

as expected [19]. As mentioned before, all selective withdrawal experiments will be carried

out at 21◦C.

The extensional rheology of our polymer solutions has been measured using the Filament

Stretching Extensional Rheometer (FiSER) by Professor David James and Dr. Mayumi

Ouchi [20] at the University of Toronto. The results are shown in Fig. 4 for two strain

rates. Note that FiSER returns the transient elongational stress growth viscosity η̄+ [19], as

a function of strain, and apparently no steady stretching is approached in these tests. Both

the SE and WE fluids show strain hardening, i.e. a steep increase in η̄+ with strain as the
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Figure 4: The transient elongational stress growth viscosity of our experimental fluids SE and WE
measured by a filament stretching device [20]. Each fluid has two curves corresponding to extension
rates of 3 s−1 and 9 s−1. The SE measurement was done at 27◦C while the WE fluid at 25◦C.

polymer chains become extended. For larger strain, the SE fluid has a higher η̄+ than the

WE fluid. But for both fluids, η̄+ shows little consistent dependence on the strain rate ǫ̇

between the two values tested. In our own lab, we have also used the Capillary Breakup

Extensional Rheometer (CaBER, ThermoHaake) to probe the extensional rheology of the

polymer solutions. CaBER records the capillary thinning of the polymer thread, which, un-

like the filament stretching device, generates an elongational rate that is not constant but

undergoes complex temporal variations. Nevertheless, CaBER produces apparent elonga-

tional viscosities in order-of-magnitude agreement with the FiSER data. Another important

quantity measurable by CaBER is the relaxation time λ. Fitting the Giesekus model to the

“elasto-capillary thinning” regime [21] gives λ = 8.50 s for the SE fluid and 3.77 s for the

WE fluid.

Since the experiments lasted months, we were concerned about aging and degradation

of the polymer solutions due to heptane evaporation and polymer chain scission. To check

such effects, we measured the shear as well as elongational rheology of the solutions at the

beginning and end of the project. There are no significant differences that would indicate

aging and degradation. For example, the relaxation time decreases from 8.63 s to 8.5 s for

the SE fluid. Since selective withdrawal subjects the polymer chains to elongation, chain

scission would not have been surprising. Its absence is probably thanks to the low strain

rates in the process (∼ 0.1 s−1; see Ref. [15] for more details). The heptane concentration

is very low and does not contribute much to the rheology in any event. Thus solvent

evaporation is not a major factor.
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4 Results for Newtonian fluid

To reprise, our experimental procedure consists in fixing the flow rate Q and following the

evolution of the interface as the free surface position H gradually lowers. Using the radius

of the suction hole R as the characteristic length, and V = Q/R2 as the characteristic

velocity, we construct a capillary number:

Ca =
ηQ

σR2
, (1)

where σ is the surface tension and η is the viscosity of the Newtonian fluid. For the polymer

solutions to be studied in Sec. 5, Ca is similarly constructed using the constant viscosity η

at moderate shear rates (cf. Fig. 3). In addition, there are length ratios H/R, h/R and κR,

and we will also use χ = (H − h)/R in data reduction.

Figure 5 shows a typical example of the interfacial deformation for Newtonian fluid at

a fixed flow rate corresponding to Ca = 10.22. We started with an initial H = h = 6.5

mm. In the first 1000 s, the interface shows no visible deformation so H remains equal

to h. As both decrease to ∼ 4.5 mm, at time t ∼ 1200 s, the interface forms a gentle

downward protrusion, which becomes more pronounced as H and h further lowers (Fig. 5a–

c). Meanwhile, h falls below H and H −h gives the depth of the depression at the center of

the interface, which corresponds to the “hump height” of Cohen et al. [1,5]. Also note that

the tip of the protrusion becomes more pointed as the interface gets nearer to the suction

tube and the viscous force of the flow becomes stronger (Fig. 5d–f). Toward the end, the

tip appears quite pointed, and eventually enters the opening of the suction tube (Fig. 5g,h).

Generally speaking, the evolution of the interfacial shape is gradual and the flow remains

quasi-steady. The lack of abrupt changes contrasts the behavior of polymer solutions, as

we will see in the next section.

What is conspicuously absent in the above process is the subcritical-to-supercritical

transition depicted in Fig. 1 for liquid-liquid selective withdrawal. In the experiments of

Cohen et al. [1, 5], various liquid pairs were used to cover a viscosity ratio µ = 10−3 – 2.

Here µ is defined as the ratio between the liquid on the opposite side of the nozzle to the

liquid containing the nozzle. In all cases, there is a critical condition, reached by increasing

Q or decreasing h, where the tip ruptures into a jet. This scenario was later confirmed by
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(a) (b)
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Figure 5: Evolution of the free surface for the Newtonian silicone oil at a fixed flow rate corre-
sponding to Ca = 10.22. Note the duration of the experiment and the length scale. The last three
images show the opening of the suction tube.
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the numerical computations of Blanchette et al. [22]. The existence of a critical condition

is consistent with the computational result of Lister [4] for equal-viscosity fluids.

With an air-liquid system, Courrech du Pont and Eggers [9, 10] explored the existence

of a critical state with increasing Q and decreasing distance h. In their system, as in ours,

the viscosity ratio µ is around 10−6. From their experimental data for the subcritical state

(partially depicted in Fig. 6), they initially suggested that the tip curvature should diverge

as κ ∼ (h − h∗)−3, h∗ being the critical position of the tip when it becomes a cusp [9]. No

jet was found. Later, boundary-integral computations allowed them to explore higher κ

than in the experiments, and indicated that the power-law scaling fails for larger κ; instead

of diverging, it seems to approach a finite limit as h decreases [10]. Based on this, Courrech

du Pont and Eggers concluded that no critical state exists for the air-liquid system.

This conclusion seems consistent with our findings. First, we never observed the forma-

tion of a spout or jet. Even as the tip descends into the tube, the evolution is smooth and

gradual. Second, we never observed a cusp, and the tip always appears to be round when

viewed under sufficient magnification, despite the appearance of Fig. 5(f–h). Of course,

finite optical resolution limits the maximum curvature that can be confidently calculated

from the image; for our setup this limit is around κR = 23.5.

To reconcile this with the liquid-liquid results [1, 5, 22], we speculate that when the

viscosity ratio µ becomes sufficiently small, the critical flow rate will increase without bound.

The critical condition in selective withdrawal can also be likened to the burst of a drop or

bubble in extensional flow [23]. If the drop-to-matrix viscosity ratio µ is larger than 1, the

critical Ca is largely independent of µ. When µ decreases below 1, the critical Ca increases,

apparently following a power-law and without an upper bound.

For a more quantitative comparison between our experiment and that of Courrech du

Pont and Eggers [9], we plot in Fig. 6 the steady-state tip curvature κ as a function of the tip

location h, with the flow rate fixed at several values of Ca. In both experiments, κ increases

with decreasing h for a fixed Ca, and increases with Ca for a fixed h. We have attempted

to tune our flow rates toward Ca = 9.66 of Courrech du Pont and Eggers’ experiment; our

data sets for Ca = 9.45 and 10.22 closely hug their data. Thus, we are satisfied that our

experiments with Newtonian fluids agree closely with theirs.
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Figure 6: The tip curvature κ increases as the interface moves down toward the suction tube during
the process depicted in Fig. 5. The two lines represent the data of Courrech du Pont and Eggers [9]
and the symbols are our data. The two sets of data marked SE fluid are for viscoelastic polymer
solutions, and will be discussed in the following section.

5 Results for viscoelastic fluids

For viscoelastic fluids, the intensity of elastic effects is typically represented by the Deborah

number [19]:

De =
λQ

R3
. (2)

In this definition, as for Ca before, the nominal velocity at the suction tube V = Q/R2

is taken to be the characteristic velocity. Since both De and Ca are proportional to V , it

seems reasonable to use the ratio

E =
De

Ca
=

λσ

ηR
(3)

to indicate an “intrinsic” strength of elasticity. We will call this the elasticity number

following Grillet et al. [24]. Except for the length scale R, E is essentially a material

constant. For the experimental setup used here, E = 22.1 for the SE fluid and 15.1 for the

WE fluid.

Figure 7 depicts the evolution of the free surface of the polymer solution SE. We start

with H = h = 4.37 mm. In the initial period of the experiment, the interface is flat with

no visible deformation or curvature. Then, at the time of the first picture in the series

(t = 360 s), the deformation of the free surface becomes visible. In a short duration of
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 7: Evolution of the free surface of the polymer solution SE at Ca = 2.5 and De = 55.3. The
system is subcritical until t = 509.46 s and is supercritical thereafter.
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Figure 8: Snapshot of the air jet in the supercritical regime for the viscoelastic fluid SE. Ca = 9.5,
De = 231 and h = 2.1 mm.

little more than 150 seconds, the deformation very quickly becomes more pronounced. By

t = 509 s and h = 3.49 mm, the surface becomes unstable, and the system approaches

the critical state. First, the tip apparently becomes a sharp cusp. Then quickly the cusp

extends downward, and a thin air jet is ejected from the tip, which remains stable as H

continues to decrease. Now the system is in the supercritical state (t = 517 s, h = 3.44

mm). To keep the free surface sharp, we had to use lighting from the back of the test tank

in recording the video. In this arrangement, the air jet is not visible in the pictures. But it

is in Fig. 8, taken with lighting from the top. Note that even in the supercritical state, the

interfacial deformation remains modest outside the immediate neighborhood of the tip. At

later times, the free surface continues to move down, and the “cone” at the base of the air

jet gradually becomes more pointed. The very prominent cone of Fig. 8, comparable to the

Newtonian one, was achieved at a much higher flow rate and Ca.

This is an overview of the whole deformation process for viscoelastic liquids. For the

weakly elastic (WE) solution, the qualitative features are the same. But the onset of

deformation and the critical state all occur at smaller h and higher flow rates than in

Fig. 7.In the following, we will discuss the subcritical, critical and supercritical regimes in

turn.

5.1 Subcritical regime

This is the only regime that can be compared with Newtonian liquids, and is best described

through the differences from its Newtonian counterpart. First, for the same values of Ca

14



D. Zhou & J. J. Feng, J. Non-Newtonian Fluid Mech. 165 (2010) 829–838

(a)
t (s)

κ
(µ

m
-1
)

0 100 200 300 400 500

0

0.0001

0.0002

0.0003

0.0004

(b)
t (s)

h
(m

m
)

0 100 200 300 400 500
3.4

3.6

3.8

4

4.2

4.4

Figure 9: Temporal evolution of (a) the tip curvature κ and (b) the tip position h for SE at Ca = 2.5
and De = 55.3.

and h, the free surface deforms much more in viscoelastic fluids than in Newtonian fluids,

producing a much larger tip curvature. Typically, the free surface of viscoelastic fluids

begins to deform visibly at an H value far greater than that for the Newtonian free surface.

That is to say, given the same Ca, the viscoelastic free surface feels the flow effect at a much

larger distance from the suction tube. This is apparent from Fig 6, where for the Newtonian

fluid at Ca = 9.45, detectable deformation of free surface occurs after h falls to h ≈ 4 mm.

For the viscoelastic SE fluid, on the other hand, the free surface starts to deform visibly

at h ≈ 6 mm even though the capillary number Ca = 6.02 is lower. By h ≈ 5.8 mm, the

system has entered critical state with k → ∞. The obvious explanation for the difference

is that the viscoelastic normal stress helps pull the interface downward. As the flow near

the tip is mostly elongational, another way of expressing the same idea is that the polymer

solutions exhibit much larger elongational viscosity.

Second, the interfacial evolution is slow and smooth for Newtonian fluids (around 30

min in Fig. 5), but much more abrupt for viscoelastic fluids. This may be discerned from

contrasting Figs. 5 and 7, and is more quantitatively shown in Fig. 9 plotting the temporal

change of the tip curvature κ and position h for a viscoelastic fluid. In Fig. 9, the subcritical

regime prevails until t ≈ 500 s. During much of this time (t . 360 s), the interface is hardly

deformed at all; κ remains near zero and h declines roughly linearly. Then in a very

short time (500 s < t < 509 s), the interface undergoes the transition to the supercritical
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regime. This is manifested by the sharp upturn of κ and downturn of h, both going without

bounds as the air jet emanates from the tip. The abruptness in interfacial transition can

again be traced to the additional polymer stress during elongation. As the interface lowers

toward the suction tube, the strain rate increases everywhere. In particular, the fluid on

streamlines passing near the tip experiences greater strain. While the elongational viscosity

of a Newtonian fluid remains constant at 3η, that of viscoelastic liquids is known to increase

sharply with strain due to strain hardening [19]. This greatly increases the pulling force

of the liquid on the interface, which quickly destabilizes the interface and precipitates the

system into the supercritical state.

The transition from sub- to supercritical regime occurs within roughly 10 seconds. This

is comparable to the relaxation time of the polymer solution. Therefore, even if the transient

acceleration term in the momentum equation remains small in comparison with the viscous

term, the polymer may not experience steady-state stretching. Thus the flow is not quasi-

steady during the transition. Prior to that, the interfacial evolution in the subcritical regime

remains quasi-steady.

Finally, the interfacial deformation tends to be more localized for the viscoelastic liquids.

Compared with a Newtonian depression bearing the same tip curvature, the viscoelastic one

is much narrower. This probably reflects a localization of the polymer stress, which is in

turn another manifestation of strain hardening. The polymer stress depends not only on

the local strain rate but also on cumulative strain. The fact that it remains small away

from the tip of the interface and then rises sharply at the tip reflects not only the larger

strain rate there, but also the larger cumulative strain attained.

5.2 Critical state

The critical state is the boundary between subcritical and supercritical regimes. The free

surface forms a pointed cusp, from which a thin air jet emanates. This process can be

compared with the rise of bubbles in a viscoelastic liquid [25–29]. When the rise speed is

sufficiently fast, a cusp forms at the downstream stagnation point of the bubble. In some

cases, a thin filament is drawn out from the cusp [27, 28]. Another related phenomenon

is tip-streaming [30–34]. Subject to extensional flows, surfactant-laden bubbles and drops
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deform into a spindle shape with pointed ends, and then emit a train of tiny bubbles or

droplets from these points. In all these scenarios, the underlying physics is large extensional

stress overcoming the interfacial tension to rupture the interface. With surfactant-covered

drops and bubbles, tip-streaming is facilitated by accumulated surfactant locally suppressing

the interfacial tension. With viscoelastic fluids, extension of the polymer chains produces

extraordinary elongational stresses that draws a cusp or filament from the interface. Such

seems to be the case with the critical transition in viscoelastic selective withdrawal. As

noted in Sec. 3, surfactants are believed to be insignificant in this process.

(a) Effect of viscoelasticity on critical condition

Our typical experimental protocol consists of draining the liquid out at a fixed flow rate

Q or capillary number Ca, and recording the evolving interfacial shape. As such, the critical

condition is most easily recorded as a critical liquid level H∗ in the test tank since H is one

of our control parameters. Of course, there is also a critical tip position h∗, which can be

obtained from image analysis. From this we can define a critical value for the dimensionless

depression depth

χ∗ =
H∗ − h∗

R
. (4)

Note that a different critical liquid level is obtained for the reverse transition from super-

critical to subcritical regimes. This hysteresis will be discussed separately below.

Figure 10 depicts the critical condition over a range of Ca for the two polymer solutions.

The critical depression depth χ∗ increases both with Ca and E. The critical H∗ behaves

similarly, although the dependence on E is less pronounced. This trend can be rationalized

as follows. Since E scales with the polymer relaxation time, it represents the capacity of

the polymer chains to stretch and generate elongational stress [19]. On the other hand,

Ca is proportional to the flow rate Q, and thus also proportional to the strain rate at the

interface. Consequently, an increase in either E or Ca results in greater polymer stress

pulling on the interface. The interface reacts by forming a deeper depression toward the

nozzle. The greater hydrostatic pressure on the interface, along with an increased vertical

component of the surface tension, balances the increased polymer stress. This explains

the increase in χ∗. Besides, with increasing polymer stress, the interface “feels” the same
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Figure 10: The critical condition indicated by (a) the depression depth χ∗ and (b) the liquid level
H∗/R as functions of Ca for the SE (E = 22.1) and WE (E = 15.1) polymer solutions. The solid
and dash lines are best linear fitting to the data.

amount of pull at a larger distance H from the nozzle. Hence H∗ increases with Ca and E

as well.

(b) Hysteresis

A hysteresis exists when the critical condition is approached by a decreasing H or

increasing H. The former is the dominant protocol for our experiment; we fix the position

of the control tank and the position of the valve, and let the liquid drain out at a constant

Q. To increase H, on the other hand, we start with the supercritical state and then elevate

the control tank in small increments. Enough time (5-10 minutes) is allowed between the

increments for the control tank and test tank to equilibrate. We also expect hysteresis when

the flow rate or Ca is increased and decreased across critical values, but we have not tested

this experimentally. Technically it is very difficult to vary Ca while keeping H fixed.

Figure 11 shows the hysteresis in terms of H∗ achieved by decreasing or increasing

H. The data divide the H–Ca plane of control parameters into three regions. In the top

region, a smooth free surface is always stable and remains in the subcritical regime. In the

bottom region, the cone-jet configuration of the free surface is always stable and the system

remains in the supercritical regime. The middle region between these two is transitional in

the sense that the state of the free surface depends on the deformation history; it is the same
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Figure 11: Hysteresis of the critical state for the SE fluid. The subcritical-to-supercritical transition
is achieved by lowering H , while the reverse is achieved by increasing H .

as the previous state as one traverses the three regions along vertical lines, by increasing or

decreasing H.

Similar hysteresis has been found in selective withdrawal of Newtonian liquid-liquid

systems [5, 6]. But in gas-fluid systems, all previous work dealt with Newtonian fluids,

which do not exhibit a critical state. Therefore, this is the first time hysteresis is reported

for gas-liquid systems.

5.3 Supercritical regime

The most striking feature of the supercritical regime is the air jet that emanates from the

cusp of the interface and extends toward the suction tube (Fig 8). It has a diameter Da

on the order of 10 µm, and as such requires high magnification of the video camera to be

viewed and recorded. Using the magnification of Fig. 8 (1 pixel ≈ 7 µm), the air jet is

visible for about 1 cm below the cusp. Further downstream, it apparently disappears and

may have broken up into tiny bubbles. In our video image, the edges of the jet are not

completely steady, but appear to fluctuate slightly in time. The reason for this fluctuation

is not clear at present. Because of the small size of the jet, it is conceivably very sensitive

to external disturbances, which may come, say, from minute variations in the flow rate or

the passing of nearby particulate contaminants suspended in the fluid. Note also the slight

slant of the air jet in Fig. 8 to the right. This may reflect a small geometric misalignment.
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Figure 12: The diameter of the air jet Da as a function of H for 3 values of Ca. All the results are
for the SE fluid with E = 22.1. The error bars represent the degree of uncertainty in measuring Da

due to finite optical resolution and apparent fluctuation of the edge of the air jet.

Considering this temporal variation and the limited spatial resolution, we put the max-

imum uncertainty in measuring Da at 15%. In the experiment, Da is measured from video

images captured by a high resolution (1 pixel ≈ 1 µ m) CCD camera. The air jet typically

covers 10-15 pixels on the screen. An uncertainty of half of pixel at the edges then leads to

roughly a 5% error. A second source of error is the small fluctuations of the edges of the

jet. For each H value, we take three pictures of the air jet and average the Da values from

them. The difference in Da among the pictures ranges from 5% to 10%.

Figure 12 plots Da as a function of the control parameter H at 3 fixed Ca values. The

amount of scatter makes it hard to discern definite trends. But Da seems to increase with

Ca, all other factors being the same. This would be reasonable considering that a higher

flow rate draws more air into the jet. Besides, Da appears to increase with H first, and then

decreases. As present, we do not have an explanation for this non-monotonic behavior. A

more definite understanding of Da awaits future observations at greater image resolution.

For the WE fluid, the air jet tends to be thinner at the same flow rate, presumably because

of weaker elongational stress in the liquid.

Previous work on Newtonian liquid-liquid selective withdraw has documented similar

liquid jets in the supercritical state. Cohen and Nagel [1,5] observed such jets for viscosity

ratio µ down to 10−3, but did not report the jet diameter. The later study of Case and

Nagel [6] shows liquid jets of diameter around 20 µm for a viscosity ratio µ = 5 × 10−3.

This is comparable to our data, although our µ is on the order of 10−6.
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6 Conclusion

This paper reports experiments on the evolution of the free surface of viscous and viscoelastic

liquids being drained through a small tube embedded in the liquid. We view the so-called

selective withdrawal as an interesting process that couples bulk rheology of the fluid with

interfacial behavior. In the general context of interfacial dynamics for complex fluids, it is

related to problems such as drop and bubble deformation, breakup and coalescence [17,35,

e.g.], and we have approached the problem from essentially the same angle, i.e., by focusing

on the polymeric stresses near the interface. Within the limits of the experimental conditions

tested, the main findings can be summarized as follows.

(a) The surface of a polymeric liquid exhibits a supercritical regime wherein the interface

forms a downward cusp from which an air jet emanates toward the suction tube. This is in

contrast to Newtonian liquids whose surface only exhibits subcritical behavior with gradual

and smooth deformation and no rupture.

(b) The subcritical-supercritical transition shows a hysteresis in terms of the critical

liquid level and flow rate. With increasing elasticity, the transition occurs at lower flow

rates or higher liquid levels.

(c) In the subcritical regime, the surface of polymer solutions deforms much more than

a Newtonian one under similar conditions. The deformation also tends to be localized to

the tip, with a narrower region being disturbed.

All these can be rationalized by the polymer elongational stress that tends to pull the

interface toward the suction tube. In particular, the strain-hardening behavior, i.e. the

rapid increase of the elongational viscosity with cumulative strain, plays an important role.

A limitation of the current work is the optical resolution, especially in determining the

air jet diameter in the supercritical regime. Future experiments at higher resolution will

shed light on the factors affecting the air jet formation and confirm its connection to similar

jets trailing bubbles rising in viscoelastic liquids. Furthermore, we recognize the potential

that the selective withdrawal process, in the subcritical regime, may be used to measure

the elongational viscosity of polymeric liquids. This idea will be further developed in the

accompanying paper [15].
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