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This paper presents a finite-element simulation of the interfacial flow during
propulsion of water walkers such as fishing spiders and water striders. The unsteady
stroke of the driving leg is represented by a two-dimensional cylinder moving on
a specified trajectory. The interface and the moving contact lines are handled by a
diffuse-interface model. We explore the mechanism of thrust generation in terms of
the interfacial morphology and flow structures. Results show that the most important
component of the thrust is the curvature force related to the deformation of the menisci
and the asymmetry of the dimple. For water walkers with thick legs, the pressure
force due to the inertia of the water being displaced by the leg is also important. The
viscous force is negligible. An extensive parametric study is performed on the effect of
leg velocity, stroke depth, leg diameter and surface wettability. The propulsive force
is insensitive to the contact angle on the leg. However, the hydrophobicity of the leg
helps it detach from the surface during the recovery stroke and thus decreases the
resistance. It is also important for averting or delaying penetration of the interface at
large rowing velocity and depth. In two dimensions, surface waves are more efficient
than vortices in transferring the momentum imparted by the leg to the water.
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1. Introduction
Water striders and fishing spiders are small creatures living on water. Their legs are

covered by a layer of micro-setae with nanoscale texture (Gao & Jiang 2004; Hu &
Bush 2010), which renders the legs highly non-wetting or super-hydrophobic so that
these creatures can stand effortlessly on water. Moreover, they can move quickly on
water by rowing their legs on the surface. This amazing ability has attracted substantial
research work (Bush & Hu 2006; Bush, Hu & Prakash 2007). The exploration of the
underlying mechanism not only supplies a better understanding of nature but also has
potential biomimetic applications (Hu, Chan & Bush 2003; Hu et al. 2007; Song &
Sitti 2007). While the static problem of standing on water is well understood, the
dynamic mechanism of propulsion is not. This paper seeks to address the outstanding
issues from detailed computations of the fluid flow.

† Email address for correspondence: jfeng@math.ubc.ca



364 P. Gao and J. J. Feng

When a water walker stands on water, its hydrophobic legs push the water surface
down to form dimples. The width of the dimple is characterized by a capillary length
�c =

√
σ/(ρ1 − ρ2)g ≈ 2.7 mm, which is typically much larger than the leg radius. Here

σ is the surface tension; ρ1 and ρ2 are the densities of water and air, respectively;
and g is the gravitational acceleration. The weight of the insect is supported by a
combination of buoyancy and curvature forces, the latter being the vertical component
of the surface tension at the contact line. It can be demonstrated by using an extended
Archimedes principle (Mansfield, Sepangi & Eastwood 1997; Keller 1998) that the
curvature force is equal to the weight of water displaced beyond the contact line. Thus,
the total supporting force is equal to the weight of water displaced by the leg and
the dimple together. For real water striders whose legs are very thin (∼100 µm), the
curvature force supports most of the weight. Vella, Lee & Kim (2006) demonstrated
that the maximum load that can be supported by thin cylinders becomes independent
of the contact angle when it exceeds π/2. Therefore, the super-hydrophobicity of the
leg does not necessarily improve its load-bearing capability on water (Song & Sitti
2007).

The dynamic propulsion of water walkers is much more complex than the static
flotation. On the basis of observations, three propulsion mechanisms have been
proposed so far: wave drag, form drag and momentum transfer by vortices. When
a water walker rows its legs, surface ripples are generated. These capillary–gravity
waves propagate backward to the far field, presumably carrying the momentum away
from the insect. This amounts to a wave drag on the rowing leg, thereby giving
the leg a forward thrust (Anderson 1976; Denny 1993; Sun & Keller 2001). This
explanation was widely accepted at the beginning, partly because the surface waves
were the only flow structure visible to the naked eye. However, this picture was
apparently complicated by Denny’s paradox (Denny 1993, 2004; Suter et al. 1997;
Hu et al. 2003). According to linear wave theory, there exists a minimum wave speed
cmin = 4

√
4σg/ρ1 = 23 cm s−1 (Lamb 1932). In order to generate waves and hence wave

drag, the leg must move at least as fast as cmin , which is a feat that certain smaller
water-walking creatures, such as infant striders, are incapable of (Denny 1993). That
infant water striders do move constitutes the paradox. Towards its resolution, Hu
(2006) and Hu & Bush (2010) pointed out that the cmin criterion is based on steady
wave theory (Raphaël & de Gennes 1996; Sun & Keller 2001) and thus does not apply
to the unsteady strokes of real water walkers. Bühler (2007) further demonstrated
that the impulsive start of a point force near an air–water interface does generate
unsteady waves.

Motivated by the paradox, Suter et al. (1997) carried out experiments in which a
segment of the leg of the fishing spider Dolomedes triton was dragged on water at a
constant velocity below cmin . No waves were generated, and thus the wave drag was
absent. They measured the force on the leg and found that it can be largely accounted
for by the drag force on a half-cylinder that represents the ‘leg-cum-dimple’, i.e. the
leg plus the deformed meniscus. Although this drag may contain viscous friction,
their key idea is that the form drag on the meniscus, of a much larger area than the
leg, allows a much larger thrust than can be produced on the leg surface alone. Thus,
this has been called the form drag mechanism for propulsion (Bush & Hu 2006). Of
course, this mechanism is wave-independent and does not involve Denny’s paradox.

More recently, Hu et al. (2003) and Hu & Bush (2010) performed careful
experimental observations of the wake produced by the water strider Gerris remigis
as well as fishing spiders. They found capillary waves being generated by even infant
water striders. More importantly, the driving legs shed hemispherical vortex pairs in
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the water that travel backward at a characteristic speed of 4 cm s−1. The horizontal
momentum carried by these vortices is estimated to be comparable to that of the
strider. Thus, Hu et al. (2003) concluded that the leg imparts momentum to water
primarily through these vortex dipoles, while the waves are a mere by-product of the
stroke. The vortex scenario is attractive, since coherent vortex structures have long
been recognized as the dominant mechanism of locomotion for fish and birds (e.g.
Dickinson 2003). For water walkers, however, the interface is implicated in the vortex
generation, and its role remains to be elucidated.

Note that these three mechanisms were proposed from different perspectives. They
are not mutually exclusive, nor do they include all the relevant dynamics. The main
objective of our study is to reconcile these proposals by elucidating the detailed
flow structures responsible for each. This will provide answers to several important
questions. For instance, what is the relationship among the different mechanisms?
What is the effect of the leg hydrophobicity on the locomotion? How can a water
walker boost its propulsion? Tackling these questions requires an appropriate model
for the leg stroke, as well as a quantitatively accurate description of the interfacial
shape and the flow field. Hence we resort to direct numerical computations.

We will present two-dimensional (2-D) numerical simulations of the locomotion of
water walkers by rowing. We employ an unsteady model of the stroking cycle of the
leg with a finite duration, which is more realistic than previous steady-state (Suter
et al. 1997; Sun & Keller 2001) or impulsive-point-force models (Bühler 2007). The
moving surface and moving contact lines are handled by a diffuse-interface model,
and the numerical solution uses finite elements on an unstructured grid with adaptive
meshing. The main contribution of our paper is a clear analysis of the propulsion
mechanism in terms of the hydrodynamic forces on the leg, accounting for all of the
factors including surface tension, viscosity, pressure and fluid inertia. This not only
allows a quantitative prediction of the propulsive force but also demonstrates the
relative importance of waves and vortices to different stages of the propulsion.

2. Physical model and numerical method
Since water walkers propel themselves by rowing their middle legs, only the flow

produced by these propulsive legs is considered. To simplify the problem, the leg is
modelled as a 2-D solid cylinder, without taking into account the complex micro-
structures of the leg surface (Gao & Jiang 2004; Bush et al. 2007). In particular, Hu &
Bush (2010) have noted that the anisotropy of the integument and the contact-angle
hysteresis contribute to the locomotion. Our simple model omits such effects and
reflects only the hydrophobicity of the leg by a large contact angle θ . Air and water
are treated as a stratified two-phase system, both components being incompressible
and Newtonian. The lower fluid (water) has density ρ1 and viscosity µ1 and the upper
one (air) ρ2 and µ2.

The decision to use a 2-D model is mostly based on the lower computational
cost. Then its relevance to three-dimensional (3-D) reality needs to be justified.
Experimental pictures show that where the leg of a water walker touches the water
surface, it is largely parallel to the water surface and makes a horizontal dimple (Suter
et al. 1997; Suter & Wildman 1999; Hu et al. 2003). If the dimple is much longer
than the capillary length �c = 2.7 mm, the 3-D end effect is negligible, and the process
can be treated as 2-D. This is the case for adult water striders and fishing spiders,
which typically have a leg length of 1.5 cm in contact with water (Suter et al. 1997;
Hu & Bush 2010). During rowing, a 3-D end vortex may arise at the distal end of
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Figure 1. Schematic illustration of the leg movement. The solid and dashed curves denote
the initial interface and the leg trajectory, respectively.

the leg, especially if it is submerged. This vortex grows in time t , and its size can be
estimated from the density ρ1 and viscosity µ1 of water as

√
µ1t/ρ1. The duration of a

stroke is typically less than 0.1 s, which gives a vortex size below 0.3 mm. This is again
negligible in comparison with the length of the dimple. Three-dimensionality becomes
important for infant water striders having short legs and for long-time growth of 3-D
vortices in the wake of the insect (Hu et al. 2003). The latter is related to the transfer
of momentum by vortices. These scenarios cannot be accounted for by our model,
and we will revisit this issue in § 3.3.

Only limited information on the leg stroke is available. Suter et al. (1997) measured
the typical velocity of the driving leg of fishing spiders. But the exact trajectory of
the leg is unavailable for most water walkers. For simplicity and generality, we will
use the following idealized leg stroke. In a stationary reference frame in which the
unperturbed fluid interface is at y = 0 (figure 1), we prescribe the trajectory of the leg
(X(t), Y (t)) by

X(t) =

⎧⎪⎪⎨
⎪⎪⎩

A cos
πt

T
for t �

3T

2
,

πA

T

(
t − 3T

2

)
for t >

3T

2
,

(2.1)

Y (t) =

⎧⎪⎨
⎪⎩

−1

2
(Ymax − Ymin) sin

πt

T
+

1

2
(Ymax + Ymin) for t �

3T

2
,

Ymax for t >
3T

2
.

(2.2)

The motion of the leg is thus composed of a backward driving stroke with duration
T and a recovery stroke, as illustrated in figure 1. Here, 2A is the horizontal
displacement of the leg during the driving stroke; Ymax and Ymin are the maximum
and minimum vertical positions of the leg, respectively. Initially, the leg is located at
(x0, y0) = (A, (Ymax + Ymin)/2). Only one stroke is studied, and the simulation typically
ends at 2T ∼ 2.5T . The driving stroke generates the propulsive force, and the long-time
behaviour (t � T ) is not of present interest.

We use a diffuse-interface method to handle the interfacial deformation and the
moving contact line (Jacqmin 2000; Qian, Wang & Sheng 2006; Yue, Zhou & Feng
2010). We view the air–water interface as a thin diffuse layer of non-zero thickness,
within which the two fluids mix to store a mixing free energy. A phase-field variable
φ is introduced such that φ = 1 in the water and φ = −1 in the air. Further, φ varies
in a steep and smooth way across the interface, which is given by the level set φ =0.
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The evolution of φ is governed by the advective Cahn–Hilliard equation

∂φ

∂t
+ v · ∇ φ = ∇ · (γ ∇G), (2.3)

where G = λ[−∇2φ + (φ2 − 1)φ/ε2] is the bulk chemical potential; γ is the mobility
and v = (u, v) is the velocity vector; λ is the mixing energy density and ε is the
capillary width characterizing the thickness of the diffuse interface. On the basis of a
one-dimensional equilibrium profile of φ, λ and ε are related to the classical interfacial
tension σ by

σ =
2
√

2

3

λ

ε
. (2.4)

The flow is governed by the continuum and momentum equations

∇ · v = 0, (2.5)

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇p + ∇ · [µ(∇v + (∇v)T)] + G∇φ − ρg j , (2.6)

where j is the upward unit vector. The density ρ and viscosity µ are defined as

ρ = 1
2
(1 + φ)ρ1 + 1

2
(1 − φ)ρ2, (2.7)

µ = 1
2
(1 + φ)µ1 + 1

2
(1 − φ)µ2. (2.8)

Note that the momentum equation has an additional term G∇φ, representing the
body force normal to the interface generated by the interfacial tension.

In the far field, the Cahn–Hilliard equation is supplemented by the following
boundary conditions: n · ∇G = 0 and n · ∇φ = 0, n being the outward unit normal
vector. For the Navier–Stokes equations we impose vanishing stress at the upper
boundary and vanishing velocity elsewhere on the outer boundary. On the surface
of the solid cylinder, we employ the following no-slip, no-flux and contact-angle
boundary conditions:

v = (X′(t), Y ′(t)), (2.9)

n · ∇G = 0, (2.10)

λn · ∇φ + f ′
w(φ) = 0. (2.11)

The contact angle enters through the wall free energy fw , which is postulated as
(Jacqmin 2000; Yue et al. 2010)

fw(φ) = −σ cos θ
φ(3 − φ2)

4
+

σw1 + σw2

2
, (2.12)

where σw1 and σw2 are respectively the wall energies of water and air, related to the
contact angle by Young’s equation σw2 − σw1 = σ cos θ . The condition (2.11) assumes
that the contact line is always in equilibrium with the wall, and both the advancing
and receding contact angles are the same as the static contact angle. This precludes
a possible propulsion mechanism associated with contact-angle hysteresis (Hu &
Bush 2010). In the diffuse-interface formalism, the air–water interface is no longer a
boundary and thus requires no additional boundary condition.

The initial condition consists of a zero flow field and an equilibrium interface
determined by the force balance between interfacial tension and hydrostatic pressure.
The cylinder is partially wetted by the water to form a symmetric dimple, whose
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Figure 2. (a) Schematic of the initial menisci. (b) Typical mesh with local refinement around
the cylinder and the interface.

lateral extent is characterized by the capillary length:

�c =

√
σ

(ρ1 − ρ2)g
. (2.13)

For the 2-D problem considered, the meniscus profile can be obtained analytically
(de Gennes et al. 2002; Liu, Feng & Wang 2007):

x = x0 ±
[
�c cosh−1(−2�c/y) −

√
4�2

c − y2 + xc

]
, (2.14)

with ± denoting the two symmetric menisci at either side of the cylinder (figure 2a).
The constant xc is determined by using the wetting condition at the contact line:

xc = 1
2
D sinα − cosh−1(2�c/h) +

√
4�2

c − h2, (2.15)

where D is the diameter of the cylinder; 2α is the central angle extended by the wetted
portion of the cylinder; and h is the vertical distance between the contact line and
the unperturbed interface, as illustrated in figure 2(a); h and α can be easily obtained
by solving h = �c

√
2[1 + cos(θ + α)] and (1/2)D cos α − h = y0.

To avoid the difficulty associated with the moving solid boundary, the initial-
value problem is transformed to a non-inertial frame of reference fixed on the
cylinder. Accordingly, the initial and boundary conditions are properly modified, and
an appropriate body force is added to the momentum equation. The initial-value
problem is numerically solved in a rectangular domain of size 60�c × 25�c. Initially
the cylinder is 30�c from both the left and right bounds of the domain, 10�c from
the upper bound and 15�c from the lower one. A finite-element package AMPHI,
which employs unstructured triangle elements and adaptive meshing, is used to solve
the governing equations. Details of the algorithm and its validation can be found in
Yue et al. (2006) and Zhou, Yue & Feng (2010). The mesh is locally refined around
the cylinder to capture the boundary layer and around the interface to resolve the
phase-field variable, as illustrated in figure 2(b).

3. Results and discussion
We use �c as the characteristic length and the mean velocity Um = 2A/T as the

characteristic velocity. Then the problem is governed by the following dimensionless
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groups:

Oh =
µ1√
ρ1σ�c

, We =
ρ1U

2
m�c

σ
, θ,

ρ1

ρ2

,
µ1

µ2

, Cn =
ε

�c

, S =

√
γµ∗

�c

,

⎫⎪⎪⎬
⎪⎪⎭

(3.1)

together with four length ratios: D/�c, A/�c, Ymax/�c and Ymin/�c. The Ohnesorge
number Oh measures the strength of viscous force with respect to inertial force and
interfacial tension. The Weber number We measures the relative importance of inertia
to interfacial tension. The Cahn number Cn characterizes the dimensionless interfacial
thickness. The parameter S, defined with µ∗ =

√
µ1µ2, represents the dimensionless

Cahn–Hilliard diffusion length, which is a counterpart of the slip length commonly
employed in sharp-interface models for moving contact lines (Cox 1986; Yue et al.
2010).

An advantage of the above dimensionless numbers is that the driving velocity
Um and the leg diameter D appear only in We and D/�c, respectively. Thus Oh

is a material constant independent of the specific water walkers. The use of We is
appropriate because the propulsive dynamics is dominated by inertia and interfacial
tension. One can alternatively use the Reynolds number Re = ρ1Um�c/µ1 or the
capillary number Ca = µ1Um/σ , which are related to Oh and We by Re =

√
We/Oh

and Ca = Oh
√

We. Furthermore, the ratio D/�c is related to the Bond number
Bo =(ρ1 − ρ2)gD2/σ by D/�c =

√
Bo.

For an air–water system, the dimensional parameters are σ = 72 dyn cm−1, ρ1 =
103 kg m−3, µ1 = 8.9 × 10−4 Pa s, g = 9.8 m s−2, ρ2 = 1.2 kg m−3 and µ2 = 1.78 ×
10−5 Pa s, leading to �c = 2.7mm. These parameters give Oh=2.0 × 10−3 and
µ1/µ2 = 50, which are used in all calculations. The large density ratio (ρ1/ρ2 ≈ 800)
would cause serious errors in the diffuse-interface representation of the component
densities. Thus we have used ρ1/ρ2 = 50 in the calculations; it is large enough so that
the inertia of air flow has a negligible effect (cf. figure 3), as is the case in reality.
In addition, we choose S = 0.01, assuming a diffusion length much smaller than the
macroscopic length scale of the problem. Note that the effect of decreasing the value
of S is to reduce the contact-line speed (Yue et al. 2010). We have used A= 2�c so
that the horizontal displacement of the leg is approximately 1.1 cm, comparable to
the body lengths of water striders and fishing spiders studied in prior experiments
(Suter et al. 1997; Hu et al. 2003). For water walkers, the characteristic velocity of
the rowing leg is typically a few tens of centimetres per second (Suter et al. 1997;
Suter & Wildman 1999; Hu 2006), corresponding to We ∼ O(1). Our simulations will
cover the range 0.5 � We � 4. Note that a leg velocity Um equal to the minimum wave
speed cmin = 23 cm s−1 gives We = 1.9.

The numerical simulations allow us to calculate directly the propulsive force acting
on the leg:

F =

∫
Σ

pn dS −
∫

Σ

µ[∇v + (∇v)T] · n dS −
∫

C

σ t dC, (3.2)

where Σ is the leg surface; C denotes the contact lines; and t is the unit vector normal
to the contact line and lying in the interface. The three terms on the right-hand side
denote the contributions of pressure, viscosity and interfacial tension, respectively.
Both n and t are defined so that they point from the fluid into the cylinder. We have
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Figure 3. Physical and numerical convergence of the time evolution of the horizontal force
Fx with respect to the interface thickness and the mesh resolution. The coarse and fine meshes
have approximately 7.6 × 104 and 1.5 × 105 elements. The dimensionless numbers are We = 3
(Re = 866), D/�c =0.5, Ymax/�c = 0.1, Ymin/�c = −0.5 and θ = 120◦. The curves for different
values of ρ1/ρ2 confirm that the density ratio is large enough to represent the air–water
system.

adopted the 2-D version of this formula, which gives the force per unit length of the
cylinder with two components, Fx and Fy . Note that the available curvature force is
always less than 2σ .

3.1. Sharp-interface limit

Diffuse-interface simulations must achieve both physical and numerical convergence
to produce reliable results (Zhou et al. 2010). Physical convergence requires that the
diffuse-interface framework be consistent with the classical Navier–Stokes description
with sharp interfaces (Caginalp & Chen 1998). Specifically, the thickness of the
diffuse interface should be sufficiently small, i.e. Cn 
 1, so that the diffuse-interface
computations converge to the sharp-interface limit. For problems with moving contact
lines, Yue et al. (2010) demonstrated that this should be achieved by decreasing Cn

while keeping S fixed and further presented a convergence criterion Cn< 4S, which
is followed in our calculations. Numerical convergence is more straightforward; the
solution must be adequately resolved and be independent of the mesh size. In general,
about 10 grid points are required inside the diffuse interface to adequately resolve the
steep variation of φ (Yue et al. 2006). This requires local refinement of the mesh to
an element size of about 0.5ε at the interface. Furthermore, a comparable mesh size
is used around the cylinder to capture the boundary layer at Reynolds numbers up
to 1000.

The convergence of the numerical results is illustrated in figure 3 by plotting the time
history of Fx for a typical set of parameters. Here we have used We = 3, corresponding
to Re =866, which is high enough to produce a thin boundary layer. The thin solid
curve calculated at Cn=0.03 on a coarse mesh can hardly be distinguished from
the thick solid curve for Cn=0.02 on a finer mesh with approximately double the
number of elements. To ensure sufficient accuracy, the results presented below were
computed using Cn= 0.02 on the finer mesh. The figure also depicts computations
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using different air densities, with ρ1/ρ2 ranging from 25 to 100, and confirms that
ρ1/ρ2 = 50 is sufficiently large.

3.2. Flow field and hydrodynamic force

We first present two typical simulations, at We = 0.5 and 2.5 corresponding to
Re =354 and 791 respectively, to give a general impression of the dynamic process.
The diameter of the cylinder D = 0.5�c = 1.35 mm is comparable to the real values for
fishing spiders (Suter et al. 1997). The legs of water walkers are generally hydrophobic,
but the contact angle varies considerably (Bush et al. 2007). Here we use a typical
value θ = 120◦; a parametric study on the effect of θ will be presented later. Geometric
parameters for the stroke are given plausible values, since no quantitative data are
available: A= 2�c, Ymax = 0.1�c and Ymin = −0.5�c. For We =0.5, the mean stroke velo-
city Um is well below cmin , while for We =2.5, it is above it. Figure 4 depicts the stroke,
using snapshots of the interface and contours of the vorticity ω = ∂v/∂x−∂u/∂y in the
water. Two prominent features of the process are the vortices and interfacial waves.

At We = 0.5 (figure 4a), the backward driving stroke creates a counterclockwise
(positive) vortex, which detaches from the cylinder at the end of the stroke (t =1.01T ).
The start of the recovery stroke produces a weaker clockwise vortex, which is easily
shed with the help of the first vortex (t = 1.5T ). The two vortices form a dipole that
rotates counterclockwise as a whole and moves downward (t = 2T ). In the meantime,
the cylinder moves forward in the recovery stroke and generates a negative vortex
streak under the water surface (t = 1.5T ∼ 2T ). At the higher We =2.5 (figure 4b),
several new features emerge. The initial positive vortex streak is so strong that it
breaks up into several smaller vortices (t = 1.1T ). Shortly into the recovery stroke, the
leg detaches from the interface (t =1.3T ) and thus produces no more negative vorticity
in the water. The initial positive vortices manage to capture weak negative vortices
generated prior to the detachment. They interact with one another in a complex
vortical structure and as a whole move to the lower left (t = 2.1T ). By this time, the
leg has reattached to the water surface. The leg detachment and reattachment have
been documented for real water striders (Hu & Bush 2010). Note that the 2-D vortex
structures are topologically different from the hemispherical vortex dipoles observed
in the wake of real water-walking creatures (Hu et al. 2003). This difference will be
further discussed later.

At both We values, the driving stroke generates a surface wave that propagates to
the left. The motion of the leg induces a high pressure to its left, which raises the
meniscus into a hump and renders the dimple asymmetric (e.g. figure 4b, t =0.5T ).
The magnitude of the wave increases with We or the stroking velocity. The generation
of capillary waves by water walkers is a topic of some controversy in the literature.
For example, Suter et al. (1997) moved the leg of a fishing spider at constant velocity
and saw no waves when this velocity was below cmin . On the other hand, Hu et al.
(2003) found that infant striders can produce capillary waves even though their speed
is below cmin . This has been resolved by recognizing the transient nature of the stroke
in actual insect propulsion (Hu & Bush 2010). For comparison, we have measured
a maximum wave crest amax = 0.8 mm and a phase speed c = 25 cm s−1 at We = 0.5
and amax = 2.8mm and c = 31 cm s−1 at We =2.5. Here c is estimated by following the
wave crest in time. Furthermore, the waves are damped in time because of viscous
dissipation. For instance, the wave crest has come down to a = 0.26 mm by t = 2T

for We = 0.5. These values are comparable to the experimental measurements of
Hu et al. (2003) with a =0.1 ∼ 0.5 mm and c ≈ 30 cm s−1, although the experimental
We was not given.
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Figure 4. Snapshots of the vorticity contours in the water normalized by Um/�c for
(a) We = 0.5 (Re = 354) and (b) We = 2.5 (Re = 791). The solid curves represent the interface.
The other parameters are D/�c = 0.5, Ymax/�c =0.1, Ymin/�c = −0.5 and θ = 120◦.
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Figure 5. Time history of the horizontal force Fx and its components due to curvature,
pressure and viscosity during the stroke cycle of figure 4: (a) We = 0.5; (b) We = 2.5.

Figure 5 plots the instantaneous horizontal forces Fx for the stroke cycle together
with the three contributions to it (cf. (3.2)). For both We values, the viscous force is
negligible, and Fx is mainly due to the curvature force and the pressure force, which
arise from the aforementioned dimple asymmetry and pressure difference, respectively.
Moreover, the curvature force is more important than the pressure force in the driving
stroke (0 < t < T ) and is the most responsible for the propulsion of the water walker.
This is consistent with the scaling argument of Bush & Hu (2006) on the curvature
force. The total force changes sign at the end of the driving phase and remains
negative during the recovery phase when it acts as a resistance to the insect’s forward
motion. At low We, this resistance can reach a magnitude comparable to that of the
positive thrust and is thus highly undesirable (figure 5a). This effect can be suppressed
by raising We to encourage detachment of the leg from the interface during the
recovery stroke (figure 5b). The interface becomes so tilted at the end of the driving
stroke (t =1.1T in figure 4b) that it readily detaches from the hydrophobic leg.
Upon reattachment at t = 2T , the leg experiences a slight increase of the resistance.
In addition, the faster stroke produces greater propulsive force in the driving phase.
Therefore, increasing the stroke velocity is a good strategy for the water walker. We
also tested the alternative strategy of raising the leg higher during recovery, up to
Ymax = 0.4�c. But this turns out to be ineffective in producing detachment.

The total vertical force Fy is shown in figure 6. While the driving legs are used for
propulsion, their capability for supporting the insect’s weight is suppressed except in
the early stage of the stroke. The motion of the driving legs results in a decrease of
the vertical force, which even turns negative briefly at the start of the recovery stroke
as the water walker raises the leg. Fortunately, water walkers use their non-stroking,
typically fore and hind, legs to stay afloat while they move.

3.3. Momentum transfer

Since both waves and vortices are produced by water walkers, it is of interest to
quantify how much each contributes to the propulsion. This can be assessed from
the horizontal momentum of the two flow structures. We have to note the inherent
ambiguity in partitioning the total momentum into one part due to waves and another
due to vortices. The regions that visually constitute the waves and the vortices merge
into each other smoothly, and a spatial division is of necessity arbitrary. Nevertheless,
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under certain circumstances the two structures are distinctly apart, and one can
make meaningful statements about their separate contributions to propulsion. One
such case, albeit highly idealized, is the flow induced by an impulsive point force,
where advection is absent, and a linear theory can be used to calculate the wave and
vortex contributions of momentum (Bühler 2007). Another case is the late stage of
the rowing stroke for water striders, where, as experimentally observed by Hu et al.
(2003), the waves and the vortices are well separated in space and are travelling at
different velocities.

Hu et al. (2003) found that the vortical structures generated by water striders
approximate hemispherical dipolar vortices and estimated the vortex contribution
to propulsion by computing the momentum of the fluid enclosed in the dipole.
In addition, the momentum carried by the waves was calculated using the slowly
varying wavetrain theory. Their results suggest that the insect transfers momentum
to water mostly through the vortices, and the waves contribute only about 5 % to
the propulsion. Bühler (2007) questioned the use of an essentially steady wave theory
for estimating the momentum of unsteady waves. By simplifying the leg stroke into
an impulsive point force, his calculation attributes two thirds of the momentum to
vortices and one third to waves.

In our simulations, distinct vortex and wave regions can be defined in the late
stage of the stroke (cf. figure 4). Figure 7 shows a typical picture of the instantaneous
vorticity contours and the streamlines at We = 2 (Re = 707), D/�c = 0.5, Ymax/�c = 0.3,
Ymin/�c = −0.5 and θ =120◦. We define the vortex region as the rectangle −5 � x � 0
and −3 � y � 0 that contains the pair of vortices and have computed the vortex
contribution to the total momentum directly. The vortex region contains a horizontal
momentum of −0.45ρ1Um�2

c out of −1.42ρ1Um�2
c in the whole domain. The negative

signs indicate that the water is being pushed backward, while the leg receives a positive
propulsive force. Therefore, the vortices carry about one third of the total momentum
and hence play a secondary role, while the waves contribute the most to the propulsion.
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Figure 7. Instantaneous streamlines and vorticity contours in water at t =2.44T , We = 2
(Re =707), D/�c =0.5, Ymax/�c = 0.3, Ymin/�c = −0.5 and θ = 120◦. The interval of the
streamline contours is 0.06Um�c . The thick line represents the interface, and the rectangular
box contains the ‘vortex’ for the purpose of estimating its momentum.

The above findings seem to disagree with the experiment of Hu et al. (2003), who
found the hemispherical vortices, rather than waves, to be the dominant mechanism
of momentum transfer (see figure 3 therein). This discrepancy has to do with the
two-dimensionality of our model. Our simulations show vortex pairs with the axis
of vorticity parallel to the leg (cf. figure 4); these have a different origin from the
hemispherical vortex dipoles of Hu et al. (2003). The experiment used small water
striders Gerris remigis (length � 1 cm), and the segment of the leg in contact with
water was very short (∼0.1 cm) (Hu & Bush 2010). This produces a 3-D dimple,
and the stroke generates a 3-D vortex dipole resembling half of Hill’s spherical
vortex. As is well known, such a vortex dipole travels with a self-induced velocity and
is therefore efficient in transferring momentum (Batchelor 2000). When the wetted
portion of the leg is long, as for adult water striders and fishing spiders, it becomes
more difficult to produce vortex dipoles that travel at appreciable speed. The dimple is
now essentially 2-D as envisioned in our simulation. The start of the leg will generate
a pair of counter-rotating vortices at the ends of the dimple, with the vorticity vector
perpendicular to the interface. Being far apart, the mutual induction between the
two would be weak and inefficient as a momentum carrier. Our 2-D simulations are
closer to this picture, and the absence of the hemispherical dipolar vortices leaves the
capillary waves as the main mechanism of momentum transfer. On the basis of this
analysis, one may expect the larger water walkers to rely more on waves for propulsion
and smaller ones on vortices. A more definite understanding will emerge from 3-D
computations and laboratory measurements on water walkers of various sizes.

3.4. Effect of We

A more detailed parametric study is performed to examine the effect of the driving
velocity on the propulsive force. The Weber number is varied from 0.5 to 4, and the
corresponding Re range is 354 � Re � 1000. A larger We indicates stronger inertia
relative to the interfacial tension. Generally, this causes more distortion of the dimple
and a stronger propulsion force during the driving stroke. Figure 8 plots the history of
the instantaneous horizontal force for different We values and A/�c = 2, D/�c =0.5,
Ymax/�c =0.1, Ymin/�c = −0.5 and θ = 120◦. For We = 2 and higher, the leg detaches
from the interface in the recovery phase at roughly the same location of the trajectory
(t ≈ 1.2T ) for the parameters used here. Similarly, the force curves all peak around
t = 0.5T , when the leg attains maximum depth and maximum velocity. Since We is
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Ymax/�c = 0.1, Ymin/�c = −0.5 and θ = 120◦. The corresponding Re ranges from 354 to 1000.

varied through the mean stroke velocity Um =2A/T , the actual duration of the stroke
is shorter for higher We.

Figure 9(a) plots the maximum and mean values of the propulsive force, Fx,max

and Fx,mean = (1/T )
∫ T

0
Fx(t) dt , as functions of We. Both increase monotonically with

We. Note also that the mean force varies linearly with We for We < 2, which suggests
a quadratic dependence of the mean force on Um. In their experiments, Suter et al.
(1997) dragged a leg segment at a constant velocity U on the water surface and found
a similar relationship F ∼ Un with 1.6 <n< 2.1 when U <cmin . This is consistent with
our numerical results, although we use a transient stroke model here. Moreover, the
force curves are smooth across We = 1.9, corresponding to Um = cmin , showing no
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special effect when the minimum wave speed is exceeded and belying the argument
in Denny’s paradox (Denny 1993). This is owing to the transient nature of the stroke.

It is also of interest to consider the total impulse of the propulsive force in the

driving stroke, P =
∫ T

0
Fx(t) dt , which is related to the momentum gained by the water

walker at the end of the stroke. Figure 9(b) shows that unlike the mean force Fx,mean ,
P does not increase with We monotonically but reaches a maximum at We = 3. For
higher We, P declines slightly, even though Fx,mean continues to grow. This is due to
the shorter duration of the stroke at higher velocity Um, since the leg displacement A is
fixed. Therefore, the insect cannot gain more speed per stroke by rowing faster. It may
accelerate more rapidly, of course, by performing more strokes per unit time. We have
used the maximum impulse to estimate the locomotion velocity of a fishing spider
with typical mass m =0.3 g and leg length L =14.5 mm (Suter et al. 1997; Suter &
Wildman 1999). With one pair of legs rowing, the maximum velocity attainable is
V = 2PL/m = 0.52m s−1, comparable to the peak velocity (0.12–0.56 m s−1) recorded
experimentally (Suter & Wildman 1999). Water striders are much lighter (m ∼ 0.01 g)
and can reach speeds as high as 1.5 m s−1 (Hu et al. 2003). We cannot do a
quantitative comparison with this, since our simulations are for a leg diameter
D = 0.5�c, appropriate for fishing spiders but much too thick for water striders.

3.5. Effect of depth of stroke

To generate a larger propulsive force, water walkers may sweep their legs deeper into
the water during the driving stroke, in addition to rowing the legs faster. Figure 10
shows the propulsive force as a function of the maximum depth of the driving leg
|Ymin | at We = 2 (Re =707), D/�c = 0.5, Ymax/�c = 0.1 and θ = 120◦. A larger value of
|Ymin | corresponds to a deeper dimple, which may be distorted more by a stroke at
the same speed, leading to a larger curvature force and hence a larger total thrust.
Alternatively, water walkers can use a slower but deeper stroke to produce a similar
amount of propulsive force. Note the remarkable similarity between figures 9 and 10.
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However, a deep stroke carries the peril that the interface might be pierced by the
leg, as illustrated in figure 11 for Ymin = −1.5�c. Physically, the integrity of the dimple
or the interface is maintained by the balance between the capillary pressure (∼σ/|Ymin |)
and the dynamic pressure (∼ρU 2

m). When the leg is deep enough (Ymin < −1.3�c for the
parameters in figure 10), the capillary pressure becomes too small to withstand the
dynamic pressure under the meniscus, leading to interface penetration. This occurs
through the pinch-off of an elongated finger of air (figure 11a) and leaves a small
bubble attached to the leg (figure 11b). This forms an interesting contrast to the
detachment of the leg from the interface as in figure 4(b), where the two contact
lines merge before detachment. Upon rupture of the air finger, the curvature force
is no longer available for the leg–bubble system, or equivalently, the curvature force
acting on the leg is cancelled out by the capillary pressure inside the bubble. As a
consequence, the propulsive force drops abruptly, and the locomotion will be arrested.
This puts a limit on the maximum depth of the stroke.

Using a fishing-spider leg dragged at constant speed over the water interface,
Suter & Wildman (1999) observed a linear increase in the propulsion force with the
depth of the cylinder and a drastic decrease of the force upon penetration. Figure 10
shows a similar linear dependence up to |Ymin | ≈ 0.7�c. The experimental observation
that the critical depth decreases with the velocity of the leg is also consistent with our
scaling argument above. More quantitative comparisons are hampered by geometric
differences between the real spider leg and our circular cylinder. The spider leg
tapers from 1.5 to 0.5 mm and is in general thinner than our cylinder (D =1.35 mm).
Furthermore, the leg segment is not straight and makes a dimple much shorter than
the leg itself. These may explain the measured force being several times smaller than
the computed value. The thinner leg also penetrates the water at smaller depth than
computed. At We = 2, for example, penetration occurs at a depth of 2.3 mm in the
experiment, compared with 1.3�c ≈ 3.5 mm in figure 10.

3.6. Effect of contact angle

The results discussed so far are for θ = 120◦. We have also varied the wettability of the
cylinder from hydrophilic to super-hydrophobic, with θ ranging from 60◦ to 150◦. The
effect on the propulsive force is depicted in figure 12 for We = 2 (Re = 707), D/�c = 0.5,
Ymax/�c = 0.2 and Ymin/�c = −0.5. Perhaps surprisingly, the propulsive force during the
driving stroke is insensitive to the contact angle; a larger θ leads to only a slight
increase of the maximum force, while the mean force remains essentially constant
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(figure 12b). When the interface is plotted at the same t for different θ values (not
shown here), the meniscus differs slightly and only close to the leg, and apparently
intersects the leg at the same slope. Thus, the meniscus is also insensitive to the
contact angle θ . This is especially true for thin legs.

The above observations can be rationalized by an analogy to the static case of a
hydrophobic cylinder floating on a water surface. Insofar as the buoyant weight of
the cylinder is carried by the interface at the contact lines, the slope of the interface
there changes little with θ (Vella et al. 2006; Liu et al. 2007). Varying θ shifts the
contact line along the cylinder without significantly modifying the meniscus. In the
driving stroke, the meniscus is deformed by the dynamic water pressure underneath
the surface. As long as the leg moves with the same trajectory and speed, the dynamic
pressure is roughly the same. The differing θ is reflected only by small shifts of
the contact line. Thus, the pressure and curvature forces on the cylinder are mostly
unaffected, and so is the total Fx,mean in figure 12(b).

Although the water repellency of the leg is not essential for producing the propulsive
force, it plays an important role in the recovery phase. A hydrophilic cylinder does
not detach from the interface (θ � 90◦ in figure 12a) and incurs a large resistance.
Hydrophobicity helps the water walker detach its rowing leg from the water, and do
so earlier in the recovery phase for larger contact angles. The mechanism of super-
hydrophobicity promoting detachment has also been observed in the experiment of
Lee & Kim (2009). They found that lifting a super-hydrophobic cylinder from the
water surface takes much less energy than lifting a hydrophilic one. These authors
also found that the same mechanism facilitates the bounce-off of a sphere after it
impacts a water surface (Lee & Kim 2008), suggesting a critical role for the leg
super-hydrophobicity in the jumping of water walkers.

Another benefit of hydrophobicity is to allow higher rowing speed (We) or greater
depth (|Ymin |) before the leg penetrates the interface (cf. figure 10). This increases the
safety margin during propulsion in terms of gaining greater thrust without the leg
falling under water. For example, with θ = 120◦ and Ymin = −0.5�c, the integrity of
the dimple is maintained, with no penetration, up to We = 4 (figure 9). With θ = 60◦,
however, interfacial penetration has already occurred at We = 2. It is interesting to
note that when a hydrophobic leg becomes fully submerged, it retains an air bubble
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(figure 11b). On a hydrophilic cylinder, on the other hand, the interface penetration
occurs via the merging of the two contact lines, and no air bubble is entrapped.

3.7. Effect of leg diameter

The leg diameter of water walkers ranges from about 100 µm for water striders to
1.5 mm for fishing spiders (Hu 2006). In our simulations, we have examined the effect
of the leg diameter D over the range of 0.2�c � D � �c, or between 0.54 and 2.7 mm
in dimensional terms. Simulating thinner legs becomes computationally costly, as it
would require a thinner diffuse interface and a smaller Cn to approach the sharp-
interface limit. For the D range explored, the physical picture discussed above for
the generation of waves, vortices and the propulsive forces remains qualitatively the
same. We thus conclude that the same propulsion mechanism is valid for fishing
spiders, water striders and other surface-dwelling insects provided that they use a
similar rowing gait.

Thick and thin legs do differ in the relative importance of the pressure force and
the curvature force in propulsion. Figure 13 shows the mean values of the propulsive
force and its three components averaged over the driving stroke as functions of D

for We = 2 (Re = 707), Ymax/�c = 0.1, Ymin/�c = −0.5 and θ = 120◦. As expected, the
pressure force scales linearly with the leg size and tends to zero as D decreases. In
contract, the curvature force shows a gradual decrease with increasing D. Thus, the
pressure force becomes the leading component for thick legs (D > 0.8�c), while the
curvature force dominates for thinner legs. The legs of water striders are so thin that
the propulsive force should be mostly due to the curvature force.

3.8. Discussion

Compared with prior studies of water-walker locomotion, we have the unique
advantage of having detailed numerical data on the flow and stress fields generated
by the stroke of the leg. This enables us to construct the following scenario:

(a) In the driving stroke, the pressure and curvature forces deform the dimple. In
this process, the surface tension effectively joins the meniscus to the leg to form a
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‘leg-cum-dimple’ object, which has a much larger surface area than the leg and drives
a much larger mass of water. This produces the propulsive force.

(b) This process delivers momentum from the rowing leg to the water, which is
later turned into momentum carried by surface waves and subsurface vortices.

(c) In the recovery phase of the stroke, the leg would incur friction if it stayed in
contact with the surface. Hydrophobicity facilitates the detachment of the leg and
enhances the overall efficiency of the propulsion cycle.

This picture reconciles the aforementioned propulsion mechanisms proposed in the
literature. First, the form drag idea of Suter et al. (1997) is consistent with our stage
(a), and viewing the leg-cum-dimple as a hull of a vessel is very instructive. In our
view, their form drag on the leg-cum-dimple consists of all the three components,
i.e. the pressure, curvature and viscous forces, that we find in the driving stroke
(cf. figure 5). The form drag on the wetted part of the leg is our pressure force,
and the form drag on the meniscus amounts to our curvature force. This is because
the surface tension maintains the shape of the meniscus that displaces the water.
The dynamic pressure under the meniscus is in effect ‘transmitted’ to the leg via the
curvature force that acts on the contact line. That is how the leg derives a greater
thrust from displacing a large amount of water. Note, however, that the experiment
of Suter et al. (1997) is steady-state and does not probe the later stages of the process.

To the debate between waves and vortices as the main vehicle for propulsion, our
results add two insights. First, the driving stroke delivers momentum from the leg to
the water via the pressure and curvature forces discussed above. That is the immediate
origin of the propulsion force. The partition of water momentum between vortices
and waves occurs later. Second, this partition has to do with the shape of the leg
and the dimple. Our 2-D simulation approximates long legs of larger insects, which
produce a slender dimple. In this case, waves are more important than vortices as
carriers of momentum. Conversely, short legs produce conical dimples. The rowing
of the leg then sheds a dipole of vortices that move at high speed through mutual
induction. As clearly documented by Hu et al. (2003), this mechanism makes the
vortices the dominant player. For long legs, such induction is weaker, and so is the
contribution of vortices. Again, in both cases the immediate source of the propulsion
is the pressure and curvature forces along the meniscus during the stroke. The present
2-D simulations cannot reproduce the 3-D vortices of Hu et al. (2003) nor probe their
later development in the wake of small water walkers.

Another interesting result from our simulations is to confirm that the integrity of
the dimple sets an upper limit on the magnitude of the thrust that can be generated
by the stroke. As Suter et al. (1997) demonstrated, the meniscus extends the effective
area of the leg and enables the insect to push a larger amount of surrounding water
backward. Larger propulsive forces can be achieved with faster and deeper strokes,
until the leg penetrates the surface and becomes submerged. Moving a spider leg over
a water surface at a constant speed, Suter & Wildman (1999) measured the critical
depth of the dimple for penetration as a function of the speed. Although our stroke
is unsteady, the trend is the same; the critical rowing depth decreases with rowing
speed. In reality, both fishing spiders and water striders are known to occasionally
penetrate the water surface (Suter & Wildman 1999; Goodwyn & Fujisaki 2007).

Finally, viscous friction makes a negligible contribution to the propulsion, as clearly
shown in figure 5. Indeed, the thrust comes from the inertial force of pushing a large
amount of water backward and the interfacial tension acting on the contact lines.
In this sense, the propulsion has an inviscid mechanism. Of course, the motion of
the contact line is strongly affected by viscosity. For real water walkers, this depends
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on the microscopic texture of the integument. Viscosity is important on such small
length scales.

4. Conclusions
We have performed 2-D numerical simulations on the locomotion of water walkers.

An unsteady model of the leg motion was employed to mimic the transient behaviour
of the rowing stroke. Owing to the unsteadiness, water walkers exploit a time-
dependent force-generation mechanism rather than the classical wave drag for
propulsion.

During the driving stroke, the dimple moves together with the rowing leg
and deforms asymmetrically. The resulting curvature force is the most important
component of the thrust. The pressure force plays a major role as well, and the
viscous force is negligible. The dominance of the curvature force is especially true
for water striders, whose legs are much thinner than the capillary length. In order
to increase the propulsive force, water walkers can increase the rowing velocity or
the depth of the stroke. However, the integrity of the dimple must be maintained;
if the rowing speed or depth becomes too large, the leg pierces the interface and
sinks under the water, causing drastic reduction in propulsion. The propulsive force
is insensitive to the wetting property of the leg, provided the fluid interface is not
penetrated. Hydrophobicity is useful, however, in helping the leg detach from water
and thus decreasing the resistance in the recovery stroke. In addition, water repellency
of the leg delays interface penetration and makes the propulsion more robust.
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