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The spreading of a compound drop on a partially wetting solid substrate is
numerically simulated using a diffuse-interface method. Compared with a simple
drop, the spreading of a compound drop exhibits much more complex behaviour.
Depending on the core–shell size ratio and the substrate wettability, various flow
regimes are identified in which the interfacial morphology evolves in distinct ways. A
phase diagram is constructed in the parameter space of the core–shell size ratio and
the wetting angle. For relatively small inner drops, the outer interface does not rupture
during the spreading and the inner drop either remains suspended and encapsulated
or attaches onto the substrate. Otherwise, the compound drop spontaneously breaks
up and releases the inner drop into the ambient fluid. Several breakup scenarios
are observed depending on the location of the initial rupture. In some regimes, the
wetting of the substrate by one fluid can entrap secondary drops of the other, which
can either attach to the substrate or stay suspended. The viscosity ratio mainly affects
the spreading rate and plays a minor role in the morphology evolution.
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1. Introduction
Compound drops with a smaller droplet encapsulated in a fluid shell are

encountered in a variety of industrial processes, such as heat exchange, separation and
materials processing (Johnson & Sadhal 1985; Sadhal, Ayyaswamy & Chung 1997).
Dispersion of a large number of compound drops in a continuous phase produces
a double or multiple emulsion. The oil-in-water-in-oil (O/W/O) and water-in-oil-in-
water (W/O/W) types are the most common with wide-ranging applications, e.g. as
carriers in targeted drug delivery (Engel, Riggi & Fahrenba 1968; Garti & Bisperink
1998; Laugel et al. 2000). In biomechanics, the compound drop model has been used
to describe the rheology of leukocytes (Hochmuth et al. 1993; Kan et al. 1998).

Early work dealt with the hydrostatics of compound drops and their motion in a
quiescent medium (Johnson & Sadhal 1985; Sadhal et al. 1997). These studies typically
assume a spherical or nearly spherical drop shape, and sought approximate analytical
solutions at small Reynolds numbers (Rushton & Davies 1983; Sadhal & Oguz 1985).
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An interesting result observed by Rushton & Davies (1983) is that a compound drop
translates like a solid sphere when the liquid shell is very thin. Kawano, Shirai &
Nagasaka (2007) performed experiments as well as numerical simulations on the
deformation of compound drops moving at intermediate Reynolds numbers. The
calculated drag coefficients were in good agreement with experimental observations.

More recent work investigated the behaviour of compound drops in an external
flow field. Two kinds of flows have been examined so far: extensional flows (Stone
& Leal 1990; Kan et al. 1998) and shear flows (Stroeve & Varanasi 1984; Smith,
Ottino & de la Cruz 2004). Both flows can lead to significant drop deformation
and even breakup at sufficiently high strain rates. In an extensional flow, the two
interfaces typically deform in opposite ways owing to the recirculation developed
inside the drop; when the outer interface becomes prolate, the core becomes oblate.
Of particular interest is the breakup of compound drops in these flows, which may
be desirable for example in the release of drugs (Muguet et al. 2001) or undesirable
in extraction using double emulsions (Stroeve & Varanasi 1984). Depending on the
radius ratio between the two interfaces, Stone & Leal (1990) noted two breakup
scenarios in extensional flows, one with the inner drop deforming and protruding
onto the outer interface and the other with the outer interface squeezing a mildly
deformed inner one. Smith et al. (2004) showed that the breakup of a compound drop
in a shear flow can generate a range of topological morphologies, which typically
consist of a series of daughter compound drops.

Less work has been done on the hydrodynamics of compound drops in the presence
of a solid wall. The wall effect is important in the transit of a cell into a capillary (Yap
& Kamm 2005), the generation of monodisperse double emulsions using microfluidic
devices (Okushima et al. 2004; Utada et al. 2005) and diesel engine combustors with
blended fuels (Chiu & Lin 2005). Zhou, Yue & Feng (2008) performed numerical
simulations of a compound drop through a contraction in a pipe flow, where the
drop does not make contact with the wall. In this case, the wall only acts as a
boundary for the flow and its wetting property does not enter the dynamics. The
wettability does come into play in situations such as the adhesion of a cell to a pipet
and direct-contact heat exchangers. However, little is known about the interaction
between a compound drop and a solid substrate when they are in contact. Mahadevan,
Adda-Bedia & Pomeau (2002) considered the statics of compound droplets on a rigid
substrate. Chiu & Lin (2005) carried out experiments on a compound drop impinging
on a solid surface and found that secondary drops can be created. Bird et al. (2010)
studied the breakup of a soap bubble, which is a thin-shelled compound drop, on a
solid substrate and observed a cascade of ruptures that generate smaller and smaller
daughter bubbles. In the last two studies, the dynamics was dominated by inertial
effects and the wetting properties of the substrate were not addressed.

In the present work, we perform numerical simulations of the spreading of a
compound drop on a partially wetting substrate. The main purpose is to explore
various scenarios of morphological change of a compound drop during its spreading.
We show that the spreading and rupture of a compound drop are much more complex
and interesting than for a simple one, which would assume an equilibrium shape of
a spherical cap (Bonn et al. 2009). In contrast, a compound drop can spontaneously
break up over a solid substrate without any help of an imposed flow.

2. Theory and numerical method
We consider the spreading of a two-component compound drop that is deposited

just above a partially wetting substrate (figure 1a). The inner drop and the ambient
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Figure 1. Schematic representation of the initial condition of a compound drop on a solid
substrate (a) and possible flow regimes of subsequent spreading. Both wetting (b, d, f ) and
non-wetting (c, e, g) cases are illustrated. (b, c) Regime I: the inner drop remains encapsulated
by fluid 1. (d, e) Regime II: the inner drop makes contact with the substrate. (f, g) Regime III:
the compound drop breaks up when the inner drop is too large.

fluid are the same as in W/O/W or O/W/O double emulsions. Initially, the outer
and inner interfaces are concentrical spheres of radius R1 and R2, respectively. Thus,
the dynamic process can be studied in an axisymmetric set-up. The shell is occupied
by fluid 1 with viscosity µ1, and the core and the ambient space contain fluid 2 with
viscosity µ2; both fluids are Newtonian, incompressible and mutually immiscible. In
this work, we focus on the dynamics of micrometre-size drops, for which inertia and
gravity can be safely neglected while viscosity and capillarity dominate the flow.

A diffuse-interface model is employed to describe the interfacial deformation and
the moving contact line (Jacqmin 2000; Qian, Wang & Sheng 2006; Yue, Zhou & Feng
2010). One of the advantages of the diffuse-interface method is its ease in handling
topological changes such as interfacial coalescence and rupture, where short-range
molecular forces come into play and the sharp-interface Navier–Stokes description
fails (Yue et al. 2005). In this model, the fluid–fluid interface is treated as a thin
diffuse layer within which the two fluids mix to store a mixing free energy related to
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the interfacial tension. We introduce a phase-field variable φ such that φ = 1 in the
bulk of fluid 1 and φ = −1 in the bulk of fluid 2. Across the interface, φ varies steeply
yet smoothly, and the position of the interface is given by the contour of φ = 0. The
advection and diffusion of φ is governed by the Cahn–Hilliard equation

∂φ

∂t
+ v · ∇φ = ∇ · (γ ∇G), (2.1)

where v is the flow velocity, t is time and γ is called the mobility; G = λ[−∇2φ +
(φ2 −1)φ/ε2] is the chemical potential, with λ being the mixing energy density and the
capillary width ε characterizing the thickness of the diffuse interface. By integrating
the mixing energy across the interface associated with an analytical equilibrium profile
φ, one can obtain the interfacial tension σ as

σ =
2
√

2

3

λ

ε
. (2.2)

Since inertia is neglected, the flow is governed by the continuity equation and the
Stokes equation

∇ · v = 0, (2.3)

−∇p + ∇ · [µ(∇v + (∇v)T)] + G∇φ = 0. (2.4)

Note that the momentum equation is modified by the addition of the term G∇φ

representing the contribution of the interfacial force. The viscosity µ(φ) is defined as

µ = 1
2
(1 + φ)µ1 + 1

2
(1 − φ)µ2, (2.5)

which recovers the viscosity µ1 or µ2 in the bulk.
The computational domain is a 4R1 × 4R1 square on the meridian plane, its left

side being the axis of symmetry. For the velocity v, we impose symmetric boundary
conditions on the axis, no-slip and no-penetration on the substrate, and vanishing
stress on the outer boundary of the domain. For the phase field φ, the no-flux
condition n · ∇G =0 is used along all boundaries, n being the outward unit normal
vector. In addition, we set

λn · ∇φ =

{
−f ′

w(φ) on the substrate,

0 elsewhere,
(2.6)

where fw is the wall free energy (Jacqmin 2000; Yue et al. 2010)

fw(φ) = −σ cos θ
φ(3 − φ2)

4
+

σw1 + σw2

2
, (2.7)

in which θ is the static contact angle as illustrated in figure 1, measured inside the
shell fluid 1; σw1 and σw2 are respectively the wall energies associated with fluids 1 and
2, and are related to the contact angle through Young’s equation σw2 − σw1 = σ cos θ;
they do not really enter the boundary conditions because of the derivative in (2.6).
Note that the advancing and the receding contact angles are the same as the static one
and the contact angle hysteresis is not accounted for in this formalism. By allowing
relaxation of the wall energy, the diffuse-interface theory can accommodate a dynamic
contact angle that deviates from the static one (Yue & Feng 2011). Contact angle
hysteresis is a much more complex issue, and existing models are mostly ad hoc. Thus,
we have decided to exclude it in the present study.
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Figure 2. (a) A representative mesh with adaptive refinement. The inset shows details of the
interface. (b) Mesh convergence test in terms of r (radius of the contact area) and Y0 (height
of the outer drop). Initially, the fine and coarse meshes have 4.8 × 104 and 2.2 × 104 elements,
respectively. R2/R1 = 0.5, θ = 30◦ and µ2/µ1 = 1. Time is scaled by µ1R1/σ and the same
dimensionless time is used in the following figures.

With inertia and gravity neglected, the problem is governed by five dimensionless
numbers: the contact angle θ , the radius ratio R2/R1, the viscosity ratio µ2/µ1,
the Cahn number Cn= ε/R1 and S =

√
γµ∗/R1 with µ∗ =

√
µ1µ2. Here, Cn, the

dimensionless interfacial thickness, should be small enough to approach the sharp-
interface limit (Zhou, Yue & Feng 2010). S is the dimensionless diffusion length,
which is a counterpart of the slip length commonly used in sharp-interface models
to avoid the stress singularity at the contact line (Cox 1986; Yue et al. 2010). In our
formulation of the diffuse-interface method, the movement of the contact line is solely
driven by the Cahn–Hilliard diffusion across the interface. The following results were
obtained using Cn= 0.005 and S = 0.005 such that both the interfacial thickness and
the diffusion length are much smaller than the characteristic length of the flow, and
the sharp-interface limit is attained (Yue et al. 2010).

The governing equations together with the boundary conditions are solved using a
finite-element package AMPHI (Yue et al. 2006b), which employs triangular elements
and adaptive meshing. The latter is crucial for capturing the steep variation of φ

across the interface; it allows us to compute a very thin interface at manageable
cost. A typical mesh is illustrated in figure 2(a). In this case, the finest mesh size
at the interface is approximately 0.5ε. Time stepping is via a second-order fully
implicit scheme. Details of the numerical method and its validation are described
by Yue et al. (2006b) and Zhou et al. (2010). In particular, Zhou et al. (2010)
performed simulations of the spreading of a simple drop and obtained satisfactory
agreement with the numerical simulations of Khatavkar, Anderson & Meijer (2007)
and the experiments of Zosel (1993). In the current study, we have also performed
mesh convergence tests. Figure 2(b) shows the time history of the radius r of the
contact area (see figure 1b) and the height of the outer drop Y0 computed using a
coarse mesh and a fine one, the latter having more than twice as many elements.
These computations correspond to the conditions of figure 6, and the sudden dip
and rise of Y0 indicate the rupture of the shell and the subsequent appearance of the
sessile drop. The solid and dashed curves can hardly be distinguished and thus the
numerical results are mesh-independent.
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Figure 3. Time sequence of the drop morphology during spreading in regime I at
R2/R1 = 0.3, θ = 90◦ and µ2/µ1 = 1. The core is always suspended above the substrate.

3. Results
Based on simple geometric and physical arguments, one can anticipate three possible

flow regimes for spreading of the compound drop (figure 1). First, when R2 is small,
the inner drop may never touch the substrate. This spreading process is sketched
in figure 1(b, c) and denoted as regime I. As R2 increases, the inner drop is pushed
towards the substrate by the downward flow due to spreading, and eventually becomes
attached to it (figure 1d, e). This process will be called regime II. A further increase
in R2 leads to regime III, in which the compound drop breaks up as shown in
figure 1(f,g). Depending on the wetting property of the substrate, the breakup can be
triggered either by the coalescence between the apexes of the two fluid–fluid interfaces
(figure 1f ) or by the merging of the contact lines (figure 1g). We will show below
that these scenarios do not constitute the whole picture. The dynamics of interfacial
deformation and transient flow gives rise to more complex interfacial morphologies.
In particular, we have found two sub-regimes in regime II and three sub-regimes in
regime III. For brevity, we will refer to the inner drop as the ‘core’, and the outer
drop simply as the ‘drop’. Terms such as contact angle and wettability refer to those
of the shell (fluid 1).

3.1. Flow regimes

3.1.1. Regime I: suspended core

Regime I occurs for a small core, a large contact angle, or both. A typical time
sequence of the drop morphology is illustrated in figure 3 for R2/R1 = 0.3, θ = 90◦ and
µ2/µ1 = 1. In this and most subsequent plots of temporal evolution, the final frame
shows the steady equilibrium configuration. Although the core is pushed downwards
by the spreading flow, this effect is not strong enough to induce contact between the
core and the substrate. Therefore, the core remains encapsulated inside the drop and
there is only one contact line in the equilibrium state. Typically, the core sustains little
deformation during the spreading and remains more or less spherical. This is owing
to the small core size and slow spreading of the shell fluid (with a large θ), which
conspire to produce a small capillary number for the inner drop.

3.1.2. Regime II: sessile core

With a larger core, the spreading flow causes the core to make eventual contact
with the substrate, as shown in figure 4 for R2/R1 = 0.6 with the other parameters
being the same as in figure 3. This contact or wetting of the substrate by the core will
be juxtaposed with the rupture of the shell in later regimes, and for convenience will
be called coalescence henceforth, even though the term usually refers to the joining
of two domains of the same substance.
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Figure 4. Time sequence of the drop morphology during spreading in regime II1 at
R2/R1 = 0.6, θ = 90◦ and µ2/µ1 = 1. The core comes into contact with the substrate and
is attached to it in the final equilibrium state.

Before coalescence, the core is deformed into an oblate shape by the flow in
the spreading shell and pressed against the substrate. In this case, the coalescence
occurs at the centre of the contact area, which then expands into a new contact
line. Thus, the dynamics in this regime, denoted as regime II1, consists of two
spreading processes, one associated with the outer interface and the other with the
inner interface. Eventually, both interfaces adjust themselves to form an equilibrium
compound drop characterized by a sessile core. In this case, the substrate area wetted
by the shell fluid is a ring rather than a circle as in regime I. Since a neutrally wetting
substrate (θ = 90◦) is used here, the two interfaces are concentric, which is generally
not the case (see figure 1d, e).

A further increase of the core size leads to regime II2 with the additional feature
of droplet entrapment on the substrate. Figure 5 shows the drop morphology for
R2/R1 = 0.9, θ = 90◦ and µ2/µ1 = 1. The large core is easily deformed by the spreading-
driven flow, and it approaches the substrate with a somewhat flat bottom, below which
a thin film of the shell fluid develops. The pressure within the film is high owing to
the lubrication effect and it slows down the descending of the core. The drainage in
the film is associated with a radial pressure gradient, which pushes the core inward
to form a dimple. This is similar to that formed between two coalescing drops (Yue
et al. 2005) and on the inner side of a torus contracting onto itself (Yue et al. 2006b).
Thus, the lubricating film first ruptures along a circle rather than at the centre point
(t = 59.77 in figure 5). This generates two new contact lines, with a small amount of
the shell fluid entrapped inside the core. In time it shrinks into a much smaller sessile
drop. The final morphology is a sessile ‘triple compound drop’, with a shell of fluid 1
enclosing the core of fluid 2, which in turn encapsulates a daughter drop of fluid 1.

3.1.3. Regime III: drop breakup

When the core is very large, or when the contact angle is far from 90◦, the shell
breaks up and releases the core into the ambient fluid. The rupture may occur at the
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Figure 5. Time sequence of the drop morphology during spreading in regime II2 at
R2/R1 = 0.9, θ = 90◦ and µ2/µ1 = 1. The coalescence between the core and the substrate
onsets off-centre along a circle, resulting in a sessile daughter droplet residing inside the core.
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Figure 6. Time sequence of the drop morphology during spreading in regime III1 at
R2/R1 = 0.5, θ = 30◦ and µ2/µ1 = 1. The rupture of the shell occurs at the apex of the
drop and a simple sessile drop is formed after the breakup.

apex of the drop, on its side or at the contact line, corresponding to three sub-regimes
IIIi (i =1, 2, 3) respectively.

A typical illustration of regime III1 is shown in figure 6 for R2/R1 = 0.5, θ = 30◦

and µ2/µ1 = 1. The spreading behaviour and the deformation of the core in the early
stage are similar to figure 4. However, the contact angle is small and the shell fluid
spreads rapidly, causing the outer interface to press on the relatively large core. Then
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Figure 7. (Colour online available at journals.cambridge.org/FLM) Details of the rupture of
the shell depicted by φ contours during the process shown in figure 6. The edges of the shell
correspond roughly to φ = −0.9.

the thin film at the top of the drop ruptures; a hole nucleates and rapidly expands
(t = 51). Shortly after, the core also coalesces with the substrate (t = 53.29), generating
a configuration with a ring of the shell fluid surrounding a ‘dry’ (with the ambient
fluid) central region. For other parameters, we have also observed the coalescence
with the substrate occurring before the rupture of the shell. Finally, the ring contracts
to form a simple sessile drop. At higher contact angles, a small amount of the ambient
fluid can be trapped inside to produce a sessile compound drop in the end.

The rupture of the shell between t =48.38 and 51 warrants a closer inspection
(figure 7). In sharp-interface models, such singular topological changes cannot be
computed but are effected by ad hoc means. In diffuse-interface models, in contrast,
they occur spontaneously and smoothly. The singularity has been regularized by the
diffuseness of the interface; rupture occurs through the evolution of the continuous
phase field φ. Moreover, the diffuse-interface model includes short-range interaction
between interfaces akin to van der Waals forces (Feng et al. 2005). In figure 7,
the shell thins until its thickness approaches the interfacial thickness (t = 50.48).
Then the short-range attraction between the interfaces acts to fuse them into one
(t = 50.64), which subsequently breaks and pulls back to form a hole (t = 50.75). All
breakup processes to be discussed hereafter have essentially the same diffuse-interface
mechanism.

Figure 8 shows a typical case of regime III2 for R2/R1 = 0.8, θ =30◦ and µ2/µ1 = 1.
The core is larger and the swift spreading of the shell fluid causes such a strong flow
as to squash the core significantly. A film forms between the core and the substrate
during the spreading as in figure 5. More importantly, the transverse extension of the
core creates a ‘shoulder’ where the shell thickness is minimum (t = 89.23). Further
spreading leads to the rupture of the shell. Thus, different from regime III1, the shell
disintegrates with the top cap breaking off rather than a hole puncturing the top.
This gives rise to a configuration with a circular cap on top of a base (t = 94.10).
Eventually, the cap retracts to form a suspended daughter drop, and the shell fluid
in contact with the substrate shrinks to a sessile drop. In the sequence shown, the
core is always insulated from the substrate by a thin film of fluid 1. However, it can
also coalesce with the substrate at larger radius ratios, e.g. R2/R1 = 0.9. When this
happens, a droplet of fluid 1 is sometimes entrapped in the centre, similar to figure 5.
In the end, the ring of fluid 1 contracts onto the central droplet to form a sessile drop.
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Figure 8. Time sequence of the drop morphology during spreading in regime III2 at
R2/R1 = 0.8, θ = 30◦ and µ2/µ1 = 1. The rupture of the shell occurs on the shoulder of
the drop, producing a suspended daughter drop and a sessile drop.

As a special case of regime III2, we show the breakup of the compound drop with a
very thin shell in figure 9 for R2/R1 = 0.95, θ = 30◦ and µ2/µ1 = 1. This might provide
insight into the rupture of a soap bubble when touching a solid wall. The spreading
of the shell fluid is such that the thinnest point is just above the contact line. There,
the shell ruptures at an early stage of the spreading, producing a suspended fluid
‘parachute’ and a pancake-shaped thin film attached to the substrate. Both structures
retract in time to form a suspended drop and a sessile drop, with the former much
larger than the latter. The retraction of the film is much slower than that of the shell,
because the well-wetted substrate provides considerable friction against the receding
of the contact line. Also note that the parachute develops a rim during the retraction
(t = 5.34), a process commonly detected in the rupture of soap films and bubbles
and attributed to inertia (Ranz 1959; Taylor 1959; Culick 1960). In our simulation,
inertia is absent. Rather, the appearance of the rim is thanks to the viscosity of the
ambient fluid, which should have been negligible for air in soap bubble experiments.
As the shell retracts, the viscous shear at the interface drives the shell fluid towards
the edge, resulting in a rim. We have performed calculations using a lower viscosity
ratio µ2/µ1 = 0.1, and the rim is much less prominent.

Finally, we show a distinct breakup scenario, i.e. regime III3, which occurs when the
contact angle is high and the core is relatively large. Figure 10 illustrates a typical case
for R2/R1 = 0.7, θ = 120◦ and µ2/µ1 = 1. The early stage of the spreading is similar
to regime II with the core moving downwards and coalescing with the substrate
(t � 83.04). Since the substrate is non-wettable to the shell fluid, the core tends to
spread over it, with the inner contact line advancing much faster than the outer one.
The two contact lines become closer and eventually merge (t = 97.9). Then the shell
fluid immediately detaches from the substrate and forms a simple suspended drop. A
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Figure 9. Time sequence of the drop morphology during spreading in regime III2 at
R2/R1 = 0.95, θ = 30◦ and µ2/µ1 = 1. The shell ruptures just above the contact line to produce
a parachute of fluid 1, which contracts into a suspended daughter drop much larger than the
sessile drop.

slightly different final morphology may appear for larger radius ratios, when a small
amount of the shell fluid is trapped in the core after its coalescence with the substrate,
as in figure 5. In this case, a tiny sessile drop will remain below the suspended one in
the end.

3.2. Phase diagram

Now we can summarize the regimes described so far in a ‘phase diagram’ in the
parameter space. First, some geometric considerations provide a guideline for the
boundaries of regimes I and II (cf. figure 1). In the absence of external forces such
as gravity, all the interfaces should be spherical in equilibrium. For regime I, the
diameter of the core should be less than the height of the compound drop. For regime
II, the height of the core should be less than that of the whole drop when θ < 90◦

(figure 1d ), and the diameter of the inner contact line should be less than that of
the outer contact line when θ > 90◦ (figure 1e). Together with the mass conservation
conditions of the shell and the core, these constraints give the upper limits of the
radius ratio

R2

R1

< RI
c (θ) ≡

[
1 − cos θ

4 + 2 cos θ

]1/3

, (3.1)
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Figure 10. Time sequence of the drop morphology during spreading in regime III3 at
R2/R1 = 0.7, θ = 120◦ and µ2/µ1 = 1. The breakup is triggered by the merging of the contact
lines and the fluid shell evolves into a simple drop suspended in the ambient fluid.

R2

R1

< RII
c (θ) ≡

[
2 − cos θ

2 + cos θ
min

(
tan2 1

2
θ, cot4 1

2
θ
)]1/3

, (3.2)

for regimes I and II, respectively. Since the dynamic process is not accounted for in
obtaining these formulae, they represent critical conditions for an imaginary quasi-
static spreading process. In practice, they serve as necessary but insufficient conditions
for the occurrence of these equilibrium states.

We have performed a parametric study of the spreading and breakup behaviour for
various values of R2/R1 and θ , and constructed a phase diagram of the flow regimes
in figure 11 for a fixed viscosity ratio µ2/µ1 = 1. The effect of the viscosity ratio will
be discussed at the end of this subsection. The geometric constraints (3.1) and (3.2)
are also shown by the solid curves for comparison with the real boundaries between
the flow regimes. Note first that the upper boundary of regime I is well below the
geometric constraint (3.1). With increasing radius ratio, transitions from regime I to
the other regimes occur by the core coalescing with the substrate. The final fate of
the compound drop depends on the contact angle. For θ < 120◦, a stable equilibrium
state with a sessile core prevails (regime II1). For θ > 120◦, the compound drop breaks
up (regime III3). In the dynamic process, the effect of the flow is mostly to move
the inner drop towards the substrate. Thus, a core with a radius ratio less than RI

c

can make contact with the substrate. This renders the real boundary of regime I well
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Figure 11. Phase diagram in the (θ , R2/R1)-plane representing the three flow regimes for
µ2/µ1 = 1. Regimes I (triangles), II (circles) and III (squares) are also distinguished by different
grey scales. The sub-regimes are delineated by the dashed curves. The boundaries among
regimes and sub-regimes are approximate and serve as a guide to the eye. The geometric
constraints for regimes I and II, according to (3.1) and (3.2) respectively, are plotted by the
solid curves for reference.

below the curve of (3.1). In contrast, the real boundary between regimes II and III is
very close to the curve of RII

c in (3.2). Here the dominant effect is the spreading of the
fluids on the substrate rather than the flow in the shell. The latter does not introduce
new breakup mechanisms beyond the coalescence and subsequent spreading of the
core illustrated in figures 6 and 10. Thus, the transition between regimes II and III is
insensitive to the transient flow. A small discrepancy may arise from the entrapment
of a droplet inside the core (cf. figure 5), which effectively increases the core size
and thus shifts the upper boundary of regime II slightly below RII

c , as exhibited in
figure 11. This effect is very weak since the volume of the trapped drop is always
small.

The phase diagram in figure 11 is for equal viscosity of the two components:
µ1 = µ2, and we will now discuss the effect of a viscosity contrast. As discussed above,
the transition from regime II to III is primarily determined by the geometric constraint
(3.2) rather than the transient flow. Thus, the viscosity ratio has a negligible influence
on the upper boundary of regime II since (3.2) is independent of the viscosity. In
addition, the breakup scenarios within different regimes are found to be qualitatively
similar for different viscosity ratios; the most prominent effect of the viscosity ratio
is to modify the contact line speed and hence the time scale of the spreading process.

The only qualitatively important effect of the viscosity ratio concerns the boundary
between regimes I and II. At R2/R1 = 0.5 and θ = 90◦, which lies just above the I–II
boundary in figure 11, we computed two additional viscosity ratios µ2/µ1 = 0.1 and
10. While the final state remains in regime II for the higher viscosity ratio, it falls
into regime I for the lower viscosity ratio. Therefore, a lower viscosity ratio (i.e. less
viscous core and ambient fluid) tends to hinder the coalescence between the core and
the substrate and raise the upper boundary of regime I. Two factors may potentially
be at play. A more viscous core will respond better to the surrounding flow, and thus
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Figure 12. Spreading of compound drops with various R2/R1 in terms of the temporal
evolution of the radius of the outer contact line r(t) for µ2/µ1 = 1 and θ = 30◦. The filled
circles on curves with R2/R1 � 0.4 mark the point of rupture of the shell in regime III.

move more readily toward the substrate. Besides, it will be less able to deform and
flatten its lower surface, thereby allowing more rapid draining of the shell fluid in the
lubricating film.

3.3. Temporal evolution

So far we have focused on the equilibrium configuration of the interface after breakup.
Now we examine the transient process of spreading and breakup more quantitatively.
For a series of radius ratios, figure 12 depicts the spread of the compound drop on
a hydrophilic substrate in terms of the contact line radius r(t) (see figure 1b). The
spread of a simple drop (R2/R1 = 0) is also shown for comparison. The range of
R2/R1 covers transitions between regimes I, II1, III1 and III2 in that order. For all
core sizes, the early stage of the spreading (say t < 3) is insensitive to the presence of
the core. This is not surprising since the spreading is determined by the competition
between interfacial tension and viscous force at the contact line. The presence of
the core has yet to be felt. For the smallest core sizes, R2/R1 = 0.2 and 0.3, this is
true for the entire duration of the spreading; these curves, corresponding respectively
to regimes I and II, can hardly be distinguished from that of the simple drop.
For R2/R1 � 0.4 (regime III), the compound drop ruptures at the point marked by the
solid circle on each curve. Before the rupture, the spreading is hindered for larger core
sizes. The rupture causes a sudden acceleration of the spreading as the hindrance due
to the core disappears. For R2/R1 � 0.7, r eventually decreases, corresponding to the
retraction of the disk or ring of the shell fluid after the generation of a suspended
daughter drop (figure 8).

A similar analysis has been done for a hydrophobic substrate, where increasing
R2/R1 leads to transition from regime I to III3. The main features are similar. In
regime III3, the coalescence of the core on the substrate induces a sharp upturn in
the spreading curve resembling that in figure 12 due to the rupture of the shell. The
curves end at the merging of the contact line and the detachment of the drop from
the substrate.
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Figure 13. Time and location of film rupture in regime III as functions of the radius ratio
R2/R1 for µ2/µ1 = 1 and θ = 30◦. The polar angle α of the rupture point is illustrated in the
inset.

In regime III, the time and location of the rupture of the shell show a strong
and intriguing dependence on R2/R1 (figure 13). For relatively small core sizes in
regime III1 (say R2/R1 = 0.4 and 0.5), the rupture occurs at the apex (α = 90◦). With
increasing core size, the pinch-off point shifts down the shoulder; α decreases to
roughly 7◦ at R2/R1 = 0.92 and then levels off. Now the rupture happens very close to
the contact line where the interfaces are distorted (cf. figure 9). With further increase
of R2/R1, the point of rupture shifts radially inward, with little further change in α.

The time interval τ , from the start to the rupture, can be considered the lifetime of
the compound drop, and it exhibits a highly non-monotonic dependence on R2/R1.
First, it decreases with R2/R1 in regime III1, since the coalescence between the
apexes of the core and the compound drop occurs more readily for a larger core. In
regime III2 (R2/R1 > 0.5), τ rises with the radius ratio till R2/R1 = 0.9 and then drops
precipitously. The rise is owing to the slower drainage as the shell becomes thinner
(Rushton & Davies 1983). The sharp decline is due to a change in the mechanism
of rupture. For such large core sizes, the rupture is triggered by the bending of the
meniscus near the contact line rather than the drainage of the shell fluid (see figure 9).
Overall, a compound drop with R2/R1 = 0.9 survives the longest.

We should point out a limitation of the diffuse-interface model in simulating
breakup. The exact time of the interfacial rupture depends to a degree on the
interfacial thickness ε. Although we have reached the sharp-interface limit at the
contact line as defined by Yue et al. (2010), the breakup features a length scale that
continually decreases in time, eventually approaching the thickness of the interface.
The simulation beyond this point is subject to a finite-ε effect of accelerated pinch-off
relative to reality. For partial coalescence between a drop and an interface, Yue,
Zhou & Feng (2006a) showed that this amounts to an underestimation of the pinch-
off time in comparison with experiment. Numerical experimentation here, with Cn

decreasing from 0.02 to 0.0025, bears out the same conclusion: the rupture of the
film is delayed for thinner interfaces. The smallest length scale to be resolved being
ε, the magnitude of the computation is determined by R1/ε. Thus, for larger drops,
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we expect a more serious underestimation of the pinch-off time because the diffuse
interface may be much thicker than the real one. For micron-sized drops, which are
of interest here, we can resolve interfaces down to 10 nm thick, comparable with
real interfaces. In this case, the pinch-off time should be close to the real one as the
finite ε reflects reality. Of course, the challenge to resolve small length scales during
morphological changes exists for all continuum simulation methods. Among these,
the diffuse-interface method probably handles the challenge most successfully.

3.4. Inertial effects

So far we have neglected inertia. This is justifiable for small or highly viscous drops.
Take the simulation of figure 6 for example. Transient capillary and Weber numbers
can be estimated from the velocity U of film retraction just after rupture (t = 51):
Ca = µ1U/σ =0.34 and We = ρ1U

2h/σ = 0.12, where we have taken µ1 = 10−3 Pa s
and ρ1 = 103 kg m−3 to be the viscosity and density of water, σ = 20 dyn cm−1 to
be a typical interfacial tension, say between water and olive oil, and the thickness
of the film h = 0.05R1 for an initial drop radius R1 = 1 µm. In this case, therefore,
inertia plays a secondary role to capillarity. For the more viscous silicone oils used by
Debrégeas, Martin & Brochard-Wyart (1995) and Debrégeas, de Gennes & Brochard-
Wyart (1998), We � 1 and inertia can be safely neglected.

For soap films rupturing in air, on the other hand, inertia can be important
(see e.g. Culick 1960; Savva & Bush 2009). To elucidate the potential role of
inertia in the compound-drop breakup discussed here, we have repeated some of the
simulations using the full Navier–Stokes equations. Two new dimensionless numbers
are introduced: the Ohnesorge number Oh= µ1/

√
ρ1σR1 and the density ratio ρ2/ρ1,

with ρ1 and ρ2 being the density of fluids 1 and 2, respectively. Oh represents the
relative importance of viscous forces with respect to inertial–capillary forces; a smaller
Oh corresponds to a compound drop with a smaller viscosity or larger radius. We
have tested Oh= 0.224 and 0.0707 for the conditions of figure 9. The viscosity and
density of the two fluids are matched for simplicity.

For Oh= 0.224, the evolution of the drop morphology is essentially the same as in
figure 9, consistent with the small Ca and We estimated above. The only difference is
that the breakup is slightly delayed by inertia and the suspended drop oscillates once
before equilibrium. At Oh= 0.0707, inertia becomes more important and qualitative
differences are observed. Figure 14 shows that the early stages of the spreading and
breakup are similar to figure 9, except that the process is much slower. Later, the
retraction of the shell produces a much more pronounced rim (t = 11.99 and 17.97),
characteristic of films retracting with large inertia (Ranz 1959; Savva & Bush 2009).
The rim then closes in onto the axis and traps some ambient fluid, generating a
suspended compound drop as opposed to the single drop of figure 9.

For compound drops with a larger radius or smaller viscosity, hence an even
smaller Oh, inertia may lead to new flow regimes and breakup scenarios beyond
those discussed above. As the focus of this paper is on inertialess dynamics of
compound-drop spreading, we leave a comprehensive investigation of inertial effects
to a future endeavour.

4. Conclusions
We have performed numerical simulations of the spreading and breakup of

W/O/W-type compound drops on a solid substrate. A diffuse-interface method
is used to deal with the moving contact line and the topological change of the drop
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Figure 14. Inertial effects on the spreading and rupture of a compound drop at Oh =0.0707
and ρ2/ρ1 = 1. Other parameters are the same as in figure 9.

morphology. With negligible inertia and gravity, we have observed three regimes for
the interfacial behaviour.

(a) When the core is small or the substrate is hydrophobic to the shell fluid, the
core remains encapsulated in the shell, and the spreading behaviour is similar to that
of a simple drop.

(b) A moderately large core can wet the substrate without destroying the integrity
of the compound drop, with a final configuration of a sessile core inside the shell.
This regime is inhibited if the substrate is highly hydrophobic to the shell fluid.

(c) The compound drop breaks up spontaneously when the core is sufficiently
large. This is facilitated by a substrate that is either highly hydrophilic or moderately
hydrophobic to the shell fluid. In the former case, the shell ruptures at a location that
shifts from the apex towards the substrate with increasing core size. In the latter, the
breakup is typically triggered by merging of contact lines on the substrate. In order
to avoid drop breakup, a neutrally wetting substrate is preferred.
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In some of these scenarios, considerable deformation of the core leads to the
formation of secondary drops of the shell fluid, either entrapped inside the core
and attached to the substrate or freely suspended in the ambient fluid. In an
application, these secondary drops corrupt the monodispersity of the double emulsion
and may be undesirable. Viscosity of either fluid component tends to slow down the
spreading process. However, the breakup scenarios and final interfacial morphology
are insensitive to the viscosity ratio between the two fluids.

Since the spreading of compound drops on substrates has received little attention
in prior research, the value of this work lies in the discovery of these complex and
intriguing scenarios of interfacial evolution. The theoretical model and numerical
method have been carefully validated in the past and applied successfully to a host
of interfacial flow simulations. Nevertheless, the flow regimes described in this study
remain to be confirmed by experiments. We have focused on micron-sized drops with
negligible inertial and gravitational effects. Larger compound drops will likely exhibit
additional dynamics due to one of these factors. Thus, much remains to be researched
in this area.
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