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The interaction of two bubbles rising in shear-thinning inelastic fluids was studied. The experimental
results were complemented by numerical simulations conducted with the arbitrary Lagrangian–Eulerian
ccepted 4 November 2010

eywords:
ubble pair interaction

technique. Different initial alignments of the bubble pair were considered. Similarities and dif-
ferences with the Newtonian fluids were found. The most noticeable difference is the so-called
drafting–kissing–tumbling (DKT) process: for the case of bubbles rising in thinning fluids, the tumbling
phase does not occur and the pair tends to form a stable doublet. The DKT process is also influenced by
the amount of inertia and deformability of the individual bubbles and the initial angle between them.
The experimental and numerical results suggest that the thinning wake formed behind the bubbles plays

peed

on-Newtonian
hear-thinning an important role in the s

. Introduction

Bubble interactions have received considerable study in the lit-
rature owing to its inherent scientific interest and importance
n applications such as gas–liquid contactors [1–3]. The study of
wo-bubble interaction was initially motivated by the coalescence
henomena due to its impact in bubble columns efficiency. That
as how researchers took two different paths concerning this

ssue: one was the study of the coalescence mechanism itself, which
s highly dependent on the liquid composition [4–6]; the other

as the study of the trajectories that two bubbles take before
oalescence [7–9]. In this work, the interaction of two bubbles
scending in shear-thinning inelastic fluids (non-coalescing con-
itions) is experimentally and numerically studied. First, we will
ake a review of the current literature of hydrodynamic interac-

ions. In particular, to put our work in perspective, we focus on the
ewtonian case.

For the case of creeping flow, Stimson and Jeffery [10] analyti-
ally predicted the velocity of two spheres moving in-line in terms
f the separation distance between them. As widely described by
11], two bodies moving in this way in the creeping flow regime

cquire a higher velocity than that attained by a single body; the
elocity increases as the separation distance decreases. As the flow
eld does not have inertia, the bodies keep their distance without
pproaching each other. This trend is in agreement with experi-

∗ Corresponding author. Tel.: +52 55 5622 4593; fax: +52 55 5622 4602.
E-mail address: zenit@unam.mx (R. Zenit).

377-0257/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
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of the pair and the formation of clusters in thinning fluids.
© 2010 Elsevier B.V. All rights reserved.

mental data [12] and with other analytical expressions [11], and
applies as well to settling particles or rising bubbles.

When the inertia is small but finite (Re ≈ 0.25) the vorticity
around a spherical body looses its fore-aft symmetry and the trail-
ing body acquires a higher velocity than the leading one, reaching
the latter after some time. Crabtree and Bridgwater [7] were the
first ones to approximate the trailing bubble velocity as the sum
of the terminal velocity of the single bubble plus its wake velocity
at the distance where the trailing bubble is found. This hypoth-
esis was referred to as a ‘superposition principle’ by Bhaga and
Weber [13]. In later works [13–15] this hypothesis was tested and
confirmed for two in-line bubbles rising with Reynolds numbers
up to O(1 0 0). Crabtree and Bridgwater also reported the curious
phenomenon (not fully explained yet) in which the trailing bubble
experiences a significant deformation (from oblate to prolate form)
moments before touching the leading one. Such deformation was
also reported and photographed by Narayanan et al. [14]. These last
authors worked with different bubble sizes producing basically two
different wake structures: one forming a thin trailing wake and the
other forming a wake with a stable toroidal vortex. For the former
it was observed that the Stimson and Jeffery’s equation described
well the rise velocities of the trailing bubbles even though it was
formulated for creeping flows and spherical bodies. For the second
case, a superposition principle similar to the one proposed by [7]

was used. Bhaga and Weber [13] also worked with bubbles form-
ing a wake with a toroidal vortex (Reynolds ≈ 80, Eötvös ≈ 70). The
experimental measurements of the wake velocity were in agree-
ment with the velocity calculated using the superposition principle.
Manga and Stone [16,17] studied the effects of bubble deformability

dx.doi.org/10.1016/j.jnnfm.2010.11.003
http://www.sciencedirect.com/science/journal/03770257
http://www.elsevier.com/locate/jnnfm
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n the interactions among them. They found that bubble alignment
nd coalescence is enhanced when the buoyancy forces are much
arger than the restoring forces due to the interfacial tension on the
ubble surface.

The interaction of two bubbles rising in potential flow was
he subject of the theoretical work of van Wijngaarden and co-
orkers [18–20]. In these papers it was found that two bubbles

ising in potential flow experience an attractive force if their angle
f approach lies within ±54◦ from the horizontal, but feel a repul-
ion otherwise. The attractive force is due to the low pressure zone
ormed between the bubbles since the liquid velocity in this zone
s larger. On the other hand, the repulsive force felt by the bubbles

hen they are aligned close to the vertical arrangement is due to
he dynamic pressure that one bubble exerts on the other.

The behavior predicted in potential flows contrasts greatly with
hat observed in viscous dominated flows [21,12,22]. In such flows
he behavior is actually the opposite: bubbles will experience a
epulsive force if they lie near the horizontal alignment and an
ttraction if they lie close the vertical one. Such behavior can be
xplained in terms of the vorticity distribution: the vortices around
ach bubble will interact and repel each other if they are aligned
n a horizontal orientation. This applies as well if a bubble rises
ear a vertical wall [21]. In the vertical alignment a net “suction”
f the trailing bubble by the leading one occurs due to the vorticity
symmetry of the two bubble hemispheres. Now, it could happen
hat the two bubbles rising in this way will find an equilibrium
istance between them when the viscous (attractive) and inertia
repulsive) forces cancel each other. That is to say, when the trail-
ng bubble experiences the same amount of suction by the leading
ubble wake and repulsion caused by its own upper wake when the
wo bubbles interact at short separation distances. This issue was in
act numerically analyzed by Yuan and Prosperetti [23]. They found
uch an equilibrium position between two in-line spherical bubbles
ising in different hydrodynamic conditions (20 < Re < 200). Experi-
entally, an unstable equilibrium distance can indeed be found for

lean bubbles which preserve its spherical shape as increasing the
e number (i.e., rising in silicone oils) [24]. Such equilibrium dis-
ance, which has been numerically found to be dependent on the Re
umber [23,25], is unstable in the sense that bubbles often escape

rom the vertical line.
Several experimental and numerical studies of the interaction

f two bubbles at intermediate Re numbers have been devoted to
he construction of the bridge that joins the creeping and potential
ows [13,25–27,8,9]. These studies have revealed that two bubbles
ising in-line follow the viscous dominated flow behavior at least up
o a Reynolds number of O(1 0 0), i.e., the trailing bubble approx-
mating the leading one. The question if an equilibrium distance
ppears or not during this process, i.e., the trailing bubble being
jected from the vertical line or reaching and making contact with
he leading bubble, seems to depend on the shape and the surface
roperties of the bubbles. In particular, Kok [27] observed in con-
aminated water (Re ≈ 200) that a trailing bubble reaches, touches,
hen turns its orientation angle to 0◦ with respect to the leading
ne and finally separates from it; a mechanism commonly referred
o as the drafting–kissing–tumbling process [29]. This process is
ommonly observed in rigid bodies at low Re numbers [12,28]. In
he case of two bubbles released side-by-side it has been found that
hey always repel each other for Re < 30 and attract each other for
e > 200, being the transition behavior dependent on the separation
istance [22].

Regarding the drag force experienced by a pair of bubbles, in

he vertical alignment the mean drag experienced by each bubble
s less than the single bubble case. This is because the conjunction
f the two bubbles will “form a body” aligned in the direction of
he flow [23,30]. The prediction of the drag coefficients of two bub-
les rising side-by-side is more complicated. With the help of the
n Fluid Mech. 166 (2011) 118–132 119

experimental measurements of the drag coefficients in fixed rigid
particles [31], together with the numerical works of [26,22], it has
been found that two horizontal bubbles will experience less drag
than the single one for low Reynolds flows (Re < 50). In this case
the drag value increases, reaching the single bubble value, as the
separation distance is increased. In small Re flows the long range
interactions between bubbles start gaining importance; hence, two
bodies moving side-by-side separated by a small distance, typically
less than a bubble radius, will be surrounded by a unique vortex
[31]; therefore, the two bubbles will find less resistance to motion.
The opposite effect is found for high Re flows where wake insta-
bilities can occur. This explanation is at least consistent with the
behavior that has been observed in bubbly flows, that is, mild and
strong bubble clustering in Newtonian and shear-thinning inelas-
tic fluids at low Re, respectively, accompanied by an increase of
the mean rise velocity with respect to the single bubble velocity
[32,33]. On the contrary, a decrease of the mean bubble velocity
with respect to the single one was observed as increasing the gas
fraction (decreasing the separation distance between bubbles) in
high Reynolds, low Weber flows [34].

These are some relevant studies of the hydrodynamic interac-
tion of bubble pairs in Newtonian flows. One of the purposes of
the present study is to determine the hydrodynamic interaction if
non-Newtonian effects are considered. Important advances about
this issue have been given by [35–39]. Using viscoelastic fluids,
that is, fluids with shear-thinning and elastic behavior, Li et al. [35]
and Radl et al. [36] elucidated that the viscosity gradients together
with the amount of elasticity enhance bubble interactions. The cor-
responding decrease of the drag force was further related to the
accumulation of residual stress via rheological simulations, a term
coined by Li et al. [37]. In that work, the passage of bubbles was
simulated by exerting consecutive shear rates to a fluid sample in a
rheometer. The viscosity reduction in the bubble wake and the time
lag needed for the zero-shear viscosity reestablishment extends the
influence that a leading bubble has on other bubbles. This effect is
not expected to occur in Newtonian fluids. The most outstanding
behavior that has been observed regarding non-Newtonian effects
was the repulsive effect that the formation of a negative wake pro-
duces between a leading Taylor bubble and a trailing one [38]. This
effect has nevertheless been observed only in slug flow regimes
where the bubbles fill completely the column diameter. Singh and
Denn [40] and Tsamopoulos et al. [41] have numerically studied the
rise of single bubbles and droplets in Bingham fluids. As these fluids
have a yield stress value, the flow around the bubble is divided in
three zones: an unyielded zone localized in the equatorial plane of
the bubble, a yielded zone surrounding this one and which in turn is
surrounded by a second external unyielded region. When the fluid
properties and bubble size are such that the external and internal
unyielded regions touch each other, the bubble will not move. Singh
and Denn also studied the interaction of two and three bubbles ris-
ing in a Bingham fluid. During the collision, the shape evolution of
the bubbles is similar to that seen in Newtonian fluids. The authors
also noted that given a collection of fluid properties and bubble size
that will result in the immobilization of one bubble, the addition
of a second or a third bubble vertically aligned with the first one
will produce enough stress to the fluid that the bubbles will start
moving through the liquid.

The experimental and numerical studies cited above clearly
demonstrate that when non-Newtonian effects are present (either
elasticity or variable viscosity) the nature of hydrodynamic inter-
actions is modified. The objective of the present work is to find the

similarities and differences in the interaction of two bubbles (before
and after collision) between Newtonian and shear-thinning inelas-
tic fluids. It is well known that memory and thinning effects are two
factors that are very difficult to untangle if are studied together, that
is why we decided to start analyzing the effects of just one of them.
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Fig. 1. Experimental setup.

Table 1
Bubble diameters obtained by the capillaries (I.D.: inner diameter of the capillaries).

Capillary I.D. Bubble diameter
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Small 0.2 mm 2.1 mm
Medium 0.6 mm 2.8 mm
Large 1.2 mm 3.6 mm

. Experimental setup

.1. Column and bubble generation

The experiments were carried out with the setup shown in Fig. 1.
t consists of a rectangular column made of transparent acrylic with
n inner cross section of 5 × 10 cm2. The column was filled with the
est liquid up to a level of 100 cm measured from the base plate.
hree capillary diameters were used to produce different bubble
izes. In order to avoid the generation of gas jets with variable vol-
me, the hydraulic resistance through the capillaries has to be large.
ence, to generate individual bubbles, a capillary of 0.2 mm was

nserted in the capillaries with the larger diameters, the latter being
he ones that formed the bubbles. To generate in-line bubble pairs
vertical alignment), one capillary was inserted through the bottom
f the column, using a sealed feedthrough (Spectite Series PF), at the
enter of the base plate. To generate bubble pairs aligned horizon-
ally, a second capillary was inserted through the side wall, using
n elbow and another feedthrough connector. In this manner the
nitial horizontal separation could be varied. Table 1 shows the bub-
le size that were obtained with capillaries having different inner
iameters. Air was injected through the capillaries with a syringe
ump (KDScientific 100L). To ensure that the polymer solution was

ompletely at rest, a time interval of approximately 5 min was left
n between experiments. Regarding this point, we did not observe a
otable difference in the terminal velocities of two bubbles released
ne after the other for periods above one minute.

able 2
hysical properties of the fluids: �, density; �, surface tension; �, viscosity; k, consisten
ubbles. USI and db are the terminal velocity and diameter of the single bubble, respectiv
f the xanthan gum solutions in weight terms.

Fluids � �
kg/m3 mN

Newtonian: 83% glycerin/water 1214.6 61
0.02% Xanthan gum in 75% glycerin/water 1193.1 63
0.1% Xanthan gum in 60% glycerin/water 1152.1 65
Fig. 2. Flow curves of the test fluids. �: apparent viscosity, (- - -) Newtonian fluid,
(©) n = 0.85, (�) n = 0.55. The vertical lines demarcate the shear rate range produced
by the bubbles.

2.2. Fluids

We employed two shear-thinning fluids and a reference New-
tonian solution. These fluids were also used in [33]. These
shear-thinning fluids based on xanthan gum solutions follow a
power law behavior with negligible elasticity in a wide range of
characteristic flow times. As we are not interested in the coales-
cence mechanism itself, we also added 0.04 M of MgSO4 to suppress
it [4]. The details of the preparation of the solutions are given in [33].
The rheological measurements were conducted in a rheometer (TA
Instruments AR1000N) with a cone-plate geometry (60 mm, 2◦, a
gap of 65 �m). The surface tension measurements were performed
with a DuNouy ring (diameter of 19.4 mm, KSV Sigma 70). All the
solutions were stirred before the surface tension measurement. The
temperature of the room was 23 ◦C. The physical properties of the
solutions are summarized in Table 2, the flow curves are shown in
Fig. 2 and the oscillatory measurements in Fig. 3. Note that the fre-
quency value (inverse of the relaxation time) at which the dynamic
moduli curves intersect in the shear thinning (xanthan) solutions
is about two orders of magnitude higher than the corresponding
value of the viscoelastic (PAAm) reference solution. These measure-
ments confirm that the relaxation time is comparatively smaller in
the fluids used in this work, which indicate that elastic effects are
negligible for our study.

2.3. Bubble size and velocity measurement

The bubble pairs were followed by a high speed camera

(MotionScope PCI 8000 s) mounted on a vertical rail activated by a
DC motor (Fig. 1). The velocity of the motor was regulated with a
DC power supply. A recording rate of 60 frames/s was used. The
image sequence obtained with the camera was binarized using a

cy index; n, flow index; �̇ , shear rate range, estimated as 2USI/db , achieved by the
ely. The percentages of liquid mixtures are given in volume terms, the percentages

� or k n 0.4 < Re < 1.3
/m mPa sn s−1

.9 104.2 1.0 34–72

.0 118.7 0.85 33–77

.0 360.0 0.55 18–81
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ig. 3. Dynamic moduli of the shear thinning solutions. Filled symbols: elastic mod-
li G′ , empty symbols: loss moduli G′′ , (©) n = 0.85, (♦) n = 0.55, (�) a polyacrylamide
PAAm) reference solution (0.04% in 80/20 glycerin–water with 0.04 M MgSO4). For
he estimation of G′ and G′′ the procedure followed by [42] was used.

hreshold value computed according to the Otsu’s method
rovided by Matlab©. The equivalent bubble diameter db was
alculated using the short and long diameters of the elliptic bubble
rojections:

b = (d2
MAXdMIN)

1/3
(1)

here dMAX is the larger bubble diameter and dMIN the shorter
ubble diameter.

As the pictures were taken by a moving reference frame, we
sed a pattern of circles, glued on the side of the column, to calcu-

ate the displacement of the camera in between frames; once the
isplacement of the camera was known is was possible to compute
he absolute displacement of the bubbles. This procedure consisted
f two parts: first a pair of consecutive images (j and j − 1) are
elected from the sequence. Then the same circle of the reference
attern is identified in each image and the position of its centroid

s calculated. After doing this, the reference position is taken from
he first image; hence the location of the bubbles is determined
nd their evolution from one frame to the next one. This proce-
ure is repeated for the entire image sequence. In this manner, the
ncertainty in locating the bubble position is minimized eliminat-

ng problems due to vibration of the camera and changes in lighting.
he velocity of the bubbles at the image j was calculated using a cen-
ral difference scheme. The distance between bubbles was directly
omputed from the images.

. Computational technique

The arbitrary Lagrangian–Eulerian (ALE) technique was used to
umerically study the interaction of bubbles pairs with different
ngles of approach. This technique was developed by Hu et al. [43]
o solve the motion of particles in two- and three-dimensional flows
nd modified by Yue et al. [44] to study bubble and foam problems
n 2D and axisymmetric geometries. A detailed description of this
echnique and its algorithm can be found in [45,44]. The general
eatures of the code will be described briefly.

The technique combines an Eulerian and Lagrangian descrip-
ions of the flow and bubble motion using an unstructured finite

lement mesh. This means that the boundary nodes of the mesh
ollow the motion of the bubbles and the walls with possible slip.
n the interior of the domain, however, the mesh motion does not
ollow the fluid flow but is computed from an elliptic partial dif-
erential equation which guarantees a smooth variation. The code
n Fluid Mech. 166 (2011) 118–132 121

includes a remeshing tool that generates a new mesh upon detect-
ing elements with unacceptable distortion. When this happens, a
projection scheme is also invoked to project the flow field obtained
on the old mesh onto the new one. The continuity and momen-
tum equations were spatially discretized using the standard finite
element Galerkin formalism and temporally discretized using the
Crank–Nicolson scheme. The conservation equations are:

∇ · u = 0 (2)

�

[
ıu
ıt

+ (u − um) · ∇u

]
= −∇p + ∇ · �[∇u + (∇u)T] + �g (3)

where the viscosity is defined by the power-law model:

� = k

[√
1
2

(�̇ : �̇)

]n−1

(4)

where u is the liquid velocity, � the density, p the pressure, �
the viscosity, g the gravity, k the consistency index, n the flow
index, �̇ the shear rate tensor and um the mesh velocity, which
was obtained from the displacement of the mesh nodes accord-
ing to the fixed computational coordinates. The referential time
derivative ∂/∂ t = ∂/∂ t|fixX is made using the Lagrangian coordinate
X affixed to the moving mesh.

The boundary conditions were the following: at the bottom wall
the no slip condition was applied; at the right and left walls the
slip condition in the y − direction was applied and the horizontal
velocity component was set to zero; stress condition was applied at
the liquid surface, both on the normal component (�yy = p − p0 = 0)
and the tangential component (�xy = 0); on the bubble surface the
boundary condition was obtained from the Young–Laplace equa-
tion:

n · (−pI + �) = (−pb + K�)n (5)

with the tangential components also set to zero (no surfactants).
Here, n is the normal vector to the bubble surface, K the sur-
face curvature, � the surface tension and pb the pressure inside
the bubble. The initial pressure inside the bubble is given by
pb = p0 + �g(H − h) + 2�/r where H is the height of the domain, h
the height in which the bubble was released, r the half of the
bubble diameter defined by Eq. (1) and p0 the reference pres-
sure (1.01 × 105 Pa). In the simulations, pb is updated according to
pbVb = const, where Vb is the bubble volume.

The domain size was 16r × 50r. This size was the same for
the 2D and axisymmetric calculations; therefore, 16r is the width
for the 2D domain and also the diameter of the cylinder of the
axisymmetric geometry; 50r is the height in both geometries. Non-
dimensionalized variables were introduced to the code considering
the following scales: r for the length, r/USI for the time, USI for the
velocity and �U2

SI for the pressure and stress, USI being the ter-
minal velocity of the single bubble. The viscosity, surface tension
and gravity were non-dimensionalized using the experimental val-
ues of the Re (�USIr/�), We (�U2

SIr/�) and Eo (Eq. (13)) numbers,
respectively, and the scales mentioned above. The non-linear sys-
tem equations are solved by Newton’s method together with Krylov
subspace iterative solvers such as the preconditioned generalized
minimum residual (GMRES). The simulations were conducted in
a computational grid located in Canada (glacier.westgrid or drift-
wood.iam.ubc). A typical job consisting of 25,000 elements takes
less than a day to complete a run with 10,000 time steps. An upper

limit for the time step is given by �t = 0.0005t*, where t* = r/USI. For
the single and in-line bubbles (Sections 4.1 and 4.2) we used the
axisymmetric geometry while for the bubbles rising side-by-side
or with other angles (Sections 4.3 and 4.4) we employed the 2D
solver.
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Fig. 5. Drag coefficient ratio Y(n) as a function of the flow index. Numerical results:
ig. 4. Drag coefficient as a function of the Reynolds number for the single bubbles.
xperimental values: (�) Newtonian fluid, (•) n = 0.85, (�) n = 0.55. Numerical solu-
ions: (�) Newtonian fluid, (©) n = 0.85, (♦) n = 0.55. (—) Stokes prediction, (– – –)
adamard prediction, (. . .) Oseen correction for a fluid sphere Cd = 16/Re + 2.

. Results

.1. Single bubble results and benchmark simulations

The experimental drag coefficients for the single bubbles as a
unction of the Reynolds number are shown in Fig. 4. The numerical
alues are also included. The Reynolds number and drag coefficient
d were defined as:

e = �USIdb

�
(6)

here

= k
(

2USI

db

)n−1
(7)

nd

d = 4dbg

3U2
SI

(8)

We found that the Newtonian results lay between the Hadamard
nd Stokes drag predictions. Noticeable differences between
he experimental and numerical results were just seen below

Reynolds number of one, where the numerical drag value
pproaches the Hadamard prediction while the experimental one
he Stokes prediction. The thinning fluids values, on the other hand,
ay above both theoretical solutions, meaning that the thinning con-
ition results in larger drag than that for a Newtonian fluid at the
ame Re. Note that the agreement between the experimental and
umerical values for the Newtonian fluid is good (square symbols in
ig. 4), indicating that the spatial resolution and the computational
omain size were adequate. For the thinning cases, we found that
he numerical terminal velocities were in all the cases higher (25%
n the n = 0.85 fluid up to two times the experimental velocity in
he n = 0.55 fluid) than those obtained in the experiments. The use
f the Carreau model gave the same results. It is not clear if this dif-
erence is due to the choice of a definition of the apparent viscosity
Eq. (7)), or due to other effects such as the time that molecules take
o attain a random orientation (zero-shear viscosity) after deforma-

ion or because there is an adsorption of the polymer molecules on
he bubble surface thus changing the boundary conditions. In the
ollowing we will see that in spite of this inaccuracy of the numer-
cal results, the essence of bubble pairing is still captured by the
imulations.
(�) 0.6 < Re < 1, (�) 7 < Re < 9. Theoretical predictions: (—) Bhavaraju et al. [46], (– – –)
Rodrigue et al. [48]. Experimental values: (©) this work 0.4 < Re < 1.2, (×) 0.1 and
0.15% carbopol solutions from [46], (*) 0.1–2.0% CMC solutions, Re < 6 from [49], (+)
0.1–1.0% carbopol solutions with trietanolamyde, Re = 3 from [50].

In Fig. 5 the drag coefficient of the single bubbles rising in differ-
ent shear-thinning liquids is presented in a different manner. The
experimental and numerical drag coefficients were normalized by
their Newtonian counterparts (n = 1) to form the ratio Y(n):

Y(n) = Cdthinning

CdNewtonian
(9)

The ratio Y(n) has been used by several authors [46–48] to inves-
tigate the drag force in shear-thinning fluids. The theoretical values
obtained by Rodrigue et al. [48] and Bhavaraju et al. [46] are shown
in this figure as well as the experimental results obtained by other
authors. The assumption of clean spherical bubbles was used in
both theoretical studies for creeping flow; also both studies used
a perturbation method. The only difference between them was the
way of expanding the second invariant of the rate of deformation
tensor � . Following the standard notation for the drag coefficient
used by [46–48], we calculated our experimental and numerical
Y(n) values for very low Re flows (Re < 1) using the Stokes and
Hadamard solutions respectively:

Y(n)exp = Cdthinning

CdNewtonian
= 4dbg/3U2

SI

24/Re
= dbgRe

18U2
SI

(10)

and

Y(n)num = 4dbg/3U2
SI

16/Re
= dbgRe

12U2
SI

(11)

Theoretical, numerical and experimental results show the same
trend: as the thinning behavior is increased (decreasing n) the
bubbles experience more drag than their Newtonian counterparts.
These observations can be interpreted as follows: the maximum
shear rate experienced by the liquid is about USI/r, therefore the
minimum viscosity value is approximately k(USI/r)n−1 (note that
for the drag estimation the equilibrium equation between buoy-
ancy and drag forces was used and this expression do not need
a viscosity value). For the single bubble case and at low Re num-

bers the shear rate decreases with the distance from the bubble,
which in shear-thinning fluids result in higher viscosity values. The
total effect is the increase of the resistance of the bubble motion,
which can be seen by an increase of the pressure drag coefficient
[51] which lessen the effect of the reduction of the friction drag
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bubble pair; filled symbols: trailing bubble, empty symbols: leading bubble; (�)

ble centers. In the following d∗
s is also used on several occasions and

refers to an edge-to-edge or gap separation between bubbles. Three
stages can be observed similar to the drafting–kissing–tumbling
scenario reported for settling solid particles [12]. The first one
J.R. Vélez-Cordero et al. / J. Non-New

erm that occurs as n decrease (this component of the total drag is
ctually negligible for bubbles without surface active agents).

We conducted other simulations with higher Reynolds numbers
Re ∼ 8); the corresponding Y(n) values are also shown in Fig. 5. In
his case, since the Re number is not small the Hadamard prediction
annot be used and a direct comparison with the theoretical val-
es [46–48] cannot be made. Therefore, to calculate the values of
(n) we divided the drag of the thinning fluid by the value attained
y its Newtonian counterpart using the same physical parameters
ut changing the flow index value to one, leaving the same vis-
osity value at the characteristic shear rate USI/r. Other authors
52] have compared both cases, the Newtonian and thinning flu-
ds, maintaining the same Reynolds number. Using this scheme,
owever, keeping the same physical data between fluids cannot be
uaranteed. The Y(n) values were thus calculated as:

(n) = Cdthinning

CdNewtonian
=

(
USINewtonian

USIthinning

)2

(12)

The results have the same trend as in the low Re case, that is, the
rag increases with the thinning behavior. Zhang et al. [53] made
similar comparison of their numerical terminal bubble veloci-

ies obtained with thinning and Newtonian fluids. In order to make
he comparison they changed the value of the flow index (simi-
ar to what was done here) but considering a constant zero-shear
iscosity value (we considered a shear-rate dependent viscosity).
hese authors found that the terminal velocity of bubbles rising in
hinning fluids was higher than the corresponding Newtonian case.

.2. Two-bubble interaction: vertical alignment

Let us first consider the numerical results. Initially we place two
dentical spherical bubbles one above another, with a center-to-
enter separation of 4r using the same physical properties as the
nes used in the single bubble simulation with Re ∼ 8. Upon start of
he simulation, both rise and in time the lower bubble catches up
ith the upper one. When the bubbles reached a certain gap sepa-

ation distance, two Y(n) values (Eq. (12)) were calculated, one for
he trailing bubble (comparing the bubble velocities of the New-
onian and thinning fluids) and another for the leading one. The
esults for two separation distances, 0.1r and 0.5r, are shown in
ig. 6. In this figure we can observe that as the bubbles become
loser to each other, the trend seen for single bubbles changes: the
(n) values fall slightly below one. This means that two bubbles
ising one after the other in a thinning fluid experience less resis-
ance than their Newtonian counterparts. This behavior is inherent
o the way we made the thinning fluid simulations. As we previ-
usly said, we fixed the apparent viscosity corresponding to the
haracteristic shear rate USI/r of the single bubbles for both, the
hinning and Newtonian cases. When for both is added a second
ubble, the shear rate is increased in both fluids, the difference
eing that in the thinning case a zone with a lower viscosity near
he bubbles will appear. The comparison made between the single
ubble and bubble pair is similar to that made by [40], in the sense
hat the comparison depends on how the fluid properties are ini-
ially defined and serve as input information. For example, in this
tudy single bubble and bubble pair simulations were done using
he apparent viscosity calculated at the characteristic time of the
ingle bubble as reference. However, this is an arbitrary numeri-
al procedure since one can also define the reference viscosity for
wo bubbles (considered as a single one with the equivalent vol-

me). The shear rate formed around a bubble or a pair of bubbles
an be visualized using the numerical code. In Fig. 7 the shear rate
elds are shown for the thinning fluid with n = 0.5 (10 < Re < 16). The
hear rate attained around the bubble pair are clearly higher (up to
our times) than that for the single bubble. As can be expected, the
gap separation distance of 0.1r, (©) gap separation distance of 0.5r. As the bubble
velocity was obtained from the average between the velocities at the top and bottom
nodes of the bubble boundary, the minimum seen in the leading bubble for 0.1r could
be due to bubble surface deformation.

zone with the higher shear rate surrounds the bubble pair, forming
a single “jacket”, when the bubbles become very close each other.
Note that the numerical code is also capable to reproduce the axial
elongation of the trailing bubble prior to contact. Also, the equilib-
rium position reported by [23] was not observed here for either the
experimental or numerical tests.

The center-to-center separation distance between the bubbles
as a function of the time is shown in Fig. 8 for the three bubble sizes
used in this work. The experimental and numerical results are both
shown using the dimensionless distance d* = ı/r and the dimension-
less time t* = t(USI/r), ı being the separation distance between bub-
Fig. 7. Shear rate contours obtained for a single bubble and an in-line pair rising in
the n = 0.5 fluid. The values were taken at the same time (t* = 5) for both the single
and bubble pair. The initial separation of the bubbles was 4r. The shear rate was
estimated using the formula inside the square brackets of Eq. (4) and normalized by
the characteristic time r/USI.
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maller and medium bubble sizes are not shown due to the large computational t
ewtonian fluid with the smaller bubble (Re ∼ 1) was 16r × 70r. (For interpretation
f the article.)

drafting) corresponds to the approaching of the trailing bubble
owards the leading one. This stage is characterized by an almost
onstant negative slope of the t* − d* curve, meaning that a con-
tant approach velocity occurs. Note that when the Re number is
ncreased (viscosity gradients become less important) the initial
lope has the same value regardless of the value of the flow index
Fig. 8b and c). The numerical simulations for these early times t*

re in good agreement with the experimental results. The second
tage (kissing) can be easily identified by the change of the initial
lope. The contact of the bubbles is accompanied by an elongation
f the trailing bubble followed by a slight contraction of both bub-
les due to the collision. The third stage (tumbling or not-tumbling)

s the one that marks the difference between Newtonian and
on-Newtonian liquids. Concerning shear-thinning fluids, small
nd medium size bubbles (db = 2.1 mm and 2.8 mm) rising in the
= 0.5 fluid, and small bubbles rising in the n = 0.85 fluid, remained
ogether after contact. The bubble pairs in these cases either main-
ained a vertical orientation (not-tumbling) or an orientation with
certain angle, switching their relative position as they ascended

Fig. 9b). In the rest of the cases the bubbles turned to the horizontal
osition after contact and separated (tumbling), as shown in Fig. 9a.
id; (dash-dotted blue line) n = 0.55 fluid (numerical results for this fluid using the
eeded to complete the simulations). The computational domain size used for the
references to color in this figure legend, the reader is referred to the web version

The condition to observe either free bubbles (the usual DKT pro-
cess) or pair formation (missing the tumbling stage) after contact
was mapped in an Eötvös–Reynolds plot considering the experi-
mental single bubble data, as shown in Fig. 10. The Eo (also known
as Bond) number is defined as:

Eo = �gd2
b

�
(13)

This mapping was used to identify the regimes of free bub-
bles and clustering in bubbly flows [33]. As can be seen in the
figure, the separation between cases corresponding to pair forma-
tion (filled triangles) and free bubble condition (empty triangles)
is given approximately by Mo = 10−3, which is the Morton number
defined as:

Mo = g�4

3
(14)
��

This value was also found to be a critical number for the transi-
tion between free bubbles and clustering regime in bubble swarms
rising in thinning fluids [33]. This suggests that the gas fraction has
little effect on clustering break off in thinning fluids. Concerning
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In this work we found that two bubbles rising in tandem in
the Newtonian fluid at low Re (0.4 < Re < 1.3) form a stable dou-
blet (Fig. 8a). This contrast with the results obtained in [33] where
for the same fluid and bubble size bubble pairing was not seen in
bubbly flows. This indicates that bubble clustering in Newtonian
fluids at low Re is greatly influenced by the amount of gas fraction
[32], i.e., the Newtonian transition from free bubbles to clustering
regime will be near the Mo = 10−3 curve, but the transition can be
different since it will also depend on the amount of gas fraction.

The fact that two bubbles rising in a Newtonian fluid can form a
stable doublet supports the hypothesis that two deformable bodies
moving in a fluid at low Re will prefer to move as a single body
being surrounded by a common flow field. The deformability con-
dition is emphasized since for rigid particles the pairing described
here was not observed, even at low Re numbers [12]. This apparent
contradiction supports, in fact, the general tendency found in [33]:
for a given Eötvös number, bubbles tend to form clusters if the Re
number is low; on the other hand, for a given Re, bubbles tend to
form clusters if the Eo number is high (more deformable bubbles).
This conclusion is not new: it was already reported by [16,17] for
Newtonian fluids.

Fig. 8 suggests that the thinning effect during the drafting pro-
cess can only be observed for low Re numbers, that is to say, when
the rate of approach of the trailing bubble is dependent on the flow
index (Fig. 8a). Using the experimental velocity of the bubbles, we
can compute the ratio of the drag coefficient of the trailing bubble
CdT to the leading one CdL as:

CdT

CdL
=

(
UL

UT

)2
(15)

where U is the instantaneous velocity of the bubbles. The drag ratio
at a separation distance of ı = 4r for different values of the flow
index n is shown in Fig. 11. The data with 0.4 < Re < 4.5 (small bub-
bles) confirms the observation that the mean drag of a bubble pair is
less than its Newtonian counterpart, unlike the single bubble case.
Such effect is nevertheless seen only at low Re values. As inertia
is increased, the decrease of the drag with the flow index is more
subtle.

In the tumbling stage, if it is observed, the drag ratio value
becomes almost one. This can be seen in Fig. 12 with the New-
tonian and n = 0.8 fluids. In this figure the experimental drag ratio

CdT/CdL for the medium bubble size was plotted as a function of the
dimensionless time. The values of the Newtonian fluid correspond
to the case shown in Fig. 9a. For the case when the bubbles con-
tinued traveling as a pair (Fig. 9b, n = 0.55 fluid), the evolution of
the drag ratio is very different (filled circles in Fig. 12). In this case,
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he movement of the bubbles forming the pair produces an oscil-
atory behavior of the drag ratio CdT/CdL: when the trailing bubble
atches the leading one, the pair turns towards the horizontal align-
ent due to the pressure directed against the bubble motion. This

orizontal arrange is nevertheless not stable because it leads to the
eparation of the bubbles [22], which in turn causes a passage form
ow to high viscosity zones since the characteristic shear rate is
ecreased. A possible configuration is then a diagonal alignment.
he bubble located at the front will cause a reduced viscosity path,
ence the bubble in the back will be accelerated, reaching the bub-
le at the front and passing it. The process is repeated again. A
imilar periodic movement has been observed for the case of groups
f settling particles formed by three (experimental results, Re < 0.2)
r four bodies (numerical results, Re 
 1) [28,55,17]. However, the
eriodic movement observed here for the case of two bodies has
ot been observed in Newtonian fluids, neither for settling particles
12,28] nor for ascending bubbles (this work). A periodic transverse

ovement between a pair of bubbles rising side-by-side has been
bserved in Newtonian flows [9], but this occurs at Re ∼ 300, which
as very different hydrodynamics than those obtained at low Re.
ence, we believe that the oscillatory behavior seen in Fig. 12 is
ue to non-Newtonian effects.

Apart from the differences found during the tumbling stage, the
rafting process observed in the different fluids is very similar, the
ost significant differences being those at low Re numbers. Fig. 13

hows the bubble velocity ratio UL/UT as a function of the separa-
ion d* for all the fluids and bubble sizes. The plot includes all the
ata prior to bubble contact (ı > 2r). In spite of the data scatter the
rend is close to the analytical solution of Rushton and Davies for
as bubbles [56] rising in Newtonian fluids. This analytical solu-
ion was based on the theoretical study made by [57], which took
nto account the velocity of the leading wake. The agreement of the
xperimental data with the theoretical prediction suggest that the
rinciple of superposition is also valid for shear-thinning fluids. The
eviation of the experimental values from the theoretical predic-
ion at short separation distances (ı < 7r) could be due to the fact
hat the analytical solution does not take into account higher order
erms that captures the proximity of the two bubble boundaries.
.3. Two-bubble interaction: horizontal alignment

As mentioned by other authors [12,22], two bubbles rising
ide-by-side with Re < 30 will experience repulsion due to the
Newtonian fluid, (♦) db = 2.8 mm, n = 0.85 fluid, (�) db = 3.6 mm, n = 0.85 fluid, (�)
db = 2.1 mm, n = 0.55 fluid, (�) db = 2.8 mm, n = 0.55 fluid, (�) db = 3.6 mm, n = 0.55
fluid. (– –) theoretical solution for rigid spheres [10], (—) theoretical solution for gas
bubbles [56].

high pressure between the bubbles due to converging streamlines.
Here it was found, as in [39], that two abreast bubbles rising in
shear-thinning fluids also follow this rule; however, the thinning
condition can considerably decrease the rate of separation between
bubbles. In Fig. 14 the separation distance d* is shown as a func-
tion of time t* for the small (0.4 < Re < 1.3) and large (4 < Re < 7.5)
bubbles and for several initial separation distances d∗

0. The experi-
mental values are included as well as the numerical results. In this
figure we can observe that the separation distance between bubbles
increases with time for all the cases; nevertheless, it was found that
the rate of separation decreases with the thinning property (there
is hardly any separation in the n = 0.55 fluid). This behavior reveals
that the low viscosity zone produced by the bubble pair weakens
the repulsive force between the bubbles aligned horizontally and
decreases the rate at which the two bubbles separate. Additionally,
it can be seen that the slope of the curves slightly decrease as the ini-
tial separation is increased, revealing that the interaction is weaker
for larger separations. The 2D numerical results showed the same
general trend found in the experiments; however, the rate of sep-
aration was considerably higher. Other authors [58] have already
reported important differences between 2D simulations and the
experimental results. In our case, it seems that the disc-shaped bub-
bles overestimate the lift forces acting on each of their boundaries.
A full 3D simulation would be needed to obtain a closer agreement
with the experimental results.

Fig. 15 illustrates simulations of the lateral separation in New-
tonian as well as in a shear-thinning fluid. Note that the bubbles
separate from each other in both cases. In a general way, the exper-
imental and numerical results obtained in this section suggest that
the thinning behavior is not capable to attract two bubbles rising
parallel in a fluid, unlike what has been observed in viscoelastic flu-
ids [59,43]. Gheissary and van den Brule [60] observed an attractive
behavior of two settling particles moving in a thinning fluid made
with Carbopol. Nevertheless, it has to be pointed out that the flu-
ids used by these authors had a viscosity above one thousand times
that of water and presented a gel-like behavior. In this kind of fluids
the shear-thinning behavior can be originated from the structure

breakdown of the gel, as mentioned by the authors, giving place to
a different behavior during the interaction of two bodies.

We calculated the instantaneous drag of the two bubbles ris-
ing side-by-side and compare it with the single bubble value
for the case of the n = 0.85 fluid. The drag value of each bubble
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is equal to:

Cd = 4dbg

3|v|2 cosˇ = 4dbgVz

3|v|2|v| (16)

where |�| is the net velocity, ˇ the angle formed between the ver-
tical axis and the vector � and Vz the vertical component of the
velocity vector. The drag ratio Cd/Cdsingle for each bubble is then
obtained from the following expression:

Cd

Cdsingle
= Vz|v|single

3

Vz single|v|3 = VzVz single
2

|v|3 (17)

The drag ratios for the left (the one formed at the central cap-
illary) and right bubbles as a function of the horizontal distance d*

between bubble centers are shown in Fig. 16. The analytical expres-
sion found by Legendre et al. [22] for two spherical bubbles rising
side-side in Newtonian fluids for the limiting case of d* � 1 and
d*Re 
 1 is also shown. It can be seen that the drag ratio decreases as
the bubbles became closer. This agrees with the general trend found
in viscous dominated flows, where the liquid encounters less resis-
tance in moving around the two bodies rather than passing in the
gap between them. The pair will then move as a single body. As the
separation distance is increased, the drag value tends to the single
bubble one. The differences in the values between the left and right
bubbles are due to the proximity of the wall and the appearance of a
slight differences in the vertical position between bubbles. The fact
that the experimental values for the n = 0.85 fluid are close to the
analytical expression of [22] indicates that in the limit of d* � 1 the
effect of the thinning behavior is irrelevant and only contributes to
the value of the Re number at which the bubbles move. The results
presented here are also in qualitative agreement with the behavior
found by [31] for the case of rigid particles fixed in the space in an
horizontal alignment.

We should point out that the role of the lateral movement expe-
rienced by two off-line bubbles, described in this section, on the
formation of clusters in bubbly flows is not as clear as the in-line
alignment where, as we saw in Section 4.2, two bubbles may or
may not cluster depending on the inertia and deformability of the
bubbles. Intuitively speaking, although a lateral repulsion between

bubbles at low Re will give place to a higher homogeneity in the
bubble spatial distribution on the horizontal plane, this effects will
be secondary due to bubble attraction and pairing in the vertical
plane and with angles >40◦. This issue will be discussed further in
the next section.



128 J.R. Vélez-Cordero et al. / J. Non-Newtonia

x

y

5 10 15 20 25 30

5

10

15

20

25

30
Newtonian Shear-thinning n=0.55

bubble position

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

3.5
b

a

t*

Newtonian

n=0.5

d∗ s

dimensionless distance between bubbles as a func-
tion of time

F
fl
c

4

o
a
t
p
e
t
r
e
n
t
a
b
c
o
o
t
k
m
a
s
t

fluids is clear: in the case of the most thinning fluid the viscosity
ig. 17. Bubbles position and dimensionless separation distance for the n = 0.55
uid and its Newtonian counterpart. The initial separation distance between bubble
enters was ı = 4r, the initial angle was 42◦ , Re ∼ 10.

.4. Two-bubble interaction: varying the angle of approach

In this section we used the ALE code to gain some insight
f the hydrodynamic interaction of a bubble pair which is not
ligned horizontally nor vertically. For the experiments, although
he production of bubbles to be aligned at an arbitrary angle (and
reserving the same separation distance) is doable (consider, for
xample, a staggered initial arrangement); the necessary work
o manipulate and change one arrangement for another could be
ather arduous; hence, the use of simulations to predict the differ-
nt behaviors is well justified. The case of the thinning fluid with
= 0.55 and its Newtonian counterpart is shown in Fig. 17a, where

he initial separation between bubbles centers was 4r and the initial
ngle was 42◦. The variation of the dimensionless distance between
ubbles is plotted against the dimensionless time in Fig. 17b. It
an be seen that in the Newtonian fluid the bubbles approach each
ther but they do not make contact and eventually separate. On the
ther hand, in the thinning fluid the trailing bubble catches up with
he leading one and makes contact with it. After this drafting and
issing process the bubbles do not separate, the so-called tumbling

otion is not observed. This behavior indicates that the bubbles

re “forced” to stay in a low viscosity region, produced by a high
hear rate zone, rather than separate from each other (the same
rend was seen experimentally with the in-line bubbles during the
n Fluid Mech. 166 (2011) 118–132

non-tumbling stage). When the two interfaces come too close to
each other (about 0.03r), the local resolution becomes insufficient
and the code eventually fails to converge. That was where the sim-
ulations in the thinning fluid ended.

To explore the effect of the degree of shear-thinning, we also
carried out simulations with the n = 0.85 and 0.76 fluids, corre-
sponding to the other experimental fluids used here and in [33].
The results are shown in Fig. 18 for three initial angles 	0: 42◦, 61◦

and 76◦ with respect to the horizontal and for the same initial dis-
tance of 4r. The Eo and Re numbers indicated in this figure were
selected from the single bubble experiments in order to compare
the simulations at a fixed value of Eo or Re. First we observed that
for the Newtonian case, the bubbles separate after contact (data not
shown). For this case we tested initial angles up to 88◦. In the shear-
thinning fluids, the behavior at initial angle 	0 ≥ 61 ◦ (Fig. 18c–f) is
more or less the same as for bubbles in tandem (see Fig. 9). That is,
the two bubbles will form a doublet if Mo�10−3 and will separate
otherwise. For 	0 = 42 ◦, the greater horizontal separation weakens
the interaction between the bubbles such that doublet formation
is achieved only for the most shear-thinning fluid in Fig. 18b. The
n = 0.55 fluid in Fig. 18a has a Mo = 2 × 10−3 but anyway experience
separation. For the other cases in Fig. 18a and b, there is an initial
attraction between the two bubbles, but they eventually drift apart.
The decrease of d* in the n = 0.55 fluid (Fig. 18a) at t* = 20 is due to
the proximity of the wall.

In order to explain more in detail the results observed in Fig. 18,
we compute the viscosity profile around a single bubble for the
n = 0.55 and 0.85 fluids having the same Eötvös number (Eo = 3).
The results shown in Fig. 19 are similar to the ones obtained by
[53] for similar Re numbers (Re ∼ 10). The maximum viscosity val-
ues agree well with the values given by the rheological data fitted
with the Carreau model. We analyzed these viscosity profiles in two
different ways: first, we introduced a definition of the viscosity gra-
dient by computing the difference between the viscosity value on
the bubble surface (�min) and the viscosity value (�) located at two
bubble diameters form the bubble surface. The curves of such vis-
cosity gradient as a function of the angle formed with the horizontal
plane is shown in Fig. 20a. Then, we compute the �/�min ratio for
different distances from the bubble surface at a fixed angle. The
results for an angle of 20◦ are shown in Fig. 20b.

In Fig. 20a we can see that the viscosity gradient is not homoge-
neous around the bubble due to the presence of the bubble wake,
which extends the region of non-zero shear rate and hence increase
the region of viscosity recovery. On the other hand, near the hori-
zontal plane, the decay of the shear rate occurs in a smaller region;
therefore, the values of the viscosity gradient are larger. For the
cases shown in Fig. 20a the maximum viscosity gradient occurs at
an angle of 20◦ in both fluids; however, the viscosity gradient found
in the n = 0.55 at this angle is 5 times larger than the one found in
the n = 0.85 fluid. The fact that the higher values of the viscosity
gradient lie near the horizontal plane could explain why the flu-
ids with higher thinning behavior can promote bubble clustering
at lower angles, as we saw in Fig. 18. In this sense we think that the
viscosity gradients produce a stress distribution that is different
from that of a Newtonian fluid; such stress gradients will not work
as a net driving force but will reduce the repulsive force created by
the bubble vortices, causing the trailing bubble to remain trapped
by the wake of the leading one.

In Fig. 20b we can see how the viscosity ratio �/�min increases
with the distance from the bubble surface. The difference between
the n = 0.55 (clustering condition) and 0.85 (free bubble condition)
ratio reaches a value of 27, while in the other fluid reaches only a
value of 3 at the same d∗

s . The viscosity gradient of the n = 0.55 fluid
depicted in Fig. 20 acts as a viscosity “hole” which prevents another
bubble to escape from the low viscosity region.
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= 0.55; initial distance, ı = 4r. For the left column Eo = 2.6 is fixed, for the right colu
he other fluids is around 7 × 10−4.

To compare the viscosity profile obtained for a single bubble
ith the one obtained for a bubble pair, we compute the viscosity

f two bubbles in contact rising in the n = 0.55 fluid. The results
re shown in Fig. 21. In this case we can see that the region of the

owest viscosity value ( ∼ 0.05 Pa · s) comprises a larger area than
he one occupied in the single bubble case. We may think then
hat the increase of the cluster size will increase the region of the
owest viscosity value but at the same time decrease the viscosity
radients. Note also that in the rear part of the bubble pair a region
e t* for several thinning conditions and initial angles. (�) n = 0.85, (�) n = 0.76, (�)
e ∼ 4 is fixed. The experimental Mo number for the n = 0.55 fluid is 2 × 10−3 and for

of high viscosity start to form due to the appearance of a toroidal
vortex, in agreement with [53].

From all these observations we can propose three mechanisms
for cluster formation in shear-thinning fluids: (i) The viscosity gra-

dients that appear in the wake of a bubble ascending in a thinning
fluid reduce the repulsive force from the bubble vortices. This
makes possible for a bubble to be caught in the wake of another bub-
ble; if the thinning behavior increases, the critical angle of inversion
of the lift force (from repulsion to attraction) is decreased, leading
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Fig. 19. Viscosity contours around a single bubble immersed in the n = 0.55 and 0.85 fluids. The viscosity was estimated when the bubbles achieved a steady velocity,
t* = 7.6, Eo = 3. To avoid high viscosity values at low shear rates, an upper limit to the viscosity was introduced fitting the rheological data with the Carreau model � =
�∞ + (�0 − �∞)(1 + [
�̇]2)

(n−1)/2
, where �0 is the zero-shear viscosity value, �∞ the viscosity at high shear rates, 
 a time constant and n the flow index.
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Fig. 21. Viscosity contours around a bubble pair immersed in the n = 0.55 fluid. The
viscosity was estimated when the bubbles achieved a gap separation distance of
0.06r, Eo = 3. The initial angle was 76◦ . The Carreau model was again used as in
Fig. 19.
d
s
*

rizontal plane for the bubbles presented in Fig. 19, d* = 5r. (b) Viscosity ratio as a

to a more effective clustering; (ii) if the Morton number is higher
than 10−3, the bubbles do not tumble after contact, a doublet is then
formed; (iii) once two bubbles form a pair, they create a wake with
lower viscosity which attracts more bubbles, leading to the forma-
tion of bubble clusters; however, the increase of the cluster size
will decrease the viscosity gradient (so attaining a Newtonian-like
behavior) and the growth of the clusters will then stop. We need to
point out here that the cluster deformability (imagining the cluster
as one big bubble) must also play an important role in the increment
of its size. As mentioned by Manga and Stone [16,17], the increase
of the deformability of the bubble surface leads to the formation of
streamlines that propitiates the alignment and contact of two sep-
arate bubbles. The velocity field formed around a cluster can also
trap additional bubbles that contribute to its growth.

The thinning property reduces the hydrodynamic repulsive
force that results from the converging streamlines. Let us consider
shear stress in a Newtonian fluid: � = −��̇ . This relation can be
interpreted as the momentum transfer from high to low regions of
shear, that is, the momentum per unit area and time is proportional
to the negative of the velocity gradient [61]. Hence, the momentum
flux per unit time and volume, P, can be calculated as the gradient of

n
the shear stress. Considering now the power law model � = −k�̇
we can calculate P as:

P = − ∂

∂y
(��̇) (18)
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here � = k�̇n−1. Therefore,

= −�(n − 1)�̇ ′ − ��̇ ′ (19)

here �̇ ′ = ∂�̇/∂y. Comparing this expression with the Newtonian
ne, we have:

P

PN
= �

�N
+ (n − 1)

�

�N
(20)

In the case of a Newtonian fluid (n = 1), P/PN = 1, as expected.
owever, if the fluid is shear-thinning, the ratio P/PN decreases
ith n, that is, the momentum transport decreases as the fluid

ecomes more shear thinning. Hence, the viscosity gradients that
ppear around the leading bubble will reduce momentum transfer
hich, in turn, will tend to keep the trailing bubble trapped behind

he leading one.
We have seen that for all the fluids studied here, including

he Newtonian one, the trailing bubbles located within an angle
f 40◦ with respect to the horizontal do not contact the leading
ne. On the contrary, bubbles located outside this region, that is,
loser to the vertical axis, experience an attractive force that leads
o the contact between bubbles. This behavior is the opposite to
hat observed for high Re flows where, according to [19,20,62], two
ubbles positioned with an angle within the 35–54◦ experience
ttraction, while with an angle above 35–54◦, near the vertical axis,
xperience repulsion. The general description of the bubble motion
n terms of the angle of approach in this work is in agreement with
ther experimental work [39] for the case of the thinning fluids.

Finally, aside from the shear-thinning behavior and angle of
lignment, we can expect the bubble-bubble interaction to be also
ependent on the separation distance between bubbles. This effect

s shown in Fig. 22 for a fixed flow index value and initial angle
n = 0.55 and 42◦). We can see that when the distance between
ubbles surpasses two bubble diameters, the trailing bubble is no

onger attracted by the leading one; in fact, they become nearly
orizontally aligned and start increasing their separation distance.
he same trend was seen with the other thinning fluids. These
esults suggest that in dilute bubbly flows, bubble clusters will not
e formed due to the distance between them. Nevertheless this
ondition is difficult to achieve experimentally [33].
. Conclusions

The interaction of two bubbles rising in shear-thinning inelastic
uids (0.55 < n < 1.0) was studied by following the bubbles trajec-
n Fluid Mech. 166 (2011) 118–132 131

tories with a movable camera. The bubbles were released by a pair
of capillaries in a vertical and a horizontal alignment. The exper-
iments were complemented by numerical simulations conducted
with the arbitrary Lagrangian–Eulerian technique. In this way, a
full range of angles of approach between the bubbles was studied.
These were the relevant observations:

1. Before contact, the bubble trajectories followed the general
behavior found in Newtonian flows for Re < 30: a divergent path
or repulsion between bubbles if the angle of approach lay within
40◦ from the horizontal, and a convergent path or attraction
otherwise.

2. In shear-thinning fluids, the wake formed behind a leading
bubble attracts the trailing bubble. This attractive motion was
increased with the amount of shear-thinning (decreasing the
flow index). This effect was nevertheless hindered by the inertial
effects.

3. The numerical simulations suggested that the angle of inversion
of the lift force between two rising bubbles can decrease due to
the high viscosity gradient formed near the horizontal plane of
the bubbles when rising in a thinning fluid.

4. After the drafting and kissing processes, bubbles rising in thin-
ning fluids tend to stay together (not-tumbling) depending
on the inertia and deformability of the single bubble. This
proved to be an important difference between Newtonian and
non-Newtonian flows. Furthermore, the bubbles forming pairs
showed an oscillatory motion due to the reduced viscosity being
formed by the leading bubble and the subsequent acceleration
of the trailing one. In Newtonian flows, only the bubbles rising
at Re < 1 formed pairs.

This study of the interaction of a bubble pair is a significant step
toward understanding multiphase flow systems. In particular, we
saw that two bubbles rising in a thinning fluid have a different
behavior than the one observed with the single ones; the mech-
anism of doublet formation provides a better understanding of the
clustering mechanism observed in shear-thinning inelastic bubbly
flows [33].
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