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Abstract. The motion of a eukaryotic cell presents a variety of interesting and challenging problems
from both a modeling and a computational perspective. The processes span many spatial scales (from mole-
cular to tissue) as well as disparate time scales, with reaction kinetics on the order of seconds, and the deforma-
tion and motion of the cell occurring on the order of minutes. The computational difficulty, even in two
dimensions, resides in the fact that the problem is inherently one of deforming, nonstationary domains,
bounded by an elastic perimeter, inside of which there is redistribution of biochemical signaling substances.
Here we report the results of a computational scheme using the immersed-boundary method to address this
problem. We adopt a simple reaction-diffusion (RD) system that represents an internal regulatory mechanism
controlling the polarization of a cell and determining the strength of protrusion forces at the front of its elastic
perimeter. Using this computational scheme we are able to study the effect of protrusive and elastic forces on
cell shapes on their own, the distribution of the RD system in irregular domains on its own, and the coupled
mechanical-chemical system. We find that this representation of cell crawling can recover important aspects of
the spontaneous polarization and motion of certain types of crawling cells.

Key words. 2D eukaryotic cell motility, simulation, immersed-boundary method, tension, protrusion,
reaction-diffusion system, deforming domain, polarization, wave-pinning, elastic perimeter

AMS subject classifications. 92C17, 74F10, 35R37

DOI. 10.1137/100815335

1. Introduction. Eukaryotic cell crawling is a complex process that involves in-
teractions between mechanical forces and dynamics of biochemically active signaling
molecules. The deformation and motion of such cells are governed by a dynamic internal
structure (the cytoskeleton) that is regulated by numerous kinds of proteins and lipids.
Unlike bacteria, whose motility is powered by flagella, eukaryotic cells move by a com-
bination of protrusion, retraction, and contraction. To crawl in a directed way, the cell
has to first polarize and form a front, where the cytoskeleton assembles and leads to
protrusion, and a rear, where either contraction or passive elastic forces dominate.
The determination of front and rear depends on external stimuli (e.g., gradients of
chemo-attractant) and has to be dynamic, sensitive, and yet robust. How cells manage
this complex task is a question of great interest in current cellular biology.

Mathematical and computational researchers can provide techniques that help to
dissect this complex process into simpler, more easily understood modules. Prototypical
“in silico” cells that share certain qualitative features with crawling cells allow us to ad-
dress important questions that are not as accessible in real cells. In this paper, using
simulations, we ask the following questions: (Q1) How would the mechanics decoupled
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from biochemistry dictate the changing shape of a cell as it polarizes and crawls? (Q2)
How does the irregular shape of the cell affect the internal distribution of signaling pro-
teins? And finally, (Q3) does the coupling between the two lead to emergent properties
not present in each on its own? We explore the feedbacks between cell shape and the
internal reaction-diffusion (RD) system that determine the chemical distribution. Such
questions are difficult to probe in experimental systems and easier to test computation-
ally. In order to investigate the mechanical-chemical coupling in cell shape and cell mo-
tion, we need suitable models and computational algorithms. Simulating the motion of a
eukaryotic cell is a difficult undertaking because it leads to solving chemical equations on
a moving and deforming domain. Such problems are recognized as numerically challen-
ging. Here we present the results of simulations that aim to meet this challenge at an
intermediate level of complexity. We describe a simulation package, developed from a
composite of well-established techniques, that allows us to simulate the chemical polar-
ization of the cell (determining front and back), the forces of protrusion at the front
(based on implicit growth of the cytoskeleton), and deformation of the cell, culminating
in its motility in two spatial dimensions.

We are not the first to simulate the motion of a eukaryotic cell. In [7] a one-
dimensional (1D) continuum model is developed describing viscoelastic properties of
the cytoplasm in response to internal stresses generated by the contraction. Treating
the cell as a two-phase reactive fluid is a well-studied idea in which the cytoplasm is
treated locally as being a mixture, one phase of actin network and another of cytosol
[9], [10], [1]. The immersed-boundary method (IBM) has been used to model explicitly
the actin network and its adhesive links to a substrate [2]. The cell was modeled as a two-
dimensional (2D) elastic plate in [26]. Level-set methods have also been used to include
chemistry dynamics on a deforming cell domain [29], [35], [36]. In most of these models,
the asymmetries that lead to the motion of the cell are imposed rather than self-
organized. Other models such as [27] couple chemical distribution on the cell edge with
protrusion from a central hub. A previous work [19] using the Potts model approach
includes more detailed biochemistry, with a Hamiltonian approach where mechanical
forces are implicit rather than explicit.

Our simulations belong to the class of mechanical/fluid-based models with the fol-
lowing features: (1) The perimeter of our cell is elastic. This elasticity is attributable to
the cortex, that part of the cytoskeleton directly adjacent to the cell membrane, gen-
erally composed of a network of actin filaments. While we do not represent that network
explicitly, we assign its elastic properties to the “cell boundary.” (2) We model explicit
forces, representing protrusion of the cytoskeleton, to the cell edge. Thus, we can also
study the interplay between elastic and protrusive forces. This differs from level-set
models (or cellular Potts models) that do not explicitly represent these forces on the
edge of the cell. Level-set methods can prescribe a velocity (e.g., see [29], [35], [36]),
but the boundary curve has no mechanical properties of its own. Our model is among
the first models of cell motility that implements force-bearing elements along the peri-
meter of the cell and explicitly deals with tension and protrusion forces. (3) Our platform
is one of fluid-based computations. We can simulate both the diffusion and advection of
substances inside the cell. In Potts models and many other simulations, net flows of
substances inside the cell are not tracked. (4) Our simulation currently has a simple
but effective module that represents the internal self-organization of the cell. Other
models have included simple or more detailed internal biochemistry. For example, Zajac
et al. [35] studied the effect of the balanced inactivation model of [15] in their 2D level-set
cell, and Marée et al. included three interacting regulatory proteins of the small GTPase
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family and later added lipids such as PIP2, PIP3, etc. [19]. Keeping the regulatory sys-
tem simple but biologically faithful (to small GTPases) allows us to establish overall
qualitative properties of the system, while pointing to the emergent aspects of the cou-
pling between chemistry and mechanics.

In this paper we describe how the simulation package was assembled and present
some of its first results. The mathematical model at the core of the simulation comprises
two coupled systems of equations. The first system is the mechanical model which de-
scribes the fluid flow and the motion of the elastic cell edge. The second system is a set of
RD equations that describe a reduced model for cell polarization analyzed in one dimen-
sion in [21]. These equations will be solved on the 2D deforming domain that represents
the model cell. The solution of the RD system will be directly coupled to the forces that
the cell generates to crawl and deform. The shape of the cell domain will, in turn, in-
fluence the solution of the RD system.

We use our platform to probe three distinct but interrelated regimes of behavior. In
the first, we consider the effect of mechanical forces that are artificially prescribed, and
we investigate the shape of the cell for various force and elastic regimes. We show that
even such simple cases lead to shapes and motility relevant to some cell types. Next, we
consider the regulatory RD system on a static but irregular domain. We show how the
shape of the domain influences the distribution of peaks of activity and in particular
the effect of curvature on the ability of multiple peaks to persist. Finally, we couple
the mechanical and regulatory systems, assigning forces to the cell boundary in direct
relation to the local level of the active molecules. We show that such cells have very well-
defined self-organized polarization and reasonable shapes and that they move in a
realistic manner.

2. Model equations.

2.1. Mechanical model. Our model is a 2D representation of a cell, viewed from
the top-down perspective. (See Figures 2.1(a) and 2.1(e).) We follow the common con-
vention of ignoring the cell body and nucleus as a passive load. This is reasonable in view
of the fact that cell fragments (e.g., of keratocytes) devoid of nuclei can still migrate [34].

a

b

a

b

(a)

(b)

(c)

(d)

(e)

Ωc

FIG. 2.1. (a) Schematic diagram of a crawling cell in top-down view (with nucleus and cytoskeleton). (b)
Side view of a cell fragment with diameter ≈10 μm and thickness ≈0.1− 0.2 μm showing membrane (grey)
and cytosol (white). The rectangular region from (b) is enlarged in (c) to show the interconversion of two
proteins: a is the active membrane-bound form, and b is the inactive cytosolic form. The regulatory system
includes (in)activation (with positive feedback, dashed arrow) and diffusion of a, b everywhere inside the cell
domain Ωc. (d) In the simulation, we do not distinguish membrane from cytosol in the interior of Ωc, so a, b
occupy the same “compartment,” withDb ≫ Da. (e)Wemodel the 2D top-down projection of the cellΩc, devoid
of nucleus and other structures, with elastic boundary representing the cortex, assuming a uniform thickness.
The cell moves in the direction of the outward normal forces.
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The cell is assumed to be resting on and adhering uniformly to a flat substrate. Typical
dimensions of cell fragments are 10–30 μm diameter and 0.1–0.2 μm thickness.

The regulatory module represents proteins (Rho GTPases) that have an active
form, a, bound to the cell membrane (gray surface in Figures 2.1(b) and 2.1(c)), and
an inactive form b, in the fluid cytosol (white portion of the same panels). The inter-
conversion a ↔ b is regulated by other proteins (guanine nucleotide exchange factors,
GTPase activating proteins, not explicitly modeled) with positive feedback from a as-
sumed in b → a (dashed arrow in Figure 2.1(c)). Because a is membrane bound, whereas
b is cytosolic, the rates of diffusion of these two proteins are very different (Db ≫ Da),
even though they are similar in size and shape. This is an important feature of Rho
GTPases that plays a vital role in our model. Note that we do not explicitly track a
membrane and a cytosol compartment. Rather, we abstract the view in Figure 2.1
(c) by the simpler representation in Figure 2.1(d).

The cell is represented as a 2D domain ΩcðtÞ (Figure 2.1(c)). We associate a con-
centration of the signaling chemicals a and b to every element of area in ΩcðtÞ, since
every such element corresponds to a small “sandwich” of cytosol and membrane. This
description is in contrast with many current models [3], [20], [17], [14] that model che-
micals distributed only along the 1D cell boundary ∂Ωc. The thinness of the “cell” is
taken to mean that no significant gradients form in a direction orthogonal to ΩcðtÞ.

Mechanically, the cell domain has an elastic perimeter enclosing a viscous incom-
pressible fluid. The elastic perimeter represents the cell cortex as previously defined. For
the purposes of the mechanical description of the cell, it is only the perimeter of Ωc that
is endowed with elasticity and bears forces due to the actin network. So long as it is not
stimulated, the model cell is symmetric, assuming a circular shape with homogeneous
internal chemical distribution; its perimeter is then under no elastic tension. At this
point in model development, the actin network and the cell adhesion to the substrate
are assumed implicitly rather than modeled explicitly. That is, we connect the internal
actin-regulating biochemistry directly to forces of protrusion at the cell perimeter rather
than model the regulated growth of the actin network that actually produces the force
(but see [19], [25], [26]).

The mechanical model represents the interaction of the elastic membrane of the cell
with a viscous incompressible fluid. To model this physical system, we use the well-
known formulation of the immersed-boundary method (IBM) [24]. The key idea of this
method is to replace the physical boundary conditions at the cell edge with a suitable
contribution to a force density term (2.3) in the fluid equations (2.1)–(2.2) that are then
solved by more conventional means. To compute fluid flows, we use Stokes’s equations.
This utilizes the well-known fact that at the cellular scale, the flow is at a very low
Reynolds number, and inertial effects are negligible. The other distinguishing feature
of the IBM is the use of Lagrangian marker points to track the boundary of ΩcðtÞ,
as shown in Figure 2.2. The evolution of these material points are then used to compute
the elastic stresses in the cortex.

The position of the membrane is given by a vector functionXðs; tÞ, where s is the arc
length with respect to some reference configuration and t is time. The boundary con-
dition at Xðs; tÞ is replaced by a singular force density term in the fluid momentum
equation. In order to satisfy the no-slip boundary condition along the membrane,
the boundary moves with the local fluid velocity u (2.4). Then the immersed-boundary
equations are

0 ¼ −∇pþ μΔuþ fðx; tÞ;ð2:1Þ
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0 ¼ ∇ · u;ð2:2Þ

fðx; tÞ ¼
Z
Γ
Fðs; tÞδðx−Xðs; tÞÞds;ð2:3Þ

∂X
∂t

¼ uðXðs; tÞ; tÞ;ð2:4Þ

where p is pressure and μ is viscosity. The function Fðs; tÞ is the magnitude of the sin-
gular force density (units: force per unit arc length s) defined along the boundary, Γ, of
the domain ΩcðtÞ. It is composed of a force due to the elasticity of the membrane and a
protrusive force due to the (implicit) polymerization of network, represented by hðaÞ.
We take

Fðs; tÞ ¼ Fel þ Fnet; Fel ¼
∂
∂s

½Tðs; tÞτðs; tÞ�; Fnet ¼ hðaÞnðs; tÞ;ð2:5Þ

where Fel is the elastic force and Fnet is the protrusive network force. In Fel, the quantity
τðs; tÞ is a unit vector in the tangential direction, T0 is the elastic modulus, and T is the
tension, assumed to take the form

Tðs; tÞ ¼ T 0

����� ∂X∂s
����− 1

�
:ð2:6Þ

In Fnet, nðs; tÞ is the outward unit normal vector, and hðaÞ is a constitutive relationship
between the local concentration of the activated signaling system and the force gener-
ated by the network. At this point, the mechanics equations are coupled to the biochem-
ical RD equations that depict the cell polarization and signaling.

Before describing the biochemical component of the model, we elaborate on our ap-
proach to the implicit representation of adhesion forces. From amodeling standpoint, we
may view cell adhesion on the substrate as performing two separate functions: (a) pro-
viding a footing to the active force-generating structure inside the cell, and (b) produ-
cing a friction against the cell’s movement. As for (a), we imagine that the actin network
pushes the leading edge of the cell at the plus (“barbed”) ends while being tethered to the
substrate via adhesion proteins. Thus, polymerization and lengthening of the actin fila-
ments can provide a pushing force Fnet that drives the cell’s motion. In computing the
motion of the cell and the membrane, we have treated the actin network as an external
object providing the forcing Fnet. In this sense, the adhesion was accounted for

FIG. 2.2. The cell domain Ωc is the interior of a closed loop defined by Xk, a discrete collection of
Lagrangian marker points. The RD polarization model is defined only on Ωc, while the fluid equations are
defined both inside and outside Ωc.

1424 B. VANDERLEI, J. FENG, AND L. EDELSTEIN-KESHET

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



implicitly. This treatment is a simplification; it gives us a means to introduce the driving
force without having to describe how the actin network evolves or how it is anchored
onto the substrate, but it is dynamically consistent so far as Fnet is treated as an external
force. Note, however, that because we omit the force transmitted to the substrate,
in this formulation we can make no statements regarding the spatial distribution or
variation of this force. Further, for function (b), the friction between the substrate
and the cell can be included relatively easily by adding a drag term in (2.1). In the lit-
erature, this type of description has been considered by some authors (e.g., [24]). Its
effect on the cell motion is primarily to slow it down, and we have neglected it in this
preliminary model.

2.2. Biochemical model. In [19] we considered a multilayer signaling biochem-
istry that regulates the cell polarization and controls the growth and decay, protrusion,
and contraction of the actin cytoskeleton. Those models include such proteins as Rho
GTPases (Cdc42, Rac, Rho), phosphoinositides (PIP, PIP2, PIP3), actin, and Arp2/3.
However, for the purposes of establishing polarization and determining the front and
back of the cell, we later showed that a far simpler model, consisting of a single Rho
GTPase in active/inactive forms, suffices. That model, described in [21] in one dimen-
sion, suits our purposes here. It is sufficiently simple for the preliminary tests of our
simulation platform, while producing results in two dimensions that have inherent
features of interest.

Recall that the computational cell is a 2D projection of a thin three-dimensional cell.
The active form of the signaling protein, aðx; tÞ, and the inactive form, bðx; tÞ, diffuse in
the domain Ωc with disparate diffusion coefficients Da and Db. The two forms exchange
at rate gða; bÞ. The dynamics of our signaling model are thus governed by a pair of
RD advection equations

at þ u · ∇a ¼ DaΔaþ gða; bÞ;ð2:7Þ
bt þ u · ∇b ¼ DbΔb− gða; bÞ:ð2:8Þ

The advection terms in (2.7)–(2.8) account for the fact that the domain ΩcðtÞ moves
with respect to lab coordinates and carries the biochemistry along. For gða; bÞ, we as-
sume positive feedback enhancing the conversion of the inactive form b to the active
form a, but a constant rate δ for converting a to b:

gða; bÞ ¼
�
k0 þ

γa2

K2 þ a2

�
b− δa:ð2:9Þ

In this term k0 is a basal rate of activation and γ is the magnitude of the feedback ac-
tivation rate. The parameters k0, γ, and δ all have dimensions s−1. The parameterK has
units of concentration of a, and we normalize concentrations so that K ¼ 1.

As shown in one dimension in [21], under appropriate conditions, the system (2.7)–
(2.9) supports solutions in the form of a traveling wave that stalls inside the domain (the
wave is then said to be “pinned”). In a pinned wave, the domain is roughly subdivided
into one region that supports a high plateau of a, while the remaining region has a low a
plateau; a sharp interface separates these zones, while the level of b is relatively uniform
throughout. We refer to the high (low) levels of a as aþ (respectively, a−). Such a solu-
tion will be our description of a polarized cell, with aþ the front portion and a− the rear
portion of the cell. Two features of the model essential for this kind of polarized outcome
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are Db ≫ Da and conservation of total a and b. We therefore impose no-flux conditions
for both a and b at the boundary of Ωc. A third necessary condition is that for a fixed
b ¼ b0 within some range of values, the function gða; b0Þ has three steady-states
ða−; ah; aþÞ, the outer two of which are stable, i.e., that the well-mixed system is bistable
in the variable a. We choose initial conditions that place b within the appropriate range
and a close to the value a−ðbÞ.

2.3. Coupling biochemistry and mechanics. We approximate the complex
mechanical-biochemical coupling by assuming a direct link between the concentration
of the activated signal protein a and the local force normal to the cell membrane. This
assumption shortcuts the dynamics of growth of the actin cytoskeleton and replaces the
actin polymerization force by an “effective force of protrusion” due to local activation of
the Rho GTPase. That is, when a is above some threshold value a0, we assume that there
is a local force directed outward. For our study we take the force magnitude hðaÞ to be a
piecewise quadratic function, with adjustable parameters H and a0. A convenient form
for the relationship of force to the level a of the activated protein is

hðaÞ ¼
(
H
�
1− ða−aþÞ2

ða0−aþÞ2
�

if a > a0;

0 otherwise:
ð2:10Þ

This type of force distribution parallels an experimentally observed distribution of
actin filament ends that push on the leading edge in cells such as keratocytes [13].
However, we stress that for now our representation of the force distribution is meant
to be qualitative.

3. Numerical methods. The primary difficulty in solving the model equations
numerically is that the immersed-boundary equations are coupled to the RD system
through the specification of the cell domain. The solution of the immersed-boundary
equations determines the locations of marker points, Xk, which comprise the discretiza-
tion of the immersed boundary. The location of these marker points define Ωc, on which
the RD system is to be solved. The solution of the RD system is then coupled to the IBM
since it appears in the forcing term fðx; tÞ. To further add to the difficulty, the reaction
kinetics happen on the time scale of seconds, much faster than the motion of the cell
(typically on the order of minutes or longer).

We couple together several known and tested numerical methods and tools in
the solution of our model equations. We use the IBM for the formulation of the mechan-
ical boundary condition and discretization of the boundary [24], the method of regular-
ized Stokeslets for the flow computation [4], and the immersed interface method for the
solution of the RD system on the cell domain [6], [16]. In order to represent the interface
and track its location, we compute a level-set function. In addition, we use adaptivity
locally in time in order to make the computation robust. In terms of computational cost,
this combination of methods is comparable to using finite element or level-set methods
but is more costly than simulations based on a Potts model.

The solution of the model equations is carried out in the following steps:
1. Compute the force distribution along the cell boundary due to membrane elas-

ticity and protrusion.
2. Compute the flow field at the boundary marker points and on an internal

Cartesian grid that holds the signal concentrations.
3. Advect the membrane using the computed velocity.
4. Advect the solution of a and b according to the current fluid velocity.
5. Evolve the solution of a and b according to the RD system.
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We define the three time steps Δtf l, Δtad, Δtrd for the coupled system. These re-
present the discretization of time in the fluid equations, the coupling advection term,
and the RD system, respectively. The motivation for this method of splitting is that
there is a wide separation among the time scales of the different processes and a time
step restriction that is a result of the stiff immersed-boundary equations. We allow for
the possibility of taking multiple time steps in the fluid equations before updating the
RD system. A further reason for this split is that there is further computational overhead
in the advection of a and b. This will be discussed shortly. The time-marching scheme is
thus comprised of the following steps:

1. Carry out m time steps of the immersed-boundary system.
2. Carry out a single time step of the advection of the signal concentration.
3. Carry out n time steps of the RD system.

We will take mΔtf l ¼ nΔtrd ¼ Δtad and set each of the time steps small enough to ac-
curately capture the associated physical phenomena and maintain stability of the nu-
merical solution. We further wish to restrict the movement of Ωc to less than Δx in the
time interval Δtad. We provide typical numerical parameters in Table 3.1.

3.1. Fluid velocity. The simulation of the immersed elastic membrane is a well-
documented canonical problem that is treated by the IBM [22], [23], [28], [32]. We dis-
cuss here only the computation of the terms in (2.5) that comprise Fðs; tÞ in our model.
The restoring elastic force of the membrane, F el, is treated identically to other IBMs.
We take a centered difference discretization of derivatives comprising F el, Tðs; tÞ,
and τðs; tÞ:

F elðsk; tÞ ¼
TðXkþ1∕ 2; tÞτðXkþ1 ∕ 2; tÞ− TðXk−1 ∕ 2; tÞτðXk−1∕ 2; tÞ

Δs
;ð3:1Þ

TðXkþ1∕ 2; tÞ ¼ T 0

�jXkþ1 − Xkj
Δs

− 1

�
;ð3:2Þ

τðXkþ1∕ 2; tÞ ¼
Xkþ1 − Xk

jXkþ1 − Xkj
:ð3:3Þ

Substituting (3.2) and (3.3) into (3.1), one can rewrite the formula for Fel as
follows:

TABLE 3.1
Typical numerical parameters used for simulations.

dx 1 μm

ds 0.75 μm

ϵ 0.6 μm

Δtfl 0.001 sec

Δtrd 0.001 sec

Δtad 0.1 sec

m 100

n 100
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F elðsk; tÞ ¼
Xkþ1

i¼k−1

T 0

Δs
ðjXi −Xkj− ΔsÞ

�
Xi −Xk

jXi −Xkj
�

1

Δs
:ð3:4Þ

From (3.4) we see that the elastic force is equivalent to a force produced by discrete
springs connecting the point Xk with its neighbors. The resting length of the springs is
Δs, taken in our calculation to be the spacing of the initial discretization of the im-
mersed-boundary points. We define the spring constant σ ¼ T0

Δs. Note that while T0

has units of force, σ has units of force/length. To compute Fnet, we determine the local
value of a using a piecewise constant reconstruction evaluated at Xk.

The analytic representation of the Stokes flow that results from a single point force
in the absence of external boundaries is known as the Stokeslet. This velocity field is
singular at the location of the point source. For the purpose of computing the Stokes
flow that results from a discrete collection of point forces Fk located at Xk, we use the
method of regularized Stokeslets [4]. The method replaces the singular force with a reg-
ularized force and computes an approximation of the true flow, which does not have the
singularity. We use the following regularization found in [31]:

uðxÞ ¼ −
f 0

4πμ

�
1

2
ln ðr2 þ ϵ2Þ− ϵ2

r2 þ ϵ2

�
þ 1

4πμ
½f 0 · ðx− x0Þ�ðx− x0Þ

�
1

r2 þ ϵ2

�
.ð3:5Þ

Here, f 0 is the regularized force positioned at x0, r is the distance between x and x0, and ϵ
is the regularization parameter. Based on linearity of the Stokes equations, we obtain the
velocity due to a collection of point forces by simple superposition. (See [5] for an ex-
ample of the application of the method to a three-dimensional model of a swimming
microorganism.)

In typical IBMs, the solution of the fluid equations is found on a periodic rectangular
domain with standard Stokes solvers. In some models, fixed boundaries are included by
means of another discretized boundary, along which forces are distributed in order to
produce zero flow at the boundaries. In this formulation, the problem is ill-posed when
the integral of the forces does not vanish. Furthermore, the solution is only unique up to
an arbitrary constant. The work in [30] discusses this problem and presents a solution
method.

A similar issue arises with the use of regularized Stokeslets due to the logarithmic
growth of the Stokeslet as r → ∞. If the integral of the forces is nonzero, the velocity will
be nonzero at infinity due to Stokes’s paradox. The inclusion of protrusive forces in our
model means that we must take additional measures to ensure that the flow will decrease
to zero away from the cell domain ΩcðtÞ. For this purpose, we include fixed walls in our
computation, at which we enforce the condition that the flow velocity vanishes. This is
achieved by discretizing the wall and distributing forces that cancel the flow due to the
logarithmic term.

The computation of the flow velocity due to a collection of N point forces is the
superposition of their individual contributions due to the linearity of the equations.
The velocity at a point Xj due to the point forces Fk positioned at Xk is thus a sum:

uðXjÞ ¼
X
k

Sjk · Fk:ð3:6Þ

In this sum, the Sij are the terms in (3.5) that multiply the forces Fk. Alternatively, this
may be written as a matrix multiplication where f is a vector of the forces, u is a vector of
the unknown velocities, and S is a 2N × 2N matrix:
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Sf ¼ u:ð3:7Þ

The inverse of this problem can also be considered, where the velocity at a collection of
points is specified and the forces that produce the velocity are unknown. The flow
around a cylinder is demonstrated in [4] using this method.

In our model, we include a collection of wall points Wk, as shown in Figure 3.1, at
which the velocity will be zero. To compute the flow at a given point in the fluid domain
due to the point forces Fk at Xk, we take the following steps:

1. Compute the velocity at the wall points Wk. Call this velocity uw.
2. Solve a linear system for unknown forces Gk positioned atWk that will produce

−uw at Wk.
3. Sum over contributions to the velocity from Fk and Gk.
Although we must solve a dense system for Gk at every time step, the matrix re-

mains the same since the position of the wall points does not vary. We can therefore
compute a Choleseky decomposition once and perform back substitution to obtain
the solution needed at each time step. We use the standard routines in LAPACK
for these calculations.

One advantage of the IBM is the modularity of the solver that is used to solve the
flow equations (2.1)–(2.2). More complex solution methods could be used if the model
were generalized to give the fluid inside the cell a higher viscosity. Another possibility is
the use of viscoelasic constitutive equations for the fluid and solution methods appro-
priate for such equations. The immersed-boundary formulation of the interaction be-
tween the fluid and the elastic cell perimeter remains valid for such extensions.

3.2. RD equations. Next we describe the solution of the RD system on the irre-
gular cell domain. We will address the motion of the domain shortly, but for now, we
focus on approximating the solution of this system subject to no-flux boundary condi-
tions on a static domain of arbitrary shape. The approach we take is that of the im-
mersed interface method. The irregular domain is embedded in a rectangular domain
on which a regular Cartesian grid is used. We produce a numerical solution at all grid
points. For grid points outside the irregular domain, we set the numerical solution to
zero. For grid points inside the domain, away from the irregular boundary, we use the
standard centered finite difference approximations to the second derivatives in the
Laplacian. It remains to deal with grid points inside the domain next to the boundary,
where the standard discretization fails. These are denoted irregular points. At these

FIG. 3.1. In order to enforce the condition of zero flow far away from the cell, additional immersed-bound-
ary points, Wk, are included in the computation as the representation of a fixed wall.
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irregular points we must use a special finite difference formula that incorporates the no-
flux condition and the local geometry of the boundary. To reiterate, the solution of the
RD system will be nonzero only on grid points determined to be inside the closed loop
defined by the current location of the marker points.

We use the discretization scheme presented in [12] and refer the reader to that work
for the details of the derivation. We summarize here the main idea and comment on the
robustness with respect to geometry. See Figure 3.2 for the typical irregular point geo-
metry. If the boundary conditions were Dirichlet, we would know the solution valuesΨN

and ΨE at the Lagrangian marker points. We could then write a discretization of Ψxx

using ΨE and the unknowns Ψ0 and Ψ1 and a discretization of Ψyy using ΨN and the
unknowns Ψ0 and Ψ2. However, for our model, we must employ Neumann (no-flux)
boundary conditions. Thus, we do not have the values of ΨN and ΨE . Instead, these
values must be interpolated from Ψ0,Ψ1,Ψ2, and Ψ3 using the fact that Ψn ¼ 0 along
the boundary.

A system of two algebraic equations can be written for the unknowns ΨN and ΨE .
We solve this system analytically and write ΨN and ΨE explicitly in terms of Ψ0,Ψ1,Ψ2,
and Ψ3. In order to make the method robust, we enforce a lower bound on the deter-
minant of the system. This precludes cases where the geometry is nearly degenerate, as is
the case when the interface is very near a grid point. This is a common problem observed
in similar numerical methods.

FIG. 3.2. The points included in the finite difference scheme at a typical irregular point are shown in (a).
ΨN and ΨE are the (unknown) values of the solution to the RD system on the “cell perimeter.” Ψi for i ¼ 0 : : : 3

are the values of the solution at the grid points inside the computational domainΩc. The configuration in (b) is
treated similarly. At times when the boundary is in unacceptable configurations, we interpolate the solution to a
finer mesh in order to proceed with the computation.
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The matrix of coefficients depends on the positions of the projections ΨN and ΨE as
well as the unit normal vectors at these points. We must therefore have some continuous
representation of the boundary constructed from the immersed-boundary points Xk.
The representation we use is a level-set, as discussed in the next section.

A further complication we face in making the computation robust is that we must
handle all potential configurations of the boundary with respect to the grid. For exam-
ple, the discretization scheme just described will fail for configurations such as those
indicated in Figures 3.2(c) and 3.2(d). One approach would be to write discretizations
for all configurations [6]. We choose instead to use an adaptive grid to avoid all cases
except for the two configurations shown in Figures 3.2(a) and 3.2(b) (and their rota-
tions). We perform refinements of the grid and bilinear interpolations of the solution
until the unwanted cases are eliminated. The refinements are performed globally in
space but locally in time. That is, for any time step we check for unwanted configura-
tions. If any are found, we refine the grid everywhere, interpolate the solution to the fine
grid, and repeat if necessary. Once we have a satisfactory grid, we evolve the system and
then project the solution back to the original grid. While this simple adaptivity requires
additional work, in practice it applies to less than 10% of the time steps, and the number
of refinements needed is at most two. The boundary is relatively smooth because it is a
level-set of the grid-based function defined in the next section.

With the spatial discretization established, it remains to choose a suitable temporal
discretization. We use a fully implicit time method for the diffusion operator in order to
alleviate the otherwise prohibitive restriction on the time step size. We use an explicit
step for the reaction term. This means that we must solve two sparse linear systems at
every time step:

Aaa
nþ1 ¼ an þ Δtgðan; bnÞ; Abb

nþ1 ¼ bn − Δtgðan; bnÞ:

We use a GMRES method that is implemented in the library IML++.

3.3. Advection and coupling. In order to couple the mechanical system and the
chemical system, we use a method first described in [33] for the computation of multi-
fluid flows. The idea is to construct a regularized version of an indicator function for the
cell domain, that is, a function that is equal to one in Ωc and zero outside Ωc and that
varies smoothly within a transition region near the boundary. Although the Lagrangian
markers Xk give us an explicit representation of the boundary, having such a function
eliminates the need for complicated routines to track which of the fixed Cartesian grid
points are inside Ωc at any given time, knowing only the trajectories of the markers. We
can further use this indicator function to compute a level curve to use as a convenient
representation of the boundary of Ωc when finding the discretizations needed for the
irregular points in the immersed interface method.

Given only the location of the marker points, we compute I ϵðxÞ, the regularized
indicator function which defines the domain on which the RD system will be solved.
The gradient of the discontinuous indicator function I ðxÞ is zero everywhere except
at the interface, where it has a singularity. For the purpose of approximation, this sin-
gularity is represented again with the regularized delta function δϵ, and the gradient is
then written as

∇I ϵ ¼
X
k

δϵðx− XkÞnkΔsk:ð3:8Þ

We then take the numerical divergence of ∇I ϵ to find ΔI ϵ. There remains only to solve
the following Poisson problem in order to obtain I ϵ:
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ΔI ϵ ¼ ∇ · ∇I ϵ.ð3:9Þ

This problem is solved on a rectangular domain which contains Ωc. We use the same δϵ

presented in [32], which has compact support of length 4h in each dimension. We posi-
tion the rectangular domain such that its boundary is not within 2h of ∂Ωc, so that the
Dirichlet data for (3.9) is zero. We then use a GMRES routine to find the solution.

Note here that a coarse discretization of the boundary ofΩc relative to the Cartesian
grid will produce an I ϵ with a level curve that is oscillatory. If a given boundary con-
figuration requires the use of adaptivity as described earlier, (3.9) is solved only on the
coarsest grid. This solution is then interpolated to any refined grids in order to give a
consistent description of the boundary on these grids.

The final detail that remains is to specify how to determine the solution of a and b at
new points that enter Ωc as it evolves with time. We need a way to map the solution of a
and b from the previous domain to the current domain (Figure 3.3). We use a basic semi-
Lagrangian discretization of the advection term that couples the RD equations to the
flow equations. Our Stokeslet solution to the fluid equations allows us to compute the
flow anywhere. Specifically we can compute the velocity on the same grid as we are using
for a and b. At each grid point xij in the current domain we use the fluid velocity to
approximate the previous location of the material.

xn−1
ij ¼ xnij − Δtadun

ij:ð3:10Þ

The location xn−1
ij will normally not lie on a grid point, but we can now use bilinear

interpolation of the solution values of a and b at neighboring grid points to compute
the value at xn−1

ij . In order to ensure that we have four neighboring grid points for this
interpolation, we first extrapolate the solutions at time n− 1 to the nearest grid points
outside the boundary.

The advection scheme should conserve the total mass of the system M tot ¼
∫ Ωc

ðaþ bÞdx. We approximate this integral with a discrete sum Mh, again making
use of the smooth indicator function:

Mh ¼
X

ðxi;yjÞ∈Ωc

I ϵðxi; yjÞðaðxi; yjÞ þ bðxi; yjÞÞh2:ð3:11Þ

FIG. 3.3. The known concentration at grid points in the domain Ωn
c get advected with the fluid velocity to

the grid points in the domain at the next time step Ωnþ1
c . As the cell perimeter moves, new grid points (marked

with crosses) enter Ωc. The advection defines values of the solution at these points in a way that is consistent
with the model equations.
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In the sum, points that are near the boundary of Ωc are weighted with a value less than
h2 since the area inside Ωc that is associated with boundary points is less than h2. When
performing the advection, we want to preserve the quantityM tot as well as the profile of
the solution. That is, we do not want to destroy internal gradients through the advection
step. It is also important to keep the zero outward normal derivative that is consistent
with the discretization of the diffusion operator for boundary points. For our applica-
tion, we focus on preserving the solution profile and modify the advection step so as to
preserveM tot by adding or subtracting a small constant amount that may be lost in the
advection scheme. We found that by so doing, we could retain the correct total mass to
within 1% of its fixed value at any given advection time step. The mass change due to the
diffusion discretization is orders of magnitude smaller.

3.4. Verification of numerical accuracy. Whensolving coupled systemsofPDEs
numerically it is difficult to verify the accuracy of approximate solutions to the full system.
In order to test our solutions,we examine the threemain components of our algorithmdeal-
ing with fluid flow, diffusion, and advection. The verification of the method of regularized
Stokeslets has been presented in [4], andwe do not repeat these results here. The discretiza-
tion of the diffusion operatorwas tested in [12] for a Poisson equation.We test the accuracy
here on a time-dependent problem, in a domain defined by the contour of the indicator
function as it is computed in our simulations. In order to verify our solution of a diffusion
problem on a moving domain, we conduct the test used in [28] for the same purpose.

In order to test the accuracy of the discretization of the diffusion operator, we solved
the equation

ut ¼ Δuþ fðx; yÞð3:12Þ
with a no-flux boundary condition, on a disk of radius 1

4 centered at the origin. The initial
conditions and the function f ðx; yÞ were chosen such that the analytic solution to the
problem is

uðr; tÞ ¼ e−4π2t cos ð4πrÞ;
where r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
. We computed two numerical solutions of this problem, one using

an analytical representation of the boundary, and one using the level-set of the indicator
function to define the boundary. We compared these two solutions to an analytic
solution at dimensionless time T ¼ 0.1, chosen to be within the transient period of
the solution. Define the error at time T in the numerical solution û as

TABLE 3.2
Errors computed for test problems. In the stationary problem we refined the time step Δtrd to be propor-

tional to Δx2. For the level-set boundary test we used 2N points to discretize the boundary curve. This gives the
boundary a discretization Δs≈ 0.8Δx. In the moving boundary problem we refined the diffusion time step Δtrd
proportionally to Δx2 and the advection time step Δtad proportionally to Δx.

Stationary domain problem Moving domain problem

Analytic boundary Level-set boundary Level-set boundary

N kek2 kek∞ kek2 kek∞ kek2 kek∞
40 6.6× 10−3 9.9× 10−3 2.5× 10−2 3.0× 10−2 2.7× 10−3 2.3× 10−2

80 1.8× 10−3 2.7× 10−3 9.2× 10−3 1.1× 10−2 1.4× 10−3 1.2× 10−2

160 3.8× 10−4 6.1× 10−4 1.5× 10−3 1.9× 10−3 6.8× 10−4 6.0× 10−3

320 9.1× 10−5 2.2× 10−4 1.0× 10−4 2.0× 10−4 2.4× 10−4 3.1× 10−3
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e ¼ u− û;

where u is the analytical solution restricted to the computational grid. We report the size
of errors in terms of the norms

kek2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i;j

e2ijh
2

s
; kek∞ ¼ max

i;j
jeijj:

The computed errors are reported in Table 3.2 and plotted in Figure 3.4(a). This data
suggests that we achieve the second order accuracy in space that is reported in [12]. We
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FIG. 3.4. Plots of the numerical errors reported in Table 3.2. The horizontal axis is the number of grid
points in one dimension, and the vertical axis is the norm of the errors. (a) Comparison of the numerical
solution of the diffusion problem on a stationary domain with an analytic solution. (b) Comparison of a nu-
merical solution computed on a moving domain with a second numerical solution computed on a stationary
domain.
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are restricted to first order accuracy in time by the backward Euler scheme used for the
reaction terms.

To test the coupling of the advection and diffusion, we solved a diffusion problem on
a domain advecting with a constant velocity. We again used a disk of radius 1

4 with no-
flux boundary conditions. We chose the initial condition to be a Gaussian centered on
the circle, with variance small enough to give the solution negligible normal derivative
along the boundary. We computed a solution to this problem at dimensionless time
T ¼ 1.0, where again T is chosen within the transient period of the solution. We define
this solution on the advecting domain as ua and the disk’s location at time T as ΩT . We
compute a second solution on a stationary ΩT starting with the same initial condition
that produced ua, translated toΩT . We report the differences between these solutions as
the errors in Figure 3.4(b). For this problem we observe the expected first order accuracy
in space due to the discretization of the advection.

4. Results. We present numerical experiments to illustrate separately the effects of
protrusive forces along the domain edge ∂Ωc, the internal RD solver on a static irregular
domain Ωc, and the coupled system with self-organized forces emanating from the RD
system.

4.1. Mechanical model. We first consider a domain with no internal chemistry.
Starting in each case with a disk-shaped domain Ωð0Þ, we prescribe half of the cell
boundary to be the “front” and apply the protrusion force along this portion for the
duration of the simulation. We assign an outward normal force whose magnitude
has a parabolic profile that varies from a maximum of H at the front center to zero
at the cell sides.

As our curved domain edge is elastic, we can experiment with a variety of physical
edge properties and examine how these affect the evolving shape of the domain. Note
that this is one feature that makes the IBM distinct from level-set methods, wherein the
domain edge has no mechanical properties in and of itself. The protrusive forces cause
the perimeter of the domain to deform and to move in the direction of the force. The
front edge that is under forcing tends to stretch as it translocates, while the rear edge (on
which no force is prescribed) responds passively via the elastic tension along the edge.
Figures 4.1 and 4.2 illustrate solutions with typical shapes that are produced. Figure 4.1
illustrates the transition in time between the initial circularly shaped cell and its steady-
state shape. The transition in this example occurs over a time span of 360 s. For cells
with a smaller value of H , a steady-state shape is reached in less time.

To determine how mechanical parameters influence the shapes and if such
mechanics-only solutions achieve steady-state, we varied the three parameters in our
mechanical system: the fluid viscosityμ, the membrane elasticityT 0, and the protrusion
force H . The ranges over which these parameters are varied include estimates
for membrane elasticity, and the forces and fluids relevant to them, since we are
aiming to tailor our computation to solving problems on the scale of cell size and motion.
We use the viscosity of water (μ ¼ 0.01 g · cm ∕ s), since the fluid is most analogous to
the cytosol, and the typical forces (in pN) and edge tension (pN per μm) estimated
in [13].

Figure 4.2 illustrates the variety of shapes obtained by varying the force on the
leading edge, and the elasticity of the membrane keeping the viscosity 0.01 g ∕ cm · s
constant. For a relatively small value of T 0 ≈ 0.1 pN ∕ μm, we see a variety of cell
shapes. At low force magnitude, H ≈ 1 pN ∕ μm, the cell shape resembles a teardrop
(top left). At higher protrusive force, H ≈ 5 pN ∕ μm, the teardrop develops a longer
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tail, often resulting in a cusp-like endpoint. At yet higher protrusion, the cell flattens out
into a “canoe” shape and then a narrow crescent. Our current implementation of the IBM
does not produce an accurate result when the magnitude of the protrusive force is much
greater than the force due to elasticity. For example, when T 0 ¼ 0.1 pN ∕ μm, values of
H greater than 12 pN ∕ μm lead to large deformations that are not adequately resolved,
and steady shapes then fail to form (at the bottom left of Figure 4.2 is a transient shape,
beyond the range of applicability of the method).

When the elastic modulus is larger, T 0 ≈ 5− 100 pN ∕ μm, the transition between
shapes as H is increased is less dramatic, since protrusion forces are counterbalanced by
an increasing tendency to “round up.” Shapes produced for reasonable protrusion forces
of 1− 50 pN ∕ μm and reasonable membrane elasticity ranges of 0.1− 100 pN ∕ μm
resemble a transition of shapes of cells such as neutrophils (teardrops) to keratocytes
(flattened canoes), cells whose motility is commonly studied experimentally.

FIG. 4.2. Mechanical model on its own. A plot of cell shapes obtained as the protrusion force magnitude,
H , and the elastic modulus, T0, vary for a fixed, prescribed force distributed parabolically along the nodes that
form the front half of the domain edge at time zero. The direction of steady-state motion of these shapes is
toward the top. Viscosity was 0.01 g∕ cm · s. Note that the shape at the bottom left is a transient shape included
only for completeness. For force in the range of 1− 25 pN∕ μm, shapes obtained resemble a variety of
biological cell phenotypes, from neutrophils to keratocytes.

FIG. 4.1. Mechanical model on its own. A time sequence showing the initial configuration of the model cell
and its evolving shape over time. The simulation was carried out using an elastic modulus T0 ¼ 0.1 pN∕ μm,
protrusion force H ¼ 12 pN∕ μm, and viscosity μ ¼ 0.01 g ∕ cm · s. By time t ¼ 360 s, the cell is in steady-
state motion at speed v ¼ 12 μm∕ s with the shape shown.

1436 B. VANDERLEI, J. FENG, AND L. EDELSTEIN-KESHET

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



Varying the viscosity (of the computational fluid inside and outside the domain) has
little effect on the shapes that develop. The dominant effect is to stretch the time
scale over which those shapes are established. We ran tests for the range 0.01 ≤
μ ≤ 10 g ∕ cm · s and found similar shapes for corresponding values of the force and
elasticity.

4.2. Biochemical model. We next tested the RD solver on its own. To do so, we
selected a number of typical static domain shapes with various features and solved a set
of pattern-forming PDEs on the given domain. We considered a circular, star-shaped,
and ellipsoidal “cell” shape. Shown in Figure 4.3 are solutions to the “wave-pinning” sys-
tem (2.7)–(2.9) [21]. The initial state of the system is spatially homogeneous with a ¼
0.27 and b ¼ 2.0. At t ¼ 0 a temporary gradient is introduced via a transient reaction
term sðx; y; tÞbðx; y; tÞ that is added to (2.9), with

sðx; y; tÞ ¼

8>>><
>>>:

Sð1þ xÞ for 0 < t1 and − 1 ≤ x ≤ 1;

Sð1þ xÞ
�
1− t−t1

t2−t1

�
for t1 ≤ t < t2 and − 1 ≤ x ≤ 1

0 for t2 ≤ t;

;ð4:1Þ

where S is a parameter that controls the magnitude of the stimulus.
This gradient stimulates a portion of the cell to become activated, meaning a ¼ aþ

locally, and a traveling wave is initiated. As discussed in [21], as the level of b is reduced

FIG. 4.3. The chemical model on its own. Solutions to the RD wave-pinning system given by (2.7)–(2.9)
are shown in a variety of static geometries. The left column shows circular disks, the middle column shows a
domain with convex and concave edges, and the right column shows ellipses. Time increases from top to bottom
with snapshots shown at t ¼ 20 s, 50 s, and 200 s. The first row is the transient phase, during which there is a
traveling wave. The middle row shows the solution after the wave has been pinned. The bottom row shows the
solutions after a long time. The RD-solution qualitatively captures the expected wave-like and stalled wave
positions and shows the effect of concavity of the domain on the eventual location of its maximum. Reaction
parameter values used were γ ¼ δ ¼ 1 s−1 and k0 ¼ 0.067 s−1. Initial conditions were a ¼ 0.27 and b ¼ 2.0. A
transient gradient term (4.1) was applied with S ¼ 0.07, t1 ¼ 5, and t2 ¼ 15.
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by the reaction, the speed of the wave slows and eventually stalls midway through the
cell. Based on related studies [19], [21] we anticipate solutions to the RD system with
relatively flat (low or high) plateaus, separated by a sharp interface. As shown in
Figure 4.3, solutions have this character. In two dimensions with no-flux conditions
on the boundary of the cell domain, ∂Ωc, the level curves (shown in Figure 4.3) also
have to meet the curve ∂Ωc orthogonally.

The most interesting feature to observe is that the geometry of the domain influ-
ences the nature of the solutions. This is related to phenomena studied by Marée et al.
[18] showing the tendency of the kind of RD system considered here to minimize the
curvature and the total length of the interface. (Marée et al. consider a related but more
biochemically detailed wave-pinning system, but our simple caricature has similar prop-
erties. See also [11].) In the star-shaped domain, three distinct peaks of activation can be
maintained in three “arms” of the star, a phenomenon that would not occur in the simple
circular domain. We can understand this heuristically as the energy of the interface
being at some local minimum. An application of similar ideas to the dynamics of plant
Rho GTPases in the pavement-cells of leaves has been proposed by Grieneisen [8]. On
the elliptical domain, in the short time scale, the peak of activation is in the direction of
the polarizing stimulus. Once the stimulus is turned off, the polarization persists for a
long time in this meta-stable configuration. Eventually however, the peak reorients to
occupy the high curvature pole of the ellipse: this allows for the interface length to shrink
and ultimately creates a stable configuration.

4.3. Coupled mechanical-chemical model: Self-organized cell shapes and
motility. Having tested the mechanical and chemical models separately, we now com-
bine the two and allow the forces on the cell edge to be determined directly by the solu-
tions of the RD system. As described earlier, this leads to a number of new challenges
which are associated with solving an RD system on a moving domain. The solution
algorithm described earlier overcomes these challenges. We used parameter values as
in Figure 4.2 for the mechanical properties and values as in Figure 4.3 for the RD system
of equations (2.7)–(2.9).

Initially, the system is in equilibrium both mechanically and chemically. This means
the membrane is relaxed to its equilibrium configuration and the cell is disk-shaped.
Both b and a are spatially uniform inside Ωc, and the active form is at a low stea-
dy-state level, aðx; tÞ ¼ a−. At t ¼ 0, the same temporary gradient as was used in
Figure 4.3 is introduced via the transient reaction term in the signaling system. The
inactive protein b diffuses rapidly and is almost spatially uniform (but decreasing in
level) as polarization proceeds. As discussed in [21], as the level of b is reduced by
the reaction, the speed of the wave slows and eventually stalls midway through the cell.
Here the forces are not prescribed; rather, they depend directly on the local magnitude of
the active protein aðx; tÞ through (2.10).

Figure 4.4 is a time sequence showing the evolution of the cell shape and internal
chemistry. The RD system rapidly becomes polarized on a time scale of 30−60 s, and the
cell starts to move and deform as a result. The teardrop-shaped outline and constant
speed is then a steady-state moving solution to the combined RD-mechanical system.

To illustrate the distribution of the fluid flow and pushing force, Figure 4.5 shows
two snapshots at the early stages of motion and polarization. The fluid velocity is high-
est at the front of the cell where the forces are largest. Circulations in the flow that are
directed from the front of the cell around to the sides give rise to changes in the mem-
brane shape. After this transient regime, the flow becomes approximately constant in
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the vicinity of the cell. Since the membrane moves with the local fluid velocity, the
steady cell shapes are observed.

We asked how varying the mechanical parameters (elastic modulus T0, viscosity μ,
and maximal force H) affect resulting shapes for the coupled system. Recall that H sets
the maximal level of force for a ¼ aþ ¼ maximal chemical concentration. Figure 4.6
shows the results, analogous to Figure 4.2. The chemical distribution within these “cell”
outlines are similar to those of Figure 4.4, with rapid polarization on a time scale of
30−60 s and steady-state shapes by about 400 s.

Figure 4.6 shows that increasing the maximal force magnitude in the chemistry-
regulated cells tends to produce a transition from oval to teardrop shape. Figure 4.6
similarly shows how varying the elastic modulus and the maximal force affects the
behavior. As expected, with larger elastic modulus T 0, the steady-state shapes are
rounder. A striking change seen from the mechanical to the mechanical-chemical system

FIG. 4.4. Mechanical and chemical model combined. Forces on the “front” edge are determined by the RD
system inside the evolving, moving cell domain. Top: A time sequence of cell shapes and positions, from t ¼ 0 s

to t ¼ 800 s at intervals of 100 s starting from the circle at the left. The distance scale is in cm
(10−4 cm ¼ 1 μm). Bottom: Sample shots of the same moving cell at intervals of 200 s showing the internal
chemical distribution. The cell is initially disk-shaped, with homogeneous internal concentrations of a, b. At
t ¼ 0 a stimulus (biased toward the right) leads to chemical polarization. RD equations (2.7)–(2.9) were solved
in the domainΩc using parameter values as in Figure 4.3. The RD system very rapidly polarizes and maintains
the polarization of the cell. There is a slight change in the cell’s direction of travel over long times.

FIG. 4.5. Computational fluid speed (red arrows) and chemically regulated forces on the cell edge (green
arrows) are shown at two times, close to the start of cell motion.
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(Figure 4.2 versus Figure 4.6) is that the self-organized chemistry makes for much more
stable and persistent cell shapes. We can understand this as follows: with internal chem-
istry that is a self-organized polarized distribution, the nodes that are assigned protru-
sion forces are governed by the fraction of nodes at high concentration of the reactant a.
If the front stretches, nodes previously experiencing large protrusive force leave the re-
gion of high a and no longer carry such forces. This means that the self-regulated system
is much more stable and resists forming wide fronts or narrow crescent shapes.

5. Discussion. As described, the implementation of the IBM leads to a convenient
way to represent forces along the interface of the cell boundary. Thus, we can capture
actual forces and elastic deformations of the cell boundary (depicting the cytoskeletal
cortex of the cell). This allows us to track the cell shape deformation and the motion of
the cell that results from a coupling between internal RD and boundary forces. Regions
of highest activity (the largest values of aðx; tÞ) develop spontaneously, determine the
front, and result in distributed forces. The linear elastic cell boundary reacting to the
protrusion force deforms to produce steady-state cell shape and motion.

As stated in the introduction, the goal of this study is to answer three key questions.
In answer to (Q1), we have shown that the simulations with mechanical forces alone, in
the absence of internal regulation, produced a variety of shapes spanning morphologies
of cells from neutrophils (teardrop shapes) to keratocytes (canoe or crescent shapes) as
protrusion forces increase relative to elastic forces. This suggests that the cell morphol-
ogy is sensitive to the properties of the cortex and the strength of actin-generated pro-
trusive forces, which may differ among cell types. In answer to (Q2), we showed that
irregular (static) shapes can lead to multiple “captive” peaks of concentration in a sig-
naling system that tends to otherwise form plateaus of activity. This was seen in the
middle row of Figure 4.2 and echoes similar findings by Grieneisen [8]. Finally, in answer
to (Q3), we found, interestingly, that once the simple regulatory system is
incorporated, cell shapes are less varied and settle into a round/elliptical shape or

FIG. 4.6. Steady-state shapes predicted by the full mechanical-chemical system, as in Figure 4.2 but with
the leading edge regulated by the signaling system. Cell shapes are much less sensitive to the magnitudes ofH in
this self-organized system.
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teardrop, with no crescents (compare Figures 4.1 and 4.5). We can explain this fact
based on the nature of the RD system, (2.7)–(2.9), as previously discussed. The two
key features of this system are that (1) it tends to form a sharp interface whose length
tends to be minimized by its dynamics, and (2) the interface meets the boundary ortho-
gonally (by the no-flux condition). When forces tend to push nodes apart at the cell
front, the RD interface gets stretched. It reacts by finding a new configuration satisfying
(1) and (2). This returns the peak of activity to nodes that are not too far apart and
hence avoids the continual broadening of the front edge of the cell. The interaction of the
RDwith direct outward forces on the boundary thus self-regulates the shape of the front,
even as the force or membrane properties are varied. Needless to say, other RD systems
with interesting dynamics would, we predict, lead to other cell shape dynamics and
steady-state shapes.

Applying the numerical scheme in its mechanical, chemical, and coupled variants,
we found a number of intriguing results:

1. Cell shapes generated by protrusion mechanics and passive elasticity, on their
own, already lead to morphologies that resemble some cell shapes.

2. Higher protrusion forces (distributed along the front half of the cell) lead to
flatter, more crescent-shaped cells, whereas a larger elastic modulus leads to
rounder cells (Figure 4.2).

3. The wave-pinning mechanism of Mori, Jikine, and Edelstein-Keshet [21] suffices
to polarize the cell once a small bias is introduced transiently. Previously, this
system was studied in a 1D setting and in a rectangular domain [11], and we
explore it here for the first time in irregular and deforming domains.

4. The shape of the domain feeds back on the chemical distribution. Parts of the
domain with higher curvature tend to “attract” the peaks of the active chemical
(Figure 4.3.) This phenomenon was discussed by Marée in a related (but more
biochemically detailed) cell biology context [18].

5. Coupling the chemical and mechanical systems leads to more stable cell shapes
that are less sensitive to variations in such parameters as the magnitude of the
protrusion force.

Here we concentrated on shapes produced exclusively by the wave-pinning biochemical
model. These tend to form robust, broad plateaus of activity at the “cell front.”Changing
the internal regulatory module is a future step of interest, as it would reveal how qua-
litative aspects of the regulatory system would affect qualitative aspects of cell shape.

These results can be compared with the recent work of Wolgemuth and Zajac [35].
They affect cell deformation by modifying the spatial variation in an adhesion coeffi-
cient. The primary factor that determines our cell shapes is the strength of the protru-
sion force relative to the membrane elasticity. We also observed a dramatic difference in
shape between cells in which the pushing force on the front was imposed and cells in
which the front was regulated by the chemistry. In [35] a velocity with a hyperbolic
tangent profile is assumed. Prescribing this velocity is most similar to our mechanical
model without any chemistry, in which we prescribed a front and the profile of protru-
sive forces acting upon it. In our coupled system we have gone one step further and
produced a cell that polarizes in response to a transient signal and then maintains a
steady shape and direction, without specifying the front of the cell in advance.

In this model we have made several simplifications, each of which can be relaxed
within this modeling framework. We have used the same fluid inside and outside of the
cell perimeter. The presence of an external fluid should not give the interpretation that
our model cell is swimming. Indeed, we imagine that the cell is anchored to a substrate
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and is crawling through a surrounding fluid. The viscosity of the external fluid could be
made much lower so as to more accurately represent the environment of the cell, but the
presence of the external fluid cannot be fully eliminated in this model. We have not
tracked the density of the actin network explicitly. Instead we have imagined a simple
situation in which the density of the network is proportional to the concentration of the
actin-regulating protein and reacts immediately to changing levels of this regulator. We
have taken an implicit approach to adhesion, supposing that the whole actin network
adheres to the substrate to give the cell traction and the ability to generate a protrusive
force through actin polymerization. Details of adhesion could be added in various ways.

Future development of such simulations will aim at addressing a number of ques-
tions. First, we will explore how contraction at the rear of the cell affects cell shape
(recall that here contraction is absent). We plan to investigate a variety of internal reg-
ulatory modules, including those that have a greater diversity of spatio-temporal dy-
namics. As a later step, we plan to introduce a more explicit representation of the
actin cytoskeleton and of the lipids and proteins that regulate it. By gradually including
such features one by one, we hope to learn how tuning specific aspects of cell mechanics
and biochemistry can lead to the repertoire of responses, deformation, and motility ob-
served in real cells.
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