
Wicking flow through microchannels

Hadi Mehrabian,1 Peng Gao,2 and James J. Feng1,3,a)

1Department of Chemical and Biological Engineering, University of British Columbia,
Vancouver, British Columbia V6T 1Z3, Canada
2Department of Modern Mechanics, University of Science and Technology of China,
Hefei, Anhui 230026, China
3Department of Mathematics, University of British Columbia, Vancouver, British Columbia V6T 1Z2, Canada

(Received 12 July 2011; accepted 2 December 2011; published online 27 December 2011)

We report numerical simulations of wicking through micropores of two types of geometries,

axisymmetric tubes with contractions and expansions of the cross section, and two-dimensional

planar channels with a Y-shaped bifurcation. The aim is to gain a detailed understanding of the

interfacial dynamics in these geometries, with an emphasis on the motion of the three-phase contact

line. We adopt a diffuse-interface formalism and use Cahn-Hilliard diffusion to model the moving

contact line. The Stokes and Cahn-Hilliard equations are solved by finite elements with adaptive

meshing. The results show that the liquid meniscus undergoes complex deformation during its

passage through contraction and expansion. Pinning of the interface at protruding corners limits the

angle of expansion into which wicking is allowed. For sufficiently strong contractions, the interface

negotiates the concave corners, thanks to its diffusive nature. Capillary competition between

branches downstream of a Y-shaped bifurcation may result in arrest of wicking in the wider branch.

Spatial variation of wettability in one branch may lead to flow reversal in the other. VC 2011
American Institute of Physics. [doi:10.1063/1.3671739]

I. INTRODUCTION

Wicking is the suction of a liquid by the negative capil-

lary pressure due to the meniscus curvature. It is a key mech-

anism for two-phase flow in porous media.1 To model such

flows, an extended Darcy’s law is often used to relate the

pressure drop to the flow rate, with an empirical relative per-
meability expressed in terms of the local saturation via the

Leverett J-function.2 The drawback of such an approach is

its empirical nature; the actual pore geometry and interfacial

morphology, which play important roles in two-phase flow

through porous medium, are not explicitly accounted for.

Recently, wicking has figured prominently in water transport

in the gas diffusion medium of proton-exchange-membrane

fuel cells,3 and in microfluidics for chemical analysis and bi-

ological assay.4,5 These typically involve wicking in one or

multiple flow conduits of complex geometry. To a large

degree, the interfacial morphology and motion determine the

efficacy and efficiency of the devices.

There are theoretical and numerical difficulties in comput-

ing wicking flows through complex geometries. These include

the lack of a good model for the moving contact line, the need

to capture dynamically a moving and deforming interface,

morphological singularities in coalescence and rupture of

interfaces, and the complex flow geometries in practically

interesting problems. The first three are generic to simulation

of interfacial flows. The last, on geometry, is especially perti-

nent to flow in porous medium. The geometric features of a

pore include changes in the cross-sectional area between wide

pore chambers and narrow pore throats, branching and inter-

section of pores, and the appearance of sharp edges and cor-

ners on which a gas-liquid interface can be pinned.

The classic work on wicking flows is that of Lucas6 and

Washburn,7 who computed capillary rise in straight tubes.

This solution is notable for its simplicity. Dynamics of the

meniscus is completely ignored. In its place, a static interfa-

cial shape is assumed such that the interface merely supplies a

constant suction pressure. In addition, the flow in the tube is

taken to be fully developed Poiseuille flow. Now the capillary

rise can be computed by balancing the capillary pressure

against the viscous friction. Later work has sought to include

inertia, dynamic contact angle and entry effects.8–12 More

recently, tubes of non-circular cross sections have also been

considered.13

Of more relevance to our work are generalizations of

the Lucas-Washburn solution to tubes and channels of grad-

ually varying cross sections. Using the lubrication approxi-

mation, one-dimensional (1D) solutions have been obtained

for sinusoidal tubes,14,15 sinusoidal tubes with tortuosity16

and tubes and channels with convergent, divergent, and

power-law cross sections.17 Liou et al.18 extended the pre-

vious solutions to 2D axisymmetric flows by using approxi-

mate velocity profiles. This allowed them to include inertia

as well as viscous stresses that vary with the cross-sectional

area. However, a common feature of all these studies is that

they ignore dynamics at the meniscus. The capillary pres-

sure is quasi-statically equilibrated along the meniscus,

thus giving it a spherical shape, whose curvature is used to

compute the capillary pressure via the Young-Laplace

equation. The main finding is a geometric effect on the me-

niscus movement: wicking goes faster in convergent than

divergent channels. In the former, the meniscus curvature

and hence the capillary suction increase downstream.
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The only numerical study of wicking flow inside tubes

with convergent-divergent cross section is done by Erickson

et al.19 They have computed the 2D axisymmetric flow inside

tubes by finite elements, but excluded the hydrodynamics of

the interface as in the analytical studies mentioned above. By

assuming a spherical shape of the meniscus, they update its

position from the liquid volume flow rate. The capillary pres-

sure is introduced by the Young-Laplace equation along with

a dynamic contact angle. Perhaps to minimize the disturbance

to the meniscus and to make the spherical shape a more accu-

rate approximation, they have used very long tubes with

exceedingly mild contractions and expansions, with a con-

traction/expansion angle of 0.5�. A surprising prediction is

that if the total lengths of the wider and narrower portions of

the tube are fixed, the time for the meniscus to pass through

the tube is independent of the number of the contraction/

expansion cycles along the tube’s length.

To summarize this brief review of the literature, previous

studies have ignored the hydrodynamics of the meniscus. The

motion of the contact line is unaccounted for, and the menis-

cus shape is always prescribed to be spherical. Little can be

found in the literature that deals with the detailed morpholog-

ical changes of the meniscus during its motion through com-

plex geometries. As such, their applicability to two-phase

transport in porous media is quite limited. For one, pinning of

the interfaces on sharp corners of the pore is responsible for

pore blockage and, if external pressure is applied, eventual

capillary breakthrough.20,21 Competition among intercon-

nected pores is considered the key mechanism in developing

a tree-like morphology of water transport in the gas diffusion

medium (GDM) of fuel cells.3,22 Such competition will

depend on the dynamics of the interfaces in complex geome-

tries, including rupture and coalescence as the meniscus

negotiates bifurcations and junctions. Finally, the wettability

of porous medium is often manipulated to enhance two-phase

transport.23 The underlying mechanism has to be sought from

the hydrodynamics of the interface. In this context, a funda-

mental understanding of interfacial dynamics during wicking

through complex geometry is essential. In view of the various

difficulties mentioned above, however, a rigorous study of

the dynamics of the meniscus based on hydrodynamic princi-

ples has yet to be done.

This paper presents an initial effort toward addressing

these issues. Physically, we will use the Cahn-Hillard diffuse-

interface model to describe the contact line dynamics.24 The

contact line singularity is regularized by diffusion between

the two phases. This allows us to integrate the microscopic

physics into the macroscopic flow, and to capture the moving

interface and its morphological changes accurately and natu-

rally, including pinning at sharp corners and otherwise singu-

lar interfacial breakup at bifurcations. Geometrically, we

examine the two quintessential features of a porous medium:

the areal changes between pore throats and chambers and the

branching of flow conduits. Specifically, we simulate the

wicking flow in axisymmetric tubes with non-uniform cross

sections and 2D planar channels that bifurcate into two

branches. We show that the meniscus undergoes complex

deformations through contractions and expansions, with con-

tact line pinning at protruding corners and turning of the

interface at concave corners. The assumption of a spherical

interface is appropriate only in special cases, e.g., in straight

and expanding tubes, where the dynamics is sufficiently slow

to allow equilibration of the capillary pressure along the me-

niscus. Capillary competition between bifurcating channels

may suppress wicking in the wider branch in favor of the nar-

rower one. Manipulating the wettability in the branches can

even produce flow reversal.

II. DIFFUSE-INTERFACE MODEL AND PROBLEM
SETUP

We adopt a diffuse-interface model in which the two

fluid components, say, air and water, are viewed as mixing

to a limited extent in a narrow interfacial layer. A scalar

phase field / is introduced to distinguish the components

such that /¼ 1 in the liquid, /¼�1 in the gas, and /¼ 0

gives the position of the interface. Interfacial mixing is gov-

erned by a mixing energy25

fmixð/;r/Þ ¼ k r/j j2

2
þ k

4�2
ð/2 � 1Þ2; (1)

where k is the mixing energy density and � is the interfacial

thickness. In the limit of thin interfaces, the classical concept

of interfacial tension r can be recovered from the mixing

energy

r ¼ 2
ffiffiffi
2
p

3

k
�
: (2)

The evolution of / is governed by the Cahn-Hillard

equation25

d/
dt
¼ r � ðcrGÞ; (3)

where c is the mobility parameter and assumed to be con-

stant, and the chemical potential

G ¼ �kr2/þ k
�2

/ð/2 � 1Þ (4)

is the variation of the mixing energy with respect to /.

Wicking is significant in small capillary tubes and pores,

and the resulting Reynolds and Bond numbers are typically

much below unity. Therefore, we will neglect inertia and

gravity throughout this work, and highlight the roles of capil-

larity and viscosity. The hydrodynamics is governed by the

continuity equation and a modified Stokes equation

r � v ¼ 0; (5)

Gr/þr � ðlrvÞ � rp ¼ 0; (6)

where v is the velocity and p is the pressure. The term Gr/
represents the role of interfacial tension in the momentum

equation.26,27 In the diffuse-interface framework, the inter-

face is no longer treated as a boundary and these equations

apply to the flow of both components. In the interfacial

region, v may be viewed as a volume-averaged velocity and
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l as an average viscosity. Equations (3), (5), and (6) are the

governing equations of the problem. With convection, the

left hand side of Eq. (3) is viewed as the material derivative:

d//dt¼ @//@tþ v � r/.

The computational domain is illustrated in Fig. 1. Natu-

ral boundary conditions are employed at the inlet and the

outlet. In addition, the pressure is set to be equal between the

inlet and the outlet such that the motion of the liquid column

is driven entirely by wicking, i.e., by the capillary pressure

generated by the meniscus. On the solid walls, the following

boundary conditions are imposed:

v ¼ 0; (7)

n � rG ¼ 0; (8)

kn � r/þ f 0wð/Þ ¼ 0; (9)

where the normal vector n points into the solid wall. Equation

(7) is the no-slip condition on the wall, and Eq. (8) dictates

zero flux through it. Equation (9) is the natural boundary con-

dition arising from the variation of the wall energy fw

fw ¼ �r cos h
/ð3� /2Þ

4
þ rw1 þ rw2

2
; (10)

which is the interaction energy between the fluid components

and the solid substrate.24 At /¼6 1, i.e., away from the

contact line, fw should give the fluid-wall interfacial tension

for the two fluids, rw1 and rw2. This requirement leads to

Young’s equation that prescribes the static contact angle h

cos h ¼ rw2 � rw1

r
: (11)

It may be shown that to leading order, Eq. (9) constrains the

dynamic contact angle to be equal to the static one.24,28 For

simplicity, we disregard contact angle hysteresis.

We solve the governing equations using a finite-

element package AMPHI in axisymmetric or planar 2D geo-

metries. Yue et al.27 and Zhou et al.29 have described the

numerical algorithm in detail, presented numerical experi-

ments on grid and time-step refinements and validated the

methodology against numerical benchmarks. The numerical

package has been applied to a number of interfacial-

dynamics simulations.30–34 Here, we will only note a few

important features. The equations are discretized using finite

elements on an unstructured grid. The diffuse interface is

resolved using adaptive meshing,35 with the grid being

dynamically refined and coarsened, respectively, upstream

and downstream of the moving interface. The interfacial

thickness � is such that the sharp-interface limit is reached

and the numerical results no longer depend on it.29,32

Besides, the grid is sufficiently refined to ensure conver-

gence with decreasing grid size; the finest grid at the inter-

face is on the order of �=2. Time-stepping is done in a

second-order implicit scheme, with the nonlinear algebraic

equations being solved by Newton iteration at each step.

The wicking flow consists in a column of hydrophilic

fluid of viscosity l1 displacing a hydrophobic one of viscos-

ity l2 (Fig. 1). The geometrical parameters include the con-

traction or expansion angle a, the total length Ht, length of

the upstream section Hu, and the larger and smaller tube radii

R1 and R2. In Fig. 1, Hb denotes the position of the center of

the meniscus, hereafter called its base point. Hw marks the

position of the contact line on the wall, hereafter called

the wall point of the meniscus. Initially, there is no flow and

the liquid column is at Hw¼H0. Later, both Hw and Hb vary

in time as the wicking proceeds. In this dynamic process, the

interface shape is determined by the viscous and capillary

forces and is in general not spherical. However, it will prove

convenient to use an effective curvature j, defined for a

spherical surface, in discussing the evolution of the interface.

From the height of the meniscus d¼Hw�Hb and the local

tube radius R, we can calculate the radius of the spherical

surface that passes through the wall and base points of the

meniscus: q ¼ R2þd2

2d , from which we can define

j ¼ 2d

R2 þ d2
: (12)

Note that j is an overall indication of the meniscus curvature

and does not reflect the local deformation of the interface. It

varies along the axis in an expansion or contraction as R
does. In presenting results in dimensionless form, we scale

length by R1, curvature by R�1
1 , velocity by r/l1 and time by

l1R1/r. Throughout this paper, we have set R2/R1¼ 0.5 and

Ht/R1¼ 20 except in Fig. 10 where Ht/R1¼ 21.

The physical parameters of the problem can be combined

into two dimensionless parameters: the static contact angle h
and the viscosity ratio m¼l2/l1. Unless noted otherwise, m
is set to 0.02 to represent the viscosity ratio between air and

water at room temperature. In addition, the diffuse-interface

model introduces two additional lengths:32 the interfacial

thickness � and a diffusion length ld¼ c1/2(l1l2)1/4. They pro-

duce two more dimensionless parameters: the Cahn number

Cn ¼ �=R1 and S¼ ld/R1. The choice of their values is funda-

mental to diffuse-interface computations and will be dis-

cussed next.

III. SHARP-INTERFACE LIMIT AND DIFFUSION
LENGTH

The Cahn-Hilliard model formulated above has two pa-

rameters that have no counterparts in conventional Navier-
FIG. 1. (Color online) Schematic of the flow geometry for wicking into a

capillary tube with contraction.
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Stokes problems: the interfacial thickness � and the diffusion

length ld. As explained by Yue et al.,32 � or the Cahn number

Cn should be sufficiently small so that the numerical results

no longer depend on it; this is known as the sharp interfacial

limit. The diffusion length ld or the parameter S, on the other

hand, should be chosen to match a single experimental mea-

surement. In this section, we examine these issues in the sim-

ple geometry of imbibition and drainage in a straight capillary

tube. Our aim is threefold: to ensure that the sharp-interface

limit for moving contact lines is achieved, to select a suitable

value for S, and to validate the numerical results for a straight

circular tube against the Lucas-Washburn formula.6,7

A. Sharp-interface limit

Real interfaces, a few nanometers in thickness, are typi-

cally not resolvable in macroscopic flow simulation. Thus,

the diffuse-interface method uses an artificial � that may be

much larger than the real value. This is allowable if the

sharp-interface limit is achieved, when � and Cn are suffi-

ciently small, such that the results are not affected by the

unrealistic thickness of the interface.32,36 For interfacial

flows without contact lines, the sharp-interface limit is typi-

cally approached at Cn� 0.01.27

With moving contact lines, Yue et al.32 have shown that

the achievement of sharp-interface limit is also dependent on

the diffusion length. For Couette and Poiseuille flows with a

transverse interface, they found that the location of the me-

niscus converges to a unique solution after Cn falls below a

threshold Cn� 4 S and suggested this as the criterion for

achieving the sharp-interface limit. In our wicking problem,

the criterion turns out to be more stringent than that of Yue

et al.32 We tested a range of Cn values for S¼ 0.04, and

found the results to be essentially independent of Cn once it

is below 0.02. Figure 2 shows that the contact line motion

and the meniscus shape agree closely between Cn¼ 0.02 and

Cn¼ 0.01. Thus, the sharp-interface limit is achieved by

using Cn¼ 0.02 in this case.

B. Diffusion length

In simulating suspended drops and bubbles, the Cahn-

Hilliard diffusion across the interface, represented by ld or S,

is immaterial as long as the sharp-interface limit is

achieved.37,38 If an interface intersects a solid substrate, on the

other hand, the motion of the contact line is affected by this

interfacial diffusion. Thus, ld has the more physical meaning

of the slip length, and its value must be chosen judiciously,

e.g., to coincide with an experimental measurement.32

In the capillary rise problem, the Lucas-Washburn

formula6,7

HðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2

0 þ
rR cos hðt� t0Þ

2l

s
(13)

is widely accepted as an accurate representation of the inter-

facial movement, as long as the liquid column is long enough

such that the “end effect” is negligible and the flow can be

approximated by the Poiseuille flow. Here, R is the tube ra-

dius, l is the viscosity of the liquid and that of the gas is

neglected.

Figure 3 compares our diffuse-interface calculation of

capillary imbibition and drainage at several S values with the

Lucas-Washburn formula. A few observations can be made.

First, in both imbibition and drainage, the numerical result

approaches the analytical formula as S increases. While the

analytical solution neglects the dynamics at the meniscus

and the contact line completely, the Cahn-Hilliard model

includes a friction at the contact line in terms of an additional

dissipation.27 As the diffusion length or S increases, the

effective slippage at the contact line increases, thus reducing

the influence of this friction. For S¼ 0.04, the effective cur-

vature of the interface is 5% lower than that expected of a

spherical surface. This is due to the flow effects at the menis-

cus that the Lucas-Washburn formula disregards.

Second, the contact line speed is insensitive to S. With a

tenfold change in S, the contact line speed changes by some

6%. This forms an interesting contrast to the situation stud-

ied by Yue et al.,32 where in shear flows the meniscus shape

or interface inclination is highly sensitive to S. This can be

rationalized by the fact that the contact line speed is deter-

mined by equating the viscous dissipation to the surface

energy gained by wetting or dewetting. Thus, insofar as most

of the dissipation occurs in the bulk of the column, the effect

of S is mild. In shear flows, in contrast, the contact line speed

is prescribed, and the amount of Cahn-Hilliard diffusion

affects the shape of the interface greatly.

Third, the same S produces larger deviation from the

Lucas-Washburn formula for imbibition than for drainage.

FIG. 2. Sharp-interface limit for com-

puting capillary rise. (a) Contact line

motion indicated by the rise of Hw in

time for two Cahn numbers Cn¼ 0.01

and 0.02. (b) Variation of the effective

meniscus curvature j with time for the

same two Cn values. S¼ 0.04, h¼ 60�,
the tube radius R¼ 1, total length

Ht¼ 20 and the initial column height

H0¼ 15.
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This reflects the fact that the viscosity of the displacing and

the displaced components contributes to the contact line

motion differently. But this asymmetry is not reflected by the

definition of S used here. Finally, there is an upper limit to

reasonable S values. Using too large, a diffusion length ld
exaggerates the area that is directly affected by the contact

line. Our numerical experiment shows that for S¼ 0.15, for

example, the overall features of the flow are distorted by the

interfacial diffusion, and the solution becomes very inaccu-

rate. In typical flow situations, the slip length is orders of

magnitude smaller than the macroscopic length scale.28,39

To sum up this section, we have demonstrated how the

sharp-interface limit can be achieved by using a small

enough Cn and how S can be selected by comparing with the

Lucas-Washburn formula. Most of the results to be presented

are for S¼ 0.04 and Cn¼ 0.01. For the wicking through mul-

tiple contraction-expansion combinations (Fig. 10), we have

used Cn¼ 0.02. To better resolve contact line pinning and

turning at corners (e.g., Figs. 4 and 7), we have used a

smaller Cn¼ 0.005.

IV. WICKING IN A TUBE WITH CONTRACTION
OR EXPANSION

We consider the wicking flow of a liquid column into an

axisymmetric tube, with a contraction as shown in Fig. 1 or

with an expansion. The goal is to elucidate the detailed

hydrodynamics of the moving interface, in particular, how

the contact line negotiates concave and convex corners. Also

of interest is the passage time as a function of the flow geom-

etry, with a single contraction-expansion combination or

multiple cycles of it.

A. Contraction

Figure 4 illustrates the wicking of a liquid through a 2:1

contraction at contraction angle a¼ 45�. The wall is hydro-

philic to the liquid, with a wetting angle h¼ 60�. The evolu-

tion of the interface is punctuated by several critical points

marked on the Hb�Hw and j�Hw curves as well as by the

insets. In the first stage of the process (Hw<Hu), the menis-

cus moves with a constant shape within the wide tube before

FIG. 3. Comparison between diffuse-interface simulation and the analytical Lucas-Washburn formula at different S values. (a) Imbibition with h¼ 60�,
Cn¼ 0.01, m¼ 0.02, and H0¼ 15. (b) Drainage with h¼ 120�, Cn¼ 0.01, and H0¼ 19. Now, the less viscous component is wetting, and the non-wetting-to-

wetting viscosity ratio m¼ 50.

FIG. 4. (Color online) Meniscus movement through a contraction with a¼ 45� represented by: (a) the variation of the base point with the wall point, and (b)

the effective curvature defined in Eq. (12). h¼ 60�, Cn¼ 0.005, and Hu¼ 10. In (a) the insets correspond to the four points marked by squares on the curve. In

(b) the dashed line indicates the curvature expected of a quasi-static spherical meniscus.
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it reaches the contraction. The base point and wall point

advance at equal speed and the trajectory in Fig. 4(a) is a

straight line with slope 1. The meniscus is not spherical,

however. Viscous forces distort it so that the constant effec-

tive curvature j is 6% below that expected of a spherical me-

niscus at equilibrium in the upstream portion of the tube.

As the contact line reaches the corner at the beginning of

the contraction, marked by point a in the plot, a new behavior

sets in. First, the contact line quickly moves past the concave

corner. Once it is on the inclined wall of the contraction, the

interface must rotate by a to maintain the same contact angle

h with the wall. This rotation first occurs locally at the contact

line, elevating the local curvature. Then, the interfacial distor-

tion propagates toward the center by interfacial tension, caus-

ing the central portion of the meniscus to pull back upstream.

This process is reflected in Fig. 4(a) by the downturn of the

trajectory and the sharp upturn of j in Fig. 4(b). The interfa-

cial adjustment is completed by point b, when the base point

of the interface is at a minimum. During this highly dynamic

transition, j falls far below what one would expect by assum-

ing a quasi-static spherical meniscus.

After point b, the base point moves forward again, and

at a higher speed than the wall point because R is shrinking,

and the interface is continuously becoming more curved.

Hence, the continued increase in j. The next milepost is

when the contact line reaches the convex corner marking the

end of the contraction (point c). The contact line is pinned at

the corner,40 while the base point continues to move forward.

Thus, the interface rotates toward the downstream as if

hinged at the corner, and in the mean time straightens with a

steep decline in j. The pinning ends when the angle between

the interface and an extension of the downstream wall

reaches the contact angle h, in accordance with Gibbs’ pin-

ning criterion, and the meniscus as a whole moves into the

narrow channel. This moment is marked by d in Fig. 4. The

effective curvature j settles into a steady value roughly 14%

below that for a perfectly spherical meniscus at equilibrium.

B. Regularization of corner singularity

The turning of the interface at the concave corner (point

a) deserves a closer examination. The case illustrated in

Fig. 4 has a relatively mild contraction with a< h. Thus, as

the contact line advances from the corner onto the ramp, the

interface rotates locally by a to form a tight curve, which is

subsequently smoothed out over the rest of the interface.

Now imagine a stronger contraction with a> h. If the inter-

face rotates by a at the corner, it would have to penetrate the

wall upstream. Hence, a concave corner with a contraction

angle larger than the wetting angle appears to present a sin-

gularity to the contact line.

This singularity is not real, of course. It arises because

the foregoing argument is made in the classical sharp-

interface framework, with the interface being viewed as a

mathematical surface of zero thickness. This is a good repre-

sentation of real interfaces as long as the length scale of in-

terest is much larger than the interfacial thickness. At a

concave corner of sufficiently large a, the turning of the

interface entails intersection with the solid wall, which in

reality would invoke physics on the molecular length scale.

Little surprise that an apparent singularity should appear. In

fact, a strict implementation of the sharp-interface model

would encounter difficulty even for a contact line moving on

a flat substrate.41,42

This is where the diffuse-interface model presents a dis-

tinct advantage. By preserving the reality that interfaces are

diffuse mixing layers rather than discontinuities, the model

circumvents the traps of singularity on flat substrate as well

as at corners. On a flat substrate, Cahn-Hilliard diffusion

allows a contact line to move and predicts a dynamic contact

angle.28,32 Inside a concave corner, diffusion allows the inter-

face to turn a large a in a natural manner as demonstrated in

Fig. 5.

We have to point out that the diffuse-interface model

introduces a local length scale �, the interfacial thickness. If

the physical process being studied involves a length scale

that shrinks indefinitely, as occurs here in Fig. 5 and during

interfacial pinch-off or rupture,43,44 the finite-� effect mani-

fests itself eventually, and is intrinsic to the diffuse-interface

formalism. Therefore, the negotiation of the corner in Fig. 5

occurs more slowly with decreasing �. The question of

choosing suitable Cahn-Hilliard parameters has been dis-

cussed elsewhere.45 For the current problem, the diffuse-

interface model regularizes the singularity at the corner and

captures the qualitative features of the process, but cannot

foretell what � value would predict reality quantitatively.

C. Expansion

Wicking through an expansion, schematically depicted

in Fig. 6, differs from wicking through a contraction in that

the contact line first encounters a convex corner, and then a

concave one. The process is illustrated in Fig. 7. When the

meniscus is entirely inside the narrower channel upstream,

Hw and Hb advance with the same speed. As the contact line

reaches the corner at the start of the expansion (point a), it is

pinned temporarily according to Gibbs’ pinning criterion.40

Meanwhile, the base point moves forward very quickly until

point b, when the interface reaches an angle of hþ a¼ 85�

with respect to the upstream wall. It depins from the corner,

and the entire meniscus advances through the expansion.

This corresponds to the segment between points b and c. At

point c, the meniscus reaches the end of the expansion with

the contact line at the concave corner. As the wall rotates

counterclockwise by a at this corner, so must the interface

before it could march downstream onto the straight portion

of the tube. This causes a large local curvature of the inter-

face, which propagates toward the center, causing the base

point of the meniscus to retreat, as illustrated by the decline

of Hb beyond point c. Once this interfacial adjustment is

completed at point d, the entire meniscus moves down the

wider straight channel, again with the base point and wall

point advancing at the same speed.

Naturally one contrasts the above process with wicking

through a contraction (Fig. 4). The behavior at the concave

corner at the end of the expansion, between points c and d in

Fig. 7, is essentially the same as appears at the start of the

contraction, from a to b in Fig. 4. If the expansion is too
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abrupt, with a> h, the corner would present a singularity to

a sharp-interface model but not to our Cahn-Hilliard model.

On the other hand, the convex corner at the start of the

expansion, point a in Fig. 7, differs fundamentally from its

counterpart, point c in Fig. 4; here it has the potential of per-
manently pinning the interface. This would happen if the

expansion is abrupt enough such that the required break-

through angle hb¼ hþ a is beyond the maximum achievable

hm¼ 90�

aþ h � 90
�
: (14)

Such a situation is illustrated by the snapshots in Fig. 8 for

h¼ 60� and a¼ 30�. After the contact line gets pinned at

t¼ 6.6, the interfacial tension acts to move the rest of the

interface forward so as to minimize the interfacial area. This

continues till t¼ 101.6, when the meniscus becomes a flat

surface and can move no further. At this point, the angle

between the interface and the upstream wall is hm¼ 90�,
barely equal to the breakthrough angle hb. The contact line

cannot depin and the flow is arrested permanently. Thus, the

geometric constraint of Eq. (14), based on the Gibbs pinning

condition,40 specifies a degree of expansion beyond which a

hydrophilic fluid cannot enter. This may be contrasted with

the convex corner at the end of the contraction (point d of

Fig. 4). As long as the fluid is hydrophilic (h< 90�), the con-

tact line always depins before the meniscus becomes flat at

90� angle with the downstream wall.

D. Penetration time

The speed of wicking and the time required to penetrate

a given depth are of practical significance in various applica-

tions3,4,16 and have been studied by a few groups.15,19 In this

subsection, we will examine how the speed of wicking

through contractions and expansions is affected by the flow

geometry. Consider a tube of total length Ht. The two radii

R1 and R2 are prescribed, as is the upstream length Hu. The

rest of the length consists of a contraction or expansion and

possibly a straight downstream segment. The question is

what contraction or expansion angle gives the fastest wick-

ing through the total length. We have tested a range of

FIG. 5. (Color online) Gray-scale contours of / depicting the interface traversing a concave corner through Cahn-Hilliard diffusion. The light line indicates the

contour of /¼ 0. The contraction angle a¼ 75� is greater than the wetting angle h¼ 60�. Hu¼ 10 and initially the meniscus is at H0¼ 9.8.

FIG. 6. (Color online) Schematic of an expansion illustrating the pinning

criterion. hb¼ aþ h is the breakthrough angle, and hm¼ 90� is the maximum

angle that the interface may reach at the corner.

FIG. 7. (Color online) Wicking through an expansion with a¼ 25�, h¼ 60�,
Cn¼ 0.005, and Hu¼ 5. The insets correspond to the four points a – d on the

curve.
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contraction/expansion angles and wetting angles. A clear

trend emerges and is illustrated in Fig. 9 by comparing

a¼ 15� and 25� for h¼ 60�.
In Fig. 9(a), the two trajectories coincide prior to reach-

ing the start of the contraction, point a. Afterwards the wick-

ing accelerates faster through the sharper contraction at

a¼ 25�, evidently because of the faster increase in curvature

and capillary pressure. But the sharper contraction is shorter,

and the acceleration ends at point b, after which the meniscus

enters the narrow downstream segment and decelerates. In

comparison, the milder contraction sees a more gradual

acceleration that lasts longer, till point c. Downstream of

point c, wicking decelerates as well, but at a gentler rate than

in the sharper contraction. This is because the sharper

contraction incurs more viscous friction. As a result, the me-

niscus eventually overtakes that in the sharper contraction, at

Hw� 14.8. Therefore, the question of which geometry gives

faster wicking depends on the length of the downstream seg-

ment. If it is long enough, a gentler contraction wins. If Ht

and Hu are prescribed, then there is an optimal a that gives

the shortest penetration time through the entire length. For

example, for Ht¼ 13, Hu¼ 10, and h¼ 60�, we have tested a

values from 15� to 65�, and a¼ 25� gives the shortest transit

time.

For expansion, the story is simpler (Fig. 9(b)). Wicking

is slower in the sharper expansion because the driving force,

the capillary pressure, decreases more steeply with the

expanding tube radius. This effect is so strong that the sharper

expansion (from a to b) takes longer time to traverse than its

milder counterpart (from a to c) despite its shorter length.

Note the sudden surge of Hw at b and c when the contact line

rapidly traverses the concave corner. Upon entering the

downstream segment, wicking accelerates to more or less the

same speed in both geometries. This speed will gradually

decline in the downstream tube. Overall, the sharper expan-

sion always causes a longer penetration time. Besides, com-

paring Figs. 9(a) and 9(b), the expansion takes much longer

time than the contraction of the same length and same a, by

15-fold for a¼ 15�, and 53-fold for 25�. This implies that in

a contraction-expansion combination, the latter takes up most

of the penetration times.

The penetration or passage time tp, as it turns out, sheds

unique light on the validity of the quasi-static assumption

widely used in the literature. By using the formula of Liou

FIG. 8. (Color online) Permanent pinning of the interface at the entrance to an expansion with a¼ 30�. h¼ 60�, Cn¼ 0.005, Hu¼ 5, and H0¼ 4.9.

FIG. 9. (Color online) (a) Comparison of wicking speed through 2:1 contractions at two contraction angles a¼ 15� and 25�. The inset illustrates the flow

geometry. Hu¼ 10, H0¼ 9, and h¼ 60�. (b) Similar comparison for 1:2 expansions at a¼ 15� and 25�. Hu¼ 5, H0¼ 4, and h¼ 60�.
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et al.,18 based on a quasi-static spherical interface, we have

calculated tp through expansions at different angles. The for-

mula overpredicts tp by 2.5% for a¼ 5�, and by 0.81% for

a¼ 25�. With increasing a, wicking becomes slower, giving

the interface more time to relax toward equilibrium. A differ-

ent picture emerges for contractions. As a increases from 5�

to 25�, the underestimation of tp by the quasi-static method

increases from 16% to 32%. Evidently, a faster moving inter-

face deviates more from the spherical shape and renders the

quasi-static assumption less accurate. At large contraction

angles, however, another factor comes into play. The strong

radial flow tends to restore the meniscus toward spherical

(cf. Fig. 4(b)).

To better reflect the flow geometry in porous media,

Erickson et al.19 studied wicking through multiple

contraction-expansion cycles. They came to the surprising

conclusion that as long as the total lengths of the wide seg-

ments and narrow segments are each kept constant, the pene-

tration time tp remains the same regardless of the number of

contraction-expansion cycles. This implies that adding addi-

tional contraction and expansion pairs costs no delay in the

wicking, something inconsistent with our observations in

Fig. 9. To probe this further, we compare wicking through

three channels with N¼ 1, 2, and 3 contraction-expansion

cycles (Fig. 10). The total lengths of the straight segments

are the same among the three, 16 for the wider part and 3 for

the narrower part. The sloping segments also add to the

same length of 2, and the contraction/expansion angle then

increases with N. This geometric setup is modeled after

Erickson et al.19

According to Fig. 10, the total penetration time tp is not

the same among the three; it increases by 17% from N¼ 1 to

2 and by another 70% to N¼ 3. As expected, additional

contraction-expansion pairs do cost penetration time, more

so for larger N as a increases. The discrepancy is mainly

because Erickson et al.19 used a much smaller a (� 0.5�)

and straight sections much longer than the contractions and

expansions. Thus, traversing the contraction and expansion

takes up only a small fraction of the total tp. Moreover, they

ignored the local fluid dynamics at the meniscus and

replaced it by a quasi-static spherical surface. To probe

smaller a in our model, we have computed gentler slopes

with a increasing from 1� at N¼ 1 to 15.6� at N¼ 16, with

h¼ 30�, R2/R1¼ 0.75, Hu¼ 10, and Ht¼ 41. Compared with

N¼ 1, tp increases by a mere 2.1% for N¼ 8 and 11% for

N¼ 16. Since Erickson et al.19 only investigated N up to 3,

they would not have noticed much change in tp even if they

had not used the quasi-static assumption.

V. WICKING IN Y-SHAPED BRANCHES: CAPILLARY
COMPETITION

Connectivity between pores is an important attribute of

porous media that has not been considered in the above.

When the meniscus reaches the bifurcation where one pore

branches into two, will it split into two and go through both

branches, or will one branch dominate the other? What pa-

rameters determine the interfacial dynamics at and after the

bifurcation? These are the questions that we turn to in this

section.

Consider the wicking flow in the 2D planar geometry of

Fig. 11. The same ambient pressure pa exists at the far-

upstream of the root channel and the far downstream of both

branches. When the interface reaches the branching point, it

breaks up into two smaller menisci (Fig. 11(b)), each then

quickly adjusting to the size of the branches. A bifurcation

into two identical branches is a trivial case; wicking proceeds

in each branch with equal velocity. If the two branches differ

in size, then there is a potential for capillary competition
governed by the following three factors. (1) The pressure

behind each meniscus depends on its curvature and hence

the size of the branch. Although the interface is generally

non-spherical, we can roughly speak of the capillary pressure

in the wide branch pw being higher than that in the narrow

one pn: pw> pn. The narrow channel engenders a lower cap-

illary pressure and is thus more conducive to wicking flow.

(2) At the junction, we can roughly think of a pressure pj that

is shared by both branches. The pressure drops pj� pw and

pj� pn drive the flow in each branch (Fig. 11(c)). (3) pj is

determined by the viscous friction in the root tube, and con-

tinuously rises in time. This is because as wicking proceeds,

the flow in one or both branches slows down and so does the

flow in the root tube.

Depending on whether pj is greater than pw and pn, we

can differentiate two situations: wicking in both branches

and wicking in one branch only. The former happens if pw

and pn differ little, or if the pressure drop expended in the

root tube is small such that pj is initially high. The latter hap-

pens if the two branches are disparate in size, or if there is a

long and thin root tube to yield a weak pj. In discussing these

two regimes in Subsections V A and V B, we have found it

convenient to fix D2¼ 0.5D1 and L0¼ 4D1 and vary the

width of the root tube D0 relative to D1. In addition, the con-

tact angle is set at h¼ 60�. Length will be scaled by D1 and

time by l1D1/r.

FIG. 10. (Color online) Wicking through multiple contraction-expansion

cycles. For N¼ 1, 2, and 3, a¼ 26.6�, 45�, and 56.3�. The wetting angle

h¼ 30�, Cn¼ 0.02. The total length Ht¼ 21, and the meniscus starts at

H0¼ 10 at the beginning.
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A. Flow in both branches

With a wide root tube, the viscous dissipation in it is

small, and it is like connecting the branches directly to a res-

ervoir. In this simple situation, wicking occurs through both

branches, though at different speeds depending on their size

(Fig. 12).

When the meniscus reaches the end of the root tube

(Fig. 11(a)), it faces an expansion at angle b, and the discus-

sion of pinning in Subsection IV C applies. In particular, we

require b< 90� � h such that the meniscus can depin from

the corner and proceed beyond this point. Throughout this

section, we have used b¼ 20�. When the interface reaches

the point of bifurcation (Fig. 11(b)), it breaks into two

smaller menisci, whose curvature, at this point, reflects the

larger dimension of the junction. Thus, they are not at equi-

librium with the smaller size of each branch. A short period

of equilibration ensues, with the wall points on the outside

walls pulling back and those on the walls in the middle surg-

ing ahead. This is why in Fig. 12, the curves appear to start

from a small positive L value at t¼ 0. In the inset, points a
and b mark when the equilibration is completed in the nar-

row and wide branches, respectively. Note that the bifurca-

tion angle b determines the size of the meniscus in Fig. 11(b)

and the equilibration process. But it has a little effect on the

subsequent wicking in each branch. Once the equilibration is

completed, each meniscus is orientated symmetrically with

respect to the axis of its branch. The geometric setup is such

that the pressure pj is higher than both pn and pw, and wick-

ing proceeds in both branches.

Initially, the narrow tube enjoys faster wicking, because

the pressure drops pj� pn driving the flow is larger than its

counterpart in the wide tube. This lasts till t� 11, marked by

point c in the inset of Fig. 12. As the liquid continues to

invade both branches, the viscous dissipation increases with

the column height, and the flow speed declines. This effect is

stronger for the narrow branch since, as the flow approaches

the Poiseuille flow, the viscous wall stress scales with the

meniscus velocity divided by the channel width. Thus,

the wider tube has faster wicking for later times, similar to

the prediction of the Lucas-Washburn equation.

Once the flow starts in either branch, it does not stop in

finite time. This is because pj must exceed the pressure pn or

pw for there to be flow in the branch. In time pj and hence the

pressure drop only increases as the flow, and pressure drop

in the root tube declines. Thus, the flow continues in both

branches, and gradually slows down toward zero in time.

B. Flow in one branch

With thinner root tubes, pj may initially fall below the

capillary pressure pw in the wide branch such that wicking

occurs only in the narrow branch. This behavior is demon-

strated for D0¼ 0.6 by the trajectories of the menisci in

Fig. 13 and by the snapshots of the interface in Fig. 14. After

the interface splits into two at the bifurcation, they reorient

with respect to the axes of the branches and adjust their

FIG. 11. (Color online) Schematic of a planar microchannel with a Y-shaped bifurcation, showing three stages of wicking: (a) the meniscus reaches the expansion;

(b) the meniscus breaks into two at the bifurcation; (c) wicking continues in each branch under suitable conditions.

FIG. 12. (Color online) Wicking in both branches with a relatively wide root

tube: D0¼ 1.6. The origin of time is when the meniscus first touches the tip at

the junction (cf. Fig. 11(b)). The inset shows that wicking is faster in the nar-

row branch initially (t< 11), but the wide branch wins for longer times.
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curvature to the local tube size (Fig. 14(b)). Afterwards

wicking starts in the narrow branch, and the flow in the root

tube entails a pressure drop. The junction pressure pj thus

produced turns out to be lower than the capillary pressure pw

in the wide branch, and no wicking occurs there. In fact, the

negative pressure pj� pw causes the interface to retreat until

the contact line becomes pinned at the inner corner at t¼ 42.

Figure 14(c) depicts a moment soon afterwards with the me-

niscus immobilized in the wide branch. But the arrest of flow

in the wide branch is necessarily temporary. As the flow

slows down in the narrow tube, pj rises continually, eventu-

ally surpassing pw to produce wicking flow in the wide

branch as well. This is marked in Fig. 13 by tc¼ 194 when

the liquid column in the narrow tube is at Lc
n ¼ 2:56. After

that the situation becomes qualitatively the same as in Fig.

12, and Fig. 14(d) shows a snapshot in this stage. Eventually

wicking slows down toward zero in both branches.

The onset of wicking in the wide branch, indicated by tc

or Lc
n, is of practical interest. For instance, in a porous me-

dium of finite thickness, the critical value Lc
n for the small

pores will determine whether the bigger pores will contrib-

ute to liquid transport at all. If the liquid traverses the entire

length of the smaller pores before wicking even starts in the

bigger ones, the latter will be dead ends, which have been

observed in experiments46 and considered a major hindrance

to water transport through the GDM of fuel cells.20 Note

that all the ideas and qualitative arguments discussed so

far in this section apply as well to 3D flows in real porous

media.

In the spirit of the Lucas-Washburn analysis (Eq. (13)),

we can estimate the onset of wicking in the wide branch by

neglecting dynamics at the menisci and assuming fully

developed Poiseuille flow in the root and narrow tubes. Let

us denote the instantaneous average velocity in the narrow

tube by V2 and that in the root tube by V0. Then, the junction

pressure pj can be estimated either from the force balance on

the liquid in the root tube or that in the narrow tube

pj ¼ pa �
12lL0V0

D2
0

¼ pa �
2r cos h

D2

� 12lLnV2

D2
2

: (15)

The critical condition for wicking in the wide tube is pj being

equal to the capillary pressure behind the meniscus in the

wide tube

pj ¼ pw ¼ pa �
2r cos h

D1

: (16)

In addition, volume conservation requires V0D0¼V2D2.

Eliminating V0 and V2 from the above gives the following

critical condition on the liquid column Lc
n:

Lc
n ¼ L0

D1

D2

� 1

� �
D2

D0

� �3

: (17)

Recall our previous argument that wicking in the wide tube

depends on the viscous friction in the root tube and the dis-

similarity between the two branches. It is no surprise that Lc
n

turns out to depend on the length and diameter of the root

tube as well as the size difference between the two branches.

For the conditions in Fig. 13, Eq. (17) predicts Lc
n ¼ 2:3, rea-

sonably close to the numerical result of 2.56. Numerical

experimentation with narrower D0 values has confirmed fur-

ther delays in the wide branch in agreement with Eq. (17).

Finally, we note that the above calculation can be easily gen-

eralized to 3D circular tubes, and the formula has the expo-

nent on (D2/D0) changed from 3 to 4.

C. Flow reversal due to spatially inhomogeneous
hydrophilicity

Insofar as the Young-Laplace equation gives a capillary

pressure in the form of r cosh/D, varying the contact angle h
in a branch is in a way tantamount to varying the tube size

D. Thus, capillary competition between branches can be con-

trolled by varying h as well as D. Suppose that in Fig. 11, we

make the downstream portion of the wide branch more

hydrophilic, with a smaller contact angle. Then, a flow rever-
sal may occur in the narrow channel, as illustrated in Fig. 15.

In this geometry, h¼ 60� throughout the Y-branch except

for the downstream portion of the wide branch starting from

Lw¼ 1.25 that features a smaller h¼ 20�. The geometric and

physical parameters of the setup are such that wicking occurs

initially only in the narrow branch and starts later in the wide

channel around t¼ 110. When the meniscus encounters the

more hydrophilic portion in the wide branch (t¼ 942), the

wicking suddenly accelerates, causing a flow reversal in the

narrow tube. This is because the elevated flow rate in the root

tube depresses the pressure at the junction so much that it falls

below the capillary suction pressure pn in the narrow tube.

Depending on the physical and geometric parameters,

the liquid column may retreat entirely from the narrow tube,

with the interface pinned at the corner of the bifurcation, or

reverse its course again before that. Thereafter, the situation

FIG. 13. (Color online) Capillary competition between two branches with a

relatively narrow root tube, D0¼ 0.6. Wicking proceeds in the narrow

branch but is suppressed in the wide branch until tc¼ 194, marked by a dot

on both curves. The origin of time is when the meniscus first touches the tip

at the junction (cf. Fig. 11(b)).
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becomes similar to Fig. 13 or 12. Based on the Young-

Laplace equation, one may view the wicking in the more

hydrophilic portion of the wide branch as occurring in a tube

with h¼ 60� but a smaller effective width De¼D1cos 60�/
cos 20� ¼ 0.53D1, which is narrower than D2. (The viscous

friction will be different, of course.) Thus, the wicking con-

tinues with dwindling speed in the wide branch until the

junction pressure has again risen above the capillary pressure

in the narrow tube to restart wicking there.

Such flow reversal has been observed experimentally.

Litster et al.20 reported that in a model GDM for fuel cells, a

sudden acceleration in one flow path, due to breakthrough

from the GDM into open space, causes the liquid to retreat in

a neighboring connected path. The underlying principle is

simple and robust and suggests how surface properties can be

manipulated to control the flow pattern in porous media.

Indeed, the GDM of fuel cells is often surface-treated in a

spatially inhomogeneous way to enhance water transport.47

In addition, a more hydrophilic micro-porous layer with finer

pores is often attached to the GDM to create a jump in

FIG. 14. (Color online) Evolution of the interfacial morphology for the simulation depicted in Fig. 13. (a) The meniscus touches the salient corner at t¼ 0. (b)

The meniscus relaxes toward the equilibrium curvature inside each branch. (c) After a brief retraction, the meniscus is immobilized in the wide branch.

(d) After the restarting of flow in the wide branch, the menisci advance in both branches.

FIG. 15. Flow reversal in the narrow branch when the meniscus in the wide

branch moves onto a more hydrophilic portion with h¼ 20� at Lw¼ 1.25.

Elsewhere h¼ 60�. D0¼ 0.6, L0¼ 4, and D2¼ 0.9.
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wettability along the flow direction.48 Another potential

application for capillary competition and flow reversal is as a

precise switching mechanism in microfluidic devices.49–51 By

careful choice of the root and branch sizes, it is possible to

design a flow loop in which different branches are impreg-

nated by liquid at precise moments. The mechanism of capil-

lary competition works for multiple branches as well, and

one may design microfluidic manifolds using the same

principle.

VI. CONCLUDING REMARKS

This work aims for a detailed and rational understanding

of two-phase transport through micropores in porous media.

Using finite-element computations, we capture the evolving

morphology of the interfaces in geometries that retain the sa-

lient features of real pores, including expansion, contraction,

and branching. From a fundamental viewpoint, the most im-

portant findings are the following:

(a) The meniscus undergoes complex deformation during

transit through micropores, governed by the dynamic

balance among fluid-solid and gas-liquid interfacial ten-

sions and viscous friction. Such flow effects tend to dis-

tort the meniscus away from a spherical shape.

(b) The dynamics of the contact line plays a central role. It

pins at protruding corners, potentially barring wicking

into expansions with too steep a slope. The contact line

negotiates inner corners, thanks to the diffuseness of the

interface.

(c) Capillary competition between connected branches

depends on the capillary pressure due to meniscus curva-

ture inside each, and in turn on the size of the branches

and surface wettability. Under suitable conditions, wick-

ing can be arrested in wider branches in favor of a nar-

rower one, and the flow may even reverse course when

wicking accelerates in a neighboring path.

We have hinted at the relevance of these insights to tech-

nological applications, e.g., in proton-membrane exchange

fuel cells. Against this background, however, the work

reported here must be seen as a preliminary step. Real 3D

flow through porous media includes many complicating fac-

tors that have not been accounted for, including 3D connec-

tivity, pore size distribution and tortuosity of the flow path.

Nevertheless, this serves as a starting point for an approach to

two-phase flow in porous media that is more rational and

accurate than the traditional one centered on an empirical rel-

ative permeability.
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