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Synopsis

We report experiments on the migration of a large bubble in an otherwise monodisperse two-

dimensional (2D) foam sheared in a wide-gap Couette device. The bubble migrates away from the

walls toward an equilibrium position between the center of the gap and the inner cylinder. This differs

from the situation in a narrow-gap Couette device, where the equilibrium position is at the center of the

gap [Mohammadigoushki and Feng, Phys. Rev. Lett. 109, 084502 (2012)]. The shift in equilibrium

position is attributed to the non-Newtonian rheology of the foam, which is brought out by the non-

homogeneous shearing in a wide-gap geometry. Two aspects of the rheology, shear-thinning and the

first normal stress difference, are examined separately by comparing with bubble migration in a xanthan

gum solution and a Boger fluid. Shear-thinning shifts the equilibrium position inward while the normal

stress does the opposite. Bubble migration in the 2D foam is the outcome of the competition between

the two effects. VC 2014 The Society of Rheology. [http://dx.doi.org/10.1122/1.4892660]

I. INTRODUCTION

Foams are quintessential soft matter in that they admit both a macroscopic,

continuum-based description and a microscopic, bubble-scale one. On the one hand,

foam rheology is invariably measured on the bulk. In so doing, one implicitly adopts an
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effective-continuum view, and sometimes explicitly represents the foam rheology by

continuum models [Lauridsen et al. (2002); Katgert et al. (2010)]. On the other hand,

bulk flow and deformation produce changes in the microstructure, i.e., bubble-scale mor-

phology. Shearing is known to induce neighbor-swapping rearrangements known as T1

processes [Wang et al. (2006); Pratt and Dennin (2003)]. Additional microstructural

changes include bubble coalescence, breakup, migration, and size-based segregation

[Golemanov et al. (2008); Herzhaft (2002); Mohammadigoushki and Feng (2012, 2013);

Mohammadigoushki et al. (2012)]. Since foams can be examined on both levels, and

indeed manifest a clear link between their microstructure and bulk flow behavior, they

are excellent model systems for studying the coupling between the microscopic and mac-

roscopic scales.

We are only beginning to understand the interaction between the two length scales,

and many questions remain to be answered. Even the shear viscosity of a foam is not

well understood. In one simple-shear experiment, Golemanov et al. (2008) observed a

marked increase of the shear stress in time after the start of shear and attributed it to the

breakup of the bubbles. In another experiment, Herzhaft (2002) reported a shear stress

that gradually declines in time. The microstructural change underlying this decline is

unclear at present. In addition, foams show shear-thinning, which can be fitted to the con-

tinuum Herschel-Bulkley model [Lauridsen et al. (2002); Katgert et al. (2010)]. The bub-

ble velocity profile, however, differs appreciably from that predicted by the continuum

model [Katgert et al. (2010)]. This has been ascribed to a nonlocal effect arising from the

cooperative movement of bubbles within a certain “co-operativity” length scale. Surface

tension is also known to produce normal stress differences on the macroscopic scale

[Gardiner et al. (2000); Labiausse et al. (2007)]. Thus, the micro-macro connection is

complex for foams, and their dynamics is influenced by continuum rheology as well as

textural granularity.

We have been investigating one aspect of this connection, the cross-streamline migra-

tion of bubbles in sheared “two-dimensional” (2D) foam, which is a bubble raft floating

on a soapy solution [Mohammadigoushki and Feng (2012, 2013)]. The two-

dimensionality affords direct visualization of bubble-scale microstructures that would be

impossible for 3D foams. Recent experiments in simple shear demonstrated that bubbles

migrate laterally in sheared polydisperse foams and segregate according to size.

Moreover, the segregation can be understood using a simple continuum model in which

the smallest bubbles are viewed as an effective Newtonian fluid that suspends the larger

bubbles [Mohammadigoushki and Feng (2012, 2013)]. Such a model can account for the

segregation data quantitatively by combining shear-induced migration of individual bub-

bles with an effective diffusion due to collision among large bubbles. This adds to the

collection of foam behavior that can be described as continuumlike. In the mean time, the

discreteness of the bubbles manifests itself as well, in terms of “quantized” steps of

migration and thresholds in shear-rate and bubble size ratio under which no migration

takes place. Note that the above has been observed in simple shear in a narrow-gap

Couette device.

The experiments to be presented here extend the previous work by examining bubble

migration in 2D foams under nonuniform shear in a wide-gap Couette device. Now two

new factors arise that may influence the bubble migration: The variation of shear rate

across the gap and curvature of the streamlines. However, accounting for these in the

continuum model fails to predict the experimental outcome. This simple change of geom-

etry, as it turns out, brings out the non-Newtonian rheology of the foam to bear on the

migration of bubbles. The novelties of the study are two. First, we present an intriguing

example of the bulk rheology of the foam affecting its microstructural evolution. As far
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as we know, no similar process has been reported before. Second, we demonstrate that

the continuum analogy can be maintained if we view the smaller bubbles as constituting

an effective non-Newtonian fluid that shows shear-thinning and normal stress difference

under shear. In fact, drop migration in non-Newtonian fluids, a subject that has received

long-standing attention [Gauthier et al. (1971); Chan and Leal (1979, 1981)], will be a

key to understanding bubble migration in foam in wide-gap Couette geometry. Thus, our

results suggest that certain aspects of 2D foam dynamics can be interpreted from a con-

tinuum standpoint, while others require accounting explicitly for the granularity of the

bubbles [Katgert et al. (2010)].

II. MATERIALS AND METHODS

Our experiments focus on the lateral migration of individual large bubbles in a bubble raft

made of monodisperse smaller bubbles. The main conclusion is that the smaller bubbles can

be viewed as a shear-thinning, viscoelastic fluid in accounting for the lateral migration of the

larger bubbles. Toward this goal, we have carried out two types of experiments: Bubble-

migration experiments and rheological measurements. These are done in 2D foams as well as

in polymer solutions whose rheology has been designed to mimic that of the foam.

Migration experiments are conducted in a modified Couette device of coaxial cylinders.

A schematic of the experimental setup is shown in Fig. 1. The radius of the inner cylinder

is Ri¼ 81 mm and that of the outer cylinder is Ro¼ 99 mm, with a gap size of d¼Ro –

Ri¼ 18 mm. To make a monodisperse 2D foam with a certain bubble size, we use a micro-

syringe to inject nitrogen gas into a surfactant solution at precisely controlled flow rates.

The characteristics of the soap solution are similar to what Mohammadigoushki and Feng

(2012) have reported before. To prevent slippage at the solid surfaces, triangular teeth are

machined onto the inner and outer cylinders. The surfactant solution has a viscosity

gs ¼ 50 mPa s, density q¼ 1200 kg/m3, and a surface tension r¼ 25 mN/m. The surfactant

concentration of 5 wt. % is several times higher than the critical micelle concentration

[Mohammadigoushki and Feng (2012)].

Rheological measurements are performed on commercial rheometers (Malvern

Kinexus and Anton Paar MCR 502) with the bob-cup and cone-plate fixtures. Measuring

FIG. 1. Schematic of the wide-gap Couette device used in this work (not to scale). The inner cylinder is driven

by a stepping motor, and the trajectory of large bubbles are tracked by three cameras at different azimuthal posi-

tions along the gap.
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the shear viscosity of the 2D foam is a delicate task. We glue sandpaper onto the surfaces

of the fixtures to prevent wall-bubble slip [Khan et al. (1988); Golemanov et al. (2008)].

Since our 2D foam floats on a liquid bath, we need a separate measurement without the

foam such that the liquid contribution to the torque may be subtracted. Then the shear

viscosity of the foam can be obtained. Typically, it takes minutes for the shear stress of

the foam to stabilize into a steady-state value at a prescribed shear rate. A shear-rate

sweep lasts for some 40 min, during which the foam remains stable without coarsening

or bursting. The normal stress difference of 2D foam would be even more difficult to

measure, and to our knowledge no such measurements have been reported in the litera-

ture. We have decided not to attempt this in our experiment.

We have also performed migration experiments and rheological measurements in

aqueous solutions of xanthan gum and a Boger fluid. The xanthan solutions are made by

dissolving xanthan gum polymer (West Point Naturals) in deionized water with 5 wt. %

of surfactant (Sunlight by Unilever). The xanthan concentration ranges from 1000 to

4000 ppm. Our Boger fluid is a 300 ppm solution of polyacrylamide (Sigma-Aldrich,

Mw¼ 5 000 000–6 000 000) in a glycerin-based high-viscosity solvent, which consists of

90 wt. % glycerin (Fisher Scientific), 9 wt. % deionized water, and 1 wt. % of surfactant.

The xanthan solutions are shear-thinning with negligible normal stress, while the Boger

fluid exhibits normal stress with a roughly constant viscosity. The surface tension of the

Boger fluid is 36.5 mN/m, and those of the xanthan solutions fall between 32 and 34 mN/

m. In all the fluids used, the surfactant level is chosen to be high enough to maintain bub-

ble stability against coarsening and burst for at least 1 h. The surfactants do not modify

the rheology of the solutions to a measurable degree.

The trajectory of bubbles is tracked using an array of three CCD cameras arranged in

roughly equal spacing around the circular gap. Each camera is equipped with a 55 mm

lens that allows us to measure the position of the bubble centroid and the bubble diameter

with a maximum error of 60.02 mm. This level of uncertainty applies to all the data pre-

sented in the rest of the paper and is indicated by error bars in select plots.

III. EXPERIMENTAL RESULTS

We have performed two series of experiments—bubble-migration and rheological

measurements—on three types of media: 2D foams, xanthan gum solutions, and a Boger

fluid. In the following, we present the result of each experiment in turn.

A. Bubble migration in foam

The experimental protocol for recording bubble migration across streamlines is similar

to that used in narrow-gap Couette cells [Mohammadigoushki and Feng (2012)]. We

make a monodisperse foam consisting of bubbles of radius r¼ 0.36 mm, which covers

the entire wide gap of the Couette device in a more or less regular hexagonal lattice. The

foam quality, defined as the area fraction of the bubbles, is maintained at 85% for all

the experiments to be presented. We then insert a single large bubble of radius R into the

foam at different initial positions, and shear the foam by rotating the inner cylinder at a

constant angular velocity X. The foam velocity profile is measured using particle-image-

velocimetry (PIV) [Mohammadigoushki et al. (2012)]. The two control parameters are

the shear rate _c at the inner wall, estimated from the local slope of the velocity profile,

and the bubble size ratio j¼R=r. The results to be reported cover a range of the shear

rate 3:50 s�1 < _c < 8:62 s�1. The upper bound is chosen such that the centripetal force

remains negligible. The lower bound ensures complete yielding of the foam throughout
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the gap. At lower shear rates, the foam may yield partially in our wide-gap Couette cell,

introducing unnecessary complication to the discussion of migration. We have found it

convenient to cite the shear rate _c in reporting experimental results; this can be conven-

iently converted into a capillary number by Ca ¼ gs _cR=r, with r being the surface ten-

sion of the surfactant solution. For the large bubble we have tested five sizes: R¼ 0.5,

0.6, 1, 1.4, and 1.8 mm, corresponding to j¼ 1.39, 1.67, 2.79, 3.91, and 5.03.

Similar to what has been reported for the narrow-gap Couette device [Mohammadigoushki

and Feng (2012)], the large bubble migrates across the flow direction if the shear rate _c and

bubble size ratio j are each above a threshold value. The migration is driven by a hydro-

dynamic force that arises from the asymmetric flow and pressure fields surrounding the

deformed bubbles [Mohammadigoushki and Feng (2012, 2013)]. The migration is gener-

ally away from the walls, and the hydrodynamic driving force is greatest at the wall and

diminishes toward the center. The thresholds reflect the discreteness of the foam; the

hydrodynamic force has to overcome the capillary pressure in neighboring bubbles in

order to move the large bubble to the next row [Mohammadigoushki and Feng (2012)].

Thus, a large bubble may migrate across one or several rows if released near the wall, but

not at all if released further away from the wall. For simplicity, we will exclude such par-

tial migration from further discussion and define the thresholds of _c and j according to

complete migration, i.e., migration to an equilibrium position regardless of initial posi-

tions. As in the narrow-gap Couette cell, we find the _c threshold to decrease with increas-

ing j, and the j threshold to decrease with increasing _c [Mohammadigoushki and Feng

(2012)]. The threshold values are comparable to those in the narrow gap. In the follow-

ing, we will concern ourselves only with the dynamics above these thresholds.

Figure 2 shows the migration trajectories of bubbles of two sizes (R¼ 1 and 1.4 mm)

at two different shear rates. The bubble center is indicated by S, its distance from the

inner cylinder is scaled by the gap width d¼Ro – Ri. Error bars drawn on one data set

FIG. 2. Migration trajectories of bubbles of two size R ¼ 1 and 1.4 mm, released from different positions in the

foam sheared at two different shear rates. The curve shows the prediction of the Chan-Leal formula [Chan and

Leal (1979)] for the bubble of radius R ¼ 1.4 mm at _c ¼ 5:71 s�1.
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indicate the spatial resolution in determining the bubble center. Subsequent results have

similar errors and error bars will be omitted for clarity. The threshold shear rate is around

3.5 s�1 for the smaller bubble, and 1.5 s�1 for the larger one. For shear rates above this

threshold, the same equilibrium position is reached from all initial positions. This equilib-

rium position seems to be independent of the shear rate and the bubble size ratio, although

the speed of migration increases with _c and j. The features described so far are similar to

prior observations in the narrow-gap Couette device [Mohammadigoushki and Feng

(2012)]. The key difference is that the equilibrium position is not at the center of the gap,

as is the case in the narrow-gap geometry [Mohammadigoushki and Feng (2012)]. Rather it

is some distance inward from the center of the gap, closer to the inner cylinder; in the par-

ticular case shown in Fig. 2, this position is at Se � 0.36. One naturally seeks a geometrical

explanation for the difference. After all, the wide-gap Couette device should produce a

nonuniform shear rate profile across the gap, with higher local shear rate in the inner half

of the gap than the outer half. Such asymmetry should bias the equilibrium position of the

migrating bubble. This effect can be quantified with the help of the Chan-Leal theory for

lateral migration of droplets in Couette flows [Chan and Leal (1979, 1981)].

Chan and Leal (1979) considered the migration of a Newtonian drop in a Newtonian

matrix sheared in a Couette device, under the condition of vanishing capillary number

and small drop deformation. For a bubble of radius R in a matrix of viscosity g, the

dimensional migration velocity can be written as

vm Sð Þ ¼ r
g

Ca2 Ri

Ro

� �4
81

560

R2

d2
1þ R2

o

Ri þ Sdð Þ2

" #2

f Sð Þ � 1

7

R4
oR

Ri þ Sdð Þ5

8<
:

9=
;; (1)

where Ca ¼ g _cR=r is defined using the shear rate at the inner cylinder,

f ðSÞ ¼ S�2 � ð1� SÞ�2 þ 2� 4S, and we have put the bubble viscosity to zero. The first

term in the bracket represents wall repulsion that pushes the bubble to the center of the

gap (S¼ 0.5), while the second term is due to the curvature of the streamlines and drives

the bubble toward the inner cylinder. Thus, the Chan-Leal formula predicts an equilib-

rium position between the center and the inner cylinder. Recently, we have demonstrated

that this formula can be adapted to the migration of a single large bubble in a sea of

monodisperse bubbles [Mohammadigoushki and Feng (2012)]. Viewing the smaller bub-

bles as an effective continuum, we observed experimentally that the large bubble deforms

much more than in a real Newtonian fluid at the same capillary number. Interpreting this

enhanced deformation as an elevated effective capillary number Cae, we have shown that

the modified Chan-Leal formula, with Ca replaced by Cae, predicts the migration of the

large bubble in a foam [Mohammadigoushki and Feng (2012)] and size-based bubble

segregation [Mohammadigoushki and Feng (2013)] to quantitative accuracy. Applied to

the conditions of one of the experimental runs of Fig. 2, the modified Chan-Leal formula

gives the migration trajectory plotted as the solid curve. It predicts only a slight inward

shift of the equilibrium position, to Se¼ 0.47, which cannot account for the much larger

shift observed experimentally. Therefore, the observations in the wide-gap experiment

cannot be accounted for by the curvilinear geometry alone.

A factor that has not been taken into account in the above comparison is the

non-Newtonian rheology of the foam. The Chan-Leal formula used in Fig. 2 is for a

Newtonian suspending fluid. Its success with bubble migration in a foam has so far been

limited to uniform shear in a narrow-gap Couette cell [Mohammadigoushki and Feng

(2012, 2013)]. Can it be that the nonuniform shearing in the wide-gap device brings out

non-Newtonian rheology that is not manifest in the narrow-gap Couette cell? Shear-
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thinning will accentuate the nonlinearity of the velocity profile, and a large bubble would

thus experience unequal viscosities upon its two sides. Moreover, the first normal stress

difference N1 would exhibit a similar asymmetry between the two sides, potentially pro-

ducing a radial force. To ascertain these potential effects on bubble migration in the

foam, we need to characterize the bulk rheology of the foam first. This has in turn moti-

vated us to make polymer solutions possessing shear-thinning and elasticity separately,

each mimicking one aspect of the foam rheology. Thus, bubble migration in these solu-

tions may be investigated as benchmarks for gauging the bubble migration in foam.

B. Bulk rheology of 2D foam and polymer solutions

Foams have a yield stress, and in the fully yielded state exhibit shear-thinning and nor-

mal stress differences [Gardiner et al. (2000); Katgert et al. (2010); Kraynik and Reinelt

(2004); Ovarlez et al. (2010)]. To probe the shear-thinning of our 2D foam, we have

measured its shear rheology on a rotational rheometer using the bob-cup fixture. To

accommodate a large number of bubbles, we used a wide-gap setup, with the radius of

the inner cylinder being Ri¼ 22 mm and that of the stationary outer cylinder being

Ro¼ 35 mm. For a fully yielded foam, the local shear rate at the inner cylinder is calcu-

lated from the following formula [Krieger and Elrod (1953); Estell�e et al. (2008)]:

_c ¼ 2X
C

1� R2
i =R2

o

� X
1� C

ln Ri=Roð Þ ; (2)

where X is the rate of rotation of the inner cylinder, and C ¼ dðln XÞ=dðln MÞ, and M
being the torque on the inner cylinder.

Figure 3 shows the shear stress as a function of the shear rate for our 2D foam.

Following prior experiments on 2D and 3D foams [Katgert et al. (2010); Ovarlez et al.
(2010)], we fit the data by a Herschel-Bulkley model

FIG. 3. Shear flow curve of the 2D foam measured in a rheometer with a bob-cup fixture. Two data sets obtained

under identical conditions are plotted along with a best-fitting curve to the Herschel-Bulkley equation [Eq. (3)].
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s ¼ sy þ K _cn; (3)

with a yield stress sy¼ 0.28 Pa, consistency K ¼ 0:779 Pa sn, and a power-law index

n¼ 0.505. Thus, our foam shows similar shear-thinning behavior to previous experiments

[Katgert et al. (2010); Ovarlez et al. (2010)].

Although the bulk rheology of 2D foam is adequately represented by the Herschel-

Bulkley model, foam dynamics is subtler than Eq. (3) might suggest. Katgert et al. (2010)

have discovered a mismatch between global rheology and local flow behavior. For

instance, the foam may flow in regions where the stress is below the yield stress sy. The

bubble velocity profile across the gap differs from that computed from Eq. (3), and appears

to be independent of the shear rate. Our own PIV measurement confirms the same effect

(Fig. 4). The velocity profile, after scaling by the inner cylinder velocity vi ¼ XRi, is essen-

tially independent of _c, and falls considerably below the velocity profile expected from the

global constitutive equation. Katgert et al. (2010) ascribed this discrepancy to a nonlocal

effect, by which neighboring bubbles affect each other’s movement in a cooperative man-

ner. This allows the local flow to be influenced by the discreteness of the bubbles, aside

from the global rheology of the foam as a whole. In the present study, we approach bubble

migration mostly from an effective-continuum standpoint. But the discreteness of the foam

must be borne in mind. We will return to this apparent duality in foam rheology at the end.

Both 2D and 3D foams are known to exhibit a first normal stress difference N1

[Gardiner et al. (2000); Kraynik and Reinelt (2004); Labiausse et al. (2007); Okuzono

et al. (1993)]. But we have not been able to measure N1 directly for our flowing 2D foam,

nor have we found any such measurements in the literature. Direct measurement of N1

will require special instrumentation, with pressure sensors embedded flush with the outer

or inner cylinders in a Couette device. The only experimental data appear to be for small-

strain shearing of a 3D foam in the preyielding elastic regime [Labiausse et al. (2007)].

FIG. 4. Bubble velocity profiles for a monodisperse foam at two different shear rates. The velocity is scaled by

vi ¼ XRi, velocity at the inner cylinder. The dash lines indicate predictions from the Herschel-Bulkley model

[Eq. (3)], and a Newtonian profile is also plotted for comparison.

1816 MOHAMMADIGOUSHKI, YUE, AND FENG



From numerical computations, Kraynik and Reinelt (2004) determined that N1 is on the

same order of magnitude as the shear stress for 3D foam before yielding. In simulations

of a random 2D foam undergoing simple shear in the yielded regime, Okuzono et al.
(1993) recorded N1 values roughly twice as large as the shear stress over a range of shear

rates. In view of the limited data in the literature, we have decided to use the results of

Okuzono et al. (1993) as a guideline, and assume that for our 2D foam N1 is on the same

order of magnitude as the shear stress, which we have measured with confidence.

As shear-thinning and normal stress act simultaneously on bubble migration in our

foam, it is impossible to identify and analyze their individual contributions. Therefore,

we have sought to probe the two effects separately by using shear-thinning and visco-

elastic polymer solutions that represent each aspect of the foam’s rheology. Aqueous so-

lution of xanthan gum is known to exhibit shear-thinning but negligible elasticity

[Aytouna et al. (2013); Bonn and Meunier (1997)]. We have tested a series of xanthan

solutions and compared their viscosity to that of the foam in Fig. 5. The 2500 ppm solu-

tion approximates the foam shear viscosity most closely. Therefore, we choose this solu-

tion as the representative for the shear-thinning behavior of foam.

To represent N1 of the foam, we have made a polyacrylamide solution as a Boger

fluid. Figure 6 compares the shear rheology of the Boger fluid with that of the foam.

Within the range of shear rate tested, the Boger fluid exhibits an essentially constant

shear viscosity, and an N1 that scales approximately with _c2. Ideally, we would have liked

N1 of the Boger fluid to match the foam shear stress in the _c range of interest, up to

8.62 s�1. This turns out to be difficult to realize experimentally. For one, increasing the

polymer concentration in the Boger fluid incurs appreciable shear-thinning. Thus, we

have accepted this Boger fluid as roughly representing the order of magnitude of the

normal-stress in the foam. The relaxation time of the Boger fluid can be estimated from

N1=ð2g _c2Þ [Bird et al. (1987)]. Thus we define a Deborah number De ¼ N1=ð2g _cÞ.

FIG. 5. Shear viscosity of xanthan gum solutions of various concentrations. The line indicates the foam viscos-

ity in the range of shear rates used in the bubble-migration experiments. In this range, the 2500 ppm xanthan so-

lution has a power-law viscosity g ¼ 0:85_c�0:55, in unit of Pa with _c in s�1.
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C. Bubble migration in shear-thinning and Boger fluids

We have conducted bubble-migration experiments in the shear-thinning xanthan solu-

tion and the Boger fluid, using the same wide-gap Couette device, bubble sizes, and oper-

ating conditions as in the foam experiments. As the non-Newtonian polymer solutions

represent the “effective continuum” formed by the small bubbles in our 2D foam, we

release single “large” bubbles in these experiments. Figure 7 depicts migration of bubbles

of two sizes in the xanthan solution at different shear rates and initial positions.

Remarkably, all the runs reach essentially the same equilibrium position at Se � 0:25,

roughly midway between the center of the gap and the inner cylinder. This is much more

inward than in a Newtonian fluid, in which a single bubble follows the Chan-Leal for-

mula closely (stars and solid curve in Fig. 7), leading to an equilibrium position of

Se¼ 0.47. Besides, the speed of migration increases with the bubble size and the shear

rate, but the equilibrium position does not seem to depend on either.

Thus, shear-thinning tends to shift the bubble’s equilibrium position toward the inner cylin-

der. This trend is consistent with the previous experimental results of Gauthier et al. (1971). In

a wide-gap Couette device, they studied migration of a deformable droplet in a shear-thinning

fluid with power-law index n¼ 0.71. Droplets of different sizes starting from different initial

positions all arrive at the same equilibrium position Se � 0:4. Our xanthan solution has stron-

ger shear-thinning (n¼ 0.45) than their fluid, and it is reasonable that the bubbles assume a

position farther inward than in their case. Regarding the hydrodynamic origin of the effect,

one may imagine that the bubble experiences reduced viscosity on the side closer to the inner

wall, where the shear rate is higher. We will return to this idea in Sec. IV B.

The opposite trend is observed in the Boger fluid. Figure 8 shows migration trajecto-

ries of bubbles of three sizes released from different initial positions at two shear rates. In

all cases, the bubble migrates to an equilibrium position close to Se¼ 0.57 in the outer

FIG. 6. Shear rheology of the Boger fluid, with circles for the shear viscosity g and diamonds for the first nor-

mal stress difference N1. The straight line is a power-law fitting for N1 with a slope close to 2. The filled squares

show the shear stress of the foam s, which is comparable in magnitude to N1 of the Boger fluid, especially near

the upper bound of the shear rate.
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half of the gap. This suggests that the normal stress N1 tends to force the bubble outward.

Furthermore, the equilibrium position shows little dependence on the shear rate _c and the

bubble size R, although the migration speed increases with both.

IV. ANALYSIS AND DISCUSSION

We undertake three main tasks in this section: (i) To analyze the migration of a single

bubble in the Boger fluid; (ii) to analyze the migration of a single bubble in the shear-

FIG. 8. Migration trajectories of bubbles in the Boger fluid. (a) A bubble of radius R ¼ 1 mm released from two

initial positions at two shear rates, corresponding to (Ca, De) ¼ (0.0156, 0.0674) and (0.0282, 0.114). (b) The

effect of bubble size at a fixed shear rate. De ¼ 0.114 is independent of R, and Ca ¼ 0.0198, 0.0282, and 0.0395

for the three R values. The curves show the predictions of the Chan-Leal formula [Eq. (4)].

FIG. 7. Migration trajectories of bubbles in the xanthan solution starting from different initial positions. The

bubbles are of two sizes (R ¼ 0.6 and 1 mm) and sheared at two shear rates ( _c ¼ 3:15 and 8 s–1). The horizontal

dashed line marks the equilibrium position. For comparison, a migration trajectory in Newtonian fluid (stars)

and prediction of the Chan-Leal formula (solid curve) are also shown.
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thinning fluid; and (iii) to rationalize the migration of a larger bubble in our 2D foam

from the last two factors. Finally, we reflect on the validity of the effective-continuum

analogy despite the discreteness of the foam.

A. Effect of elasticity

To analyze the migration of single bubbles in the Boger fluid, we rely heavily on the

asymptotic theory of Chan and Leal (1979, 1981) for lateral migration of neutrally buoy-

ant drop in a suspending fluid. This theory was developed for viscoelastic second-order

fluids, with Newtonian fluids as a special case. As the second-order fluid exhibits normal

stress differences but no shear-thinning, it is a fitting description of our Boger fluid.

Geometrically, the theory allows for shear-rate gradients in a wide-gap Couette cell, mak-

ing it relevant to the present experiments. Despite the buoyancy force, our bubbles are

mostly submerged in the liquid [Mohammadigoushki and Feng (2012)]. Moreover, the

perturbation theory requires R=d � 1; Ca� 1 and De� 1, Ca and De being the capil-

lary number and Deborah number, respectively. These conditions are satisfied by our

experiments. The Newtonian version of the theory accurately predicts bubble-migration

experiments in a narrow-gap Couette cell [Mohammadigoushki and Feng (2012)] as well

as in the current wide-gap Couette cell.

For a bubble in a Boger fluid, the Chan-Leal theory predicts a migration velocity

[Chan and Leal (1981)]

vm Sð Þ ¼ r
g

Ca2 Ri

Ro

� �4

�
(

81

560

R2

d2
1þ R2

o

Ri þ Sdð Þ2

" #2

1þ 0:418
De

Ca

� �
f Sð Þ

� 1

7
1� 2:30

De

Ca

� �
R4

oR

Ri þ Sdð Þ5

)
; (4)

where De ¼ N1=ð2g _cÞ is the Deborah number for the Boger fluid, and we have assumed

a ratio between the normal stress differences N2/N1¼�0.167 following Chan and Leal

(1981). Applied to our experimental conditions, the predictions of Eq. (4) are plotted as

solid and dashed lines in Fig. 8. Three interesting observations can be made.

First, the formula correctly predicts the outward shift of the bubble’s equilibrium posi-

tion in all cases. In Fig. 8(a), the measured Se¼ 0.57 differs from the predicted Se¼ 0.60

by some 5%. The migration speed is overpredicted when the bubble is near the walls,

probably because the theoretical vm increases without bound toward the walls. For longer

times, however, the migration velocity is underpredicted for reasons that are unclear at

present. But overall there is reasonable agreement between experiment and theory. Note

that in the Chan-Leal formula [Eq. (4)], the first term in the bracket accounts for wall

effects that always push the drop toward the center of the gap. The second term, due to

gradient of the shear rate, can change sign depending on the magnitude of the viscoelas-

ticity (De) relative to drop deformation (Ca). For all runs in Fig. 8, De/Ca is above 2.88.

Thus, the non-Newtonian N1 effect dominates the drop-deformation effect and makes the

second term positive, pushing the drop outward.

To extract a migration force from the experimental data, we differentiate the S(t) curve

to compute a migration velocity vm(S), and then use the Stokes formula to obtain a lateral

force FB. Figure 9(a) plots such a force for one of the trajectories in Fig. 8. As expected,

FB is large and positive close to the inner cylinder, and negative but smaller near the

outer cylinder. FB¼ 0 occurs at Se¼ 0.57. By subtracting the lateral migration force for a

Newtonian fluid FN, computed from the Chan-Leal migration velocity [Eq. (1)] at the
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same Ca using Stokes’ law, we can isolate the “net contribution” of the normal stress dif-

ference N1 to the lateral migration, and such a force is plotted in Fig. 9(b). This force is

in nearly quantitative agreement with the model prediction. As pointed out by Chan and

Leal (1981), this net force also comprises contributions from the wall repulsion and the

shear-rate gradient. The former points to the center of the gap whereas the latter points

radially outward. The two balance at a position between the center and the outer wall.

Heuristically, one may think of the lateral force as arising from an asymmetry between

N1 acting on the two sides of the bubble [Karnis and Mason (1966)] or from a “hoop

thrust” on bowed streamlines around it [Chan and Leal (1979)].

Second, for a fixed bubble size, the formula predicts a final equilibrium position that is

independent of the shear rate, in agreement with our observations. The independence of

Se on _c can be readily appreciated from Eq. (4). The non-Newtonian rheology affects Se

only through De/Ca, and _c cancels out of this ratio. This ratio represents the competition

between the normal stress N1 and the bubble deformation in lateral migration. As demon-

strated by Chan and Leal (1979) in Newtonian and second-order fluids, the bubble defor-

mation creates an asymmetry in the flow and stress fields in the vicinities, which tends to

push the bubble away from solid walls. Thus, this effect opposes that of N1 in the outer

half of the Couette device. When the shear rate _c is elevated, N1 increases and so does

the bubble deformation. The Chan-Leal theory shows that these two effects cancel out

precisely.

Third, the Chan-Leal formula predicts the equilibrium position Se shifting away from

the outer wall as the bubble size R increases relative to the gap d (Fig. 10). This is due

partly to stronger wall repulsion [first term in Eq. (4)], and partly to a diminishing N1

effect relative to an increasing Ca. This effect is stronger for smaller R/d and saturates

for larger R/d. In comparison, our experimental data show a weaker effect of drop size.

As R increases from 0.7 to 1.8 mm, Se shifts inward toward the centerline, but by an

amount below the roughly 10% predicted by the Chan-Leal formula. At present we have

no explanation for this discrepancy. Note, however, that our current data cover a rela-

tively narrow range of bubble size. The discrepancy needs to be examined over a wider R
range in a more thorough investigation.

FIG. 9. The migration force in a Boger fluid, made dimensionless by g _cR2. (a) The force FB ¼ 6pgRvm, with

the migration velocity vm computed from the trajectory of Fig. 8 with R ¼ 1 mm and _c ¼ 4:77 s�1. The migra-

tion force FN in a comparable Newtonian fluid, calculated from the Chan-Leal formula, is shown for compari-

son. The horizontal dashed line indicates F ¼ 0. (b) The net migration force due to N1, FB – FN (symbols),

compared with that predicted by the Chan-Leal formula (curve).
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B. Effect of shear-thinning

We have observed that shear-thinning tends to shift the equilibrium position Se toward

the inner cylinder (Fig. 7), and this trend agrees with prior experiment by Gauthier et al.
(1971). To rationalize this observation, we can no longer resort to the Chan-Leal theory

as it does not allow shear-thinning. But one may follow a similar physical reasoning to

that employed above for the Boger fluid. We argue that the bubble is subject to two

forces, one due to drop deformation in a Newtonian fluid, as given by the Newtonian ver-

sion of the Chan-Leal formula, and the other due to the shear-thinning rheology. The lat-

ter force cannot be easily estimated from scaling arguments. In the following, we probe it

from the experimental trajectories.

Differentiation of the bubble-migration trajectories in the xanthan solution (Fig. 7)

gives us the instantaneous migration velocity at different radial positions. Figure 11(a)

compares vm from one of the trajectories (with R¼ 1 mm and _c ¼ 8 s�1) with a

Newtonian curve calculated from the Chan-Leal formula using the viscosity of the xan-

than solution at the middle of the gap S¼ 0.5. Even with the scatter in the data, it is clear

that shear-thinning shifts the migration velocity curve downward over the entire gap. In

the outer region, the inward migration is enhanced, while in the inner region, the outward

migration is hindered. From the migration velocity vm(S) and the local viscosity for the

xanthan solution, we can estimate a lateral migration force FX(S) from the Stokes for-

mula. Then the difference FX – FN, with the Newtonian force FN computed at the viscos-

ity of the xanthan solution at the center of the gap, gives us a “net migration force” due

to shear-thinning [Fig. 11(b)]. Evidently, shear-thinning gives rise to an additional lateral

force that points inward throughout the gap. Despite the scatter in the data, one discerns a

roughly symmetric spatial distribution of this force; it is larger near the walls, and dimin-

ishes toward the center of the gap.

FIG. 10. The equilibrium position Se as a function of the bubble size R/d in the Boger fluid: Comparison

between experiments and the Chan-Leal formula. The error bars indicate the limit of image resolution. The con-

ditions are identical to those of Fig. 8(b), with the shear rate fixed at _c ¼ 4:77 s�1.
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Regarding the physical origin of the lateral migration force due to shear-thinning, we

can only offer a vague, heuristic argument. Shear-thinning produces a difference in viscos-

ity between the two sides of the bubble, which then creates an additional asymmetry in the

flow and stress fields, and in turn a net lateral force. The viscosity is lower on the inner side

of the bubble than on the outer side. One may imagine that the more viscous fluid on the

outer side tends to push the bubble inward. Without a solid grasp of the lateral force, it is

difficult to explain why the equilibrium position is insensitive to _c and R/d.

C. Migration of large bubbles in foam

Having analyzed both shear-thinning and normal-stress effects, we return to bubble

migration in the 2D foam. Viewing the surrounding small bubbles as an effective contin-

uum possessing both normal stress and shear-thinning, we rationalize the experimental

observations as the outcome of the competition between the two rheological features of

the foam.

The normal stress difference N1 generates a predominantly outward force on the bub-

ble, except near the outer wall [Fig. 9(b)], whereas shear-thinning engenders an inward

force [Fig. 11(b)]. These two forces are of comparable magnitude, ranging roughly from

0.02 in the middle of the gap to 0.2 near the walls. As a leading-order approximation, we

may view the bubble migration in the xanthan solution or Boger fluid as the addition of a

shear-thinning or N1 effect, respectively, on the underlying Newtonian effect. Then bub-

ble migration in the foam can be predicted from summing the lateral forces FN in the

Newtonian fluid, FB – FN in the Boger fluid and FX – FN in the xanthan solution. The

resulting total force FT ¼ FB þ FX � FN can then be compared directly with the migra-

tion force in the foam.

To carry out such a comparison, the parameters need to be matched among the differ-

ent scenarios. Using FX of Fig. 11, at R¼ 1 mm and _c ¼ 8 s�1, we calculate FN and FB

from the Chan-Leal formula using the foam viscosity (which matches the xanthan viscos-

ity) at the center of the gap. We happen not to have the Newtonian and Boger-fluid

experiments at R¼ 1 mm and _c ¼ 8 s–1, but the agreement between the Chan-Leal for-

mula and such experiments has been established before [cf. Figs. 7 and 9(b)]. To compare

FIG. 11. (a) The migration velocity in the xanthan solution at R ¼ 1 mm and _c ¼ 8 s�1, scaled by the velocity at

the inner cylinder vi ¼ XRi, compared with the Newtonian prediction by the Chan-Leal formula. (b) The net

migration force due to shear-thinning FX – FN, scaled by g _cR2, g being the viscosity at the shear rate _c.
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with migration in foam, an effective capillary number has to be estimated for the latter

based on the bubble deformation [Mohammadigoushki and Feng (2012)]. The shear-

thinning experiment has a capillary number Ca¼ 0.11, which, taken to be the effective

Cae, corresponds to a shear rate of _c ¼ 5:45 s�1 for the foam. The closest foam experi-

ment, at R¼ 1 mm and _c ¼ 5:71 s�1, is then used to estimate the lateral migration force

FF from the measured migration velocity in the foam (Fig. 2). Similar analysis has been

carried out for other values of R and _c, with essentially the same outcome.

Figure 12 shows reasonable agreement between FT and FF. Note that there is no fitting pa-

rameter in this comparison, and the main assumption made is the linear summation of the sep-

arate contributions to the migration force. Overall, the effective-continuum estimation FT

stays above the “true” migration force FF in the foam. In the inner part of the gap, the outward

force is overestimated, while in the outer part, the inward force is underestimated, roughly by

a factor of 2 in both cases. However, FT¼ 0 and FF¼ 0 give essentially the same equilibrium

position Se. The general agreement in Fig. 12 suggests that bubble migration in the foam is

due to the competition between its shear-thinning and normal-stress effects.

In our discussion so far, we have viewed the 2D foam of smaller bubbles as an effec-

tive continuum, a non-Newtonian fluid exhibiting shear-thinning and normal stress differ-

ence. Furthermore, the Chan-Leal theory, originally developed for drops suspended in a

liquid medium, can apparently be adapted to account for bubble migration in our foam,

with more or less quantitative accuracy. The success of the continuum description and

that of the Chan-Leal theory are both somewhat surprising. The traditional continuum

view requires a separation of length and time scales, between those of the molecular

motion in the fluid and those of the macroscopic flow. In our 2D foam, on the other hand,

the “large bubble” is only about twice as large as the smaller ones making up the

“continuum.” This is reminiscent of the falling-ball rheometer for measuring the viscosity

of a suspension, made of particles comparable in size with that of the falling ball

[Brenner et al. (1990)].

FIG. 12. Lateral migration force in the foam: Comparison between the effective-continuum prediction

FT ¼ FB þ FX � FN , as additive sums of Newtonian [Eq. (1)], normal stress [Fig. 9(b)] and shear-thinning [Fig.

11(b)] contributions, with FF calculated from the migration trajectory of a large bubble in the foam (Fig. 2, R ¼
1 mm, _c ¼ 5:71 s�1). The forces are scaled by g _cR2.
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The Chan-Leal theory requires a drop or bubble to be completely immersed in a sur-

rounding liquid, while our bubbles float atop a soap solution. Mohammadigoushki and

Feng (2012) have shown that surface tension keeps most of the bubble volume below

the free surface. Nevertheless, the presence of the free surface should affect the viscous

friction on the bubble during its migration. Moreover, the abundance of surfactants in

the bulk liquid suggests near-maximum surface coverage, and Marangoni stresses

may modify the boundary condition on the bubble surface and hence its migration.

Indeed we have used the Stokes formula, not the Hadamard formula, in estimating the

migration force on the bubbles. Despite these differences, we have confirmed that

the Chan-Leal formula accurately predicts the migration of a single bubble in

Newtonian and Boger fluids in narrow- and wide-gap Couette devices [cf. Fig. 1 of

Mohammadigoushki and Feng (2012) and Fig. 8 in this paper]. Although we have used

this as the basis for modifying the Chan-Leal formula for foam, we have no explanation

for its “unreasonable effectiveness.”

V. CONCLUSION

In this paper, we have reported experiments on the migration of a large bubble in a

monodisperse 2D foam of small bubbles sheared in a wide-gap Couette device. The nom-

inal shear rate is varied in such a range that the entire gap is fully yielded and flowing,

but inertia remains negligible. The main findings of the work can be summarized as

follows:

(a) If the shear rate and the bubble size ratio both exceed certain thresholds, the large

bubble migrates radially to an equilibrium position that is independent of the initial

position, the shear rate, and the bubble size ratio. The two thresholds are similar to

earlier observations in a narrow-gap device [Mohammadigoushki and Feng (2012)].

(b) The equilibrium position is between the center of the gap and the inner cylinder, at

Se¼ 0.36, the radial coordinate S being defined such that S¼ 0 at the inner cylinder

and S¼ 1 at the outer one. Its deviation from the narrow-gap experiments, where

the equilibrium is at the center, is due to the non-Newtonian rheology of the foam

brought out by the nonhomogeneous shearing in the wide-gap geometry.

(c) In a xanthan solution representative of the shear-thinning in the foam, a single bub-

ble migrates to an equilibrium position at Se¼ 0.25, regardless of the initial posi-

tion, shear rate, or bubble size.

(d) In a polyacrylamide-based Boger fluid representative of the first normal stress

difference in the foam, a single bubble migrates to equilibrium positions close to

Se ¼ 0.57, regardless of the initial position and shear rate. The position shifts

slightly inward with increasing bubble size. The migration in Boger fluid can be

explained quantitatively by the asymptotic theory of Chan and Leal (1979).

(e) Bubble migration in the foam is the outcome of the competition between its shear-

thinning and normal-stress effects. Linear combination of the net migration forces

in the shear-thinning and elastic solutions predicts the migration in the foam

semiquantitatively.

Thus, the foam made of equal-sized smaller bubbles serves effectively as a non-

Newtonian liquid suspending the large bubble. However, this continuum view has to be

juxtaposed with a discrete view. On the one hand, some aspects of foam dynamics can be

described as if the foam is an effectively continuous fluid. Examples include the global

rheology, often represented by the Herschel-Bulkley model [Lauridsen et al. (2002)], and
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the bubble migration summarized above. On the other hand, the foam is a heterogeneous

medium and its granularity manifests itself in certain ways. One example is the nonlocal

interaction of bubbles that causes the bubble velocity profile to fall below that predicted

from the global rheology of the foam as an effective continuum [Katgert et al. (2010)]. In

the context of lateral migration of bubbles, the thresholds of the shear rate and the bubble

size ratio for migration stem from the capillary pressure in individual bubbles

[Mohammadigoushki and Feng (2012)]. Therefore, it seems appropriate to recognize a

duality in foam dynamics. Even though the foam is ultimately heterogeneous, it may be

possible and indeed advantageous to disregard the bubble-scale granularity in certain

contexts. The granular and continuum attributes of foam should be seen as complemen-

tary aspects of a subtle reality.
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