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Particle trapped at the isotropic-nematic liquid crystal interface:
Elastocapillary phenomena and drag forces
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We present numerical simulations of a particle trapped at the isotropic-nematic liquid crystal (Iso-N) interface.
We use our recent model, based on a phase-field approach [see Qiu et al., Phys. Rev. E 103, 022706 (2021)],
to couple the capillary forces acting on the interface with the elastic stresses in the nematic phase along with
topological defects. A range of floating configurations are first investigated as a function of the contact angle and
various anchoring conditions at the fluid interface. The results show that the response of the system is driven by
the existence of an anchoring conflict at the contact line. Substantial particle displacements and/or interfacial
deformations may occur in this case even for moderate anchoring strengths. These findings highlight the coupling
between elastic and capillary forces. In a second part, we compute drag forces exerted on a particle that moves
along the Iso-N interface for several contact angles and a moderate Ericksen number. Because of the coupling
between the velocity and order parameter fields, topological defects are swept downstream of the particle by the
flow and sometimes escape from the particle or merge with the interface. We also find linear force-velocity laws,
with drag forces at the Iso-N interface being slightly greater than their isotropic counterparts due to director
distortions. We discuss these results in light of past studies on the behavior of particles being dragged in the bulk
of a liquid crystal matrix.
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I. INTRODUCTION

Colloidal dispersions in bulk liquid crystal (LC) phases,
also known as LC colloids [1], and colloidal particles attached
to (isotropic) fluid interfaces [2] are both very rich and versa-
tile systems on their own in soft matter science. They have
been extensively investigated, but in a rather independent way
so far. Yet, from a self-assembly perspective, both systems
share quite a few similarities although the underlying driving
physical mechanisms differ greatly. In both cases, the parti-
cles may undergo either attractive or repulsive interactions
which originate from the deformations of the fluid matrix
they are embedded in. In LC colloids, the so-called elastic
interactions result from elastic distortions of the LC matrix
[1,3–10], whereas it is the overlap of interfacial deformations
that is responsible for capillary interactions occurring between
floating particles [2,11–16]. Both elastic and capillary interac-
tions can be long-ranged, anisotropic in nature (e.g., of dipolar
or quadrupolar symmetry), and feature energies that greatly
exceed the thermal energy kBT . In both cases, a myriad of
colloidal structures, either ordered or disordered, have been
discovered depending on numerous factors such as the particle
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size and shape, surface chemistry (e.g., Janus particles), and
confinement (see reviews, e.g., Refs. [1,2,9,15,16]).

However, so far only a handful of studies have attempted
to bridge the gap between these two lines of research by
studying the behavior of colloids trapped at LC interfaces.
Such systems represent a new kind of soft material whose
properties are expected to be governed mainly by the interplay
of capillary and elastic phenomena. On the experimental side,
a few studies were dedicated to pattern formation, mostly
in confined geometries with varying anchoring conditions.
For instance, two-dimensional (2D) crystal-like structures and
chainlike aggregates were observed at the air-nematic LC
(NLC) [17–21] and water-NLC interfaces [22,23]. Estimates
of pair interaction potentials were derived for both spherical
[17,20] and nonspherical particles [24]. At the single particle
level, Jeridi et al. [25,26] reported capillary-induced giant
elastic dipoles in thin nematic wetting films, whereas the
influence of interfacial curvature was addressed by Gharbi
et al. [27] by placing particles on NLC shells. More dynam-
ical aspects such as the Brownian diffusion of micro- and
nanoparticles at the nematic-aqueous phase interface were in-
vestigated by Abras et al. [28], whereas the vibrational phonon
modes of 2D crystalline packings of particles at the air-NLC
interface were discussed by Wei et al. [29].

Despite the above discoveries, there is a lack of theoret-
ical understanding of the observed phenomena. Only a few
modeling studies have appeared on the subject. Andrienko
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et al. and Tasinkevych and Andrienko performed the first
numerical simulations dealing with particles trapped at an
isotropic-nematic (Iso-N) interface in both 2D [30] and 3D
[31]. However, they considered a peculiar situation where the
interface separates the same mesogenic material in two phases
coexisting under the same condition. No interfacial forces nor
contact line (CL) were taken into account in their analysis.
Nevertheless, pair interaction potentials exhibited a rather
complex behavior due, in part, to the creation, annihilation,
and interaction of topological defects in the vicinity of the
particles.

Oettel et al. [32] considered a more complete physical
picture and provided approximate analytical calculations for
interacting colloids attached to a nematic free surface. The
primary goal was to rationalize the early observations of Sma-
lyukh et al. [17], where hexagonal lattices of glycerol droplets
were initially thought to result from a competition between
an elastic repulsion and a capillary attraction. However, the
theoretical analysis of Oettel et al. [32] showed that such a
competition is unlikely, at least within the model assumptions
and the experimental conditions in Ref. [17]. This remains an
open question, and we are not aware of any other detailed the-
oretical or numerical investigations dealing with these issues.

A possible reason for this is that the modeling of particles
adsorbed at LC interfaces is a challenging task. The main
difficulty arises from the presence of the interface which
couples capillary and elastic phenomena. Indeed, elastic dis-
tortions, topological defects, the anchoring of LC molecules
on a potentially moving and deformed fluid interface, the CL
dynamics, and the particles’ motion are all intertwined here.
The combination of these phenomena makes these systems
very rich but complicates enormously their theoretical treat-
ment.

Recently, our group developed a model that may shed light
on the above problems. The model, based on a phase-field
(PF) method, was originally designed to describe elastocap-
illary flows of LCs [33]. In the present paper, we use this
model in numerical simulations to explore both the static and
dynamic behaviors of particles trapped at LC interfaces. In
view of the dearth of theoretical and numerical studies in
the literature, we will focus on basic scientific questions at
the single-particle level. For instance, how do the LC elas-
ticity and topological defects influence the partial wetting
configuration of a particle adsorbed at a LC interface? How
do capillarity and elasticity interact? How does interfacial
deformation depend on the two factors? What is the drag force
exerted on a particle straddling a LC interface? Answers to
these questions will form the basis for studying more complex
situations involving, e.g., a collection of particles (interac-
tions), confined geometries (thin films), and curved interfaces.

The paper is organized as follows. The model is presented
in Sec. II. It is numerically solved with a finite element method
in a 2D planar geometry. In Sec. III, we first consider the
equilibrium configuration of a partially wetting particle on
the Iso-N interface, subject to different contact angles and
anchoring conditions (Sec. III A). Then we study the drag
forces for a range of particle positions across the interface
(Sec. III B). Our results show that wetting configurations are
primarily influenced by the existence of an anchoring conflict
at the CL. Sizeable particle displacement and/or interfacial

distortions may occur in this case even for moderate anchoring
strengths. The drag force computations reveal linear force-
velocity laws. The defect escapes from the particle and merges
with the interface in certain circumstances. Furthermore, the
drag coefficient at the Iso-N interface is almost always greater
than its isotropic counterpart thanks to the coupling between
the flow and the order parameter fields. We discuss our results
within the framework of existing theories before concluding
the paper in Sec. IV.

II. THEORETICAL MODEL AND NUMERICAL METHOD

As aforementioned, we have adapted the recent model
developed by Qiu et al. [33,34] to describe the behavior of
a colloidal particle trapped at the Iso-N fluid interface. The
model of Qiu et al. [33] uses a PF method to account for
elastocapillary flows occurring at the Iso-N interface. It has
two key features: (i) a tensor order parameter Q that provides
a consistent description of the molecular and distortional elas-
ticity of the N phase, including topological defects and (ii) a
PF formalism that accurately represents the Iso-N interfacial
tension and the nematic anchoring stress by approximating
a sharp-interface limit. Combining this with the equations of
motion of the fluids, we obtain a model capable of describing
the phenomena resulting from the coupling between capillar-
ity and elasticity. All the details and validation examples of
this model can be found in Refs. [33,34]. In the following, we
only give a brief account of the main ingredients. A notable
difference between the present paper and that of Refs. [33,34]
is the presence of a CL where the three phases isotropic
(Iso), nematic (N), and solid (S) meet. PF-based models can
naturally handle the CL dynamics thanks to intrinsic diffu-
sive processes [35–39]. Unless otherwise stated, parameter
values for the model described in this section are listed in
Appendix A.

A. Free energies

The total free energy of the fluid system consists of the
bulk elastic energy of the N phase, fb , the mixing energy of
the Iso-N interface, fm , and the anchoring energy on the Iso-N
interface, fa . Note that throughout this paper, we assume an
infinitely strong anchoring condition of the nematic mesogens
on the solid particle and, consequently, the anchoring energy
at the nematic-solid interface does not appear. fb is standard
from the nematic order theory [40,41] and can be described
phenomenologically as [42]

fb = A

2
Qi jQi j + B

3
Qi jQjkQki + C

4
(Qi jQi j )

2

+ L1

2
(∂iQ jk )(∂iQ jk ). (1)

Here, A, B, C are material property coefficients (A, B < 0,
C > 0) and L1 is the bulk elastic constant. As in Ref. [33], it is
useful to define a scalar order parameter: q = √

3/2‖Q‖F =
( 3

2Q : Qᵀ)1/2 , where ‖ · ‖F is the Frobenius norm.
The mixing energy is standard from the PF model and may

be written as [43,44]

fm = λ

2
|∇φ|2 + λ

4ε2
(φ2 − 1)2, (2)
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where φ is the PF variable that marks the different flu-
ids. φ = −1 denotes the nematic LC, and φ = 1 denotes the
isotropic phase. These two fluids mix in a thin diffuse in-
terfacial region in which φ and all other variables transition
smoothly. The Iso-N interface may be defined by the contour
level φ = 0 . In Eq. (2), λ is the (constant) mixing energy
density with the dimension of force and ε is the (constant) cap-
illary width governing the thickness of the diffuse interface.
In the sharp-interface limit, the mixing energy gives rise to an
isotropic surface tension given by σ = 2

√
2λ/3ε [43,44].

To describe the finite-strength anchoring of LC molecules
at the Iso-N interface, we employ the following diffuse-
interface variant of the Rapini-Papoular anchoring energy
density [33]

fa = W

2
|∇φ|4

∥∥∥∥Q − qe

(
êê − 1

3
I

)∥∥∥∥
2

F

, (3)

where W is the (constant) anchoring strength, which can be
viewed as an anisotropic surface tension [40], and ê is a unit
vector along the easy direction on the Iso-N interface. Both
homeotropic and planar anchoring conditions are considered
for ê with appropriate expressions of fa in each case (see
Ref. [33] for details). In Eq. (3), qe is the equilibrium scalar
order parameter under the uniaxial assumption (qe = 0.81
with our parameters, see Appendix A). Note that in Eq. (3),
W has the dimension of energy×length. In the sharp interface
limit, it can be related to the usual anchoring strength, Ws

(unit: J/m2), via W = 35
8
√

2
Wsε

3 as explained in Qiu et al. [33].
Hence, the total free energy of the fluid system in a domain

� is given by

F =
∫

�

f (φ,Q,∇φ,∇Q) dV

=
∫

�

(
fm + 1 − φ

2
fb + fa

)
dV. (4)

The factor (1 − φ)/2 gives the concentration of the N
phase.

B. Governing equations

The governing equations include evolution equations for φ

and Q , and equations of motion for the fluids and the solid
particle.

1. Evolution equation for φ

The classical Cahn-Hilliard (CH) equation describes the
evolution of φ [43,44]

∂φ

∂t
+ v · ∇φ = ∇ · (γ∇μ), (5)

where v is the fluid velocity and γ the mobility constant.
μ = δFm/δφ is the chemical potential which, in our model, is
defined only through the mixing energy, Fm = ∫

�
fm dV , i.e.,

without the contribution from the bulk elastic and anchoring
energies. Consequently, the CH diffusion is decoupled from
that of Q [33]. Such an approximation holds in the so-called
sharp-interface limit and has been adopted in previous works
[44,45].

2. Evolution equation for Q

We choose the Beris-Edwards (BE) formalism to describe
the nematic hydrodynamics [46]. Within our PF formulation,
the evolution equation for Q in the LC bulk has the same
general structure as in the original BE theory [47],

∂Q

∂t
+ v · ∇Q = S + 
H, (6)

where 
 is the (constant) collective rotational diffusion
coefficient of the N phase. H(φ,Q,∇φ,∇Q) is the molecular
field tensor, whereas S(∇v,Q) is the corotation tensor. Both
tensors have been modified in our PF method to take into ac-
count the anchoring conditions (either homeotropic or planar)
at the Iso-N interface. The resulting lengthy expressions are
omitted here but can be found in Ref. [33].

3. Equations of motion for the fluids

Assuming incompressible fluids, we adopt the continuity
and Navier-Stokes (NS) equations for the pressure (p) and
velocity (v) fields in both phases,

∇ · v = 0, (7)

ρ(φ)

(
∂v
∂t

+ v · ∇v
)

= −∇p + ∇ · T + μ∇φ, (8)

where the last body force term in Eq. (8) (μ∇φ) is the
diffuse-interface equivalent of the interfacial tension [43,45].
ρ(φ) is the density of the two-phase system given by ρ(φ) =
1+φ

2 ρi + 1−φ

2 ρn , where the subscript i (respectively, n) refers
to the isotropic (respectively, nematic) phase. The total stress
tensor T can be written in the following form:

T = −pI + (1 + φ)ηiD + (1 − φ)ηnD + T n, (9)

where D = [(∇v)ᵀ + ∇v]/2 is the rate of deformation ten-
sor. The second term is the viscous stress from the isotropic
phase while the third term is a viscous stress of the nematic
phase with a constant effective viscosity ηn , i.e., independent
of the molecular orientation [46,47]. The last term (T n) in
Eq. (9) is the nematic stress tensor, which has been gen-
eralized from the bulk BE theory to take into account the
anchoring constraints on the moving Iso-N interface [33].
Note that T n intrinsically contains effective anisotropic vis-
cosities [47].

4. Boundary conditions

For the continuity and NS equations, classical no-slip
boundary conditions for v are imposed on all bounding walls
and the particle, unless otherwise stated. On the outer bound-
aries, we need two BCs for the fourth-order CH equation.
First, one often requires that there be no diffusive flux across
all boundaries (∂�): m̂ · ∇μ|∂� = 0 , where m̂ is the outward
unit normal vector to a given boundary. Next, we enforce the
equilibrium value of the contact angle, θ , at the three-phase
CL on the particle via the geometric boundary condition:
∇φ · m̂ = |∇φ| cos θ , on ∂�p [Fig. 1(a)]. We also impose a
90◦-contact angle on ∂�w (left side) [Fig. 1(a)], meaning that
the interface is flat there but it is free to move up or down.

Concerning the order parameter Q , we consider the fol-
lowing three types of BCs. (i) On all bounding walls, we

044607-3



LOUDET, CHOUDHURY, QIU, AND FENG PHYSICAL REVIEW E 105, 044607 (2022)

FIG. 1. (a) Sketch of the simulation domain for problem A. Box
size: (H, L) = (8R, 10R). Symbols: θ : contact angle, �yI : interfacial
deformation (see text for other symbols definitions). (b) Initial bulk
and anchoring conditions for the order parameter Q . The small
ellipsoids symbolize the LC molecules (not to scale). In all cases,
a homeotropic (H) anchoring condition is prescribed at the particle
surface, whereas either a homeotropic or planar (P) anchoring is
enforced at the Iso-N interface. These two situations are denoted H
and P configurations, respectively. (c) Geometry for the computation
of the two-phase flow drag force exerted on a particle confined at
the Iso-N interface between two plane walls (problem B). Box size:
(H, L) = (20R, 30R).

apply a homogeneous Neumann BC: m̂ · ∇Q|∂�w
= 0 . (ii)

For simplicity, a Dirichlet BC is used on the particle surface:
Q|∂�p = QD , where QD corresponds to a uniaxial configu-
ration perpendicular to the particle contour, i.e., homeotropic
anchoring, at equilibrium order (qe). (iii) On the symmetry
axis ∂�S , we impose the mixed BC [33]: m̂ · ∇(Qii )|∂�S =
0, Qi j |∂�S = 0 (i �= j), where ii does not imply the Einstein
summation. Finally recall that, at the Iso-N interface, the
anchoring conditions are already accounted for in the expres-
sions of H [Eq. (6)] and T [Eq. (9)].

5. Equations of motion of the particle

In some cases, the particle attached to the Iso-N interface
is allowed to move in the y direction (Fig. 1). Its translational
velocity (Uy) is governed by Newton’s equation of motion
written here in the absence of gravity (see Sec. II C): MU̇y =
Fy , with the initial condition Uy|t=0 = 0 , the dot meaning
differentiation with respect to time. M is the particle mass
and Fy is the total force exerted on the particle along the y
direction. Fy consists of viscous, elastic, and capillary forces
and may be written as

Fy = ŷ ·
∮

∂�p

(T + T c) · m̂ ds, (10)

where ŷ is the unit normal vector along the y axis and T is
the stress tensor defined in Eq. (9). T c is the capillary stress

tensor and can be derived using a variational procedure [44],

T c = fmix I − λ∇φ∇φ, (11)

with fmix given by Eq. (2). Once Uy has been determined, the
particle’s vertical position (yp) can be updated by solving ẏp =
Uy .

C. Geometry and parameters

In this section, we specify the parameters and the two
geometries employed in our 2D simulations (Fig. 1). The first
one, referred to as problem A hereafter, deals with the equi-
librium configuration of a partially wetting particle trapped
at the Iso-N interface, whereas the second one, referred to
as problem B, is dedicated to the computation of drag forces
exerted on the particle straddling the Iso-N interface.

Figures 1(a) and 1(b) specify the geometry for problem A.
A solid particle of radius R is trapped at the interface between
a Newtonian isotropic fluid and a nematic LC. Both fluids
have a matched density and the whole system is confined in a
box of length L = 10R and height H = 8R. However, because
of symmetry, we only need to simulate half of the domain.
Figure 1(b) depicts the prescribed anchoring conditions at the
Iso-N interface and the particle surface. Both homeotropic
(H) and planar (P) anchoring of variable strength W [see
Eq. (3)] will be considered on the Iso-N interface, while only
an infinitely strong, or rigid, homeotropic anchoring is set on
the particle surface (cf. “Boundary conditions”—Sec. II B 4).
These two situations will be denoted hereafter as the H and
P configurations, respectively. For the initial condition, in the
former (respectively, the latter) case, we require the far-field
LC molecules to be oriented along the vertical (respectively,
horizontal) direction [Fig. 1(b)] with an equilibrium scalar or-
der parameter qe (cf. Appendix A). Two other configurations,
namely, a planar anchoring on the particle surface combined
with either a planar or homeotropic anchoring at the interface,
have been computed as well. However, preliminary results
indicate that no new qualitative insights emerge from such
configurations and, therefore, we have decided not to include
such setups in the present paper.

The particle’s center of mass is either fixed or allowed
to move vertically. The contact angle on the particle surface
[Fig. 1(a)] is equal to the equilibrium contact angle θ . The
Iso-N interface is initially flat and kept horizontal at the left
and right bounding walls of the domain in the course of sim-
ulations. However, due to the interplay of elastic distortions,
surface tension, and anchoring, the interface is likely to be
deformed and may be displaced from its initial position, as we
will see below. Furthermore, since we are typically simulating
the behavior of a micrometer-sized particle floating at the Iso-
N interface (Appendix A), the interfacial deformations arising
from the particle’s buoyant weight are negligible. Indeed, the
bond number Bo � 10−8 for typical parameter values (see,
e.g., Ref. [11]).

Problem B concerns the drag on a circular particle strad-
dling the Iso-N interface [Fig. 1(c)]. We use the same setup
as in our previous work with isotropic fluid interfaces [48],
except that the bottom fluid is now replaced with the nematic
LC. Instead of moving the particle horizontally parallel to the
interface, we use a reference frame attached to the particle

044607-4



PARTICLE TRAPPED AT THE ISOTROPIC-NEMATIC … PHYSICAL REVIEW E 105, 044607 (2022)

so, far from it, both liquids flow with a constant velocity
v∞ in the direction of the x axis. In this case, the upper
and lower bounding plane walls also move with the same
velocity v∞ from left to right in their own planes. Depending
on the contact angle, the interface may be deformed near the
particle but is kept horizontal at the inlet and outlet in all
cases.

As aforementioned, our simulations are run with the base
parameters listed in Appendix A. When presenting the re-
sults, we use dimensionless variables marked by an asterisk.
Of particular importance is the dimensionless anchoring en-
ergy defined by w∗ = Ws/σ . For w∗ 
 1, the surface tension
dominates anchoring effects and controls the shape of the
interface by minimizing distortions. Conversely, interfacial
deformations are expected for w∗ � 1 , as reported with, e.g.,
nematic drops immersed in an isotropic fluid [49] or the
reverse [50]. Below, we will use w∗ as a measure of the
anchoring strength. Another important dimensionless quantity
is the Ericksen number Er, which is relevant to problem B.
Er is defined as the ratio of viscous to elastic forces [40,41]:
Er = γ1v∞R/K , where γ1 = 1/
 is the nematic rotational
viscosity and K = q2

e L1 the elastic constant (Appendix A).
Er 
 1 (respectively, Er � 1) implies that the fluid flow has
a negligible (respectively, dominant) influence on the elastic
distortions of the nematic texture.

D. Numerical method

The fluid equations, and their associated boundary con-
ditions, together with the particle’s equations of motion, are
solved numerically until the steady state with the finite ele-
ment computational software COMSOL MULTIPHYSICS [51].
Details of the numerical approximation can be found in
Ref. [33] and will not be repeated here. Whenever appropriate,
we employ the built-in moving mesh module of COMSOL
based on an arbitrary Lagrangian-Eulerian scheme to follow
and resolve the particle’s vertical motion. The amplitude of
this motion is always moderate, i.e., typically � 0.5R , and
does not incur any remeshing event. As in Qiu et al. [33],
we design nonuniform triangular meshes fitted with subdo-
mains whose mesh size is adjusted to ensure a sufficient
resolution of both the fluid interface [38,39,44,45] and the
topological defects as they move around. To appropriately
resolve the defect core, we use a mesh size h � 0.75 lnc ,
where lnc is the nematic coherence length. Outside of the sub-
domains, the mesh size is much coarser to save computational
time.

III. RESULTS AND DISCUSSION

A. Problem A: Floating particle

In problem A, we study how the interplay of surface ten-
sion, anchoring conditions, and nematic elasticity affects the
partial wetting configuration of a solid particle trapped at the
Iso-N interface. We will first consider a simple situation with a
fixed particle to explore the qualitative physical trends, mainly
as a function of the anchoring type (H or P configuration) and
strength. In a second step, we shall allow the particle to move
vertically. Contact angles will range from 45◦ to 135◦.

FIG. 2. Zoomed-in snapshots computed at steady state with the
anchoring strength w∗ indicated in the white space inside the par-
ticle. The contact angle θ = 90◦ for all cases. (a) H configuration.
Contour plots of Q2

22. For w∗ = 16.2 , the dashed lines mark the
cutout area that is blown up in (b). (b) Zoomed-in view in the
vicinity of the contact line for w∗ = 16.2 in (a). The gray scale
shows the concentration-weighted scalar order parameter 1−φ

2 q , with
qe = 0.81 . The small blurry dark spot signals a topological defect
with q � 0.5 . (c) P configuration. Contour plots of Q2

11.

1. Fixed particle

We begin with an immobile particle whose center of mass
lies in the middle of the box [(xp, yp) = (L/2, H/2)] and the
contact angle is set to 90◦ on the particle surface. As explained
in Sec. II C, the Iso-N interface is initially flat. We examine
the influence of the anchoring strength at this interface for
both the H and P configurations and we recall that a strong
homeotropic anchoring is prescribed at the particle surface
(Sec. II C). Thus, an anchoring conflict arises in the H con-
figuration at the CL on the particle surface, whereas such a
conflict is absent in the P situation [Fig. 1(b)].

Figure 2 depicts the interfacial deformation and the Q
field in the nematic phase for several w∗ values. In the H
case, the Iso-N interface remains mostly flat for low values
of w∗ (<1) and, because of the rigid anchoring imposed on
the particle, substantial Q-field distortions occur and extend
away from the particle. In this case, the anchoring conflict at
the CL is smoothed out and there are no topological defects.
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FIG. 3. Interfacial deformation (�yI/R) as a function of the an-
choring strength (w∗ = Ws/σ ) for the H configuration. The shaded
area marks the transition between a steep initial variation (weak
anchoring regime) and a milder increasing trend (strong anchoring
regime). The black dashed (respectively, blue dash-dotted) line is
a linear (respectively, square root) fit to the data [Eq. (12)]. The
inserted graph is a zoomed-in plot of the crossover region around
w∗ = 1 . The red data points lie within the crossover area and
were not taken into account in the fitting procedure. Contact angle:
θ = 90◦.

Equivalently, we may speak of a large anchoring extrapola-
tion length. However, as we increase w∗ (>1), the elastic
distortions become more localized to the particle surface. As
a result, the interfacial deformations grow, with the Iso-N
interface bulging upward in the vicinity of the CL, right
where the anchoring conflict lies. For high anchoring strengths
(w∗ � 1), a topological defect appears at the particle surface
very close to the CL [Fig. 2(b)].

In the P configuration [Fig. 2(c)], for which there is no
anchoring conflict with θ = 90◦ [Fig. 1(b)], the Iso-N inter-
face remains nearly flat regardless of the anchoring strength.
A topological defect of winding number −1/2 forms beneath
the particle, in accordance with the imposed boundary con-
ditions. The defect position, which depends primarily on the
anchoring strength prescribed on the particle surface, is not
sensitive to w∗ for it is far from the Iso-N interface.

The interfacial deformations of Fig. 2(a) are quantified in
Fig. 3 as a function of w∗ for the H configuration. The inter-
facial distortion �yI = yCL − yw is defined as the difference
between the y location of the interface at the CL (yCL) and that
at the bounding wall (yw). We see that �yI first grows steeply
for w∗ � 1 before leveling off at larger values with a crossover
region around w∗ � 1 . We can account for these two regimes
via a scaling argument based on the competition between the
bulk elastic energy of the nematic LC and the surface energies
involving both surface tension and anchoring. The details of
the derivation are presented in Appendix B. We show that

�yI = w∗L

√
σL

L1(1 + w∗)
, (12)

where L is the box size [52]. Thus, for w∗ 
 1, i.e., in
the weak anchoring regime, we have �yI ≈ w∗L

√
σL/L1 ,

indicating that �yI should be a linear function of w∗ . In
the strong anchoring regime, w∗ � 1 , and Eq. (12) yields
�y ≈ L

√
w∗σL/L1 , i.e., a square root profile is expected in

this case. It follows that a crossover point at w∗ = 1 naturally
appears between these two limits. As can be seen from Fig. 3,
these predictions are very well confirmed by the numerical
data. The inset of Fig. 3 provides a zoomed-in view of the
crossover region, which indeed occurs around w∗ = 1 .

Thus, our analysis shows that, for w∗ � 1 , the system
resolves the anchoring conflict at the CL by deforming sub-
stantially the interface. In this regime, the energetic penalty
incurred by the deformed interface is less than the cost asso-
ciated with bulk elastic distortions and to deviations from the
prescribed anchoring orientation. In doing so, the total energy
of the system is minimized. The fact that no interfacial de-
formation occurs in the P configuration [Fig. 2(c)], for which
there is no anchoring conflict, is a further indication that the
anchoring condition at the CL drives the response of the fluid
interface to a large extent.

2. Free particle

In this section, we take into account the particle’s equa-
tions of motion, which are solved with all the other governing
equations, as outlined in Sec. II B. The particle is now free
to move up or down, depending on the forces acting on it.
In turn, the shape of the Iso-N interface will be altered by
the particle motion. We start with θ = 90◦ before considering
other contact angle values.

Contact angle θ = 90◦. As before (Sec. III A 1), the par-
ticle’s center of mass lies initially in the middle of the box
and the fluid interface is flat, thereby realizing the condition
θ = 90◦ .

Typical results obtained at steady state are displayed in
Fig. 4. In the H configuration [Figs. 4(a) and 4(b)], we see that
the particle has now sunk into the N phase, with an appreciable
downward particle displacement d∗ = d/R. In this example,
d∗ � −0.3 for w∗ = 0.5 . This displacement alters the shape
of the Iso-N interface which no longer bulges upwards as
before [Fig. 2(a)], but now bends downward into a concave
meniscus. With a freely moving particle, the system manages
the anchoring conflict at the CL by pushing the particle into
the N phase, which is also likely to result in less pronounced
interfacial distortions. Thus, the particle position across the
interface may be seen as a degree of freedom that can be
adjusted to minimize the overall energy. In contrast, the P con-
figuration of Figs. 4(c) and 4(d) hardly shows any interfacial
deformation or particle displacement, even with a stronger an-
choring (w∗ = 2). This is because of the lack of an anchoring
conflict at the CL. Therefore, the extent of particle motion and
interfacial deformations appear to be directly correlated to the
existence of an anchoring conflict at the CL. In the following,
we will further test this conjecture by employing other contact
angles and various anchoring strengths in both H and P setups.

Contact angle θ �= 90◦. We restrict our investigation to two
distinct cases, one in which most of the particle body lies in
the N phase (θ = 45◦), and another one for which the particle
is preferentially immersed in the Iso phase (θ = 135◦). As
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FIG. 4. Order parameter snapshots and interfacial profiles with a moving particle. (a), (b) H configuration. (c), (d) P configuration. The
bold black figures indicate the value of w∗ in each case. (a) [respectively, (c)] Contour plot of Q2

22 (respectively, Q2
11). (b), (d) Comparison of

interfacial profiles (y∗
I = yI/R) computed in the fixed and moving particle cases (x∗ = x/R). Contact angle: θ = 90◦ .

previously, we will monitor the response of the system as we
tune the anchoring strength at the Iso-N interface for both the
H and P configurations.

We start with θ = 45◦ and the H configuration. The se-
ries of snapshots exhibited in Fig. 5 reveals an interesting
phenomenon. For w∗ = 0 [Fig. 5(a)], a topological defect of
winding number −1/2 forms slightly below the equator of
the particle as if it were repelled from the Iso-N interface.
On the contrary, for a finite but weak anchoring strength
[w∗ = 0.4, Fig. 5(b)], the defect gets attracted toward the
interface but stabilizes itself at an equilibrium distance from
it. This attraction has an elastic origin and probably results
from the onset of an anchoring conflict at the CL, where
the Q-field deformations differ greatly from the w∗ = 0 case.
Further increasing w∗ leads to a stronger elastic attraction and
eventually to the trapping of the defect within the interfacial
area, very close to the CL [Fig. 5(c)]. The close-up view on
Fig. 5(d) indeed shows that the defect has not disappeared.
Also, notice the significant interfacial deformation together
with the substantial sinking of the particle into the N phase.

Hence, for a high enough w∗, it becomes energetically
favorable for the system to absorb the defect at the interface
rather than to sustain it in the bulk with costly director dis-
turbances. This result is a further illustration of an otherwise
well-known coupling effect between bulk elastic distortions
and surface anchoring strength encountered in LC colloids
(see, e.g., Refs. [1,33]).

Other wetting configurations are presented in Fig. 6. All
snapshots on the left side correspond to situations with w∗ =
0 , whereas those displayed on the right side are calculated

for weak to intermediate anchoring strengths. For w∗ = 0 ,
there is no particle displacement, or only a minute one, and
the Iso-N interface remains flat. This is in general not the
case with w∗ �= 0 . Note that an anchoring conflict now occurs
in the P configuration since θ �= 90◦. As aforementioned, the
system resolves the anchoring conflict primarily by moving
the particle across the Iso-N interface. In general, for a given
configuration (either H or P) and θ , the greater w∗, the larger
the particle displacement. For example, in Fig. 6(b), the parti-
cle went up significantly (d∗ = 0.33) and a sizable interfacial
deformation remains at equilibrium. However, bulk elastic
disturbances are very moderate as they are localized in the
close proximity of the CL and there is no longer any defect
nearby the particle, in contrast to Fig. 5. Next, in Fig. 6(d),
the particle has sunk substantially (d∗ = −0.37), resulting in
a slightly curved interface near the CL. This arises from an
anchoring conflict at the CL, which is clearly signaled by addi-
tional elastic distortions of the Q field [compare Figs. 4(c) and
6(d)]. Finally, a nearly flat interface results in Fig. 6(f) with
an upward motion of the particle (d∗ = 0.18). Since only a
small portion of the solid surface is submerged in the nematic,
elastic distortion is limited to a small area, as compared with
the case of θ = 90◦ in Fig. 4(c). A defect of winding number
−1/2 still lies beneath the particle, in agreement with the
prescribed BCs.

To summarize, with finite anchoring on the Iso-N inter-
face, potentially large interfacial deformations and particle
displacements, on the order of 0.5R , may occur whenever
there is an anchoring conflict at the CL. This finding is the
central result of problem A. It is a direct consequence of
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FIG. 5. (a)–(c) Steady-state wetting configurations obtained with
a moving particle for several anchoring strengths (w∗, indicated by
the bold black figures) in the H configuration with θ = 45◦ . The
particle displacement, d∗ = d/R, is also specified hereafter: (a) d∗ =
2 × 10−3, (b) d∗ = 0.05 , (c) d∗ = −0.5 . As w∗ increases, the defect
is elastically attracted toward the Iso-N interface close to the CL and
eventually gets trapped there. The Iso-N interface also becomes more
deformed due to a sizable downward displacement of the particle.
Grey scale: Q2

22. (d) Close-up view of (c) near the contact line. Grey
scale: 1−φ

2 q . The dark blurry spot signals a topological defect lying
within the interfacial area very close to the contact line. (e) Blown-up
view of (d) showing a typical fine mesh in the vicinity of the interface
(φ = 0) and the topological defect. As mentioned in Sec. II D, the
mesh gradually coarsens away from the interfacial area.

the coupling between elastic, capillary (surface tension), and
anchoring effects.

B. Problem B: Drag force

Problem B concerns the drag force on a particle straddling
an Iso-N interface. As mentioned in the Introduction, a few
experiments have touched upon this topic [24,28,29] but no
prior theoretical or computational work seems to have been
reported so far.

Figure 1(c) specifies the setup, as already described in
Sec. II C. A 2D planar geometry is employed to first cap-
ture some main qualitative physical trends. As in problem
A, a rigid homeotropic anchoring is prescribed at the particle
surface. To simplify the analysis of the drag force, we make
two further adjustments of the parameters. We increase the
surface tension by a factor of 10 relative to that of problem

FIG. 6. Additional steady-state wetting configurations calculated
with a moving particle. As in Fig. 5, the bold black figures (inside the
particle) mark the values of w∗ and d∗ is also specified at the bottom
right corner in each case. (a), (b) H configuration, θ = 135◦ . (c)–(f)
P configuration. (c), (d) θ = 45◦ . (e), (f) θ = 135◦ . Depending on
θ and w∗, the particle goes either up or down with relatively small
interfacial deformations, except in (b). Color bar: Q2

22 (a), (b); Q2
11

(c), (f).

A to minimize interfacial deformation (Appendix A). In addi-
tion, we adopt the P configuration with soft planar anchoring
(w∗ = 0.4) on the Iso-N interface to avoid complications from
the anchoring conflict at the CL. In all cases, the motion of
the particle is heavily overdamped since the Reynolds num-
ber Re = ρnv∞R/ηn is very small (� 10−5, cf. Appendix A).
Furthermore, a moderate coupling between the fluid velocity
and the Q field is considered with the Ericksen number Er in
the range 0.28 − 3 (cf. Sec. II C). Given the complexity of the
problem and the large parameter space, we focus here on two
key parameters, θ and Er . A more extensive exploration will
be conducted in the future.

The drag force, F ∗
D (LC) = FD(LC)/L1 , consists of the x

component of elastic and viscous forces, which are evaluated
by integrating the corresponding tractions along the particle
contour, as in Eq. (10). As a reference, the drag force for
an isotropic-isotropic (Iso-Iso) interface, F ∗

D (iso) , was also
calculated with the fluids having the same viscosities as those
of the Iso-N system. This force corresponds to the limit of
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FIG. 7. (Problem B.) Results of drag simulations for various con-
tact angles and a flat interface in the P configuration. (a) Normalized
drag force F ∗

D (LC)/F ∗
D (iso) as a function of θ for Er = 0.28, 0.57 .

(b)–(e) Flow and nematic fields for different contact angles and Er =
0.57 . (b) Steady state for θ = 90◦. (c) Steady state for θ = 45◦. (d),
(e) Transient states for θ = 135◦. t∗ = t/τ indicates the simulation
time. In this case, we see that the defect, marked by the white arrow
in (d), merges with the interface as a result of both flow advection
and an attractive elastic interaction (see text for details). After the
merging [cf. dashed circle in (e)], the system remains in this state till
the end (t∗

end = 2 × 108). Gray scale: Q2
11 . Bright (respectively, dark)

areas correspond to LC molecules aligned parallel (respectively,
perpendicular) to the horizontal axis (same meaning hereafter). The
green arrow lines represent the flow streamlines.

A, B,C, L1,Ws → 0 (Sec. II A) and thus only contains a vis-
cous component. In the next two sections, we investigate the
influence of θ and Er on F ∗

D (LC).

1. Influence of the contact angle θ

Figure 7(a) shows the drag force as a function of the contact
angle ([45◦ − 135◦]) at two values of Er . For convenience,
we have used the ratio F̃D = F ∗

D (LC)/F ∗
D (iso) to assess the

influence of the nematic ordering around the particle on the
drag force. Note that the interface is maintained flat by shifting
the center of the particle across the Iso-N interface. Gray scale
plots of Q2

11 show some illustrative steady [Figs. 7(b) and 7(c)]

and transient [Figs. 7(d) and 7(e)] states obtained for a few θ

values.
We first notice that the curve F̃D = f (θ ) [Fig. 7(a)]

is asymmetric with respect to θ = 90◦. This is of course
expected since the Iso-N interface breaks the up-down sym-
metry. We checked that for an Iso-Iso interface with matched
viscosities between the two fluids, the curve F̃D = f (θ ) has
the shape of a symmetric concave parabola, in agreement with
previous results [48,53]. Second, for both Er values, we see
that F̃D > 1 in most cases, and notably, F̃D is maximum for
θ � 50◦, i.e., when most of the particle body is immersed
into the N phase [Fig. 7(c)]. In this case, the distorted nematic
texture [see, e.g., Figs. 7(b) and 7(c)] increases the drag force
by about 15 − 20 % compared to a purely isotropic system.
This drag enhancement may be explained by the fact that
the fluid has to flow through distorted regions of the nematic
field where the orientation of LC molecules changes. This is
especially true near topological defects where large gradients
of the order parameter usually occur. Reorientations of meso-
gens bring up an additional contribution to F ∗

D (LC) via the
rotational viscosity γ1 (Sec. II C) [10], which is specific to
nematics. Heuristically, we may imagine that the particle and
its companion defect [e.g., Fig. 7(b)] form a bigger effective
particle in the N phase that has to be dragged along, thereby
enhancing the friction.

In addition, we see that the main effect of the imposed
external flow is to shift the topological defect downstream of
the particle, to a steady-state position if Er is not too large
[Figs. 7(b) and 7(c)]. At this relatively low Er, the viscous
forces from the fluid flow are strong enough to alter the orien-
tation of LC molecules and yield a modified nematic texture.
This is a prominent feature of the coupling between the flow
and the LC orientation. Note that similar defect motions in
bulk LC colloids were reported for Er ∼ 1 [54–57].

Next, as θ increases [Fig. 7(a)], F̃D decreases and tends to-
ward unity, which goes in line with intuition since the particle
is more exposed to the isotropic phase in this case. However,
an anomaly occurs for Er = 0.57 and θ = 135◦ as F̃D jumps
to a larger value (cf. dashed circle). This phenomenon may be
ascribed to the merging of the defect with the Iso-N interface
[Figs. 7(d) and 7(e)], which induces the formation of a pair
of small vortices on either side of the interface downstream
of the particle [see Fig. 7(e)]. These vortices originate from a
Marangoni flow that develops along the interface because of
the existence of an anchoring energy gradient near the CL, as
demonstrated in Fig. 8. Close to the CL, the fluids flow along
the interface from locations of low anchoring energy to those
of high anchoring energy, in agreement with Rey’s theory on
Marangoni flow at LC interfaces [58]. This anchoring energy
gradient arises from the disturbed molecular orientation in
this area as a consequence of the defect-interface merging.
Note that the defect has disappeared from the interfacial area,
giving rise to a nonsingular configuration. The Marangoni
eddies persist over long times and might be responsible for
the enhanced drag force exerted on the particle in this case.

The merging of the defect with the interface [Figs. 7(d)
and 7(e)] may be caused by the combination of two effects:
advection and elastic attraction. The merging only occurs for
Er = 0.57 but not for Er = 0.28. In the former case, the flow
is strong enough to sweep the defect sufficiently close to the
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FIG. 8. (Problem B.) Zoomed-in view of Fig. 7(e) near the
contact line downstream of the particle. The gray scale shows the
dimensionless anchoring energy density, f ∗

a = fa/(L1lnc) , which is
defined across the entire diffuse interface [Eq. (3)]. As such, we
see that it spreads both below and above the level set φ = 0 . The
arrows indicate the velocity field. The anchoring energy gradient
close to the contact line drives a Marangoni flow that is signaled by
a pair of vortices located on either side of the interface (solid curve).
These vortices may increase the drag force exerted on the particle.
Parameters: Er = 0.57, θ = 135◦.

interface so it falls within the range of an attractive elastic
interaction there. Indeed, from the dynamic motion of the
defect [Figs. 7(d) and 7(e)], it seems as if it is captured by the
interface. This phenomenon appears consistent with what we
reported previously in Fig. 5, where a defect trapping occurs,
although in the absence of external flow.

2. Influence of the Ericksen number

In this section, we address in more detail the influence
of the Ericksen number on the drag force [Fig. 1(b)]. In
Sec. III B 1, only two different values of Er were considered
for a broad range of θ (Fig. 7). Here, we carry out a com-
plementary study and vary Er more systematically for only
two different values of θ . In addition, the particle’s center of
mass is now kept fixed midway across the interface. Thus, the
case θ = 90◦ yields a flat interface, as before (Sec. III B 1),
but a nonflat interface results if θ �= 90◦. The latter setup is
useful to examine the effect of interfacial deformations on the
drag force. The numerical setup is exactly the same as before
[Fig. 1(c)].

Contact angle θ = 90◦ . Fig. 9(a) summarizes the results
of our drag force computations for θ = 90◦ as a function of
the dimensionless far-field imposed velocity v∗

∞ = τv∞/lnc ,
where lnc is the nematic coherence length and τ a typical
molecular time (see Appendix A). For the Iso-N interface, the
maximum value of v∗

∞ corresponds to Er = 1.71 . We could
not investigate larger Er values here because, for Er � 1.71,
the defect escapes from the particle and gets convected down-
stream continually by the flow, as shown in Figs. 9(b) and 9(c).
Even though no steady state can be reached in this case, the
drag force acting on the particle remains about constant once
the defect is sufficiently away from it. Previous 3D studies
in bulk LC colloids reported similar defect detachments under
the influence of flow [54,57]. As in our study, it was found that

FIG. 9. (Problem B.) P configuration, θ = 90◦. (a) Drag force
(F ∗

D ) as a function of the prescribed far-field velocity (v∗
∞) for both

the Iso-N and Iso-Iso interfaces. The solid and dashed lines are linear
fits to the data. The numbers next to the fitting lines indicate the
corresponding slopes. (b), (c) Transient snapshots (gray scale: Q2

11)
of the Iso-N interface illustrating the defect escape from the particle
for the last data point on (a) corresponding to Er = 1.71 . The defect,
marked by the dashed yellow circle, is swept downstream by the flow,
whose streamlines are represented by green arrow lines. The defect
is still located close to the particle at time t∗ = 1.2 × 107 (b) but is
being driven away from it at later times (c).

defect separation typically occurs for Er � 1, i.e., when the
viscous forces become stronger than elastic forces. Otherwise
stated, since the defect motion is governed by director rota-
tion, the defect abandons the particle when the elastic torque
can no longer prevent the director from rotating under the
viscous torque due to the passing flow. In Fig. 9(c), notice the
sizable spatial extension of Q distortions (dark areas) induced
by the flow.

In addition, the graph in Fig. 9(a) clearly reveals a propor-
tionality between F ∗

D and v∞ in both the Iso-Iso and Iso-N
cases. While the linear behavior was expected in the isotropic
situation (Reynolds number Re = ρnv∞R/ηn � 10−5), it was
not guaranteed, a priori, that linearity would hold as well for
the Iso-N interface in a regime where Er is not particularly
small (Er ∼ 1). As far as we know, nonlinear drag forces were
only reported by Stark and Ventzki [59] for a spherical particle
exhibiting the dipolar configuration in a bulk nematic matrix.

Moreover, we see that the friction coefficient, F ∗
D/v∗

∞,
which is given by the slope of linear fits in Fig. 9(a), is
slightly larger in the Iso-N case than in the Iso-Iso case. This
result can be explained via the same arguments as those put
forward previously (Sec. III B 1): as v∞ increases, areas where
the nematic alignment is distorted grow in size as a result of
the coupling between the velocity and order parameter fields.
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FIG. 10. (Problem B.) P configuration, θ = 135◦. (a) Same as in
Fig. 9(a). (b), (c) Transient zoomed-in snapshots (gray scale: Q2

11)
illustrating the merging of the defect with the Iso-N interface for
Er = 0.57 . The yellow dashed circle marks the defect location just
before (b) and right after (c) the merging event. The green arrow lines
represent the streamlines and t∗ is the simulation time.

Advection of the defect is also more pronounced, leading to
significant molecular reorientations which contribute to the
friction through the rotational viscosity.

Contact angle θ = 135◦ , nonflat interface. Finally, we con-
sider the case of a nonflat interface by setting θ = 135◦. Since
the particle’s center of mass is fixed, the Iso-N interface now
deforms downward so most of the particle body is exposed
to the isotropic phase. The graph in Fig. 10(a) compares the
drag force data obtained in this configuration for the Iso-N and
Iso-Iso interfaces, similarly to Fig. 9(a). First, in the Iso-Iso
case, the friction coefficient (slope of the linear fit) is slightly
larger than its counterpart determined in Fig. 9(a) for a flat
interface (1.2 × 10−4 vs 1.1 × 10−4, respectively). This result
agrees with our previous findings that a deformed fluid inter-
face breaks the up-down symmetry and leads to more bending
of the flow streamlines, which enhances the friction and the
drag coefficient [48]. Second, in the Iso-N case, we again ob-
serve a linear relationship between F ∗

D and v∗
∞ . This linearity

prevails up to Er = 2.86, corresponding to the maximum v∗
∞

in the graph. As before, the friction coefficient for the Iso-N
interface is slightly larger than that of the Iso-Iso interface,
most likely for the same reasons as those already mentioned
in the flat interface situation [Fig. 9(a)].

However, Fig. 10 does show a distinct feature. The defect
does not escape from the particle as observed before with
θ = 90◦ and Er � 1.71 [Fig. 9(c)]. Instead, it merges with
the Iso-N interface for Er � 0.57 , as illustrated in Figs. 10(b)
and 10(c). Since the interface is now bent downward, the flow

can sweep the defect closer to it so, at some point, an attrac-
tive elastic interaction between the defect and the interface,
already encountered in Figs. 5, 7(d) and 7(e), takes over and
results in the trapping of the defect. As in Fig. 7(e), the defect
disappears from the interfacial region once adsorbed, giving
rise to a pair of Marangoni vortices located on either side of
the interface [Fig. 10(c)]. The defect merging, as explained
before, is expected to cause additional drag [Fig. 7(a)]. In
fact, this seems to be the case in Fig. 10(a) as well. The
merging does not occur for the first data point of Fig. 10(a)
at v∗

∞ = 2.7 × 10−6 and Er = 0.28, but occurs for all the
higher values of Er. The first data point falls a bit below the
linear relationship manifested by the higher-Er data points by
some 15% . This is less than the amount of drag enhancement
(� 28%) observed in Fig. 7(a) due to defect merging but the
two configurations are different.

IV. CONCLUDING REMARKS

We have performed numerical simulations on the behavior
of solid colloidal particles attached to an Iso-N fluid interface.
Building on our previous work, we have employed a model
that combines a diffuse interface method (PF) to account for
the properties of the Iso-N interface with a tensor order param-
eter description of the nematic phase, including topological
defects. Such a model is well suited to describe elastocapil-
lary phenomena, i.e., situations involving a coupling between
elasticity and capillarity. We have first focused our attention
on equilibrium floating configurations for both homeotropic
and planar anchoring types at the Iso-N interface with various
anchoring strengths and contact angles. A rigid homeotropic
anchoring was assumed at the particle surface in all cases.
One of the key findings is that the anchoring conditions at
the CL drive the response of the system in terms of inter-
facial deformations and/or particle displacements. We have
discovered two regimes with two distinct scaling laws for
the magnitude of interfacial distortions. A strong anchoring
conflict generally yields a sizable particle shift and interfacial
deformation. Note that, because of their negligible buoyant
weight, the particle we considered would not produce any
interfacial distortion if adsorbed at isotropic planar interfaces.
Thus, our results bring up the novelty of the Iso-N interface
and highlight the interplay between elastic distortions, surface
tension and the anchoring conditions.

In the second part, we have studied the dynamic situation
of a particle being dragged along an interface. One of the
primary objectives was to assess the influence of elastic dis-
tortions on the drag force exerted on the particle and, more
generally, the effect of the coupling between the velocity and
order parameter fields. We have computed drag forces as a
function of the contact angle and the Ericksen number. Only
a moderate planar anchoring has been considered at the Iso-N
interface. Our investigation reveals that (i) drag forces at the
Iso-N interface are always greater, albeit only slightly, than
their isotropic counterparts and (ii), generally, greater drag
enhancement tends to occur for smaller contact angles, when
more of the particle body is immersed in the N phase. Defect
sweeping, escaping, and merging with the interface, together
with large distorted areas of the order parameter, contribute to
the drag enhancement. For both flat and nonflat interfaces, the
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drag force is linearly proportional to the velocity in the entire
range examined, up to Ericksen numbers of order unity.

The current 2D implementation of our model may be ex-
tended to address the case of a sphere trapped at the Iso-N
interface in 3D, which can be more directly compared with
experiments. Preliminary simulations of a floating sphere car-
ried out in a 2D-axisymmetric geometry confirm qualitatively
the main findings of the present 2D study: the presence of
conflicting anchoring conditions at the CL is responsible for
the onset of interfacial deformations, and the stronger the
anchoring, the greater the distortions. We plan to publish a
detailed study in a forthcoming paper. However, the compu-
tation of drag forces acting on a sphere straddling the Iso-N
interface requires a full 3D approach, which cannot be tackled
yet by our current model implementation. Nevertheless, prior
studies in bulk nematics [54–57] suggest that line defects may
be distorted by the passing flow, detach from the particle,
shrink, or even transform into a point. As in the 2D case,
defects merging with the interface could also be expected.
These phenomena, if they occur, are likely to alter drag forces
and perhaps make the force-velocity law deviate from a linear
behavior.

Our 2D results also form the basis for exploring more
complex situations such as multiparticle interactions based
on the elastocapillary coupling. Indeed, we have shown that
sizable interfacial deformations may take place due to the
interplay of elastic and anchoring effects. Thus, in princi-
ple, we may expect the capillary and elastic interactions to
contribute simultaneously to the self-assembly properties of
the system. As mentioned in the Introduction, a number of
experimental and theoretical studies have shed some light on
this topic over the past few years [17,20,21,32], but there is
still no clear demonstration of the interaction mechanisms
by accurate computations. We currently focus our simulation
efforts in this direction.
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APPENDIX A: SIMULATION PARAMETERS

The parameters characterizing the nematic LC are close
to those of the widely used compound 5CB [42,60,61]. The
numerical parameters for the CH dynamics (capillary width

FIG. 11. Geometry used for the scaling argument. The right
boundary symbolizes the particle surface in the actual simulation.
The small ellipsoids represent the LC molecules (not to scale). We
assume they are oriented parallel to the y axis everywhere except
at the right wall. These conditions result in an anchoring conflict of
the H type there [Fig. 1(b)], which makes the Iso-N interface bulge
upwards.

ε, mobility γ ) are chosen according to the guidelines reported
in Refs. [38,44,45]. The dimensional base values of all simu-
lation parameters are listed in Table I.

APPENDIX B: DERIVATION OF EQ. (12)

We derive Eq. (12) using simple scaling arguments based
on the competition between the bulk elastic energy of the
nematic LC and the surface energies (surface tension and
anchoring).

Figure 11 specifies the geometry for our reasoning. To de-
rive Eq. (12), there is no need to consider explicitly a particle
attached to the interface (actually, the particle size is not a
relevant length scale of the problem). The right wall of the
box stands for the particle surface and we assume that an an-
choring conflict exists there, resulting in a deformed interface
(dashed curve in Fig. 11). The typical interfacial deformation
is denoted �yI .

1. Bulk elastic energy

As a first approximation, we know that the elastic free-
energy density, fe , scales as ∼L1/ξ

2, where L1 = K/q2
e

(Sec. II C) is proportional to the elastic constant K of the
nematic LC, and ξ is the characteristic length scale of the
director deformations. In the presence of a finite anchor-
ing strength W at the Iso-N interface, we may take ξ ∼
LW = L1/W , where LW is the anchoring extrapolation length.
Indeed, this is the relevant characteristic length to describe di-
rector deformations due to an anchoring conflict (cf. Fig. 11).
It follows that the change in the elastic energy density due to
a nonzero anchoring strength can be written as δ fe ∼ W 2/L1 .
Furthermore, assuming that the area A ∼ L2 of the nematic
domain remains about constant (small variation), the change
in the elastic energy reads

δFe ∼ W 2

L1
A. (B1)
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TABLE I. Definitions and base values of the parameters used in the simulations. The subscript n (respectively, i) stands for nematic
(respectively, isotropic). The superscript A (respectively, B) refers to problem A (respectively, B). PF is the abbreviation for phase field.

Parameter Symbol Value Unit

Elastic constant L1 10 pN
Landau-de Gennes coefficients A −105 Pa

B = −C −6 × 105 Pa
Scalar order parameter at equilibrium qe 0.81 [33] –

Nematic coherence length lnc =
√

L1
|A| 10 nm

Typical molecular time τ 1 ns
Nematic shape factor ξ 0.6 –
Nematic rotational viscosity γ1 = 1/
 0.04 Pa.s
Density ρn, ρi 103 kg.m−3

Viscosity ηn, ηi 0.07 Pa.s
Surface tension σ 10−3 (A), 0.01(B) N.m−1

Anchoring strength Ws 0 − 0.016 N.m−1

Particle radius R 1 μm
Contact angle α 45◦ − 135◦ deg
Capillary width (PF) ε 20(A), 40(B) nm
Mobility (PF) γ 4 × 10−15 m2/(Pa.s)
Far-field velocity v∞ 27 − 270 μm.s−1

Box dimensions (height,length) (H, L) (8R, 10R)(A), (20R, 30R)(B) μm

2. Surface energies

To estimate the change in surface energies, we have to
compute the excess length δL of a deformed interface caused
by the existence of an anchoring conflict. The resulting excess
surface energy is simply given by δFs = (σ + W )δL since
both interfacial and anchoring energies will be affected by a
change in L .

From simple considerations of differential calculus, we
have dL′ = dL

√
1 + (dy/dx)2 , where dL′ is a length element

of the deformed interface and dL its projection along the
x axis. Assuming small interfacial deformations, and hence

small slopes ( (dy/dx) 
 1), we may write dL′ ≈ dL[1 +
1
2 (dy/dx)2], resulting in δ(dL) = dL′ − dL = 1

2 (dy/dx)2dx .
In terms of orders of magnitude, (dy/dx) ∼ �yI/L , leading

to δL ≈ ( �yI

L )2
∫ L

0 dx = �y2
I

L , where the (unimportant) prefac-
tor 1/2 has been dropped. Consequently, we may write

δFs ∼ (σ + W )
�y2

I

L
. (B2)

Balancing the two Eqs. (B1) and (B2) yields Eq. (12):

�yI = w∗L

√
σL

L1(1 + w∗)
.
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Babič, N. Osterman, I. Muševič, Entangled Nematic Colloidal
Dimers and Wires, Phys. Rev. Lett. 99, 247801 (2007).
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