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Abstract

Two aspects of hydrogel mechanics have been studied separately in the past.
The first is the swelling and deswelling of gels in a quiescent solvent bath triggered
by an environmental stimulus such as a change in temperature or pH, and the
second is the solvent flow around and into a gel domain, driven by an external
pressure gradient or moving boundary. The former neglects convection due to
external flow, whereas the latter neglects solvent diffusion driven by a gradient in
chemical potential. Motivated by engineering and biomedical applications where
both aspects coexist and potentially interact with each other, this work presents
a poroelasticity model that integrates these two aspects into a single framework,
and demonstrates how the coupling between the two gives rise to novel physics in
relatively simple one-dimensional and two-dimensional flows.

1 Introduction

Hydrogels are typically crosslinked polymer networks swollen by an aqueous solvent.
They play increasingly important roles in engineering and biomedical applications, rang-
ing from smart sensors and actuators [1,2] to organ-on-chip devices [3–5]. These applica-
tions take advantage of unique properties of hydrogels, including their biocompatibility,
softness, permeability to solvent and biochemical factors, and sensitivity to changes of
ambient conditions. For example, hydrogels can swell or shrink in response to changes in
ambient temperature, pH levels, light, electric field or ionic strength [6–10], with novel
applications in autonomous flow control [11, 12], wearable sensors and actuators [13]
and soft electronics [14, 15]. They are also used extensively in in vitro assays as a sup-
porting matrix or scaffold for growing and differentiating cells, and as a medium for
administering growth factors or chemoattractants to the cells [16–18].

Mechanical modeling of hydrogels has largely been focused on their swelling and
deswelling behavior in response to changes in the environment, e.g., in temperature or
ionic strength. The gel is typically surrounded by a stationary solvent, with no ex-
ternally induced flow. The environmental stimulus disrupts the chemical equilibrium
between the gel and the surrounding medium, and a gradient of chemical potential then
drives the solvent into the polymer network (swelling) against the elasticity of the net-
work or out (deswelling). This process has been elegantly modeled by Hong et al. [19],
and the same theoretical framework has been applied to explain how gels respond to
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various environmental stimuli [10, 20–29]. In this context, one notes two equivalent de-
scriptions of the solvent transport. The diffusive description adopts Fick’s law, making
the solvent flux proportional to the spatial gradient of a chemical potential, with a dif-
fusivity coefficient [19, 24]. The alternative description uses Darcy’s law, making the
flux proportional to the spatial gradient of an osmotic pressure, with a permeability
coefficient [20,25,30–32]. Insofar as the chemical potential and the osmotic pressure are
essentially synonymous, and the diffusivity and permeability are both phenomenological
material properties on the continuum level, these two descriptions are equivalent [10].
Note, however, that such a Darcian description does not represent the Darcy flow in the
classical sense, driven by an external pressure gradient. As in the diffusive description,
there is no momentum balance for the solvent inside the gel, and the solid momentum
equation, ∇ · σs = 0, allows no influence from the solvent [10, 29]. Therefore, nomen-
clature notwithstanding, this series of studies has focused on diffusive solvent transport
only.

Complementary to the above, convective solvent transport takes place owing to an
external flow driven by a pressure gradient or boundary motion as in classical fluid
mechanics. This process has been a mainstay in the mechanics of porous media [33–35],
but has received relatively little attention for hydrogels [36]. Part of the reason is the
difficulty in posing boundary conditions (BCs) on the interface between the hydrogel
and the clear liquid, which play a central role in mediating the solvent transports inside
the gel and outside [37–40]. Using irreversible thermodynamics, we have proposed such
BCs and tested them in relatively simple flows involving a solvent-gel interface [41–43].
These results clearly suggest the importance of convection as a distinct mode of solvent
transport, which may give rise to novel phenomena. For example, as the flow compresses
the gel in a capillary, the solvent flux may vary non-monotonically with the pressure
drop [44]. Flow-induced gel compression and expansion have also been implicated in
kidney disease [45].

Is there value in integrating the diffusive and convective mechanisms of solvent
transport into a single unified theory? There are emerging applications in which both
act simultaneously, and potentially interact with each other. A prominent example is
hydrogel-based actuators in microfluidic chips. The gel component swells or shrinks in
response to changes in the surrounding fluid, e.g., in pH or temperature, thus effect-
ing autonomous flow control by closing or opening microvalves [11, 12, 46–48]. Another
notable application is wet-spinning of hydrogels of nanocellulose and nanochitin into
filaments [49,50]. The gel is stretched and pulled through a bath of coagulant or antisol-
vent, which extracts the solvent from the gel to produce a solid fiber. In such processes,
both chemically driven diffusion and mechanically driven external flow play critical roles.

There has been little effort at integrating these two complementary mechanisms of
solvent transport. Bacca and McMeeking [51] developed a viscoelastic model for gels
by adding a viscous stress due to the solvent to the elastic stress due to the polymer
network. But the solvent is assumed to deform affinely with the solid network, and thus
no interstitial flow is allowed. More recently, Celora et al. [29] presented a comprehensive
model for the swelling of polyelectrolyte gels with multicomponent diffusion of ions. In
the solvent bath surrounding the gel domain, a viscous stress tensor is written out,
formally allowing an external flow. Inside the gel, however, the solvent transport is
entirely by Fickian diffusion. In the end, the model is applied to a polyelectrolyte gel
swelling in a stationary solvent bath.

In this paper, we seek to integrate convective and diffusive solvent transport into
a single theory, and then use it to explore dynamics of hydrogels in which both play
active roles. A cornerstone of our model is a generalized Maxwell-Stefan equation that
expresses the total flux as the sum of a convective flux and a diffusive flux. Only the
former contributes to the Darcy drag in the momentum equations. Another novelty is
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the boundary conditions for the interface between the gel and the solvent bath. From
a thermodynamic argument, we derive BCs that relate the velocity jumps across the
interface to jumps in the traction and the chemical potential. The model will be applied
to one- and two-dimensional (1D and 2D) problems to demonstrate its utility and probe
the interplay between the two mechanisms of solvent transport.

2 Model formulation

We consider a hydrogel immersed in a flowing solvent, where it swells or deswells by
absorbing or exuding fluid while also deforming due to the external flow of the solvent.
Thus, the dynamics of the hydrogel is affected by both diffusion and convection of the
solvent. We account for the former by Fickian diffusion driven by the gradient of the
chemical potential, and the latter as interstitial flow governed by poroelastic mechanics.
The hydrogel is composed of a solid and a fluid phase, with volume fractions φs and
φf , respectively, such that φf + φs = 1. φf is also commonly called the porosity.
The external flow is governed by the Stokes equations, with inertia neglected. On
the interface between the hydrogel and the external fluid, we adopt a novel boundary
condition on the solvent flux.

2.1 Chemical potential and Fickian flux

The formulation below follows mostly Hong et al.’s [19] model for hydrogel swelling in a
quiescent solvent bath. The starting point is a free energy for the solvent and polymer
mixture:

Wm = −m
[
vC ln

(
1 +

1

vC

)
+

χ

1 + vC

]
, (1)

where m indicates the magnitude of the free energy, v is the volume of the solvent
molecule, and C is the solvent number concentration per unit volume of the dry polymer.
Thus, the solvent volume fraction is φf = vC/(1 + vC). The first term inside the
brackets represents the entropy of mixing, and the second term represents the enthalpy
of mixing, where χ is a dimensionless parameter representing the hydrophilicity of the
polymer network. The enthalpy of the hydrogel promotes solvent absorption if χ < 0,
and desorption if χ > 0. We define the chemical potential as µm(C) = ∂Wm/∂C, and
rewrite it in terms of φf :

µm(φf ) = mv [lnφf + (1− φf ) + χ(1− φf )2]. (2)

In the original Flory-Huggins mixing energy [19, 52, 53], the parameter m = kBT/v,
with kB being the Boltzmann constant and T the absolute temperature. In reality, T
may affect the gel in multiple ways, including via m, χ and the rigidity of the polymer
network. For simplicity, we will disregard the specific physical mechanisms by which an
environmental stimulus may affect the chemical potential µm. Instead, we will treat m
as a generic measure of µm, and vary m as the simplest way of effecting changes in µm.
Note, however, that pH changes cannot be accommodated by the above free energy; the
ionic transport and electrostatic interactions must be included explicitly [29].

Following Hong et al. [19], we write Fick’s law for the number of solvent molecules
crossing a unit area per unit time as

ji = −CD
mv

1

J
∇µm = −Dφf

mv2
∇µm, (3)

where D is a constant diffusivity, J = det(F) is the Jacobian of solid deformation, F =
I + ∇̂us being the solid deformation gradient tensor, with the gradient ∇̂ differentiating
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the solid displacement us in the Lagrangian frame attached to the solid phase [42]. Thus,
J = 1/φs is the gel volume expansion relative to the dry-polymer reference state, which
has zero strain and zero stress. Now the volume flux of the solvent is

jf = v ji = −φfD
mv
∇µm. (4)

Using the chemical potential µm(φf ) of Eq. (2), we rewrite the Fickian flux as

jf = −D(1− φf )(1− 2χφf )∇φf . (5)

If we consider the prefactors multiplied onto ∇φf to be a “diffusivity”, then that diffu-
sivity is non-constant for a constant D.

Here we note a departure from Hong et al.’s nomenclature [19]. To enforce “molecular
incompressibility” of the solid and liquid, Hong et al. introduced an osmotic pressure
Π as a Lagrange multiplier, and appended it to the chemical potential µm of Eq. (2).
Since we will add solvent convection into the model, the continuity equation will also
require a hydrodynamic pressure as Lagrange multiplier. Thus, we have left Π out of
µm, and will include it into a single p that contains both hydrodynamic and osmotic
pressures. This will become clearer when we introduce the generalized Maxwell-Stefan
equation next.

2.2 The generalized Maxwell-Stefan equation

Conceptually, the task of integrating convective and diffusive solvent fluxes appears
straightforward. The total solvent flux should consist of a convective component deter-
mined by the mechanics of the external flow, and a diffusive component given by Fick’s
law. A complication arises as diffusion of matter generates “flow” or “convection”, and
the Fickian flux is traditionally written as relative to an average velocity between the
two diffusing species [54, 55]. There is much ambiguity in choosing such an average
velocity in general [29, 55], and the issue is further complicated by an externally driven
convection.

As a starting point, let us review the classical formulation of Fickian diffusion in the
absence of an externally driven flow [54]. For the solvent and solid network of the gel, we
denote their respective intrinsic phase-averaged velocity by vf and vs, each defined by
averaging over a sufficiently small volume that contains only the fluid or the solid [39].
Then an average velocity can be defined as v = φfvf +φsvs, and the flux of each species
is written as

qf = φfvf = φfv + jf , (6)

qs = φsvs = φsv + js, (7)

with jf = −js being the diffusive flux according to Fick’s law. It appears difficult to
adapt this textbook formulation to accommodate an external flow. The average velocity
v represents the movement of the center of volume of both species, and cannot reflect
the motion of the solvent relative to the solid network. This can be seen more clearly by
eliminating v between Eqs. (6) and (7) to arrive at the Maxwell-Stefan equation [55]:

vf − vs =
jf
φfφs

. (8)

In the formulation of Eqs. (6, 7), therefore, the relative motion between the two phases
can only be due to Fickian diffusion jf , and cannot be externally driven.

4



Xu, Yue & Feng, Soft Matter 20, 5389-5406 (2024)

The conceptually opposite “convective limit” is where no diffusion exists (jf = 0)
and the interstitial flow (vf − vs) is driven by a pressure gradient −∇p according to
Darcy’s law:

φf (vf − vs) = −k
µ
∇p, (9)

where µ is the solvent viscosity, and k is the classical Darcy permeability, which is a
function of the porosity and pore geometry. As hydrogels typically have high porosity
[44, 56–58], one may compute k from Stokes flows through a dilute array of spherical
particles of radius r [59, 60]:

k =
2r2

9

φf
φs
, (10)

This permeability will be used in the rest of the paper.
To unify the two limits of pure diffusion and pure convection, we postulate the

following on the basis of Eqs. (8) and (9):

vf − vs =
jf
φfφs

− k

µφf
∇p, (11)

which may be called the generalized Maxwell-Stefan equation. It will replace Darcy’s
law as the momentum equation for the interstitial fluid in our unified model.

We should note that Eq. (11) is not completely new; it has appeared in somewhat
different forms in other contexts. In reverse osmosis and ultrafiltration, for example,
Cussler [55] derived a similar relationship by formulating the Fickian flux of each phase
relative to the solvent velocity. In concentrated suspensions that undergo flow and
diffusion, Peppin et al. [61] argued for an equivalency between Darcy’s law and Fick’s
law, recasting both into a “modified Darcy’s law” of a similar form. Hennessy et al. [28]
added a “mechanical pressure” to the osmotic pressure in the chemical gradient, thus
arriving at a solvent flux that resembles Eq. (11).

2.3 Governing equations

The solvent and solid fluxes, φfvf and φsvs, each implicitly contain a convective and a
diffusive contribution, but these do not appear explicitly in the continuity equations:

∂φf
∂t

+∇ · (φfvf ) = 0, (12)

∂φs
∂t

+∇ · (φsvs) = 0. (13)

The sum of the two equations gives a divergence-free condition for the average velocity:
∇ · (φfvf + φsvs) = 0.

As in prior poroelastic models [36,42,43,62], the momentum equations are essentially
statements of force balance in the absence of inertia. For the solvent phase, we ignore
the Brinkman term as scaling arguments show that the viscous stress can be dropped
in favor of the Darcy drag [63]. This is commonly done in poroelastic models [29, 36].
Thus, the solvent executes Darcy flow. But Darcy’s law must be replaced in our context
by the generalized Maxwell-Stefan equation:

∇p = −µφf
k

(vf − vs) +
µ

kφs
jf . (14)

In place of the solid-phase momentum equation, we adopt the total force balance for
both phases [36,62]:

∇ · (φsσs − pI) = 0, (15)
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where σs is the solid stress tensor, and φsσs is Terzaghi’s effective stress [36]. The solid
velocity vs is related to the solid displacement us by vs = dus/dt. For the solid stress
σs, we adopt the neo-Hookean elasticity model:

σs = µsJ
−1(F · FT − I) + λs(J − 1)I, (16)

where µs and λs are the Lamé constants of the solid network phase. The neo-Hookean
model is more general than the linear or weakly nonlinear models of earlier studies,
e.g., [19,31,64]. Note also that σs contributes to the overall force balance of the gel via
the Terzaghi stress φsσs, whereas prior models often adopted an elastic stress tensor for
the entire gel as a continuum.

The external flow is treated as inertialess Stokes flow:

∇ ·V = 0, (17)

∇ · (Σ− P I) = 0, (18)

where V and P denote the velocity and pressure of the external fluid, and Σ = µ[∇V +
(∇V)T ] is the viscous stress tensor with the fluid viscosity µ.

2.4 Boundary conditions

Two general BCs come from the continuity of fluid flow and total traction balance on
the interface between the hydrogel and the solvent outside:

n · (V − vs) = φfn · (vf − vs), (19)

n · (Σ− P I) = n · (φsσs − pI), (20)

where n is the outward normal vector on the hydrogel surface. Equation (19) ensures
volume conservation of fluid flowing through the interface. Equation (20) represents
the balance of the tractions on both sides of the interface, where we have neglected
the surface tension and the Brinkman viscous stress. However, additional boundary
conditions are needed as both the fluid and solid phases in the gel have their own
momentum equation.

In the convective limit (jf = 0), Young et al. [40,41,43] used the principle of positive
entropy production to derive the following BCs:

µ (V − vs) · n = η (n ·Σ · n− P + p) , (21)

µ (V − vs) · t = β n ·Σ · t, (22)

where t is the tangential vector along the interface, and the positive coefficients η and
β are the interfacial penetration length and slip length, respectively. These conditions
correspond to BC2 of [41, 43], with some notational simplifications as explained in Ap-
pendix A. For the current purpose, we follow a similar procedure to extend Eq. (21) to
account for diffusive flux across the gel-solvent interface (see Appendix A for details).
The new BC thus derived is:

µ (V − vs) · n = η
(
n ·Σ · n− P + p+

µm
v

)
. (23)

Now Eqs. (19), (20), (22) and (23) form the complete set of BCs. The “interfacial
penetration” BC of Eq. (23) states explicitly that the solvent flux across the interface
depends on the jump in the fluid normal stress as well as the jump in chemical potential.
During swelling of the hydrogel, the solvent diffuses into the gel where the chemical
potential is lower (µm < 0). Meanwhile, an externally imposed normal stress may inject
the solvent into the gel. The solvent flux is the sum of both effects, with µ/η representing
the resistance to the interfacial transport.
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2.5 Comparison with previous models

In the above, we have formulated a model that integrates solvent convection and diffusion
in hydrogels via the governing equations and the new boundary condition. It may be
interesting to point out some connections to and distinctions from prior poromechanical
models.

In the governing equations, the key difference is the inclusion of the fluid mechanics
for the interstitial flow inside the gel. This necessitates a separate momentum equation
for the pore fluid, and an explicit account of the solvent flux as the sum of a diffusive
and a convective part (Eq. 11). If we neglect the interstitial fluid mechanics and set
the flow outside the gel to nil, we recover the gel-swelling models in a quiescent solvent
bath [10,19,25]. The generalized Maxwell-Stefan equation is algebraically similar to the
expression for the diffusive flux in swelling models, e.g., [19, 65, 66]. Typically, these
models add an osmotic pressure Π to the chemical potential of our Eq. (2), such that
the solvent flux equals our Eq. (4) plus an extra term proportional to ∇Π. Insofar
as Π and our p are both Lagrange multipliers to enforce volume conservation, the two
formulations are algebraically equivalent. One subtle distinction is that in prior swelling
models, the coefficients before the ∇µm and ∇Π terms are related (see Eq. 22 of Drozdov
et al. [66]). There is essentially one coefficient, which allows the flux to be interpreted
as either Fickian or Darcian. In our Eq. (11), however, the diffusivity D and hydraulic
permeability k are two independent parameters. This provides a means to distinguish
the two kinds of fluxes unequivocally, even with simultaneous external flow and solvent
diffusion.

The BCs on the gel-solvent interface is another essential element of our model, and
such interfacial transport is especially important when solvent convection is included [29].
Most studies of gel swelling due to solvent diffusion, e.g., [19, 25, 28, 29], have imposed
continuity of chemical potential as a boundary condition on the surface of the gel. In
our notation, their BC amounts to

P − p− µm
v

= 0, (24)

signifying instantaneous equilibration between the pressure jump and the chemical po-
tential jump. An exception is the BC of Liu et al. [67],

P − p− µm
v

= − 1

mc
n · vf , (25)

which makes the solvent flux proportional to the interfacial jumps in pressure and the
chemical potential. It is interesting to compare the BCs above with the diffusion-only
limit of our interfacial penetration BC of Eq. (23), which can be realized by setting V
and Σ to 0 (no external flow). Using the volume conservation of Eq. (19), we reduce
Eq. (23) to

P − p− µm
v

= −φf
φs

µ

η
n · vf . (26)

The diffusion limit of our BC, therefore, is essentially the BC of Eq. (25) but differs
from the commonly used Eq. (24); the latter can be recovered by taking the additional
limit of large interfacial penetration η →∞.

Incidentally, Eq. (24) incurs a singularity when applied to gel swelling after a sudden
change in the environment. This implies a sudden change in µm and, via Eq. (24), a
sudden change in the pressure drop P − p across the interface. From the interfacial
traction balance (Eq. 20), this implies in turn a sudden change in the solid normal
stress: φsσsnn = −µm/v. This would require an instantaneous strain in the solid, with
solid velocity vs → ∞. In previous studies, one usually avoids the initial singularity
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by starting the modeling with a pre-established solid stress [10, 19, 25]. Our new BC of
Eq. (23), and its diffusion-only limit of Eq. (26), do not suffer from such a singularity,
nor does Eq. (25).

2.6 Scaling

The permeability function of Eq. (10) invokes the pore size r, which is not explicitly
accounted for in a homogenized theory such as poroelasticity. Therefore, we take the
characteristic permeability k∗ = 2r2/9 as a phenomenological constant of the porous
medium. Then our problem has 10 physical parameters, k∗, µ, µs, λs, η, β, χ, D, m and
φf0, and at least 1 geometric parameter L0. The initial porosity φf0 sets a uniform level
of the chemical potential inside the gel, in equilibrium with the exterior. After a sudden
change in ambient condition, µm jumps to a new value inside the gel to prompt swelling
or deswelling. The physical setup may be such that we prescribe either a pressure drop
P0 or a far-field velocity V0. For the time being, let us take V0 as a prescribed parameter.
Thus, we expect 9 dimensionless groups from the 12 parameters. Adopting L0 as the
characteristic length, Vc = µsk

∗/(µL0) as the characteristic velocity, and the network
modulus µs as the characteristic stress, we scale the variables as follows to render the
governing equations and BCs dimensionless:

(x̄, ȳ) = (x, y)/L0, (V̄, v̄s, v̄f ) = (V,vs,vf )/Vc, t̄ = tVc/L0,

ūs = us/L0, (σ̄s, Σ̄, P̄ , p̄) = (σs,Σ, P, p)/µs,
(27)

where the overbar denotes the dimensionless variables. The characteristic velocity Vc is
based on the ratio between the network rigidity and the Darcy drag. We prefer Vc to the
more obvious choices, the convection velocity V0 and diffusion velocity D/L0, as these
cannot accommodate the diffusion-only and convection-only limits in a unified formu-
lation. For convenience in parametric studies, we choose the following 9 dimensionless
groups:

λ̄s = λs/µs, (η̄, β̄) = (η, β)µs/(µVc), m̄ = m/µs,

V̄0 = V0/Vc, ∆̄ = D/(L0Vc), K̄ = k∗/L2
0, χ, φf0.

(28)

Some combinations of the groups have familiar physical meanings. For instance, V̄0/∆̄ =
LV0/D forms a Péclet number, representing the ratio of the convective solvent flux to
the diffusive solvent flux of Eq. (5). V̄0K̄ = µV0/(µsL0) is the ratio between the viscous
stress in the fluid and the elastic stress in the solid network, and can be viewed as
an effective capillary number. Finally, η̄ = ηL0/k

∗ is the ratio between the interfacial
penetration to the bulk permeability. This will be a key parameter to solvent transport.

In discussing the results, we use only dimensionless quantities and thus will omit the
overbar hereafter. Substituting µm (Eq. 2), jf (Eq. 5) and k = k∗φf/φs (Eq. 10) into
the fluid momentum equation, we summarize the dimensionless governing equations as
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follows:

∂φf
∂t

+∇ · (φfvf ) = 0, (29)

∂φs
∂t

+∇ · (φsvs) = 0, (30)

∇p = −φs(vf − vs)−∆
φs(1− 2χφf )

φf
∇φf , (31)

∇ · (φsσs − pI) = 0, (32)

σs = φs(F · FT − I) + λs
φf
φs

I, (33)

∇ ·V = 0, (34)

∇P = K∇2V. (35)

The boundary conditions on the gel-fluid interface are:

n · (V − vs) = φfn · (vf − vs), (36)

n · (Σ− P I) = n · (φsσs − pI), (37)

n · (V − vs) = η
[
n ·Σ · n− P + p+m(lnφf + φs + χφ2

s)
]
, (38)

t · (V − vs) = βn ·Σ · t. (39)

The far-field velocity V0 serves as a BC for the external Stokes flow (Eq. 35).
It is worthwhile to ponder a scheme of tuning the parameters to recover the diffusion-

only and convection-only limits. In those limits, we should reproduce respectively the
solutions for quiescent swelling [10, 19] and for flow through hydrogels [42, 43]. This is
one way to demonstrate how our model unifies the two aspects that have been previously
studied separately. Toward the diffusion-only limit, we need only reduce V0 toward 0.
Toward the convection-only limit, we need two conditions: m → 0 and ∆ → 0. The
first removes the impetus for diffusion across the interface. The second puts the Fickian
flux jf of Eq. (5) to zero even though a gradient ∇φf may arise from flow-induced gel
compression. As m is independent of ∆, the Péclet number V0/∆ will not serve as a
single “dial” that could push our solution toward either of the two limits.

3 Results and discussion

The main objective of this paper is to present our new and unified model. The three
examples of this section serve to validate the model against previous solutions in limiting
cases, and to illustrate interesting solutions inaccessible to previous models.

3.1 Swelling and flow compression of hydrogel layer

Figure 1 shows a gel layer of initial thickness L0 under the simultaneous action of two
antagonistic mechanisms: compression by a uniform flow of velocity V0 perpendicular to
the gel surface, and swelling due to an abruptly imposed chemical potential jump across
the interface. One can imagine this as the result of a change in ambient temperature.
Because of the small spatial dimensions of microfluidic chips that employ hydrogels, the
thermal equilibration occurs on a time scale much shorter than that for gel swelling.
Thus, for simplicity, one typically imposes an abrupt and spatially uniform change in
ambient condition [10,29]. The right side of the gel is held fixed by a rigid but permeable
mesh so that no displacement of the gel skeleton is allowed: us = 0. In such a 1D
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HydrogelSolventV 

L
0

us=0

y

x

Compression Swelling

Figure 1: The setup for a hydrogel layer undergoing simultaneous flow-induced com-
pression and thermodynamically-induced swelling.

Table 1: Five dimensionless model parameters for the swelling of a gel layer in a quiescent
solvent, estimated in Appendix C.

λs χ m ∆ φf0

1.94 0.2 8.0 17.2 0.01

setup, no flow, deformation, or spatial variation occurs along the y- or z-direction. By
simplifying the governing equations (Eqs. 29–33) and boundary conditions (Eqs. 36–38)
into their 1D form, the system can be solved by the finite-difference method, with the
interface being tracked by Lagrangian mesh points. Details are given in Appendix B. In
the absence of flow, the 1D swelling of hydrogel in a quiescent solvent has been studied by
Hong et al. [19] and Yoon et al. [64]. More recently, Xu et al. [43,45] have obtained the
solution for flow-compression without solvent diffusion or swelling. The current model
accounts for both convection and diffusion of the solvent, and recovers the two limiting
cases under suitable conditions.

3.1.1 Swelling without external flow

We first consider the limiting case of quiescent swelling without external flow (V0 = 0).
This is mostly because Yoon et al. [64] have reported experimental data for the process,
which we can use to benchmark our model. Even in this limit, our model differs from
previous models [19, 64] in our new boundary condition (Eq. 38). Thus, the diffusion
limit provides a simplified setting for exploring the role of the interfacial penetration η
in the swelling of the gel.

We adopt the geometric setup of Yoon et al.’s experiment, with a planar gel layer
attached to an impermeable solid substrate on one face, and exposed to a solvent on the
other face (Fig. 1, except that the right boundary of the gel layer is now impermeable).
The substrate prohibits displacement in its plane, and only allows swelling normal to the
gel layer. Of the 9 dimensionless groups, V0 = 0 for lack of an external flow, and K also
vanishes. Besides, the tangential slip coefficient β does not appear in the current setup.
Of the remaining 6 dimensionless parameters, 5 can be evaluated based on experimental
evidence [64] (Table 1 and Appendix C). The only remaining parameter is the interfacial
penetration η. It is new to our model and has never been reported experimentally before.
Thus, it will be treated as a free parameter in fitting experimental data.

The interfacial penetration η governs the ease with which the solvent crosses the
interface of hydrogel, and is thus important to the swelling kinetics. Figure 2 depicts the
displacement of the gel surface us1 as a function of time for three η values. As expected,
higher η values correspond to faster swelling, owing to enhanced solvent infiltration.
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Figure 2: Model predictions of the evolution of the interfacial displacement us1 for
a gel layer swelling in a quiescent solvent, for three η values, and comparison with
experimental data from Yoon et al. [64].

However, the effect quickly saturates; the swelling curve for η = 10 is already rather
close to the asymptotic limit of η →∞.

We also compare our us1 with Yoon et al.’s experimental data gathered from gel
layers of several initial thicknesses. To normalize their results for various gel thicknesses,
Yoon et al. scaled time t in a way that is equivalent to rescaling our dimensionless time
as t∆ in our notation. Our model prediction at η = 10 runs through the band of the
experimental data, offering a satisfactory fit given the degree of scatter in the data. The
value η = 10, according to earlier estimations [68], is representative of the low-porosity
hydrogels in the experiment. Therefore, in the limit of no external flow, our model
captures the swelling dynamics of a gel layer in a quiescent solvent. Note, however,
that the data are also reasonably well fitted by the curve for η → ∞. In fact, Drozdov
et al. [66] have previously fitted Yoon et al.’s data using the BC of Eq. (24) based on
continuity of the chemical potential. This suggests that after the initial moment, the
swelling behavior quickly becomes insensitive to the interfacial resistance to solvent
penetration represented by a finite η. The latter effect must be sought in the initial fast
kinetics of swelling, where Eq. (24) would have encountered a singularity.

The swelling process can also be appreciated from the temporal evolution of the
φf (x) profiles in Fig. 3, for η = 1 and η = 10. The horizontal dashed line indicates the
low porosity at the start of the simulation. Upon contact with the external solvent, the
jump in chemical potential across the interface immediately pumps the solvent into the
gel, via the boundary condition of Eq. (38) to raise the porosity inside the gel layer,
while the gel expands simultaneously (see the t = 0.001 profile in panel a). In time,
the high porosity extends further into the depth of the gel layer, as φf (x) approaches
a uniform steady-state profile, φf∞ = 0.44 for the current parameters. This value
is determined by balancing the solid stress and the interfacial jump of the chemical
potential, φsσs + m(lnφf + φs + χφ2

s) = 0, based on Eqs. (37, 38). At a larger η, the
interfacial equilibration occurs more quickly (Fig. 3b). But the diffusion into the bulk
of the gel takes time. The equilibrium porosity φf∞ does not depend on η.

Even in this “pure diffusion” limit, both terms of the generalized Maxwell-Stefan
equation (Eq. 11) are at work. As the solvent enters the gel, it expands the polymer
network and creates an inhomogeneous solid stress field σs, and consequently a gradient
in the (osmotic) pressure p via the force balance of Eq. (32). The gradient of this
pressure and the gradient of the chemical potential both contribute to the solvent flux,
via the generalized Maxwell-Stefan equation. In principle, therefore, one may identify
a convective part and a diffusive part in the solvent flux. This division will be further
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Figure 3: The evolving porosity profile with (a) η = 1, and (b) η = 10, plotted at different
times: t = 0.001, 0.01, 0.1, 0.5, 1. The vertical grey dashed line marks the initial location
of the interface, and the horizontal dashed line the initial φf profile.
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Figure 4: The porosity profiles of a swollen hydrogel compressed by a uniform flow at
t = 0.01, 0.1, 0.2 and 1 (from pink to black lines) with V0 = 0.2 and η = 1. The vertical
dotted line marks the upstream surface of the swollen gel before the external flow starts
(t = 0), and the horizontal dashed line indicates the uniform porosity at t = 0.

explored in the following subsection.

3.1.2 Compression by external flow

After the hydrogel swells to its equilibrium state, we turn on the external normal flow
of Fig. 1, and explore the interplay between the flow and the swollen hydrogel. The
temporal evolution of the porosity profile is shown in Fig. 4. The normal flow compresses
the hydrogel, and the compression initiates from the downstream boundary (x = 1) and
is the most severe there. This is because the Darcy drag accumulates downstream and
the downstream interface is fixed (us = 0). Eventually, the system reaches a steady
state at t ≈ 1, indicated by the black line in Fig. 4, with the porosity φf decreasing
monotonically downstream. This behavior closely resembles our previous simulations
of 1D compression without the swelling effect [42, 43]. However, a major distinction
is that in the current unified model, the chemical potential gradient drives a diffusion
flux, which is absent from the earlier studies. Moreover, the chemical potential modifies
the pressure jump across the boundary via Eq. (38). As a result, the pressure p inside
the hydrogel may be higher than the external solvent pressure P thanks to the jump in
chemical potential. This contrasts the purely hydrodynamic scenario [42, 43], where P
must exceed p to drive the solvent into the hydrogel.
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Figure 5: (a) The steady-state porosity profiles for a series of V0 values (0.05, 0.2, 0.4,
1, 2) and a fixed ∆ = 17.2; (b) The steady-state profiles for different ∆ values (0.25,
0.5, 1, 2, 10, 100) and a fixed V0 = 0.2.

The competition between solvent convection and diffusion can be probed by a para-
metric study. With increasing V0, Fig. 5(a) shows progressively more severe compression
of the gel layer, with the greatest reduction in φf at the immobile downstream bound-
ary x = 1. Conversely, increasing the diffusivity ∆ results in less compression and a
more uniform porosity profile φf (Fig. 5b), as can be expected from the diffusive flux of
Eq. (5). Interestingly, even in the limit of ∆→∞, the flat φ(x) profile is still below the
initial profile. This is because the external flow produces an interfacial pressure drop
according to our boundary condition in Eq. (38). This pressure drop in turn causes an
interfacial compression, visible in the t = 0.01 profile of Fig. 4, that is inversely propor-
tional to the interfacial penetration η [43]. This effect cannot be compensated for by
strong diffusion, and as a result, the Péclet number Pe = V0/∆ is of limited utility in
the current context.

In steady state (vs = 0), we can separate the solvent flux explicitly into a convective
and a diffusive component. Using the generalized Maxwell-Stefan equation (Eq. 31) and
the solvent continuity across the interface (Eq. 36), we write V0 as the sum of a diffusive
flux Vd and a convective Vc:

V0 = φfvf = −∆(1− 2χφf )
∂φf
∂x
− φf
φs

∂p

∂x
= Vd + Vc. (40)

Even for a fixed V0, its two parts Vd and Vc vary through the depth of the gel layer,
their relative importance being controlled by the porosity φf . A high porosity, at light
compression, favors Vc whereas severe compression favors Vd.

Figure 6 plots the steady-state profiles of Vd/V0 for a range of V0 and ∆ values. As
Vd/V0 + Vc/V0 = 1, the vertical distance from the curve up to the gray dashed line at
1 represents the fraction of the convective flux Vc/V0. At the fixed ∆ = 17.2, Vd is
dominant as diffusion accounts for more than 85% of the solvent flux (Fig. 6a). For each
of the V0 values, Vd increases with x. This is because the porosity φf declines down-
stream (Fig. 5a), and as a result Vd becomes more important relative to Vc according to
Eq. (40). Perhaps surprisingly, Fig. 6(a) shows that a stronger external flow V0 raises the
proportion of diffusion relative to convection. This is similarly because V0 compresses
the gel layer to reduce φf . Another interesting feature is that the curve becomes flat for
small V0, implying a constant Vd/Vc ratio throughout the gel. The overall momentum
balance (Eq. 32) implies ∂p/∂x ∝ ∂φf/∂x in this 1D case, as the solid stress σs is a
function of the local strain, which in turn depends on φf only. A vanishing V0 causes
weak compression and a nearly constant φf (x), and thus a nearly constant Vd/Vc ratio.
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Figure 6: The steady-state profiles of the relative diffusive flux Vd/V0 for (a) increasing
V0 values (V0 = 0.05, 0.2, 0.4, 1, 2) and a fixed ∆ = 17.2; (b) increasing ∆ values (∆ =
0.25, 0.5, 1, 2, 10, 100) and a fixed V0 = 0.2.

On the other hand, if we keep V0 constant and increase ∆ (Fig. 6b), the proportion of
diffusion flux increases continuously toward 1, implying domination by diffusion, as one
may expect. Note that in Fig. 6, V0 and ∆ have similar effects in favoring the diffusive
flux over the convective one. Thus, a naive application of the Péclet number Pe = V0/∆
would not be appropriate in this analysis.

To sum up this section, the swelling of a gel layer in a quiescent solvent bath can
be accurately captured by our unified model. Even in the absence of external flow, a
convective flux acts alongside a diffusive one. If an external flow is imposed, the relative
importance of the two mechanisms are controlled by the dimensionless parameters V0

and ∆. Because of the complication of gel compression that varies spatially inside the
gel, the interplay between solvent convection and diffusion cannot be encapsulated by a
Péclet number.

3.2 Dynamics of a spherical shell of hydrogel

Another well-studied problem is the swelling and deswelling of a gel sphere [10, 20,
25, 31, 32]. In the following, we consider the somewhat more complex geometry of a
spherical shell of hydrogel (called the “gel shell” hereafter; Fig. 7). This is motivated
by recent experiments that aimed to manufacture capsules from hydrogels [69,70]. But
our immediate goal is to use this problem to demonstrate the coupling between solvent
diffusion and convection in a curvilinear geometry.

We first consider the swelling of a gel shell after a sudden change in ambient condition
in a quiescent solvent bath. Then we study the simultaneous action of a sudden ambient
change and an expanding gas bubble at the center, which may arise from chemical
reaction [69, 70] or nucleation following a temperature change. The first is a “pure
diffusion” process, whereas the second couples convection and diffusion. In this section,
the following parameters are fixed: λs = 1.94, η = 10, ∆ = 1 and χ = 0.2. The
parameter ∆ = 1 is chosen to allow an evenly matched competition between diffusion
and convection.

3.2.1 Swelling of a spherical shell in quiescent bath

In keeping with convention [19], the dry-polymer state is taken to be the reference state
of zero solid stress. The dry shell has an outer radius twice its inner radius, and the dry
shell thickness L0 is used as the characteristic length. Put into contact with a solvent at
m = 4, the shell swells initially to reach chemical and mechanical equilibrium with the
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Figure 7: Deformation of a spherical shell of hydrogel driven by swelling due to an am-
bient stimulus, or by the simultaneous action of the ambient stimulus and an expanding
bubble inside the shell.

solvent inside and outside, with an initial inner radius ai = 1.19, outer radius ao = 2.38
and uniform porosity φf0 = 0.408. This initial equilibrium state is determined by
balancing the osmotic pressure p with the chemical potential on the one hand (Eq. 38),
and with the elastic tensile stress in the swollen network on the other (Eq. 37). Now we
impose a sudden change of m from 4 to 6. This disrupts the chemical balance so the
solvent diffuses into the shell from both the inside and the outside surface. There is no
external flow, so V0 = 0. Similar to the planar gel layer of Section 3.1, the 1D swelling
of the gel shell is solved by finite difference. See Appendix B for details.

Starting from the initial condition specified above, our model predicts the subsequent
swelling of the shell in the quiescent solvent bath, eventually approaching a new chemical
and mechanical equilibrium. Figure 8(a) illustrates this process via the porosity φf (r)
profiles. As time progresses, the color of the lines darkens from pink to black. For
ease of description, we divide the whole process roughly into three stages: (i) interfacial
swelling (blue arrows), (ii) bulk swelling (red arrows), and (iii) solvent transportation
from outside the shell to inside (green arrows).

In the first stage, both surfaces of the gel absorbs solvent to raise the local osmotic
pressure, driven by the BC of Eq. (26). Toward the end of stage (i), the gel approaches
the interfacial balance represented by Eq. (24). At the relatively large interfacial pene-
tration η = 10, the interfacial swelling occurs quickly, and is nearly complete by t = 0.01;
see the first pink profile in Fig. 8(a).

In the second stage, roughly from t ≈ 0.01 to 0.2, the interfacial regions swollen in
the first stage at both surfaces widen and spread toward the interior of the gel shell.
The interfacial swelling has produced higher pressure and chemical potential locally, and
both the pressure and the chemical potential gradients drive the solvent transport into
the interior of the gel. This raises the porosity in the interior of the shell to yield a
relatively flat φf (r) profile at the end of stage (ii). The swelling of the bulk pushes the
outer surface outward and the inner surface inward, further shrinking the inner radius
ai in stage (ii) (Fig. 8b). Owing to the spherical geometry of the shell, the decrease
in ai incurs a tangential compression of the gel at the inner surface, which for a time
reduces the local φf , indicated by the small red arrow in Fig. 8(a). The end of stage (ii)
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Figure 8: Swelling of the gel shell. (a) Temporal evolution of the φf (r) profile, with
darkening colors indicating time progression: t = 0.01, 0.05, 0.1, 0.2, 0.5, 1, 2, 4. The blue,
red and green arrows mark the 3 stages of swelling. The initial state is indicated by
the lower horizontal grey dashed line, while the final equilibrium by the upper one. (b)
Non-monotonic evolution of the thickness of the hydrogel shell L (black line) and the
inner radius ai (red dashed line).

corresponds roughly to the φf (r) profile becoming flat at the inner surface.
At the start of stage (iii), the inner surface experiences an inversion in the gradient

∂φf/∂r so that the φf (r) profile assumes a uniformly positive gradient; see the t = 0.5
curve in Fig. 8(a). Stage (iii) is thus dominated by a solvent flux from the outside to the
inside of the shell, driven by the gradients of pressure p and chemical potential µm. As
a result, the inner radius ai starts to increase, and this trend persists throughout stage
(iii). The thickness of the shell L increases until t = 0.32, when the exuding flux at the
inner surface equals the absorbing one at the outer surface and L peaks at Lmax = 1.29
(Fig. 8b). As both the p and µm gradients subside in time, φf becomes more uniform
in space. In the end, φf (r) approaches a uniform equilibrium profile dictated by a new
chemical and mechanical balance. In this equilibrium, the gel swelling has to be spatially
uniform. Thus, the shell maintains the same spatial proportion as in the initial state,
and indeed as in its dry state. In particular, L = ai, even though the shell thickness
and inner radius are both greater than in the initial state.

In swelling of the planar gel layer (Fig. 3) and the gel shell (Fig. 8), the “diffusive
flux” driven by the gradient ∇φf and the “convective flux” driven by the gradient ∇p
often seem to act in concert. In particular, Eq. (40) shows the diffusive and convective
fluxes to be proportional to each other under weak flow compression of a planar gel layer.
Such proportionality and synchronization may have contributed to the common practice
of writing the total flux either as Fick’s law [19] or as Darcy’s law [10] in 1D quiescent
swelling. For the gel shell, the curved geometry complicates the situation as non-zero
strains arise in both the radial and azimuthal directions. Such 2D strains disrupt the
proportionality between ∇p and ∇φf . Consequently, the diffusive and convective fluxes
no longer synchronize perfectly (Fig. 9), with the diffusive flux Vd following the variation
of the convective flux Vc with a slight delay.

3.2.2 Deformation of a spherical shell driven by a gas bubble

We now consider the dynamics of the gel shell subject to the simultaneous action of
two processes: the swelling studied in the above, triggered by a sudden environmental
stimulus, and the nucleation and growth of a gas bubble in the center of the shell, which
may be triggered by the same stimulus (Fig. 7). The expanding bubble drives a radially
outward flow of the solvent, thus setting up a situation where solvent diffusion and
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Figure 9: Temporal evolution of the diffusive flux Vd (solid line) and the convective flux
Vc (red dashed line) at the inner surface.
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Figure 10: Dynamics of the gel shell driven by swelling and an expanding bubble. (a)
Temporal evolution of the φf (r) profile, with darkening colors marking time progression:
t = 0.01, 0.05, 0.1, 0.2, 0.5, 1, 2, 4, and the blue, red and green arrows indicating the 3
stages of gel deformation. (b) Temporal evolution of the diffusive flux Vd (solid line)
and the convective flux Vc (red dashed line) at the inner surface.

externally driven convection coexist.
According to the classical Epstein-Plesset model for diffusion-driven bubble growth,

the bubble radius changes in time as rg = A
√
t, where the material constant A is

determined by the gas concentration and diffusivity in the liquid and gas density inside
the bubble [71,72]. This affects the gel shell by imposing a radial solvent velocity at its
inner surface (of radius ai):

V =
A3

2a2
i

√
t, (41)

which enters the boundary conditions of Eqs. (36) and (38). Since V changes in time,
it is awkward to define a “far-field” velocity scale V0 in this case. The dimensionless
V serves in its place, with the constant A assigned a moderate value of 3

√
2/5 ≈ 0.737.

Besides, the viscous normal stress Σ of the solvent flow is negligible in comparison to
the Darcy drag inside the gel. Thus we set K = 0 in Eq. (35) and omit Σ from the BCs
of Eqs. (37) and (38). All the other dimensionless parameters are the same as in the
preceding subsection.

The expansion of the gel shell is depicted in Fig. 10. Similar to the quiescent swelling
of the previous subsection, the temporal evolution of the φ(r) profile also exhibits three
stages, indicated by the blue, red and green arrows in Fig. 10(a). The first two stages
resemble their counterparts in Fig. 8(a); the bubble expands slowly at the start (Eq. 41)
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and has not yet imparted much effect on the gel. In the third stage, the bubble manifests
itself in several distinct features of φ(r). First, the azimuthal stretching elevates φf
quickly, especially at the inner surface of the shell, such that the previous equilibrium
state of Fig. 8 (grey dashed horizontal line at φf∞ = 0.464) is surpassed at t = 1.
Second, later profiles for t > 1 assume a downward slope, with the porosity decreasing
monotonically from the inner surface to the outer surface. This is reminiscent of the 1D
compression of the planar gel layer (Fig. 5), where the cumulating Darcy drag produces
more severe solid compression further downstream. As a consequence, the diffusive
flux turns positive (radially outward) in the third stage (Fig. 10b). Finally, as the
bubble continues to expand, so does the gel shell, causing a continual rise of φf as
the gel is stretched. The shell thickness, not shown in Fig. 10, reaches a maximum
of Lmax = 1.28 at t = 0.24, comparable to Fig. 8(b), and then continues to decrease
while the shell expands and stretches. We end the simulation at t = 4, when the bubble
interface reaches the shell’s inner surface, initiating complex gas-gel interactions beyond
the scope of this study.

It is interesting to contrast the convection and diffusion velocities of Fig. 10(b) with
their counterparts in the 1D planar geometry (Fig. 6a). In the spherical shell, the growing
dominance of the convective flux Vc in time is evidently due to the increasing velocity
of the expanding bubble (Eq. 41). In contrast, increasing V0 in Fig. 6(a) produces more
severe compression of the 1D gel layer, thus elevating the φf gradient and favoring Vd
over Vc. One reason for this difference is that the planar gel layer is constrained by the
solid substrate, whereas the gel shell is free to expand outward. Another is the azimuthal
stress σθ in the shell geometry, which helps to counterbalance the Darcy drag and to
relieve the φf gradient. Thus, in Fig. 10(b), the diffusive flux Vd does not experience a
substantial increase as Vc does, underscoring how the curvilinear geometry may disrupt
the coordination between ∇p and ∇φf . Such disruption has already been noted for the
quiescent swelling of Fig. 9, albeit at a much reduced magnitude.

3.3 Flow around a gel cylinder

Going beyond the 1D planar and spherical geometries above, we now consider a 2D
problem with flow around a gel cylinder. It is motivated by experiments that used a
row of gel cylinders, placed abreast facing the flow, as pH-sensitive throttle values in a
microfluidic device [11]. Assuming symmetry between neighboring cylinders, we adopt
the computational domain of Fig. 11 with symmetry conditions on the top and bottom
boundaries. As in the experiment, the gel forms a concentric “jacket” around a rigid
post. A uniform flow of velocity V0 enters the domain from the left, carrying high-pH
fluids that causes the gel to expand.

In this example, the reference state for measuring the elastic strain and stress is not
the dry-polymer state as used in the preceding examples and in the literature [19], but
is a uniform gel at porosity φf0 = 0.2 and chemical potential m = 0 in equilibrium with
the environment. This is because in the experiment [11], the gelation happens in situ by
photopolymerization of a precursor solution. The solid constitutive equation (Eq. 33)
is modified slightly by setting J = (1 − φf0)/φs, in place of J = 1/φs, in Eq. (16). To
initiate the swelling, we impose a sudden and uniform change of the parameter m from
0 to 4 throughout the gel at the start of the simulation. The initial outer radius of the
hydrogel is taken as the characteristic length: ao|t=0 = 1, and the radius of the inner
solid cylinder is ai = 0.5. The computation domain has a height H = 2 and a length of
3H (Fig. 11). A uniform velocity V0 = 0.5 is imposed on the left boundary and a stress-
free boundary condition applies on the right boundary. For such entry and exit BCs,
channel flow computations normally require a longer length. But our poroelastic gel with
a small K = 0.01 is insensitive to the external flow. Realistic values of K ∼ (r/L0)2 are
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Figure 11: Computational setup of the flow around a gel cylinder. The grey area denotes
the solid cylinder and the surrounding blue layer is the hydrogel. The flow with velocity
V0 goes from the left to the right, with symmetry conditions imposed on the top and
bottom boundary.

likely to be even smaller. Numerical experimentation shows negligible changes to the
gel displacement when the channel is lengthened. On the top and bottom boundaries,
symmetry conditions prevail. At the surface of the solid cylinder, no displacement of
the solid skeleton of the gel is allowed, and there is no fluid penetration. Since we
adopt Darcy flow for the fluid, with no Brinkman stress, there is no need to specify the
tangential fluid velocity. The governing equations are solved in the 2D domain by finite
elements, with a fixed-mesh arbitrary Lagrangian-Eulerian method to track the moving
gel surface. Algorithmic details can be found in Li et al. [42]. Mesh and time-step
refinements have been carried out to ensure adequate spatial and temporal resolution.
A typical grid has about 900 cells, each a quadrilateral Q3 element with 4 nodes per
edge, and the finest mesh size ∆x ∼ 0.008a0. The time step is shortest ∆t = 10−6 at
the start of the simulation, and increases to 10−4 after the initial rapid swelling.

A typical solution is depicted in Fig. 12. In the early times, the external flow field
quickly establishes itself. But the most interesting feature is the rapid swelling of the gel,
reflected by the interstitial fluid velocity vf in Fig. 12(a). As the gel expands radially
outward, the solvent is driven inward to fill the increasing porosity. Thus, the vf field
by itself does not satisfy volume conservation as expected for single-phase flows. At
oncoming velocity V0 = 0.5, the flow-induced gel deformation is weak at this stage,
but vf exhibits an asymmetry caused by the external flow. By t = 2.45, the solution
approaches a steady state (Fig. 12b), the gel thickness having grown by roughly 30%.
Because of the external flow, there remains a steady vf inside the gel, indicated by the
streamlines of Fig. 12(b). Consequently, φf and σs remain non-uniform in space, and a
small diffusive flux persists as well.

To further examine the effect of the external flow in gel deformation, we plot in
Fig. 13(a) the temporal evolution of the gel displacement at the upstream “stagnation
point” (the red dot in Fig. 12b) and the downstream stagnation point (the blue dot). The
upstream side of the gel is compressed by the flow, and its radial expansion is reduced
relative to that without the flow (the dashed curve). In contrast, the downstream side
of the gel experiences greater expansion due to the low pressure at the back of the
cylinder. The top region of the cylinder has expanded upward by roughly the same
amount as in quiescent swelling, while the flow sweeps the top downstream by about
0.1. Figure 13(b) shows the evolution of the φf profile along the x-axis, the coordinate
xw being the distance to the wall of the solid cylinder. At the initial stage (t = 0.058),
the profile is approximately symmetric between the upstream (xw < 0) and downstream
(xw > 0) portions. This reflects the initial domination of swelling over the external
flow. As the swelling weakens in time, the external flow manifests itself more clearly
by compressing the upstream region of the gel while expanding its downstream region.
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Figure 12: (a) The fluid velocity field shortly after the start of flow (t = 0.058). (b)
Streamlines in the steady state (t = 2.45). In both plots, the dashed cyan line delineates
the initial gel surface. The color of the graph represents the pressure. The red and
blue dots mark the front and rear “stagnation points” where gel deformation will be
compared. The material parameters are λs = 1.94, η = 1, β = 1, ∆ = 1, K = 0.01 and
χ = 0.2. The initial porosity φf0 = 0.2. At t = 0, the flow starts with V0 = 0.5 and m
changes from 0 to 4.
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Figure 13: (a) Temporal evolution of the gel displacement at the upstream and down-
stream stagnation points marked by the red and blue dots in Fig. 12(b). The dashed
curve represents the interfacial displacement without external flow. (b) Temporal evo-
lution of the porosity profiles φf (xw) along the center line y = 0, at different times
t = 0, 0.058, 0.18, 0.43 and 2.45 (essentially the steady state). The x-axis xw is the
distance to the wall of the solid cylinder.

Thus, the φf profile becomes increasingly asymmetric, with lower porosity upstream
than downstream.
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4 Conclusion

We have formulated a poroelasticity model to explicitly integrate two modes of solvent
transport through a hydrogel: convection driven by an external pressure gradient, and
diffusion driven by the gradient of a chemical potential inside the hydrogel. To accom-
plish this seemingly straightforward goal, we have had to resolve two complications.

The first is the current usage of two parallel systems of nomenclature and formulation
in modeling hydrogel swelling or deswelling in a quiescent solvent bath, one expressing
the solvent flux as a diffusive Fickian flux, and the other as a convective Darcian flux.
The ambiguity seems to stem from inconsistent definitions for the chemical potential µm
and the osmotic pressure Π. Between certain models, the same entity has been called by
one or the other name [10,19]. While the chemical-potential gradient ∇µm fits naturally
in the framework of Fickian diffusion, the pressure gradient ∇Π evokes Darcy’s law.
Fortunately, the algebraic similarity between Fick’s law and Darcy’s law has enabled
both formalisms to produce essentially the same predictions. Therefore, insofar as the
diffusivity and permeability are treated as phenomenological constants, the two systems
differ in notations but not in substance when applied to quiescent swelling problems. In
our integrated model, however, we have to clearly distinguish the two modes of solvent
transport, and use Fick’s law or Darcy’s law accordingly. Algebraically, this is facilitated
by combining the osmotic pressure and the hydrodynamic pressure into a single Lagrange
multiplier p.

The second issue is more substantive. In its standard formulation, Fick’s law is
expressed as fluxs relative to an average velocity, and this average velocity is ambiguous
if an externally driven flow passes through a hydrogel. Our solution to this problem is
to generalize the Maxwell-Stefan form of the diffusive flux, so as to obviate the need for
an average velocity. Thus, the solvent flux is expressed as the sum of a diffusive flux
Vd ∝ (−∇µm) and a convective flux Vc ∝ (−∇p). This forms the basis for our unified
model.

Another key feature of our model is a penetration boundary condition, derived from
the requirement of positive entropy production on the gel-solvent interface. Thus, in
place of previous assumption of instantaneous interfacial equilibration, our boundary
condition stipulates a normal solvent flux proportional to the interfacial imbalance be-
tween the jumps in normal stress and in chemical potential. This remedies a singularity
suffered by the previous boundary condition: upon abrupt change of an ambient condi-
tion, the gel must deform instantaneously to develop a finite strain and stress.

Applied to 1D and 2D calculations, our model reveals interesting scenarios where
the diffusive and convective modes of solvent transport interact to yield novel physical
outcomes. The main results can be summarized as follows:

(a) The model is capable of describing swelling experiments of a planar layer of hy-
drogel submerged in a quiescent solvent bath. This is no surprise, as the unified
model encompasses quiescent swelling as a component.

(b) Even in this “diffusion-only” limit, the (osmotic) pressure gradient induces a “con-
vective flux” Vc, which reinforces the diffusive flux Vd in the 1D planar geometry.

(c) In the curvilinear geometry of a spherical shell of hydrogel, the swelling exhibits
distinct stages dominated by different physical mechanisms, with non-monotonic
changes in the shell thickness and inner radius.

(d) Interesting interaction between Vc and Vd arises in curvilinear and two-dimensional
geometries, where multiple strain components may compress or extend the local
solid network. During the swelling of the spherical shell, for example, Vc and Vd
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are no longer synchronized as they are in planar 1D geometry with a single strain
component.

(e) When an external flow is imposed on a swelling hydrogel, it directly affects the
convective flux Vc in the gel and the coupling between Vc and Vd. This coupling
depends on the geometry of the problem, and is not well represented by a Péclet
number in general.

(f) The 2D flow around a gel cylinder demonstrates the potential of the model in
multi-dimensional applications.

The flow problems presented here are relatively simple, and serve to illustrate the
capability of the unified model to describe physical processes that involve simultaneous
actions of solvent convection and diffusion. Nevertheless, this work offers a theoretical
framework and numerical tool for simulating and analyzing a class of emerging techno-
logical problems, e.g., the function of gel-based microfluidic actuators, the wet-spinning
of fibers by passing and stretching hydrogel filaments in a coagulant bath, and the design
of gel-based lab-on-chip devices.
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Appendix A Interfacial boundary conditions

In this Appendix, we temporarily revert to the use of dimensional variables in discussing
the boundary conditions. The boundary conditions of Eqs. (21, 22) correspond to the
so-called BC2 derived by Young et al. [41, 43], but differ somewhat in notations. In its
original form, BC2 consists of the following three boundary conditions [41,43]:

(V − vf ) · n = η n · [(Σ− P I)− (σs − pI)] · n, (A.1)

(V − vf ) · t = β n ·Σ · t, (A.2)

φs (vs − vf ) · t = −β n · σs · t. (A.3)

Using the interfacial fluid continuity and traction balance (Eqs. 19, 20), we transform
Eq. (A.1) to

(V − vs) · n = η (φf/φs)
2

(n ·Σ · n− P + p). (A.4)

As we only consider Darcy flows in the current work, we no longer need a BC on the
tangential vf · t. Eliminating vf from Eqs. (A.2, A.3), Xu et al. [43] showed that in
Darcy flows, the two tangential BCs should be replaced by

(V − vs) · t = β
(
1 + φ−2

s

)
n ·Σ · t. (A.5)

Equations (A.4, A.5) are the basis for the boundary conditions of Eqs. (21, 22).
Furthermore, there are two notational changes in the definition of η and β. First,

we add the solvent viscosity µ on the left hand side of Eq. (A.4). This reflects the
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expectation that the stresses inside and outside the gel vary linearly with µ. In the
current form, therefore, η no longer depends on µ. It has the dimension of length and
depends solely on the geometric features of the interface. Similarly, µ is added to the
left hand side of Eq. (A.5) to make β a length. Our penetration length η and slip
length β can be likened, respectively, to the “transpiration length” and the Navier slip
length [73]. Second, the factor (φf/φs)

2 in Eq. (A.4) is now absorbed into η to simplify
the notation, giving rise to Eq. (21). Similarly, we absorb (1 + φ−2

s ) into β in Eq. (A.5)
to arrive at Eq. (22). In principle, η and β are functions of φf , and Feng and Young [41]
have explored their limits at φf → 0 and φf → 1. Their general function forms require a
detailed pore-scale study [68]. In this paper, we take η and β to be constants in Eqs. (21,
22) for simplicity.

To extend Eq. (21) to account for solvent diffusion across the interface, we start
by considering the diffusion-only limit without convection. Following Hong et al. [19],
we require that the total free energy not increase in time during the diffusion, and as
sufficient conditions, that neither the elastic energy nor the mixing energy increase in
time. As the gel domain deforms in time, it is convenient to write the volume integral
of the mixing energy in the time-invariant Lagrangian frame, indicated by a hat :̂

d

dt

∫
Ω̂

Wm dV̂ =

∫
Ω̂

∂Wm

∂C

dC

dt
dV̂ =

∫
Ω̂

µm(−∇̂ · ĵi) dV̂ ≤ 0, (A.6)

where Ω̂ is the domain of the gel, and the number flux of the solvent ĵi is related to C
by dC/dt + ∇̂ · ĵi = 0. Applying the divergence theorem and transforming back to the
Eulerian frame (without the hat )̂, we have:∫

Ω̂

∇̂µm · ĵi dV̂ −
∫

Γ̂

(n̂ · ĵi)µm dÂ =

∫
Ω

∇µm · ji dV −
∫

Γ

(n · ji)µm dA ≤ 0, (A.7)

where Γ is the surface of the gel domain Ω, and the transformation to the Eulerian
frame is based on dV̂ = J dV and Eqs. (27–29) of Hong et al. [19]. Fick’s law (Eq. 3)
ensures that the volume integral on the right-hand-side be non-positive. Linking ji to
the relative velocity vf − vs via Eq. (8), we propose a new BC such that the surface
integral stays non-negative:

n · (vf − vs) = αµm, (A.8)

where the positive coefficient α represents a kind of interfacial permeability, i.e., the ease
with which the interfacial jump in chemical potential µm drives the solvent across the
gel interface. Note that by definition (Eq. 2), µm = 0 in the solvent bath (φf = 1).

In the general case, the total solvent flux across the interface Γ is the sum of a
convective and a diffusive component. This suggests combining Eqs. (21) and (A.8)
additively. Again using the solvent continuity of Eq. (19), we arrive at Eq. (23):

µ (V − vs) · n = η
(
n ·Σ · n− P + p+

µm
v

)
, (A.9)

which amounts to choosing α = η/(µvφf ). This is partly for dimensional uniformity.
More importantly, having µm/v added to the pressure p maintains consistency with
existing formalisms for the diffusion-only limit (cf. Eq. 18 of Hong et al. [19]).
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Appendix B One-dimensional solutions

In the planar 1D geometry of the gel layer of Section 3.1, we simplify the dimensionless
governing equations into the following form:

∂φf
∂t

+
∂(vfφf )

∂x
= 0, (B.1)

vfφf + vsφs = V0, (B.2)

∂p

∂x
+ φs(vf − vs) + ∆

φs(1− 2χφf )

φf

∂φf
∂x

= 0, (B.3)

∂φsσs
∂x

− ∂p

∂x
= 0, (B.4)

σs =
1− φs
φs

λs +
1− φ2

s

φs
, (B.5)

where σs is a shorthand for the normal stress component σsxx, and the last equation has
come from Eq. (33) for 1D strain ∂us/∂x̂ and solid expansion J = 1 + ∂us/∂x̂ = 1/φs.
From Eqs. (B.2, B.3, B.4), we eliminate vs and p and express the fluid velocity vf in
terms of the porosity φf :

vf = V0 +

[
σs + φsσ

′
s −∆

φs(1− 2χφf )

φf

]
∂φf
∂x

, (B.6)

Where σ′s = dσs/dφs is a known function of φs. Substituting this into Eq. (B.1) and
noting φs = 1− φf , we end up with a second-order partial differential equation (PDE)
for φf (x, t), which we will not write out explicitly for its algebraic complexity.

To solve the PDE for φf , we need the initial condition φf = φf0 and two boundary
conditions. The downstream boundary of the gel layer is fixed in space: vs = 0 at x = 1.
At the upstream boundary x = xi(t), the interfacial condition Eq. (38) is simplified to

V0 − vs = −η[φsσs +m(lnφf + φs + χφ2
s)]. (B.7)

Through Eqs. (B.2, B.6), these two condition can be converted to BCs for φf :

at x = 1 :

[
φf
φs
σs + φfσ

′
s −∆(1− 2χφf )

]
∂φf
∂x

= V0, (B.8)

at x = xi :

[
φf
φs
σs + φfσ

′
s −∆(1− 2χφf )

]
∂φf
∂x

+ η[φsσs +m(lnφf + φs + χφ2
s)] = 0.

(B.9)

To discretize the PDE using finite difference over the deforming interval x ∈ [xi(t), 1],
we adopt a Lagrangian grid that uniformly divides the reference state of the solid net-
work, i.e., the dry polymer, and moves with the local velocity vs of the solid network.
Thus, the grid size can be updated dynamically according to the local solid expansion
J = 1/φs. Another notable feature is that the time derivative d/dt in the Lagrangian
frame is a material derivative, and Eq. (B.1) must be transformed to the following for
solution:

dφf
dt
− vs

∂φf
∂x

+
∂φfvf
∂x

= 0. (B.10)

We use the Crank-Nicolson method to solve Eqs. (B.6, B.8, B.9, B.10). Convergence
with respect to the grid size and time step has been confirmed by numerical experiments.

For the spherical hydrogel shell in Section 3.2, the curvilinear geometry complicates
the mathematical formulation somewhat because the strain and stress tensors now have
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two nontrivial diagonal components, in the radial and azimuthal directions. First, let
us simplify the continuity and momentum equations for the spherical symmetry:

∂φf
∂t

+
1

r2

∂(φfvfr
2)

∂r
= 0, (B.11)

(vfφf + vsφs) =
Q

4πr2
, (B.12)

∂p

∂r
+ φs(vf − vs) + ∆

φs(1− 2χφf )

φf

∂φf
∂r

= 0, (B.13)

∂φsσr
∂r

+ 2φs
σr − σθ

r
− ∂p

∂r
= 0, (B.14)

where Q(t) = 4πa2
iV (t) = 2πA3

√
t is the flux at the inner surface of the gel shell (see

Eq. 41), and σr and σθ are the radial and azimuthal normal stress components.
The neo-Hookean constitutive equation reduces to

σr =
1

J
(e2
r + 2er) + λs(J − 1), (B.15)

σθ =
1

J
(e2
θ + 2eθ) + λs(J − 1), (B.16)

with the strain components er = ∂ur/∂r̂ and eθ = ur/r̂, and the Jacobian J = 1/φs.
Compared to the 1D planar formulation, the solid stresses are function of φs, the dis-
placement ur and the coordinate r. Therefore, we need one more equation dur/dt = vs
to complete the system. On both surfaces of the gel shell, we impose the same BC of
Eq. (B.7).

Similarly to the planar 1D case, we eliminate vs and p from Eqs. (B.12–B.14) to
obtain the radial fluid velocity

vf =
Q

4πr2
− ∂φsσr

∂r
− 2φs

σr − σθ
r

−∆
φs(1− 2χφf )

φf

∂φf
∂r

. (B.17)

From vf , one easily obtains vs from Eq. (B.12), and in turn the solid displacement
ur. Furthermore, we transform the solvent continuity Eq. (B.11) to a Lagrangian form
suitable for the finite-difference grid fixed on the solid network:

dφf
dt
− vs

∂φf
∂r

+
1

r2

∂(φfvfr
2)

∂r
= 0. (B.18)

By substituting Eq. (B.17) into Eq. (B.18), we obtain a second-order PDE for φf (r, t),
which is solved together with the BC of Eq. (B.7) by the Crank-Nicolson method. The
only difference from the 1D planar case is that the grid size can no longer be updated
according to the local φs. Instead, the grid movement must be explicitly computed
according to the solid displacement ur.

Appendix C Parameter estimation for swelling of gel
layer

In presenting results in the main text, we have omitted the overbar for dimensionless
groups since the discussion does not concern dimensional parameters. In this appendix,
however, both types are present. Thus, we revert temporarily to using an overbar to
distinguish dimensionless parameters from dimensional ones.
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The dimensionless model parameters of Table 1 can be chosen on the basis of the
experiment of Yoon et al. [64] and previous modeling of Hong et al. [19]. First, we
choose λ̄s = 1.94 to match the Poisson ratio of 0.33 given by Yoon et al. [64]. Then we
select χ = 0.2 as a value for typical gels with large swelling ratios [19]. The parameter
m̄ = 8.0, representing the chemical potential jump that triggers the swelling, is fitted to
the equilibrium interfacial displacement ūs1 = 0.8 in the experiment of Yoon et al. [64].

For the parameter ∆̄ = µD/(µsk
∗), the viscosity of the solvent (water) and the

modulus of the polymer network can be taken directly from Yoon et al. [64]: µ =
10−3 Pa · s, µs = 103 Pa. From the average pore size r = 4.8 nm [64], we have k∗ =
2r2/9 = 5.12×10−18 m2. The diffusivity D, however, cannot be taken directly from the
value DY suggested by Yoon et al. [64], for the following differences between the two
studies:

• Yoon et al. did not include the mixing energy Wm in our Eq. (1) and in Hong
et al. [19]. Their “chemical potential” is essentially Hong et al.’s osmotic pressure.

• Yoon et al. adopted a linear elastic model for the stress of the whole gel, whereas
we have the neo-Hookean model for the stress σs of the polymer network, which
contributes to the gel mechanics in the form of the Terzaghi stress (Eq. 15).

Thus, Yoon et al.’s diffusivity DY appears in the following unsteady diffusion equa-
tion, which has been converted from their Eq. (11) in the undeformed reference frame
to the current deformed frame, and rendered in our notation to facilitate comparison:

∂φf
∂t

=
DY

(1− φf )2

∂2φf
∂x2

+
3DY

(1− φf )3

(
∂φf
∂x

)2

. (C.1)

On the other hand, our formalism leads to

∂φf
∂t

= De(φf )
∂2φf
∂x2

+
dDe(φf )

dφf

(
∂φf
∂x

)2

, (C.2)

where the effective diffusivity De(φf ) depends not only on the Fickian diffusivity D of
Eq. (5), but also on the permeability k(φf ) = k∗φf/(1−φf ) (Eq. 10) and the two Lamé
constants λs and µs of the neo-Hookean model (Eq. 16):

De(φf ) =
k

µ
[λs + 2(1− φf )µs](1− φf ) +D(1− 2χφf )(1− φf ). (C.3)

It is thus impossible to link our D to DY generally. In the following, we establish a
rough linkage by using parameter values and solutions in Section 3.1 of the main paper.

The solutions of Fig. 3 show φ(x) profiles at different times, from which we can
estimate representative magnitudes of ∂2φf/∂x

2 and (∂φf/∂x)2. Plugging these values
into Eqs. (C.1) and (C.2) and equating their right-hand sides, we can estimate D in our
model from DY of Yoon et al. [64]. More specifically, the fluid fraction φf increases from
the initial φf0 = 0.01 to the equilibrium value of φf∞ = 0.44 in time, while the thickness
of the gel layer swells from L0 to 1.8L0 (Fig. 3). Taking the “mid-points” of these ranges,
we use φf = 0.22 as a representation porosity, and δφf = 0.22 as the variation of φf
over a thickness of 1.4L0, such that ∂φf/∂x ∼ δφf/(1.4L0), ∂2φf/∂x

2 ∼ δφf/(1.4L0)2.
Inserting these into Eqs. (C.1) and (C.2), and using the following parameters: µ =
10−3 Pa·s, λs = 1.94×103 Pa, µs = 103 Pa, k∗ = 5.12×10−18 m2, DY = 1.5×10−11m2/s
(all from Yoon et al.’s experiment [64]), and χ = 0.2 (from Hong et al.’s model [19]), we
have D = 8.8× 10−11m2/s, and in turn ∆̄ = µD/(µsk

∗) = 17.2.
By convention, the solid strain is measured relative to a reference state correspond-

ing to the dry polymers [19]. But Yoon et al. did not state explicitly whether their
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displacement was relative to a dry polymer layer or a pre-swelled gel layer. We have
taken the initial state to be a dense gel with initial uniform porosity φf0 = 0.01, close
to the dry state. This corresponds to an initial m̄ = 1.15 × 10−2, and the swelling is
triggered by abruptly raising m̄ to 8.
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