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Abstract

Boundary conditions between a porous solid and a fluid has been a long-standing
problem in modeling porous media. For deformable poroelastic materials such as
hydrogels, the question is further complicated by the elastic stress from the solid
network. Recently, an interfacial permeability condition has been developed from
the principle of positive energy dissipation on the hydrogel-fluid interface. Al-
though this boundary condition has been used in flow computations and yielded
reasonable predictions, it contains an interfacial permeability η as a phenomeno-
logical parameter. In this work, we use pore-scale models of flow into a periodic
array of solid cylinders or parallel holes to determine η as a function of the pore
size and porosity. This provides a means to evaluate the interfacial permeability
for a wide range of poroelastic materials, including hydrogels, foams and biological
tissues, to enable realistic flow simulations.

Introduction. Flow through a deformable porous medium can be described by a
poroelasticity model. This is essentially a mixture model that views the solid and the
fluid as interpenetrating continua, each phase being described by its own volume fraction,
velocity and stress that obey continuity and momentum equations for each phase [1–
3]. Since the model erases all pore-scale geometric information about the fluid-solid
boundaries, and instead poses momentum equations for both phases over the entire
porous medium, additional boundary conditions (BCs) must be supplied to make the
problem solvable [4, 5]. This issue arises in soft porous media such as hydrogels, foams,
flocculated fiber suspensions and biological tissues. For brevity, we will refer to our media
only as “hydrogels” or “gels” hereafter. Even for rigid porous media, where the solid
stress becomes indeterminate, a similar question arises, albeit in a different form [6,7].

The mathematical structure of the problem can be appreciated from a simplified one-
dimensional (1D) flow (Fig. 1). The general vectorial forms of the governing equations
and BCs can be found in Xu et al. [8]. A uniform flow of a solvent of viscosity µ
encounters a layer of hydrogel whose downstream surface is fixed in space. On the
upstream interface, the fluid experiences a contraction flow into the pores. Inside the
gel layer, the fluid exerts a Darcy drag on the solid, and compresses the gel layer into a
steady state. The poroelastic model for this steady state can be reduced to the following
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Figure 1: A one-dimensional (1D) flow into a hydrogel for illustrating the interfacial
permeability boundary condition of Eq. (6).

1D form [8]:

(φfvf )′ = 0, (1)

p′ = −µ
k
φfvf +

1

φf
(φfσf )′, (2)

p′ = (φfσf + φsσs)
′, (3)

where the prime indicates the spatial derivative d/dx, φf and φs = 1 − φf are the
fluid and solid volume fractions, p is the pressure inside the gel, shared by the fluid
and the solid phases, vf is the fluid pore velocity, and σf and σs are respectively the
fluid and solid normal stresses in the x direction. Equation (1) is the fluid continuity
equation. Equation (2) is the Brinkman extension of Darcy’s law for the fluid flow.
The permeability k is a function of the local porosity, a commonly used form being the
Kozney-Carman model [3, 9]. Finally, Eq. (3) is the total momentum balance on the
two phases. For the viscous solvent, σf = 2µv′f . For the solid, σs is given by a linearly
elastic or hyperelastic constitutive equation [8].

On the upstream interface, volume conservation and traction balance give us two
BCs:

φfvf = V0, (4)

p− φfσf − φsσs = P, (5)

where V0 and P are the uniform velocity and pressure upstream of the interface. For
a hydrogel, an additional BC is required, and Young et al. [8, 10, 11] have derived the
following based on the principle of positive energy dissipation on the fluid-gel interface:

V0 − vf = η (P − p+ σs), (6)

with η > 0 being the interfacial permeability. At the downstream interface, we impose
zero solid displacement (us = 0) and zero fluid stress. The permeability BC of Eq. (6)
is intuitive with the normal velocity jump proportional to the normal stress jump across
the interface. It has also produced reasonable results in flow computations through
hydrogels [5, 8, 12]. Nevertheless, η remains a phenomenological coefficient that has
never been measured experimentally. For realistic flow simulations, it will be desirable
to know its value for specific poroelastic media.

Pore-scale models. To estimate η, we adopt an idea from pore-scale models for rigid
porous media. Many authors have calculated the bulk permeability of rigid porous media
by the tube-bundle model [9,13,14] or by flow around periodic arrays of solid cylinders
or spheres [9, 15–18]. The solid-array representation has also been used to explore the
interfacial conditions [6,7,16,17,19–21]. We can use such a rigid pore model to estimate
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η for our poroelastic medium insofar as we seek a constitutive relation for η as a function
of the steady-state local porosity φf and pore size r. The compression that has produced
such a steady state and the fact that φf and r may vary in the bulk of the medium are
of no immediate import to our purpose.

Another issue is that the BC of Eq. (6) involves the solid stress σs, which is undefined
for rigid solids. We bypass this obstacle by eliminating σs using the total traction balance
of Eq. (5). Furthermore, we eliminate vf in favor of V0 by the volume conservation of
Eq. (4) to arrive at the following interfacial permeability BC:

V0 = η
φ2f
φ2s

(P − p+ σf ) =
η̃

µ
(P − p+ σf ) ≈ η̃

µ
(P − p), (7)

where we have simplified the notation by introducing the penetration length η̃ = ηµφ2f/φ
2
s.

This removes the viscosity dependence and leaves η̃ a geometric parameter, akin to the
Navier slip length or the “transpiration length” [7]. We have further dropped the viscous
normal stress σf as it is typically much smaller than the friction that gives rise to the
Darcy drag and the entry pressure drop P − p [22,23]. Now we can use a pore model to
compute the entry pressure drop and back out the interfacial penetration length η̃ and
the interfacial permeability η.

It is interesting to note the similarity between the permeability BC of Eq. (7) and
the pressure jump BCs for rigid porous media [6, 7, 20]. For example, Lācis et al. [7]
proposed the following form (in our notation):

V0 = − 1

f
(P − p+ σf ), (8)

where the “resistance coefficient” f represents the friction force against the solvent pass-
ing through the interface. Although Eqs. (7) and (8) have come from different physical
arguments, they are algebraically similar, and both recognize the need for an interfacial
pressure drop to overcome the resistance to the fluid entering the pores. This idea devi-
ates from the long-standing assumption of traction continuity or pressure continuity at
the interface [21,22,24–26]. Lācis et al. [7] further used numerical computation in a pe-
riodic pore model to evaluate f , and we will be able to compare our result quantitatively
with theirs.

We use four geometric representations for the porous material (Fig. 2a): semi-infinite
arrays of circular and square cylinders aligned in the flow direction, and parallel circular
and square holes in a semi-infinite solid. In either case, the cylinders or holes are arranged
in a periodic square lattice on the cross-section of the medium. Thus, the solvent coming
from the left of Fig. 1 experiences a contraction flow to enter the “pores”.

These geometries are inspired by prior models for porous medium, e.g., [15–19], but
with one important difference. Prior models specify a periodicity along the depth of the
porous medium (i.e., the x-axis of Fig. 1). Then ambiguities arise as to where to place the
interface, and how many periods to use for spatial averaging. Depending on whether the
nominal interface cuts through the solid objects [15,16], stays tangential to their apex in
the top foremost row [19,27], or is placed further in the bulk fluid [7,17], the continuum-
level result may differ greatly. Furthermore, James and Davis [19] demonstrated that a
shear flow penetrates only the first row of cylinders. This challenges the scale-separation
assumption underlying the continuum Brinkman or Darcy model [7]. Our setups avoid
both difficulties; the semi-infinite cylinders or holes present a clear-cut interface, and
they have “pre-averaged” the spatial variations in the depth direction. Experimentally,
Tachie et al. [28, 29] tested brush models that resemble our setup, although they only
considered shear flows past the top of the transverse posts. Our results will turn out to
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Figure 2: (a) The interface for four pore geometries, with periodic arrays of circular and
square cylinders and circular and square holes. The grey and white areas represent the
solid and pore space, the latter occupying an area fraction that equals φf . The dashed
squares, of edge length r, represent the cross-sections of our computational domain. (b)
The computational domain for Stokes flow entering a pore between square cylinders,
with its cross-section at the interface corresponding to the dashed square above. The
flow is depicted by velocity vectors.

be largely insensitive to the geometric details of the model (Fig. 3 below), and thus we
will not consider other solid shapes or other spatial arrangements [15,19].

Numerical and theoretical results. Taking advantage of spatial periodicity and sym-
metry, we solve the 3D Stokes flow in a computational domain that corresponds to a
quarter of a single pore; Fig. 2(b) shows an example for the square cylinder. The 3D
pore-scale flow will be processed to yield the interfacial penetration of the 1D setup on
the continuum level (Fig. 1). We impose no-slip conditions on the solid surfaces and
symmetry conditions on all fluid boundaries. The upstream boundary has a uniform in-
coming flow at velocity V0 and the downstream boundary has stress-free conditions. The
finite-element code is based on the open-source finite-element library deal.II. Mesh re-
finement has confirmed adequate numerical resolution. The up- and downstream bound-
aries are each 4r away from the opening of the pore so they have negligible effect on the
contraction flow and the final result.

To compute the interfacial pressure drop P − p of Eq. (7), we identify P with the
upstream pressure P0 in our pore model, and p with the averaged pore pressure at the
opening of the pore: pf =

∫
Ac
p dA/(r2φf ), where Ac is the cross-section of the interface

excluding the solid portion (the shaded area of Fig. 2b). Dimensional analysis dictates

V0 =
r(P0 − pf )

µ
ψ(φf ), (9)

where ψ(φf ) is a dimensionless function that we have determined numerically and plotted
in Fig. 3. As expected, ψ decreases toward zero as φf → 0 and increases with φf .
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Figure 3: The function ψ(φf ) obtained by computing the Stokes flow into the model
porous medium of figure 2 with different geometries. The solid curve represents the
ψ1(φf ) function of Eq. (12), while the dashed curve ψ2(φf ) of Eq. (13).

Furthermore, ψ differs little among the four geometries tested, suggesting that they are
all robust and realistic representations of the interfacial property of a porous medium.
On the continuum level, therefore, φf is the main geometric parameter that matters.
The numerical data in Fig. 3 embody the idea that an interfacial pressure drop is needed
to propel the fluid into the pores; it is essentially the excess pressure in entry flow [30].

To complement the numerical results, we can estimate theoretically the viscous dis-
sipation of the entry flow, under the following two assumptions:

• The dissipation mostly occurs in an entry region Ω extending a distance of r
upstream from the interface, based on the perturbed flow field of Fig. 2(b).

• The dissipation is mostly attributable to vx, the x-component of the velocity.

The longitudinal velocity accelerates from V0 at the upstream surface of Ω to V0/φf
at the interface, suggesting a strain rate ∂vx/∂x ∼ (V0/φf − V0)/r = V0φs/(rφf ). To
account for the 3D nature of the flow, we introduce a fitting parameter C such that
∂vx/∂x = CV0φs/(rφf ). Similarly, we estimate the shear rates using the averaged
velocity V0/φf divided by the pore size r: ∂vx/∂y = ∂vx/∂z = CV0/(φfr). Therefore,
the total viscous dissipation inside Ω is

Iv = µΩ

{
2

(
∂vx
∂x

)2

+

[(
∂vx
∂y

)2

+

(
∂vx
∂z

)2
]}

= 2C2µV 2
0 r

(
φ2s + 1

φ2f

)
. (10)

Meanwhile, the pressure work on the entrance of Ω is PV0r
2, and that on the exit of Ω

is −pf (V0/φf )(r2φf ). Equating the total work (P − pf )V0r
2 to the viscous dissipation,

we have

V0 =
r(P − pf )

2C2µ

φ2f
φ2s + 1

, (11)

and in turn the following approximation to the ψ(φf ) function of Eq. (9):

ψ1(φf ) =
1

2C2

φ2f
φ2s + 1

. (12)

C = 1/
√

2 ≈ 0.707 gives a good fit to the numerical data of Fig. 3. Considering the
simplicity of the estimation, the semi-analytical ψ1(φf ) captures the numerical data
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well. The greatest discrepancy appears at the dilute limit φf → 1; some numerical data
turn upward whereas the formula remains concave. This discrepancy can be understood
as an effect of the pore geometry in the limit of φf → 1, in an exception to our earlier
statement on the insensitivity to pore geometry. For flow along a cylinder, the cross-
sectionally averaged shear stress vanishes as the cylinder becomes thinner. This explains
the upturn in the numerical data for cylinders in Fig. 3. Conversely, for flow in a hole,
the average shear stress stays finite when the wall become thinner. This difference
is noticeable among the numerical data of Fig. 3. Our estimation of the shear rates
∂vx/∂y = ∂vx/∂z = CV0/(φfr) remains finite as φf → 1. Thus, it reflects internal flow
in holes, not external flow along cylinders.

As an alternative, we can estimate the average shear rate in the external axial flow
along an infinite circular cylinder, with its analytical logarithmic velocity profile. Re-
calculating the viscous dissipation in Ω, we arrive at the following formula:

ψ2(φf ) =
1

2C2

φ2f
φ2s + φ2fq

2/2
, with q(φs) =

8
√
π
(√
φs − 1

)2(√
φs + 2

)
3
(
2 lnφs − 4φs + φs

2 + 3
) . (13)

This ψ2(φf ) function is plotted as the dashed line in Fig. 3 by taking the same fitting
parameter C = 1/

√
2. It accurately captures the numerical results for the cylinder

setup, including the sharp increase near the limit φf → 1. But for lower porosities, it
underpredicts the data for the hole setup. Either ψ1(φf ) or ψ2(φf ) serves as an adequate
representation of the interfacial permeability. They are counterparts of the two formulas
for the bulk permeability k, the Kozeny-Carman formula based on flow in conduits, and
the Brinkman formula on external flow around solid objects [9]. As a further test, we
have numerically computed the viscous dissipation incurred by the contraction flow,
and the ψ function thus obtained agrees with the numerical data of Fig. 3 to within the
difference among the pore geometries.

From ψ we can estimate the interfacial penetration length of Eq. (7),

η̃ = ψ(φf )r, (14)

and in turn the interfacial permeability η. Thus, ψ = η̃/r is the dimensionless interfacial
penetration length scaled by the pore size. A slightly different scaling, η̃/

√
k, can be

interpreted as the ratio between the interfacial permeability and the bulk permeability.
We can now use Eq. (14) and Fig. 3 to estimate η̃ for real materials. Most hydrogels
have small pores (nm to micron scale) [31–33] and high porosity φf > 0.9 [33–36]. Thus,
η̃ can range from r up to 4r. For low-swelling-ratio gels [37], biological tissues [38],
larger-scale porous media such as foam [39] and packed beds of soft particles [40], φf
can be as low as 0.5, and η̃ will be on the order of 0.1r.

Lācis et al. [7] computed the f factor in Eq. (8) numerically in a lid-driven flow over
a model porous medium. A direct comparison can thus be made with our ψ of Fig. 3.
For φf = 0.75, they reported f = −5.215µ/r for a square array of circular cylinders
aligned in the vortex direction of the flow outside. This translates to a penetration
length η̃/r = 0.192, smaller than our ψ(φf = 0.75) = 0.367, but on the same order
of magnitude. The quantitative discrepancy may have been due to differences in the
geometric and flow setup. For example, theirs was a planar 2D flow around the cross-
sections of cylinders, while ours is a 3D axial flow. Their interface was placed in the
bulk of the clear fluid, 0.2r outside the plane tangential to the first row of cylinders,
whereas our interface is flush with the ends of the semi-infinite cylinders and holes.
Their pressure difference was volume-averaged, going 4 periodic cells into the depth of
the porous medium, while our pf is surface-averaged on the interface. Finally, their lid-
driven flow is 2D on the continuum level, with variations along the interface, whereas our
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setup mimics the simpler 1D compression of Fig. 1. Such differences notwithstanding,
both studies support the argument for an interfacial pressure drop. The numerical and
semi-analytical results of Fig. 3 can be used to determine the interfacial penetration η̃
and interfacial permeability η for a wide range of porous materials, deformable and rigid
alike.
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