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Abstract

Thanks to their softness, biocompatibility, porosity and ready avail-
ability, hydrogels are commonly used in microfluidic assays and organ-
on-chip devices as a matrix for cells. They not only provide a support-
ing scaffold for the differentiating cells and the developing organoids,
but also serve as the medium for transmitting oxygen, nutrients, var-
ious chemical factors, and mechanical stimuli to the cells. From a
bioengineering viewpoint, the transmission of forces from fluid perfu-
sion to the cells through the hydrogel is critical to the proper function
and development of the cell colony. In this paper, we develop a poroe-
lastic model to represent the fluid flow through a hydrogel containing
a biological cell modeled as a hyperelastic inclusion. In geometries
representing shear and normal flows that occur frequently in microflu-
idic experiments, we use finite-element simulations to examine how the
perfusion engenders interstitial flow in the gel and displaces and de-
forms the embedded cell. Results show that the pressure is the most
important stress component in moving and deforming the cell, and the
model predicts velocity in the gel and stress transmitted to the cell
that are comparable to in vitro and in vivo data. This work provides
a computational tool to design the geometry and flow conditions to
achieve optimal flow and stress fields inside the hydrogels and around
the cell.
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1 Introduction

Hydrogels are soft materials consisting of a crosslinked polymer network
swollen with an aqueous solvent. The solid network typically amounts to
only a few percent in volume or weight, thus rendering the gel soft, porous
and highly permeable [1]. In addition, hydrogels are nontoxic and readily
available, and their properties are easily tunable via the concentrations of the
solid content and crosslinking. For those reasons, hydrogels are widely used
to mimic the extracellular matrix (ECM) in in vitro cell cultures, disease
models, and tissue engineering [2–8]. Moreover, hydrogels are finding new
applications in encapsulating cells and drugs for processing and delivery
[9–14].

In such applications, the hydrogel plays several roles. The most obvious
is as physical support for the cells. An equally important role is as a medium
through which nutrients and chemical signaling factors can be transported,
via convection (interstitial flow), diffusion or a combination of both [15,16].
Finally, the gel also serves as a medium for mechanotransduction [17, 18].
Shear and normal stresses are transmitted through the hydrogel to the cells,
and such mechanical stimuli regulate a wide range of cell behaviors, in-
cluding cytokinesis [19], differentiation of stem cells [17, 20], endothelial-
to-mesenchymal transition [21], tumor cell proliferation [22], sprouting an-
giogenesis [23], epithelial mucus production [24] and T cell activation [25],
among many others. However, excessive strain and stress in the hydrogel
can induce cell death and extrusion [26,27].

Clearly, it will be desirable to know the interstitial flow and the strain
and stress distributions in the hydrogel medium around the cells. So far,
two modeling frameworks have been developed to describe the mechanics of
hydrogels [28]. The monophasic approach treats the hydrogel as a single-
phase elastic [29, 30] or viscoelastic material [31, 32]. The solvent and any
dissolved species diffuse in this medium, but contribute nothing to the overall
momentum balance. The multiphasic approach, on the other hand, views
the interstitial fluid and the polymer network as two different phases, and
explicitly accounts for the interstitial flow of the solvent [33–36]. The latter
is more suitable for our purpose, because in biomicrofluidic and organ-on-
chip devices, the hydrogel is typically in contact with a flowing liquid that
perfuses the cell culture [5, 8, 14, 37]. The flow and transport across the
fluid-hydrogel interface is a complex problem that has only recently begun
to receive rigorous analysis in the fluid mechanics literature [38–40]. The
interfacial transport is coupled with the gel deformation, the interstitial flow
inside the gel, and the movement and deformation of the cells. Through
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this string of coupled processes, the perfusing stream can impart a certain
magnitude of flow around the cells, and transmitting a certain level of stress
to them. Given the complexity of the problem, therefore, it is no surprise
that there has been little quantitative understanding, control or optimization
of these factors and processes in laboratory experiments.

Nevertheless, several groups have made important advances toward the
above goal. Polacheck et al. [41] computed a pressure-driven normal flow
through a porous layer using the Brinkman model, and estimated the flow
and stresses around an embedded solid cylinder that represents an biological
cell. Novak et al. [22] did similar computations for a shear-dominated flow
with a spherical inclusion. Bachmann et al. [42] solved for the flow and
diffusion in a gel-filled chamber sheared by perfusion, but treated the gel
as a Newtonian fluid, without an explicit account of its porous nature nor
the presence of embedded cells. These efforts have offered glimpses of the
flow and stress fields inside the hydrogel surrounding the cells. But they
have neglected certain key factors in the process, including the fluid-to-gel
interfacial transport and the deformability of the gel and the cells. Several
important questions remain open:

• How does a hydrogel deform when it is in contact with a flowing fluid?
How much elastic strain and stress develop within the gel, and how
are these distributed?

• Subject to the hydrogel deformation, how much fluid penetrates into
the gel domain under a prescribed external pressure or flow rate, and
how is the fluid velocity distributed inside the gel?

• How much flow, strain and stress does the gel transmit to an embedded
cell? How much does the cell move and deform as a consequence?

We aim to tackle these questions systematically, first by building a mod-
eling framework that properly accounts for the poroelastic mechanics of the
hydrogels and the deformability of the embedded cells. Using finite elements,
we then simulate the dynamics of the coupled fluid-hydrogel-cell system in
geometries motivated by some of the successful experimental devices cited
above. The numerical results are interrogated to provide answers to the open
questions. Our model, computational tools and the new insights gathered
here can be applied to the design and optimization of future biomicrofluidic
and organ-on-chip devices based on hydrogels.
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(a)

(b)

Figure 1: Geometric setup for our numerical simulations. (a) The shear
flow geometry, based on the device of [42], features a channel flow of the
perfusate passing by a sac-like gel domain containing an embedded cell. (b)
The normal flow geometry, based on the device of [41], shows a gel layer
held in place by solid posts (grey semi-circles). The solvent passes normally
through the layer.

2 Problem setup and methodology

2.1 Geometry

We base the geometric setup of our simulations on two microfluidic devices
in recent experiments. Bachmann et al. [42] have cultivated cells in a hy-
drogel chamber that is attached to the side of the perfusing channel. Thus,
the flow direction in the channel is parallel to the fluid-gel interface, and
the perfusate predominantly shears the gel surface. In Polacheck et al. [41],
on the other hand, a gel layer separates two fluid channels at different pres-
sures. The pressure drop drives a flow across the gel layer, which is mostly
perpendicular to the gel surfaces. From these two applications, we have
extracted the simplified two-dimensional (2D) geometries shown in Fig. 1.
They are relatively simple, but capture the distinct features of interstitial
flow and are realistic enough to bear on the questions of interest. They will
be referred to, respectively, as the shear-flow and normal-flow geometries.
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In the shear-flow geometry (Fig. 1a), the perfusate enters from the left
of the channel with a fully developed parabolic velocity profile of maximum
velocity V0, and then passes alongside the fluid-gel interface Γ1 to drive
an interstitial flow inside the gel. The interstitial flow goes around a cell
embedded in the gel, with the cell-gel interface denoted by Γ2. There are
multiple lengths in the geometric setup, which are marked in the diagram.
We fix the channel and gel-chamber geometry with W = 0.2L0 and θ = π/3,
and the cell’s initial location at e = 0.2L0. The cell diameter d = 0.06L0 is
fixed in both the shear- and normal-flow geometries.

In the normal-flow geometry (Fig. 1b), the gel layer extends up and
down in the y-direction, and is held in place by the solid circular posts. The
computational domain shown here is one repeating unit of the gel layer, with
symmetry boundary conditions at the top (y = L0) and bottom y = 0. The
perfusate flows with uniform velocity V0 normal to the gel layer, penetrates
the upstream interface Γ1, flows through the gel and exits the downstream
interface Γ3. A biological cell is embedded in the middle of the gel layer,
with interface Γ2. The overall geometry is fixed with the post diameter
D = 0.4L0, and clearance a = 0.2L0. We will vary the cell position e to
study how the location affects the cell deformation.

2.2 Governing equations

The theoretical model has two major components: a poroelastic description
of the mechanics of the bulk of the gel, and a suitable set of boundary
conditions on the interface between the gel and the solvent. The poroelastic
governing equations are well-known from recent studies [35, 38], and so we
only give a brief summary below.

The hydrogel is viewed as an effective continuum consisting of a solid
network of volume fraction φs and a solvent of volume fraction φf = 1 −
φs. Each phase has its own velocity and stress tensor, and its motion is
governed by the continuity and momentum equations, with a Darcy drag
term representing the momentum exchange between the two:

∂φs
∂t

+∇ · (φsvs) = 0, (1)

∇ · (φsvs + φfvf ) = 0, (2)

∇ · (φfσf )− φf∇p+ ξφfφs (vs − vf ) = 0, (3)

∇ · (φsσs)− φs∇p+ ξφfφs (vf − vs) = 0, (4)

dus

dt
− vs = 0, (5)
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where vf and vs are the phase-averaged velocities of the fluid and solid
phases, σf and σs are their Cauchy stress tensors, p is the shared pressure,
and us is the displacement of the solid phase in the hydrogel. The Darcy
drag is proportional to the relative velocity between the two phases, with ξ
being a constant drag coefficient. Equation (1) describes the transport of
the solid phase. A similar one can be written for the fluid phase, but in its
place, we have used the sum of the two in Eq. (2).

For the interstitial fluid of viscosity µ, we have σf = µ[∇vf + (∇vf )T ].
For the solid network, we adopt the hyperelastic neo-Hookean model so as
to allow large strains:

σs = µsJ
−1(F · FT − I) + λs(J − 1)I, (6)

where F is the deformation gradient, J = det(F) is its determinant, I is the
unit tensor, and λs and µs are the first and second Lamé parameters, which
are related to Young’s modulus E and Poisson’s ratio ν as follows:

λs =
Eν

(1 + ν)(1− 2ν)
, µs =

E

2(1 + ν)
. (7)

The Green-Lagrangian strain tensor E = (F ·FT − I)/2 and its components
will be used later to analyze the degree of deformation of the hydrogel and
the embedded cells. Another way to represent the “overall strength” of a
stress or strain tensor is by its second invariant. For the stress tensor σs, in
particular, we can define the von Mises stress as

σsv =
√
σ2sxx + σ2syy − σsxxσsyy + 3σ2sxy (8)

in 2D planar geometry. A von Mises strain can be similarly defined as a
scalar representation of the intensity of solid deformation.

For the flow of the viscous solvent outside the gel, we neglect inertia and
pose the Stokes equation for the exterior velocity V and the pressure P :

∇ ·V = 0, (9)

∇ ·Σ−∇P = 0, (10)

where Σ = µ[∇V + (∇V)T ] is the viscous stress tensor.
We model the embedded cell also as a neo-Hookean solid, but with dif-

ferent Lamé constants λc and µc. Depending on the cell types, they can
have a wide range of stiffness, with Young’s modulus ranging from hundreds
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to thousands of pascals [43], comparable to that of hydrogels [44]. The
deformation and movement of the cell are governed by

∇ · σc = 0, (11)

duc

dt
− vc = 0, (12)

where σc is the Cauchy stress tensor, and uc and vc are the displacement
and velocity fields in the cell, respectively. In presenting the results, we will
also discuss the centroid movement of the cell.

As will be seen shortly, the elastic strains in the gel and the cell will be
small under typical flow conditions in a microfluidic device. Therefore, the
results would not change appreciably if we had adopted linear elasticity for
the solid network and the cell. We have retained the neo-Hookean model
for potential applications to large-strain conditions. The added complexity
to the computation is minimal. As long as we have to track the solid de-
formation, using the Lagrangian coordinates is unavoidable, and computing
the nonlinear strain requires little extra work.

2.3 Boundary conditions

Our flow geometries of Fig. 1 feature the fluid-gel interfaces Γ1 and Γ3, and
the gel-cell interface Γ2. On Γ1 and Γ3, we ignore interfacial tension and
impose the following boundary conditions developed recently [38–40]:

(V − vs) · n = φf (vf − vs) · n, (13)

(−pI + φfσf + φsσs) · n = (−P I + Σ) · n, (14)

(V − vf ) · n = ηn · [(Σ− P I)− (σs − pI)] · n, (15)

(V − vf ) · t = β(Σ · n) · t, (16)

φs(vs − vf ) · t = −β(σs · n) · t, (17)

where n and t are the normal and tangent vectors to the gel surface, re-
spectively, with n pointing outward from the gel toward the fluid. η is an
interfacial permeability, and β is an interfacial slip coefficient. On Γ2, the
coupling between the hydrogel and the cell satisfies continuity of displace-
ment, velocity and traction:

vs = vf = vc, (18)

us = uc, (19)

σc · n = (φsσs + φfσf − pI) · n, (20)
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where n represents the normal vector to Γ2.
In the shear-flow geometry (Fig. 1a), the fluid enters the 2D channel with

a fully developed parabolic velocity profile of maximum velocity V0. On the
exit, we impose the zero-stress natural boundary condition. On the solid
walls of the channel, we impose no-slip condition. On the circular boundary
of the gel chamber, we impose no-slip for the interstitial fluid (vf = 0) and
for the solid network (us = 0). In the normal-flow geometry (Fig. 1b), the
fluid has a uniform entry velocity V0 upstream of the gel layer, and the zero-
stress natural boundary condition at the exit on the right. On the surface of
the solid posts, we again adopt vf = 0 and us = 0. Because of symmetry,
only the lower half of the domain will be computed. On the bottom (y = 0)
and the midline (y = 0.5L0) of the domain, symmetric conditions are used,
with ∂/∂y = 0.

We render the governing equations and boundary conditions dimension-
less before solving them numerically. See Appendix A for details of the
scaling. In presenting the results, we will mostly use dimensionless vari-
ables and parameters defined therein. Most of the model parameters can be
estimated from typical material properties and experimental devices, and
details can be found in Appendix B. Based on these, we have chosen the
baseline set of dimensionless parameters in Table 1 of Appendix B. In the
following, we first report numerical simulations that use these parameters,
and then vary certain parameters as appropriate.

2.4 Numerical methods

The computations use the finite-element methods developed by Li et al. [35],
where details can be found. In brief, we track the fluid-gel interface using a
fixed-mesh arbitrary Lagrangian-Eulerian method. The interfacial deforma-
tion, the interstitial fluid flow and the solid displacement are solved together
in a monolithic algorithm using the finite-element library deal.II [45]. To
handle the complex geometry and larger scale of the simulations here, we
have further extended the code of Li et al. [35] by implementing MPI-based
parallel computing [46]. For solving the linear systems, the original serial
direct solver UMFPACK [47] has been replaced by a parallel package, Trili-
nos MUMPs [48–50]. These have greatly improved the capacity and speed
of the code.

A typical mesh is shown in Fig. 2 for the shear-flow geometry, with
Q2 quadrilateral elements, each edge being resolved by 3 nodes. The flow
around the embedded cell and the elastic deformation inside the cell require
refinement in and around it, and the fine mesh is illustrated in the blowup
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Figure 2: A typical mesh for the shear-flow geometry, with local refinement
around the cell embedded in the gel. The blowup shows details of the mesh
inside and around the elastic cell.

view. This mesh has 3072 elements and 65,251 degrees of freedom, with
the smallest mesh size hmin = 1.42 × 10−3. We have confirmed adequate
temporal and spatial resolution by refining the mesh and the time step, with
the minimum mesh size varying from 2.94× 10−3 down to 1.33× 10−3, and
the time step ∆t from 10−6 down to 10−8. All the variables of interest
vary within 0.2%, with the maximum interstitial velocity vfx varying by
0.066%, and the maximum interfacial displacement usx by 0.036%. The
results reported below are based on the mesh of Fig. 2 with hmin = 1.42×
10−3 and time step ∆t = 5 × 10−8. Similar tests have been done to ensure
accurate resolutions in the normal-flow geometry.

3 Results: shear-flow geometry

We first report the model predictions in the shear geometry. Unless explicitly
stated otherwise, all results are at steady state.

3.1 Gel without embedded cell

To study the interstitial flow in the gel chamber that is entrained by the per-
fusion, we first simulate the case without an embedded cell. Figure 3 shows
the flow and pressure fields in the gel. In the perfusion channel upstream of
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(a)

9.21e-2 1.84e-1 3.9e-012.76e-10.0e+00

(b)

7.25e-8 8.10e-8 9.77e-088.95e-86.40e-08

Figure 3: Interstitial flow inside the gel chamber. (a) Streamlines and the
magnitude of the velocity shown by color contours. The velocity magnitude
has been scaled by V0 = 3 µm/s, and the maximum dimensional magnitude
is 1.17 µm/s. (b) Pressure contours in the gel chamber. The magnitude of
the pressure has been scaled by µs = 40 kPa (see Appendix B for dimensional
parameter values.)

the gel chamber, the fluid obeys no slip BC on the solid wall. Upon contact
with the surface of the gel, however, the fluid entrains a shear flow inside
the gel. Meanwhile, the pressure gradient in the clear-fluid channel acts to
inject fluid into the gel in the upstream portion of the interface Γ1, and
draws it out in the downstream portion. The magnitude of the interstitial
flow, on the order of 1 µm/s, is consistent with flows in the Disse space of
the liver sinusoid in vivo [51] and in sinusoid-on-chip devices [52, 53]. The
flow in the gel can be roughly divided into three regions. Immediately below
the interface Γ1, the flow is entrained by the shear outside, via the boundary
conditions. In the bulk of the gel, the interstitial flow is mostly driven by
the pressure gradient. Further below is a wall region where the Brinkman
shear stress is again prominent. In comparison with the interfacial and wall
regions, the intermediate Darcy region features a relatively uniform velocity,
with a small shear rate.

To examine how the perfusion affects the hydrogel domain, Fig. 4 plots
profiles of the velocity and gel displacement components along the interface
Γ1. The vertical component vfy of Fig. 4(b) confirms the injection and
ejection in the upstream and downstream half of the interface. The injection
removes the perfusate from the channel, whereas the ejection returns it. As
a result, the longitudinal velocity in the channel has a local minimum in
the middle of the domain (X = 2), and so does the entrained flow vfx of
Fig. 4(a). The horizontal flow pushes the gel downstream on the interface
(usx > 0), with the greatest displacement at the center X = 2 (Fig. 4c). The
injection in the upstream portion depresses the interface (usy < 0) while the
ejection raises it in the downstream portion (usy > 0) (Fig. 4d). Given the
relatively large gel moduli and the small capillary number Ca (Table 1), the
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(a)
1.0 1.5 2.0 2.5 3.0

X
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(b)
1.0 1.5 2.0 2.5 3.0

X
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(c)
1.0 1.5 2.0 2.5 3.0

X

0.0

0.2

0.4
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1.4

u
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(d)
1.0 1.5 2.0 2.5 3.0

X

−4.5

−3.0

−1.5

0.0

1.5

3.0

4.5

u
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×10−8

Figure 4: Interfacial profiles of the velocity components (a) vfx and (b)
vfy along the gel surface Γ1, and the gel displacement components (c) usx
and (d) usy. Since the gel deforms under the flow, we use the Lagrangian
coordinate X (corresponding to the undeformed interface) as the abscissa.

gel deformation is minimal. Thus, the profiles show an approximate fore-aft
symmetry or anti-symmetry.

The interstitial flow deforms the solid network in the gel, and engenders
solid displacement, strain and stress. The displacement is larger away from
the solid boundary (Fig. 5a); it is largest in the mid-section of the chamber
close to the interface Γ1. The strain and stress, on the other hand, are largest
near the solid boundary and away from the gel surface. This is illustrated
by the distribution of the von Mises stress based on the solid stress σs

in Fig. 5(b). Thus, the gel is most stressed at the two corners of the gel
chamber. There, the proximity between the deformable gel surface Γ1 and
the solid bowl below it implies large elastic strains. In contrast, the gel in
the middle of the chamber and farthest from the solid boundary experiences
the lowest stress; it is mostly displaced slightly downstream. Because the
solid displacement is small, the solid volume fraction φs hardly deviates from
its undeformed value of φ0 = 0.01 anywhere in the gel domain.
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(a)

3.56e-8 7.12e-8 1.4e-071.07e-70.0e+00

(b)

2.51e-7 5.01e-7 1.0e-067.52e-70.0e+00

Figure 5: (a) The magnitude of the solid displacement |us| inside the gel
chamber. (b) The von Mises stress σsv based on the solid stress σs (Eq. 8).

3.2 Gel with embedded cell

We embed a cell of diameter d = 0.06 at e = 0.2 below the interface along the
midline of the gel chamber, and repeat the simulation above. The stream-
lines are disturbed in the neighborhood of the cell, whose surface is im-
permeable to the fluid (Fig. 6a). Thus, the streamlines resemble those in
low-Reynolds number flows of a pure fluid around an obstacle. Similarly,
a high-pressure zone prevails upstream of the cell, and a low-pressure zone
downstream (Fig. 6b), although this pattern is somewhat obscured by the
large-scale pressure gradient in the gel due to the Darcy drag.

To understand the interaction between the cell and its surrounding gel,
we first examine how the cell affects the gel. Despite its relatively small size,
the cell disturbs the velocity profiles on the fluid-gel interface. By bending
the streamlines above it and effectively reducing the flow area there, the cell
raises vfx and produces a local maximum very close to the midline (X = 2)
(Fig. 7a). Meanwhile, it elevates the vertical component vfy upstream of
the midline, and depresses it downstream (Fig. 7b). The changes in the
interfacial velocity profiles, therefore, is consistent with the streamlines of
Fig. 6(a). Via the flow field, the cell also affects the interfacial displacement.
Owing to the acceleration of the longitudinal flow vfx upstream, the longitu-

(a)

9.21e-2 1.84e-1 3.9e-012.76e-10.0e+00

(b)

7.25e-8 8.10e-8 9.81e-088.95e-86.40e-08

Figure 6: Interstitial flow inside the gel chamber with an embedded cell. (a)
Streamlines and the magnitude of the velocity shown by color contours. (b)
Pressure contours.
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(c)
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(d)
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X
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3.0

4.5
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Figure 7: Steady-state profiles along the gel surface Γ1 with the embedded
cell: (a) horizontal fluid velocity component vfx; (b) vertical component
vfy; (c) horizontal solid displacement usx; (d) vertical displacement usy.
For comparison, the red dotted lines indicate the profiles without the cell.

dinal displacement usx receives a boost upstream of the midpoint (Fig. 7c).
The vertical displacement in Fig. 7(d), on the other hand, experiences a
depression around the midpoint. This is somewhat surprising in view of the
anti-symmetric velocity disturbances of Fig. 7(b).

To rationalize the interfacial depression, we must now consider how the
gel affects the cell. Under the influence of the interstitial flow, the cell
predominantly moves toward the right, with a small downward movement
(Fig. 8a). Meanwhile, the cell undergoes largely uniform compression, as
indicated by the displacement vectors relative to the cell’s centroid inside
and around the cell (Fig. 8b). The von Mises strain inside the cell varies
within the narrow range of 1.38 ∼ 1.39×10−6, and the von Mises stress in the
range of 5.43 ∼ 5.47×10−8. The rightward movement of the cell would cause
the gel surface to fall in the upstream region and rise in the downstream
region. However, the shrinkage of the cell eliminates the downstream rise,
and explains the interfacial depression in Fig. 7(d). In fact, the compression
of the cell accounts for about 96% of the volume shrinkage below Γ1. Only
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(a)
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

usx ×10−7

−7.5

−6.0

−4.5

−3.0

−1.5

0.0

u
sy

×10−9

Time t increases

(b)

5.0× 10−8, Magnitude

1.925 1.950 1.975 2.000 2.025 2.050 2.075
X

−0.275

−0.250

−0.225

−0.200

−0.175

−0.150

−0.125

Y

Grid Points on Cell Boundary

Figure 8: (a) Trajectory of the cell’s centroid as it moves under the intersti-
tial flow. Note the smaller scale used for usy. (b) Steady-state displacement
vectors relative to the cell centroid inside the cell and in the surrounding
gel. The blue line and dots mark the cell boundary. For better visibility, we
plot only vectors on selected vertices inside and outside the cell.

about 4% is due to the compression of the gel itself. As a result, the solid
fraction φs remains mostly at its undeformed level.

The cell is subject to the following stresses from the surrounding gel:
the pressure, the Brinkman stress of the interstitial fluid and the stress of
the solid network in the gel. Thus, the total traction on the cell surface is
n · (φfσf + φsσs − pI). Figure 9 shows spatial contours of the magnitudes
of the three components and their sum. Among the three, p is the largest in
magnitude, albeit with relatively minor variations around the cell, and the
Brinkman stress φfσf is the smallest. In fact, a scaling argument suggests
that the Brinkman stress is negligible relative to the Darcy drag in most
cases [54,55].

From Figs. 8 and 9, we extract the following understanding about the
mechanical coupling between the gel and the cell. First, pressure p is the
driving force for the coupling. It produces the Darcy flow in the gel, as
well as the main thrust for cell movement and deformation. Second, we can
conceptually divide the effect of p on the cell into two parts, one due to the
averaged p, and the other due to the p variation across the cell. The former
produces an isotropic compression of the cell, as depicted in Fig. 8(b), while
the latter the cell movement in Fig. 8(a). Third, the gel deforms owing to
two factors, the Darcy flow and the cell movement. Thus, the elastic stress
σs arises in the gel as the result of how the cell boundary displaces the gel
relative to how the gel would have moved in the cell-free situation of Sec. 3.1.
In particular, the cell shrinkage of Fig. 8(b) stretches the surrounding gel
radially and produces radial tensile stresses visible in Fig. 9(c). The small
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(a)

7.8e-08 8.4e-088.10e-8

(b)

2.0e-11 4.2e-092.43e-9

(c)

3.8e-10 5.3e-082.66e-8

(d)

7.9e-08 9.8e-089.09e-8

Figure 9: (a) A close-up of the steady-state pressure field surrounding the
cell, with a high-pressure region upstream of the cell and a low pressure
region downstream. (b) The von Mises stress computed from the fluid stress
contribution φfσf . (c) The von Mises stress computed from the solid stress
contribution φsσs. (d) The von Mises stress computed from the total stress
φfσf + φsσs − pI.

anisotropy in Fig. 8(b), with stronger compression in the second and fourth
quadrants, is a signature of the shear flow, which is itself manifested by the
pattern of the Brinkman stress in Fig. 9(b).

What are the potential biological consequences of the strain and stress
suffered by the cell? The maximum total von Mises stress of Fig. 9(d) of
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9.80 × 10−8 translates to a dimensional stress of about 3.92 mPa (see Ap-
pendix B for baseline moduli). The maximum von Mises strain sustained by
the cell is 1.39×10−6. Despite their apparently small magnitude, such stress
and strain may produce significant biological effects on the cell. For exam-
ple, stresses on the order of mPa can promote proliferation of endothelial
cells [56], cytoskeleton reorganization and cell-cell adhesion in epithelial cells,
osteogenic differentiation of stem cells [57], and apoptosis and metastasis of
cancer cells [58]. Intestinal epithelium is known to respond to even smaller
stresses in terms of mucus production and microvilli formation [24]. Recent
experiments show that shear stress on the mPa scale can induce albumin
and growth factor production in liver-on-chip devices [52]. In particular, the
optimal stress for stimulating hepatocyte proliferation is found to be around
5 mPa [53]. To damage biological cells in vitro, tens of pascals are required
for suspended cells [59, 60], and a shear strain of 15% is required for cells
embedded in gels [27]. For the baseline parameters of Table 1, therefore, the
flow does not cause any danger to the embedded cell.

But one wonders if faster flow will change this, and how much faster
the flow can be without endangering the cell. To probe such questions, we
keep all other dimensional parameters fixed and vary the perfusion speed
V0 from the baseline of 3 µm/s up to 100 µm/s. The only dimensionless
group affected is Ca, which increases from 3 × 10−10 to 10−8. Because the
gel and cell strains remain small, their elastic response is essentially linear.
The traction that the cell suffers from the surrounding gel and the cell
deformation both increase linearly with Ca. For Ca = 10−8, the maximum
von Mises stress that the gel exerts on the cell reaches 131 mPa, and the
maximum von Mises strain in the cell is 4.62× 10−5. These are still orders
of magnitude below the critical levels that may cause mechanical damage to
the cell [27,59,60]. To produce tens of pascals of external stress, the velocity
would need to increase by another two orders of magnitude.

We have also explored the effects of the cell and gel stiffness. Keeping
all other parameters fixed, we vary the cell moduli µc = λc down to 0.1 and
up to 10. As expected, softer cells deform more. The maximum von Mises
strain sustained by the cell increases about 2.5 times to 3.48× 10−6 for the
softest cell, and decreases about 7 times to 1.98× 10−7 for the hardest cell.
More cell deformation leads to greater deformation in the gel. For the softest
cell, the maximum gel surface depression due to the cell is 2.39 times as large
as the baseline case of Fig. 7(d). Finally, we have varied the stiffness of the
gel µs = λs while keeping all the other dimensional parameters fixed. As µs
is used to scale the stresses, this change amounts to varying µc = λc and
Ca in proportion while keeping all other dimensionless groups fixed. Softer
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gel suffers greater deformations under the shear flow, and allows greater
displacement of the cell. Reducing the gel stiffness by a factor of 10 leads to
an increase in the cell displacement by nearly a factor of 8. Meanwhile, the
maximum von Mises strain and stress sustained by the cell both increase
by about 43%. Thus, the soft gel exposes the cell to greater movement,
deformation and stress. Conversely, raising the gel stiffness by a factor of
10 reduces the cell displacement by 86%, and the cell strain and stress by a
factor of 4. Thus, stiffer gels shields and protects the cell from mechanical
strain and stress.

4 Results: normal-flow geometry

The normal-flow results are mostly based on the parameters of Table 1. We
will only vary the cell position e in certain cases.

4.1 Gel without embedded cell

In the normal flow geometry, the perfusate passes through the gel layer held
in place by 4 solid posts. Figure 10 shows the streamlines and velocity
magnitude inside the gel domain. The four fixed solid pillars cause repeated
narrowing and widening of the gel channel, and acceleration and deceleration
of the interstitial flow. Therefore, the fastest fluid flow occurs between
opposite pillars. This resembles the flow of a viscous fluid around the posts.
Note that the magnitude of interstitial flow in Fig. 10 is representative of

0.5 1 1.9e+001.50.0e+00

Figure 10: Streamlines and contours of the velocity magnitude for the nor-
mal flow through the gel layer. The velocity magnitude has been scaled by
V0 = 3 µm/s (see Appendix B), and the maximum magnitude is 5.70 µm/s.

17

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t.

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I: 

10
.10

63
/5.

02
63

34
4



values used in vitro [41], and is also consistent with in vivo data [15,61].
As expected, the interstitial flow assumes a much higher velocity than

that entrained by the shear flow in Fig. 3, a direct result of the flow kinemat-
ics. Accordingly, the normal flow deforms the gel to a much greater extent.
For example, the interfaces Γ1 and Γ3 both deform in the flow direction,
with the maximum displacement at the center being more than 10 times
greater than that in the shear-flow geometry (Fig. 4c). The maximum von
Mises elastic stress for the solid network, occurring on the solid posts, is
about 30 times that of the shear-flow geometry (Fig. 5b).

4.2 Gel with embedded cell

We have placed a single cell in the center of the gel domain (e = 1.2 in
Fig. 1b), and also at the two constrictions (e = 0.4 and 2), to examine
how the normal flow in the gel moves and deforms the cell. At the dif-
ferent locations, the cell experiences qualitatively the same influence from
the interstitial flow, with different magnitudes. In the following, we mostly
present the results with the cell at the center (e = 1.2).

The deformation and stress of the gel surrounding the cell turn out to be
qualitatively similar to those in the shear-flow geometry, shown in Fig. 8(b)
and Fig. 9, albeit at greater magnitudes. The pressure is about 3 times as
high in magnitude, and the pressure drop across the cell is about 10 times as
large (Fig. 11a). Under such pressure, the cell shrinks almost isotropically
(Fig. 11b), at a roughly uniform von Mises strain of 3.84 × 10−6, nearly 3
times as large as in the shear flow. Accordingly, the gel surrounding the
cell experiences largely radial stretching. The pressure gradient pushes the
cell downstream, with a steady-state centroid displacement of 2.04 × 10−6,
about 15 times that in the shear flow (Fig. 8a).

Therefore, the gel-cell coupling in the normal flow manifests essentially
the same physics as in the shear flow. The pressure is the dominant driver
for the gel and cell deformation, and its effect on the cell can be understood
from the superposition of two factors: the average magnitude of the pressure
compresses the cell, whereas the pressure gradient across the cell pushes it
downstream. It is due to the first factor that the cell experiences a largely
uniform compression, and also radially stretches the surrounding gel. The
second factor breaks the fore-aft symmetry; the gel immediately upstream
of the cell suffers a greater tensile strain than that immediately downstream.

For the cell placed in the center of the normal flow (e = 1.2), the max-
imum von Mises strain of 3.84 × 10−6 is still far too small to damage the
cell. The maximum von Mises stress exerted by the gel on the cell amounts
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(a)

2.0e-07 2.6e-072.31e-7

(b)

1.0× 10−7, Magnitude

3.125 3.150 3.175 3.200 3.225 3.250 3.275
X

−0.075

−0.050

−0.025

0.000

0.025

0.050

0.075

Y

Grid Points on Cell Boundry

Figure 11: (a) A close-up of the steady-state pressure field surrounding the
cell, with a high-pressure region upstream of the cell and a low pressure
region downstream. (b) Displacement vectors relative to the cell centroid,
similar to Fig. 8(b). The blue line and dots mark the cell boundary.

to 2.84× 10−7, or about 11.3 mPa in dimensional form. Such a stress is too
gentle to damage the cell, but large enough to induce significant cell dynam-
ics such as hepatocyte regeneration [52, 53]. When we place the cell in the
front or the rear constriction (e = 0.4 or 2), the most noticeable difference is
the degree of compression suffered by the cell. For the cell at the front, the
maximum von Mises strain is 65% greater than at the center, whereas for
the cell at the rear, it is 49% lower. This is a direct result of the hydrostatic
pressure being higher upstream than downstream.

5 Conclusion

Motivated by the recent advances in microfluidic organ-on-chip devices, this
work focuses on the fluid and solid mechanics in such devices. The objectives
of this study are two-fold. The first is to build a general theoretical and
computational framework for studying the mechanics of a hydrogel under
perfusion. The second is to explore the mechanical interaction between the
gel and an embedded biological cell under realistic flow conditions. The
main contributions of this work can be summarized as follows.

(a) We have presented a poroelastic model that accounts for all the key
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mechanisms in a typical cell-in-gel device, including perfusion, perme-
ation of the perfusate into the gel to reach the cell, elastic deformation
of the gel and the cell, and mechanical coupling between the gel and
the cell.

(b) We have developed a finite-element package for simulating such de-
vices, accounting for the two prototypical geometries dominated re-
spectively by shear flow of the perfusate along the gel surface and by
normal flow through a gel layer.

(c) The hydrogel transmits strain and stress from the perfusate-gel inter-
face toward the embedded cell. Softer cells deform more, of course.
But stiff gels can protect the cells from severe deformation.

(d) Pressure is the most important stress component in defining the cell
deformation and stress. The elastic stress in the gel surrounding the
cell is the second most important; it is determined by the relative
displacement of the cell surface to the gel, due to cell deformation or
movement. The viscous Brinkman stress due to interstitial flow is the
least important stress component.

(e) Using realistic parameters for the perfusate, the hydrogel and the cell,
our model predicts velocity and stresses in the gel and the cell that are
comparable in magnitude with in vitro and in vivo data. In particular,
the cells sustain stresses on the order of a few millipascals, consistent
with the level of stress in experimental liver-chips that has been shown
to stimulate hepatocyte regeneration.

This work provides a tool for designing hydrogel-based cell cultures in
microfluidics, and for predicting the transmission of mechanical forces from
the flow of perfusate toward the cells. Thus, it offers a key component in
analyzing mechanotranduction in gel-cell systems [62]. The complementary
component, the biochemical response of cells to mechanical stimulation [63],
is not accounted for in the present work. Embedded cells are also known to
actively remodel its surrounding extracellular matrix, degrading it by prote-
olysis, reinforcing it by depositing proteins, or restructuring and realigning
the fibers [64]. Such remodeling can change the porosity, polymer concen-
tration and elastic stiffness of the gel, and introduce spatial inhomogeneity.
Our model assumes an initially homogeneous hydrogel, and disregards gel
remodeling by the cell. In addition, cells adapt their shape to the microenvi-
ronment, e.g., appearing globular or spindle-like depending on the hydrogel
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matrix [65]. Such shape change and orientation would surely modify the
stress and strain experienced by the cells, effects not accounted for in our
current model. Moreover, we have considered only a single isolated cell,
whereas cell cultures invariably involve clusters or colonies of cells. The
mechanical and biochemical interactions among the neighbors will be an-
other important factor to be studied. Finally, our study is in planar two-
dimensional geometries. Many microfluidic devices are thin, with narrowly
spaced walls inhibiting out of plane movement. But our main motivation is
to save on computational cost in this initial study aimed at exploring the
basic physical principles. High-fidelity simulation of specific devices should
reflect their three-dimensionality. Given the above limitations of the current
work, it should be regarded as a first step toward the goal of understanding
the dynamics of cells in hydrogels, as encountered in organoids and artifi-
cial tissues in vitro [52,53], as well as during embryogenesis [66] and wound
healing [67] in vivo.
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Appendix A Scaling

We choose a characteristic length L0 and a characteristic velocity V0 for the
geometry of the specific problem. Then the characteristic time is L0/V0.
Furthermore, we adopt the second Lamé constant µs for the hydrogel solid
network as a characteristic stress. The following scaling renders the govern-
ing equations and boundary conditions dimensionless:

(x̄, ȳ, ūs, ūc) = (x, y,us,uc)/L0, (V̄, v̄f , v̄s, v̄c) = (V,vf ,vs,vc)/V0,

t̄ = tV0/L0, (Σ̄, σ̄f , σ̄s, σ̄c, P̄ , p̄) = (Σ,σf ,σs,σc, P, p)/µs,

where the bar denotes dimensionless quantities. Certain length ratios are
fixed for the entire paper, including W̄ = 0.2, θ = π/3 for the shear flow,
ā = 0.2, D̄ = 0.4 for the normal flow and other ratios indicated in Fig. 1.
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The cell diameter d̄ = 0.06 is fixed in both flow geometries. The position of
the cell ē, on the other hand, will be varied and thus included in the dimen-
sionless groups below. Out of the 12 geometric and physical parameters of
the problem, e, µs, λs, µc, λc, ξ, µ, L0, V0, η, β, φs0, we define the following 9
dimensionless groups:

ē = e/L0, λ̄s = λs/µs, λ̄c = λc/µs, µ̄c = µc/µs,

ξ̄ = ξL2
0/µ, (β̄, η̄) = (β, η)µ/L0, Ca = V0µ/(L0µs), φs0,

where φs0 is the initial solid fraction in the undeformed hydrogel. Ca in-
dicates the ratio between the external viscous stress and the elastic stress
of the solid skeleton, and can be viewed as an effective capillary number.
Since the results and discussions mostly concern dimensionless variables, we
have dropped the overbar in the main text. The dimensionless governing
equations are as follows:

∂φs
∂t

+∇ · (φsvs) = 0, (A.1)

∇ · (φsvs + φfvf ) = 0, (A.2)

∇ · (φfσf )− φf∇p+ ξCaφfφs (vs − vf ) = 0, (A.3)

∇ · (φsσs)− φs∇p+ ξCaφfφs (vf − vs) = 0, (A.4)

dus

dt
− vs = 0, (A.5)

∇ ·V = 0, (A.6)

∇ ·Σ−∇P = 0, (A.7)

∇ · σc = 0, (A.8)

σf = Ca(∇vf +∇vT
f ), (A.9)

σs = J−1(F · FT − I) + λs(J − 1)I, (A.10)

Σ = Ca(∇V +∇VT ). (A.11)

The dimensionless boundary conditions appear the same as the dimensional
ones given in Section 2.3, except for the following three on the gel-fluid
interface:

Ca (V − vf ) · n = η n · [(Σ− P I)− (σs − pI)] · n, (A.12)

Ca (V − vf ) · t = β (Σ · n) · t, (A.13)

Caφs(vs − vf ) · t = −β (σs · n) · t. (A.14)
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Appendix B Parameter estimation

In presenting results in the main text, we have omitted the overbar for di-
mensionless groups since the discussion rarely concerns dimensional param-
eters. In this appendix, however, both types are present. Thus, we revert
temporarily to using an overbar to distinguish a dimensionless parameter
from its dimensional counterpart.

Initial solid fraction: Many hydrogels have high porosity, with a
swelling ratio reaching 40 or higher (corresponding to solid fraction of 2.5%
or lower) [68]. We have taken the initial solid fraction φs0 = 0.01 for an
initial 99% porosity [69].

Elastic moduli: Hydrogels can have a wide range of stiffness, with
Young’s modulus E ranging from hundreds of pascals to tens of kPa [44].
Poisson’s ratio ν has been reported to be between 0.2 and 0.33 [70,71]. For
simplicity, we choose ν = 0.25 such that the two Lamé constants are equal
(see Eq. 7). However, the experiments measured the response of the entire
hydrogel, including both the solid and the liquid. In the notation of our BC
(Eq. 14), they measured P − p = φsσs. Thus, a measured Em = 103 Pa
translates to E = Em/φs = 105 Pa in our constitutive equation (Eqs. 6, 7).
This further translates to λs = µs = 4× 104 Pa.

Biological cells also exhibit a wide range of stiffness; Luo et al. [43] cited
E values from hundreds to thousands of pascals. These values are largely
comparable to those of hydrogels; in fact, an advantage of adopting hydrogels
in cell cultures is the ability to tune their stiffness to match that of the
cells. For simplicity, therefore, we have taken µc = λc = µs = λs. This
implies Poisson’s ratio ν = 0.25 for the cell as well, with a compressibility
comparable to chondrocytes [72]. Thus, we have the following baseline values
for the dimensionless groups: λ̄s = λ̄c = µ̄c = 1.

Darcy drag coefficient: ξ appears in the momentum equation, which,
if written in the traditional Darcy’s law or Brinkman’s form, involves the
bulk permeability k. Comparing these two forms establishes the following
connection:

ξ =
µ

k

φf
φs
, (B.1)

so that ξ can be evaluated from the more familiar parameter k. In particular,
we adopt the Darcy permeability formula suitable for high-porosity media
[36,73]:

k =
2r2

9

φf
φs
, (B.2)
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where r is a characteristic pore radius, which falls in the wide range of 0.1–
100 µm for hydrogels [74–76]. Thus, ξ = 4.5µ/r2. Taking µ = 10−3 Pa·s
for water, and r = 2.5 µm as a typical pore size, we get ξ = 7.2 × 108

kg/(m3·s). The dimensionless group ξ̄ = ξL2
0/µ = 4.5(L0/r)

2 is directly
related to the pore-to-sample size ratio. The macroscopic size of the devices
ranges from hundreds of microns to millimeters [41,42]. Taking r = 2.5 µm
and L0 = 250 µm, we get ξ̄ = 4.5× 104.

Interfacial permeability and slip coefficients: Our boundary con-
ditions introduce the interfacial permeability η via Eq. (15), which can be
rewritten as

µ
(V − vf ) · n

µη
= n · [(Σ− P I)− (σs − pI)] · n, (B.3)

which gives the quantity µη the meaning of a “penetration length”, i.e.,
the depth into the gel over which the fluid’s normal velocity changes from
V to vf . This idea has recently been explored in a pore-scale model [40],
which shows that for hydrogels, this penetration length ranges from r to 4r.
Taking an intermediate value of 2r, we get the dimensionless η̄ = µη/L0 =
2r/L0 = 0.02 for r = 2.5 µm, L0 = 250 µm.

Similarly, the dimensionless slip coefficient β̄ = µβ/L0 can be seen as
the slip length divided by the macroscopic length scale. Prior calculations
showed that shear flow past the surface of a porous medium entrains the
interstitial fluid down to a depth on the order of 2r [77]. This yields β̄ = 0.02.

Capillary number: In the shear-flow geometry, Bachmann et al. [42]
adopted a tangential velocity V0 = 3 µm/s. In the normal-flow geometry,
Polacheck et al. [41] tested interstitial velocities vf = 0.3 µm/s and 3 µm/s.
In our computations, we have taken V0 = 3 µm/s as a representative velocity
for both flow geometries. With L0 = 250 µm, µ = 10−3 Pa·s, and µs =
4×104 Pa, we obtain Ca = µV0/(µsL0) = 3×10−10 for both the shear- and
normal-flow geometries.

Based on the above, we tabulate the baseline values for the dimensionless
parameters in Table 1.
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Dimensionless groups Shear flow Normal flow

ē 0.2 1.2

φs0 0.01 0.01

λ̄s 1 1

λ̄c 1 1

µ̄c 1 1

ξ̄ 4.5× 104 4.5× 104

β̄ 0.02 0.02

η̄ 0.02 0.02

Ca 3× 10−10 3× 10−10

Table 1: Baseline values for the dimensionless parameters used in the shear-
flow and normal-flow simulations.
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