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Abstract

Hydrogels are widely used in cell cultures and microfluidic organ-
on-chip devices as a mimic for extracellular matrix. Soft and porous,
they provide a gentle scaffold for the cell colonies to develop into prop-
erly structured tissues and organoids. A key factor in this process is
the transmission of forces through the hydrogel, originating from the
flowing perfusate and propagating toward and among the cells. Such
forces serve as mechanical cues in the proliferation and differentiation
of cells, and in their aggregation into functional organoids. In this
work, we use a poroelastic model to study the mechanical interaction
among cells that is mediated by the hydrogel. The model predicts that
closely spaced cells induce the formation of prominent “tension rib-
bons” within the hydrogel, actively pulling neighboring cells together
and prompting the development of mutual protrusions. In larger cel-
lular arrays, the deformation patterns become highly heterogeneous,
strongly dependent on the relative positions of individual cells. These
insights provide valuable guidance for optimizing the design and oper-
ational parameters of organ-on-chip devices.
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1 Introduction

Hydrogels are ubiquitous in microfluidic-based cell cultures, organ-on-chip
devices, and human disease models, where they perform several important
functions as an in vitro replica for the extracellular matrix (ECM) [1–5].
Such synthetic gels typically have a low-density crosslinked polymer net-
work that absorbs a large quantity of water. Being porous, hydrogels serve
as a medium to deliver oxygen, nutrients and various growth factors from the
perfusing stream to the cells. Equally importantly, they transmit mechanical
stresses inside the hydrogel, from the flowing perfusate to the cells, and from
one cell to another. Being soft, with a Young’s modulus from tens of kPa
down to hundreds of Pa [6], the gels typically carry a low stress level. Nev-
ertheless, experiments have demonstrated significant consequences of even
mild mechanical stimulations. For instance, mPa-level stresses can promote
proliferation of endothelial cells [7] and differentiation of stem cells [8]. In
liver-on-chip devices, shear stress on the mPa scale promotes albumin and
growth factor production by hepatocytes [9], and stimulates their prolifera-
tion [10]. To elucidate the mechanotransduction in such microenvironments,
we need to understand the fluid and solid mechanics in hydrogel-based cell
cultures.

The gel-cell mixtures are typically highly heterogeneous in space, with
widely divergent length scales. The gel itself is a mixture of a liquid solvent
and a deformable solid network. The interstitial flow occurs on the pore
scale, which typically ranges from a hundred nanometers to micrometers for
synthetic hydrogels [11–13]. Embedded within this structure, the biological
cells act as deformable inclusions. Upon inception of perfusion, the entire
gel-cell mixture is subject to pressure and stresses emanating from the flow.
The solvent, polymer network, and embedded cells each deform according
to their individual mechanical properties, with close coupling among them.
Even if we neglect the transmembrane exchange and various biochemical
processes, the mere mechanics of the system presents a formidable challenge
to mathematical modeling and computation.

Consequently, there have been relatively few studies of the mechanical
factors governing the flow and deformation of a gel-cell system. In a tumor
migration assay, Polacheck et al. [14] computed the Brinkman flow across a
porous layer driven by a pressure drop, with a solid inclusion representing
a cell. In a gel-filled chamber sheared by the perfusion flow, Bachmann
et al. [15] computed the velocity field of a Newtonian fluid and the diffusion
of a passive scalar, without embedded cells. Finally, Novak et al. [16] studied
a shear-dominated flow in a three-dimensional bioreactor, with a spherical
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inclusion representing a breast cancer cell. These efforts have offered insights
into the flow and stress fields surrounding cells in a hydrogel. But the
theoretical models have neglected key factors of the process, e.g., the fluid-
to-gel interfacial transport and the deformability of the gel and the cells.

Recently, Li et al. [17, 18] sought a more faithful representation of the
fluid and solid mechanics in a gel-cell mixture inside a microfluidic device,
and developed numerical tools for simulating such systems under realistic
flow conditions. In brief, the pore-scale process is coarse-grained into a
poroelastic model, where the solvent and polymer skeleton are represented
by their respective volume fraction, velocity and stress tensor. Each phase
obeys its own continuity and momentum equations, with momentum ex-
change between the phases modeled by a linear Darcy drag law. The biolog-
ical cell is treated as a hyperelastic object embedded inside the gel, subject
to forces from the fluid and the skeletal phases. The interfacial exchange
between the perfusing stream, which is a single-phase fluid, and the hydro-
gel is modeled by a set of boundary conditions (BCs) based on irreversible
thermodynamics [19]. Specifically, these BCs consist in positing linear re-
lations between interfacial jumps of shear and normal stresses on the one
hand, and slip and permeation velocities on the other [20,21]. The dynamic
changes of the computational domain, due to deformation and movement of
the fluid-gel interface and the embedded cell, are handled by an arbitrary
Lagrangian-Eulerian (ALE) scheme, which maps the deformed domain back
to a reference frame via coordinate transformation [17].

Using the mathematical model and computational toolkit, Li et al. [18]
studied the mechanics of a single cell embedded in a hydrogel, in a normal
flow geometry mimicking the experiment of Polacheck et al. [14], as well as
a shear flow geometry mimicking that of Novak et al. [16] and Bachmann
et al. [15]. They found that the solvent flow deforms the hydrogel surface
and injects the solvent into the gel, and that the interstitial flow deforms
the polymer skeleton as well as the embedded cell. Among the three stress
components, the pressure is the most potent in moving and deforming the
cell, the elastic stress in the solid skeleton also plays a significant role, while
the Brinkman stress due to the interstitial flow is the least important. The
model also predicts mPa-level stresses transmitted to the cell, comparable
to in vitro and in vivo data.

Although Li et al. [18] have gone beyond previous work in capturing the
interstitial flow in the porous medium and the stress and strain sustained
by the embedded cell, their model suffered from an obvious shortcoming: it
only considered a single cell, and could not probe the mechanical crosstalk
among the cells. That is the question that we set out to probe in this study.
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Figure 1: Geometric setup for our numerical simulations mimicking the
microfluidic device of [14], with a gel layer (light green) held in place by
solid posts (grey hemicircles). The embedded cells are shown as blue circles.
The perfusion of the solvent is represented by a uniform flow coming from
the left and passing normally through the gel-cell layer.

We extend their poroelasticity model by allowing multiple embedded hy-
perelastic cells in the gel matrix. Then we use finite elements to compute
the dynamics of the coupled fluid-hydrogel-cell system in a normal-flow ge-
ometry motivated by the experiment of Polacheck et al. [14]. In analyzing
the numerical simulations, we focus on how cells interact among themselves
in simple regular arrays, e.g., doublets and triplets aligned with the flow
direction or orthogonal to it, and in two-dimensional (2D) arrays of seven
cells. The key finding is a “tension ribbon mechanism” between nearby cells,
which tends to coordinate the cell movement and deformation by pulling
them closer together.

2 Problem setup and methodology

2.1 Geometry

We base the 2D geometric setup of our simulations, shown in Fig. 1, on
a microfluidic device of Polacheck et al. [14]. In essence, it consists in a
gel layer separating two fluid channels at different pressures. The pressure
drop drives a flow through the gel layer, normal to the gel surfaces. Though
relatively simple, Fig. 1 captures the distinct features of interstitial flow in
the original microfluidic device. In addition, we have simulated a shear-
dominated geometry based on the device of Bachmann et al. [15]. In terms
of cell-cell interaction, however, the shear-flow setup does not present fun-
damentally different mechanisms beyond those in the normal flow. Thus,
we will only present results in the normal-flow geometry.

In the geometry of Fig. 1, the gel layer extends up and down in the y-
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direction, and is held in place by the solid circular posts. The computational
domain shown here is one repeating unit of the gel layer, with symmetry
boundary conditions at the top (y = L0) and bottom (y = 0). The per-
fusate flows with uniform velocity V0 normal to the gel layer, penetrates the
upstream interface Γ1, flows through the gel and exits the downstream in-
terface Γ3. The overall geometry is fixed with the post diameter D = 0.4L0,
and clearance a = 0.2L0. One or several biological cell are embedded in
the middle of the gel layer, with the gel-cell interface denoted by Γ2. The
initially undeformed cells have diameter d = 0.06L0 and radius r = 0.03L0.
The distance between the edges of adjacent cells is represented by h. Since
r and h are relatively small compared to the characteristic length L0, we
adopt the cell radius r as the reference unit for quantifying h in subsequent
discussions. We will vary h to study how cell-cell interaction affects their
movement and deformation.

2.2 Problem formulation and numerics

The theoretical framework of this study largely follows that presented in our
previous work [18] on single-cell mechanics. The only important difference
here is the introduction of the additional geometric parameter h, the ini-
tial edge-to-edge spacing between neighboring cells. We model the hydrogel
as a poroelastic continuum interacting with a viscous solvent, governed by
continuity and momentum equations for each phase, complemented by ap-
propriate interfacial boundary conditions derived from irreversible thermo-
dynamics. For clarity and brevity, the full equations, boundary conditions,
and scaling are detailed in Appendix A. The parameters of the problem
are evaluated in Appendix B, with the baseline values summarized in Ta-
ble 1. We will present results for these parameter values, with h being varied
systematically.

The computations use the finite-element method of Li et al. [17] on the
deal.II platform [22], with MPI-based parallelization [18]. A typical finite-
element mesh is shown in Fig. 2, with Q2 quadrilateral elements, each edge
being resolved by 3 nodes. The flow around the embedded cell and the
elastic deformation inside the cell require refinement in and around it, and
the fine mesh is illustrated in the blowup view. Because of symmetry, we only
compute the upper half of the domain, with 5032 elements, 109921 degrees of
freedom and the smallest mesh size hmin = 2.86× 10−3 (Fig. 2a). We have
confirmed adequate temporal and spatial resolution by refining the mesh
size and time step, with the minimum mesh size varying from 3.65 × 10−3

down to 1.51 × 10−3, and the time step ∆t from 10−6 down to 10−8. All
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Figure 2: (a) A typical mesh for the normal-flow geometry, with local re-
finement around the cell embedded in the gel. The blowup shows details of
the mesh inside and around the elastic cell. (b) Mesh convergence test using
the streamwise displacement profile usx(θ) around the downstream cell in a
streamwise doublet at an edge-edge separation of r/3.

the variables of interest vary within 0.2%, with the maximum interstitial
velocity vfx varying by 0.119%, and the maximum interfacial displacement
usx by 0.0175%. Figure 2(b) shows an example of such mesh-refinement tests
for the streamwise doublet to be discussed in Sec. 3.1. The results reported
below are based on the mesh of Fig. 2(a) with hmin = 2.86× 10−3 and time
step ∆t = 5×10−8. Because the cell areal change is small, approximating the
cell area by inscribed polygons and taking the difference between pre- and
post-deformation cell areas would both introduce large errors. Thus, special
care has been taken in computing the cell shrinkage from the displacement
of its boundary nodes. We use Newton iteration to solve the nonlinear
system, with convergence defined as the L2 norm of the residual vector
falling below a tolerance of 10−10. All simulations have been performed on a
Linux workstation equipped with an Intel Core i9-13900 CPU. Most of the
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simulation cases were completed within 6 hours.

3 Results and discussions

Even in the absence of any embedded cell, the gel deforms under the im-
pingement of the solvent flow in the geometry of Fig. 1. With the realistic
material and flow parameters used here (see Appendix B for parameter
values), such deformation amounts to a strain on the order of 10−6. As
intuitively expected, the gel displacement is predominantly streamwise, in
the x-direction; it is larger in the center of the gel layer (y ∼ 0.5) than to-
ward the top (y = 1) and bottom (y = 0), where the solid stationary posts
hamper gel displacement and deformation. In what follows, we first study
two cells oriented along and normal to the flow direction, and then examine
arrays of three and seven cells.

3.1 Streamwise doublets

To form the streamwise doublet, we place a “test cell” at the center of
the computational domain (at position e = 1.2 in Fig. 1), and a “neighbor
cell” either upstream or downstream with an initial edge-to-edge separation
denoted as h. A positive h indicates that the neighbor cell is positioned
downstream of the test cell, whereas a negative h implies the neighbor cell
being upstream of the test cell. The interstitial flow around the doublet
exhibits streamlines that resemble those for Stokes flow past two objects
(Fig. 3a). Interestingly, between two closely apposed cells, as illustrated by
Fig. 3(b) at h = −r/3, a pair of counterrotating vortices appear between
them, similarly to Stokes flow past two nearby cylinders in tandem [23,24].
The interstitial flow is essentially arrested in the region between the cells;
the velocity magnitudes of Fig. 3(b) show that this is a “dead water zone”
with negligible flow. In the following, we explore how the cell-cell interaction
at different initial separations affects each cell’s movement, deformation and
the stresses inside and surrounding the cells.

3.1.1 Cell displacement

Figure 4 plots the steady-state displacement of the centroid of the test cell
as a function of the initial separation h. Although the positioning of the
cells matters, their identity as test cell or neighbor does not. The test cell
with an upstream neighbor behaves essentially identically to a downstream
neighbor cell at the same separation |h|. The most obvious trend is that the
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(a)

4.74e-1 9.49e-1 1.90e+001.420.00e+00

(b)

1.67e-1 3.34e-1 6.69e-015.02e-10.00e+00

Figure 3: (a) Streamlines past a streamwise doublet placed on the center-
line of the gel domain at initial separation h = −r/3, with color contours
indicating the magnitude of the velocity. The test cell is at the center of the
domain (e = 1.2), and the neighbor is upstream in this case. (b) Close-up
of the recirculation between the two cells.

two cells appear to attract each other, such that an upstream neighbor tends
to reduce ux of the test cell, and a downstream neighbor tends to enhance
it. This effect is intensified as the separation |h| shrinks. This apparent
attraction between cells close to each other will be explained in terms of the
“tension ribbon” in Sec. 3.1.2.

It is worth mentioning another intriguing feature of Fig. 4. The red dot
marks the displacement of a single test cell, in the absence of a neighbor.
Curiously, the single-cell displacement is not recovered as the neighboring
cell is moved very far from the test cell. Instead, the red dot is below
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Figure 4: Streamwise displacement ux of the centroid of the test cell, af-
fected by the neighbor cell placed at different locations upstream (h < 0)
and downstream (h > 0) of the test cell. The red dot marks the centroid
displacement of the test cell if it were alone, without the neighbor.

the large-separation limit of a doublet. Numerical experiments show that
other conditions being equal, placing a cell in the middle of the gel domain
enhances the downstream displacement of the gel almost over the entire
domain, in comparison with the all-gel domain. This can be understood
from the fact that the cell is impermeable to the interstitial fluid. Thus,
in comparison to the gel that would fill the same space, the cell receives a
greater drag due to the pressure gradient as well as the fluid flow. As a
result, the cell moves more downstream than the gel would, enhancing ux
overall. By the same token, having a second cell in the domain enhances
the downstream movement ux of the first cell, even if the two are far apart.
When the neighbor is downstream (h > 0), an additional factor arises to
boost ux for the test cell: being upstream in the doublet configuration, the
test cell receives greater pressure. This pushes the test cell even farther
downstream than if the neighbor were absent.

3.1.2 Tension ribbon

The apparent attraction between two cells in a streamwise doublet can be un-
derstood by examining the stresses acting on each cell. The total stress ten-
sor in the hydrogel can be written as σt = −pI+φsσs +φfσf (cf. Eqs. A.24
and A.25 in Appendix A), with contributions from the pressure, the solid
stress and the fluid stress. Three observations that Li et al. [18] have made
on single cells hold for the doublet as well. First, the pressure p and skeletal
stress φsσs play major roles in moving and deforming the cell, whereas the
Brinkman stress φfσf is at least one order of magnitude smaller, and can
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(a)

-2.69e-6 2.63e-6 1.33e-057.94e-6-8.01e-06

(b)

-4.04e-6 9.20e-7 1.08e-055.88e-6-8.99e-06

Figure 5: Contours of the normal stress components (a) σsxx and (b) σsyy
around the cells at h = −5r. For symmetry and clarity, only the upper half
of the domain is plotted and only in a circular region around the two cells.

thus be ignored in a qualitative analysis. Of course, this does not mean
that viscosity is unimportant. Its effect is mainly manifested by p via the
Darcy drag. Second, upon onset of the flow, the immediate effect of p is
to compress the cell so it contracts almost isotropically. Finally, the cell
contraction pulls the surrounding gel radially inward, thus creating a tensile
normal stress in σs.

These effects are apparent in Fig. 5 that plots the magnitude of the
normal stress components around two cells relatively far apart (h = −5r).
The contraction of each cell is reflected by the large tensile σsxx at its front
and rear stagnation points, as well as the large tensile σsyy on the apex of the
cells. One may also note the compressive stresses σsxx < 0 on the cell apexes,
and σsyy < 0 at the stagnation points. These can be rationalized by the local
gel strains. For example, at the top of the cells, the downstream movement of
the cell squeezes the gel in the streamwise direction, producing a compressive
strain εsxx < 0. At the front stagnation point, the cell movement requires
gel displacement in the transverse direction toward the centerline, again
producing a compressive εsyy < 0.

As each cell contracts, they stretch the hydrogel in the gap between them.
For smaller separations, this stretching intensifies as there is less gel material
in the narrower gap. As a result, the local tensile strain increases, as does
the tensile stress. This leads to the formation of a “tension ribbon” between
the two cells, illustrated by Fig. 6 for a close separation of h = −r/6. The
tensile stress explains the tendency, noted in Fig. 4, of the two cell centroids
moving closer toward each other, even though their edge-to-edge distance
gets larger due to cell shrinkage. As will be shown below, such tension
ribbons are a prominent feature of cell-cell interactions in an array of cells
embedded in a hydrogel. Incidentally, the tension ribbon coincides with the
dead water zone between the cells in Fig. 3.
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(a)

-1.85e-6 3.39e-6 1.39e-058.63e-6-7.10e-06

(b)

-8.08e-6 -2.80e-6 7.74e-062.47e-6-1.34e-05

Figure 6: Contours of the normal stress components (a) σsxx and (b) σsyy
around the cells at h = −r/6. The “tension ribbon” forms between the
two cells along the centerline, where the tensile stress σsxx attains a local
maximum.

3.1.3 Cell deformation and stress

As noted above, each cell individually would contract slightly in response to
the hydrodynamic pressure in the gel that accompanies the interstitial flow.
The contraction of the cell stretches the surrounding gel roughly radially
inward, and such a radial tensile stress will resist the cell contraction [18].
Thus, the gel acts as a buffer layer to alleviate the action of the pressure. One
may visualize this as the effect of elastic springs that tether the cell surface
to the stationary posts that anchor the gel. This antagonism between the
pressure and the gel stress turns out to be a general mechanism in the cells-
in-gel system.

How does cell-cell interaction affect cell contraction? Figure 7 plots the
steady-state area shrinkage of the neighbor cell and the test cell, with the
neighbor being placed at different separations h upstream or downstream.
Qualitatively, we can interpret the amount of cell shrinkage from the cen-
terline pressure profile through the gel domain. The further upstream the
neighbor cell, the higher pressure and hence greater shrinkage it experiences
(Fig. 7a). But the steeper slope at greater |h| is due to a geometric anomaly,
namely the proximity of the solid posts in Fig. 1. Approaching these posts,
the neighbor cell experiences an expansion of the flow area and a pressure
rise upstream and a contraction and a pressure drop downstream, which
accentuate the changes in cell shrinkage.

The shrinkage of the test cell is somewhat subtler. There is strong asym-
metry between positive and negative h values (Fig. 7b). As the neighbor is
positioned further downstream, with h reaching 20r, it blocks the flow in
the downstream contraction region, incurring a greater pressure drop. This
raises the pressure upstream, and produces the sharp increase in the shrink-

11

https://doi.org/10.1063/5.0287434


Li, Zhang, Yue & Feng, Biomicrofluidics 19, 054104 (2025)

(a)
-24r -16r -8r 0 8r 16r

h

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

S
h
ri
n
ka
ge

(%
)

×10−3

(b)
-24r -16r -8r 0 8r 16r

h

7.68

7.74

7.80

7.86

7.92

7.98

8.04

S
h
ri
n
ka
ge

(%
)

×10−4

Figure 7: Shrinkage of (a) the neighbor cell, and (b) the test cell, as a
percentage of the initial cell volume, as affected by the neighbor being placed
upstream or downstream. The red dot marks the shrinkage of the test cell
alone, in the absence of the neighbor.

age of the test cell. Conversely, when the neighbor is placed far upstream,
it bears most of the increased pressure drop itself. The flow downstream
past the test cell remains largely unaffected. Thus, the test cell shrinkage
changes little for large negative h values. For small |h|, the tension ribbon
pulls the two cells toward each other, and this reduces the shrinkage of both
cells. Since two cells present greater resistance to the flow than a single cell,
they entail a larger pressure drop. This explains why two cells shrink more
than a single cell.

What role does the gel play in the above scenario? Figure 8 plots the
pressure p, normal stress due to the solid skeleton σsnn = n · (φsσs) · n and
the total normal stress σtnn = n ·σt ·n around the two cells. The Brinkman
normal stress, due to φfσf , is about three orders of magnitude smaller
than p and the solid normal stress, and can thus be safely ignored. As
expected, we see in Fig. 8(a) a consistently higher pressure on the upstream
cell regardless of the separation h. But Fig. 8(b) shows that the surrounding
gel provides such a reaction as to neutralize most of the pressure differential.
As a result, the total normal stress is roughly symmetric for the two cells
in Fig. 8(c). In fact, at the large separation h = −5r, the cancellation
effect is also local in the sense that σtnn is largely uniform around the cell.
Thus, the gel provides a buffer to shield the cells from the pressure. Where
a high pressure compresses a cell, the surrounding gel gets stretched to
offer additional resistance to the compression. Finally, at close proximity,
Fig. 8(d) shows a mild protrusion of each cell toward the other, thanks to
the tension ribbon between the two.

One can also roughly estimate the cell shrinkage from the bulk modulus
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Figure 8: Normal stress profiles around the cells, with the polar angle θ
defined in panel (d). (a) Pressure p for the test cell downstream and the
neighbor upstream, at h = −r/6 and −5r. (b) Similar comparison of the
normal stress due to the solid stress tension φsσs. (c) Similar comparison
of the total normal stress n · σt · n. (d) Deformation of the test cell at
h = −r/6, depicted by the displacement vectors of the cell boundary points
toward the cell centroid. The length of these vectors have been exaggerated
for a clearer view, and the red arrow in the legend provides a scale bar
for their magnitude. The rear of the upstream neighbor is also shown to
indicate the proximity between the two.

of the cell (Kc = µc + λc = 0.02 in dimensionless form) and the normal
stresses on it. For example, at h = −5r, the average normal stress is about
−1.6× 10−7 from Fig. 8c). The expected areal contraction is thus 8× 10−6,
consistent with the numerical data of Fig. 7.

The interaction between the cells also affects the stress and strain inside
the cells. Figure 9 compares the distribution of the von Mises stress (defined
in Eq. A.12) inside both cells for two cell-cell separations. When the cells are
far apart (h = −5r), the compressive strain and stress are largely uniform
inside each cell, with a small advantage to the upstream face of the cell. This
is similar to the case of a single cell [18]. As |h| decreases, the tension ribbon
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1.573e-07 1.593e-071.583e-7 1.538e-07 1.546e-071.542e-7

h = −5r

1.554e-07 1.838e-071.696e-7 1.540e-07 1.840e-071.690e-7

h = −r/6

Figure 9: Distribution of von Mises stress inside both cells at h = −5r (top
row) and h = −r/6 (bottom row). Note the shift in the maximum stress
in the upstream cell as the two get closer, as well as the greater spatial
variations in stress magnitude.

between the cells pulls on the rear face of the upstream cell, and shifts the
maximum stress inside the cell from the upstream to the downstream face.
Similarly, the tension ribbon strengthens and localizes the stress maximum
in the downstream cell at its upstream stagnation point. Thus, in both cells,
the von Mises stress peaks at their surface points facing the narrow gap. This
localization of strain and stress also implies greater spatial inhomogeneity
inside each cell, apparent from the widening range of von Mises stress with
smaller |h|.

3.2 Streamwise triplets

In discussing the streamwise doublet, we have found it convenient to desig-
nate one cell as the “test cell”, and the other as the upstream or downstream
“neighbor”, distinguished by the sign of the edge-to-edge separation h. In
dealing with triplets and multiple cells, however, the relative positioning
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3.83e-07 2.26e-051.15e-5

Figure 10: Tension ribbons in a streamwise triplet at h = r/3, shown by
color contours of the von Mises stress computed from the gel elastic stress
tensor σs. The central cell is initially placed at the center of the domain
(e = 1.2).
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Figure 11: Displacement of three cells in a streamwise triplet: dependence
on the initial edge-to-edge separation h.

is more complex and will be described more explicitly. As a result, we no
longer rely on the sign of h to distinguish up- and downstream. Hereafter, we
will use h only as a positive number that represents the initial edge-to-edge
distance.

The streamwise triplet is similarly dominated by the tension ribbons
when the cells are close to one another. Such ribbons are illustrated by the
stress contours of Fig. 10. The streamwise displacement of the centroids
of the 3 cells are shown in Fig. 11 as functions of h; their behavior can be
understood from the tension ribbons. At any initial separation h, all three
cells move downstream (ux > 0). With decreasing h, the upstream cell
moves farther downstream while the other two show smaller displacements.
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Figure 12: Shrinkage of three cells in a streamwise triplet. (a, b, c) De-
formation of the upstream neighbor, central cell, and downstream neighbor
depicted by the displacement vectors of the cell boundary points toward the
cell centroid; initial edge-to-edge separation h = r/6 in all three panels. (d)
Areal shrinkage of the three cells at different initial h values.

As the difference in ux diverges between cells with decreasing h, the three
cells are being pulled closer together by the tension ribbon, similarly to the
doublet of Fig. 4. The magnitudes of the displacements and their variations
with h are comparable with those of the doublet.

How do the tension ribbons affect cell deformation? As h decreases, the
tension ribbons pull on the up- and downstream cells in a way similar to
that in a streamwise doublet. Each shows a mild protrusion toward the
central cell (Fig. 12a,c), reminiscent of the doublet deformation shown in
Fig. 8(d). The central cell, being stretched on both ends, extends protru-
sions to both sides (Fig. 12b) and sustains more strain and stress than its
neighbors. Its maximum von Mises strain and stress (not shown) are also
somewhat higher than the cells in the doublet, and this difference increases
with decreasing h. In terms of the cell area change, an upstream cell shrinks
more than a downstream one (Fig. 12d), as expected. With decreasing h,
the upstream and central cells see reduced shrinkage, mainly thanks to the
tension ribbons. For the upstream cell, its position shifts downstream at
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4.75e-1 9.50e-1 1.90e+001.420.00e+00

Figure 13: Streamlines past a triplet of cells aligned perpendicular to the
flow direction, at a cell-cell separation h = r/3. The central cell is initially
placed at the center of the domain (e = 1.2).

smaller h, and thus it experiences a lower pressure. This also contributes to
its diminishing shrinkage. For the downstream cell, on the other hand, the
advantage in positioning apparently compensates for the stress ribbon; its
shrinkage increases somewhat with decreasing h.

3.3 Transverse triplets

For a transverse triplet placed in the middle of the gel domain, the stream-
lines again resemble a Stokes flow around obstacles in pure fluid (Fig. 13).
Much as in Stokes flow, the transverse triplet reduces the flow area of the
cross section, and produces a “blockage effect”. With the reduction of flow
area comes an elevated pressure upstream of the cells. A consequence is that
the transverse triplet moves downstream more than the streamwise triplet
(Fig. 14a). As expected, the center cell receives a stronger push than the
two edge cells, exhibiting a larger displacement ux. With decreasing cell
separation h, ux initially increases, but then declines for the tighter triplets,
suggesting an optimal separation for catching the most blockage effect. Con-
ceivably, there is a tradeoff between the fluid going around the triplet as a
whole and that going through the gaps between the cells.

Perhaps contrary to hydrodynamic expectations, the top and bottom
cells do not move transversely away from the central one; they shift slightly
inward instead (Fig. 14b). This is no real surprise, now that we know the
prominent role of the tension ribbon among nearby cells. Figure 15 depicts
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Figure 14: (a) Streamwise displacement ux for the transverse triplet, in
comparison with the streamwise triplet (dashed curves). (b) Transverse
displacement uy. The top and bottom cells move toward the center cell.

1.58e-06 2.28e-051.22e-5

Figure 15: Tension ribbons in a transverse triplet at h = r/3, shown by
color contours of the von Mises stress computed from the gel elastic stress
tensor σs.

the tension ribbons in terms of the von Mises stress of the gel total stress
tensor φsσs. The origin of the tension ribbons is the same as in the stream-
wise arrays (Fig. 10). As the neighbors get close, their individual contraction
engenders strong stretching in the gap between them. Generally, the tension
ribbons tend to be slightly stronger in the transverse configuration than in
the streamwise one. For example, the maximum von Mises stress among the
transverse triplet reaches 2.28×10−5 at h = r/3, compared with 2.26×10−5

in the streamwise triplet at the same h.
Finally, we examine the effect of the gel stresses on the three cells in

the transverse triplet (Fig. 16). The three cells shrink essentially the same
amount, and it is generally greater than that of the streamwise triplet, man-
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Figure 16: Shrinkage of the cells in the transverse triplet at different initial
separation h. The shrinkage of the streamwise triplet is also shown in dashed
curves for comparison.

ifesting the higher pressure sustained by the transverse triplet owing to the
blockage effect. With increasing h, the shrinkage initially increases, prob-
ably due to the weakening tension ribbons. But past h = 2r, the trend is
reversed. This behavior mirrors that of the displacement usx in Fig. 14(a),
again suggesting an optimal blockage effect at an intermediate h.

3.4 Two-dimensional cell arrays

We have tested the behavior of a regular hexagonal array of 7 cells placed
initially at the center of the gel domain (Fig. 17). At large separations, e.g.
h = 2r of Fig. 17(a), the cells interact little among themselves, and each
cell’s movement and deformation is similar to that of an isolated cell. The
dominant feature is the individual contraction of each cell, which stretches
the surrounding gel and produce a tension ring. The gap between each trio
of cells, e.g., Cells 1, 2, 4, sustains relatively small stress, and thus present
the hexagonal pattern of blue circles in the plot. If the cells are closer to each
other, e.g., at h = r/3, tension ribbons appear between neighbors, producing
the regular pattern of high stresses in Fig. 17(b). This is the most important
phenomenon for cell arrays, and affects the movement and deformation of
individual cells. Moreover, the fluid flow is severely suppressed in the gap
between the cells. For h = r/3, for example, we observe dead water zones
in the interior of the cell array (not shown), with recirculation similar to
Fig. 3(b).

In a tightly spaced array, the tension ribbons tend to pull the array even
closer together. This is clearly demonstrated by the centroid displacement
for the seven cells in Fig. 18. Note first the non-monotonic variations of ux
with h (with the exception of the trailing Cell 3). With decreasing h, ux
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Figure 17: Distribution of von Mises stress for the gel elastic stress σs around
the cell array with initial cell-cell separation (a) h = 2r, (b) h = r/3. The
central cell is initially placed at the center of the domain (e = 1.2). Note
the sharpening of the tension ribbons between the cells as they get closer to
one another.
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Figure 18: Steady-state displacement of the cells in the 2D array as function
of the initial separation h. (a) Streamwise displacement ux. For symmetry
only the top Cells 4 and 5 are plotted together with the central Cells 1–3.
(b) Transverse displacement uy for the outer Cells 4, 5.

tends to increase first and then decrease for all cells. This trend is essentially
the same as previously seen in the transverse triplet of Fig. 14(a), reflecting
a subtlety in the blockage effect. Secondly, at the smaller h values, ux is
always greater for a cell that is more upstream, in the decreasing order of
Cell 1, 4, 2, 5, and 3. This implies that the cells are moving inward along
the flow direction. Similar inward movement can be seen in the transverse
direction in Fig. 18(b). Thus, the tension ribbons pull an initially close array
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Figure 19: Cell deformation indicated by displacement of boundary nodes
relative to the centroid at h = r/3. Panels (a)–(e) are arranged spatially in
the same pattern as the Cells 1–5 labeled in Fig. 17(a); e.g., panels (c)–(e)
correspond to Cells 1–3.

further inward. It is also interesting to compare ux of the 2D array with that
for the streamwise triplet. The 2D array moves farther downstream than the
triplet, by some 10%. This is another manifestation of the blockage effect,
noted in Fig. 14(a) already.

The cell deformation also bears clear signature of the tension ribbons.
Part of the cell boundary closest to a nearby neighbor shrinks less inward
because of the stretching toward that neighbor. Thus, the boundary dis-
placement vectors for Cell 1 exhibit three such protrusions toward its three
neighbors, Cell 2, 4 and 6 (Fig. 19a). Similar protrusions toward neighbors
can be seen for all other cells in Fig. 19. In particular, the central Cell 2 is
being pulled by six neighbors.

The shrinkage is greater for cells positioned more upstream (Fig. 20),
following the decreasing order of Cell 1, 4, 2, 5, 3, much as the cell displace-
ment of Fig. 18. In the range of h tested, the cell shrinkage in the 2D array
largely resembles that of the streamwise triplet (Fig. 12). The shrinkage
increases with h thanks to the diminishing tension ribbon, with the farthest
downstream Cell 3 exhibiting a decreasing trend at larger h similar to the
downstream cell of the streamwise triplet. In comparison with the trans-
verse triplet (Fig. 16), one wonders if the blockage effect also maximizes at a
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Figure 20: Shrinkage of the cells in the 2D array as function of the initial
cell-cell separation h.

certain intermediate h. The curves of Fig. 20 suggests that such a maximum
may exist at a greater separation than 5r.

To summarize our findings for all the cell arrays, we point to the tension
ribbon as the most important mechanism of cell-cell interactions. Their
principal effect is to pull the cells inward more tightly. They also deform the
cells, pulling out protrusions toward one another. This typically counters
cell shrinkage. The transverse and 2D cell arrays also exhibit a blockage
effect, which produces higher pressure on the cells because of the reduction
in cross-sectional flow area. There seems to be a maximum blockage effect
at a moderate cell-cell separation, where the cell array is best able to catch
the impact of the interstitial flow.

Is the mechanical interaction among cells strong enough to induce bio-
chemical responses from the cells? Granted, for ease of analysis we have
only studied small arrays of a few cells. Extrapolating our findings to
larger cell colonies, we expect strong tensile stresses and suppressed fluid
flow in the interior of the cell ensembles. Both may have implications for
the viability and behavior of the interior cells. Larger stress may induce
proliferation or differentiation of the cells [10, 16, 25], and may even cause
apoptosis [26,27]. To give a quantitative idea, the tension ribbons in the 2D
array at h = r/3 feature a von Mises stress ranging up to 12.7 mPa. This
level of mechanical stimulation is more than adequate to induce biochemical
changes inside cells, and affect the evolution and fate of a cell colony. For
example, Long et al. [9, 10] have examined how hepatocytes react to shear
stress due to perfusion, and found that an intermediate level of stress around
5 mPa produces optimal hepatocyte proliferation. Lack of fluid perfusion
may also imply privation of oxygen, nutrients, as well as necessary growth
factors [4,9,15,28,29]. These remain to be studied in a more realistic setup

22

https://doi.org/10.1063/5.0287434


Li, Zhang, Yue & Feng, Biomicrofluidics 19, 054104 (2025)

for larger cell ensembles.

4 Conclusion

Microfluidic organ-on-chip devices typically feature cell colonies developing
in a hydrogel-based matrix, a process that is as sensitive to mechanical
cues in the hydrogel environment as to biochemical ones. This work studies
the mechanical interaction among the perfusing fluid, the elastic skeleton
of the hydrogel and the embedded cells, with an emphasis on the cell-cell
interactions.

The most important observation is that when cells are initially closely
packed in a gel, they form tension ribbons among them, which tend to pull
the array even more closely together. This may have important implications
to the performance of the organ-on-chip device, and even the survival of
cell culture. On the one hand, the mechanical stress can stimulate cell
proliferation and tissue regeneration [9, 10]. On the other, it could further
reduce the penetration of nutrients and growth factors into the center of the
cell colony, potentially suppressing cell growth and even inducing necrosis.

Our work is based on a continuum-level poroelasticity model, and neces-
sarily involves various simplifications to facilitate the analysis. It is impor-
tant to recognize these simplifications as one seeks to apply such modeling
to individual devices. First, we have considered a relatively simple 2D geom-
etry representing a biomicrofluidic device. Three dimensionality and other
geometric features may introduce new mechanisms for cell-cell interactions
that are not accounted for here. Second, we have included only a small
number of cells in our simulations, and the effects remain to be explored
and confirmed in more realistic larger cell colonies. Third, we have modeled
the cells as compressible neo-Hookean solids. In reality, a cell is a highly
heterogeneous and complex object, with transport of water, ions and vari-
ous proteins across the membrane. Under compressive normal stresses, the
water is squeezed out of the cell and thus the cell volume shrinks [30]. In
particular, it has been observed that the cell membranes may be temporarily
compromised to allow cytosol leakage under rapid forcing [31,32]. Our model
represents this shrinkage effect indirectly by the effective elastic moduli of
the model cell. But it is unclear if the time scale of cell shrinkage [32] is well
represented by that of the elastic shrinkage. Therefore, our treatment must
be viewed as a first approximation, whose accuracy should be verified and
improved upon by more sophisticated models. Finally and perhaps most
significantly, we have ignored the potential for cells to remodel themselves
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under mechanical stimulation and to restructure the surrounding polymer
matrix. For example, the stiffness of the surrounding gels can affect the
differentiation and fate of stem cells, with softer gels favoring production of
adipocytes and harder ones osteoblasts [33], through a pathway that links
cytoskeletal force sensing to gene expression [34]. Not only do cells remodel
and proliferate, thereby changing their own properties, but they also ac-
tively remodel the surrounding matrix, e.g., by degrading matrix proteins
using metalloproteinases [35]. This two-way coupling between the extracel-
lular matrix and the cells will certainly affect the mechanical interactions
between the two.

In view of the above, the model should be validated against experimental
data. Currently there is a dearth of comparable data, probably owing to
technical challenges in measuring the forces within cell colonies inside a
gel matrix. Progress can be made by conducting experiments in simplified
geometries and flow conditions, where cell deformation can be recorded and
used to back out the stresses on the cells. Such data can serve as benchmarks
to validate the predictions of the current model.

Despite its limitations, this work provides a theoretical basis and compu-
tational tools for analyzing cell-cell and cell-gel mechanical interaction in mi-
crofluidic systems. Such mechanical cues play important biochemical roles,
e.g., in the development of organoids and artificial tissues in vitro [9, 10],
and in embryogenesis in vivo [36,37]. Therefore, our work represents a step
toward understanding such processes, especially in hydrogel-based cell cul-
tures in microfluidics and organ-on-chip devices. With certain modifications
and refinements, the model and computational tools developed here may also
apply to in vivo scenarios of cells in gel-like extracellular matrices.
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Appendix A Theoretical formulation

A.1 Governing equations

In our formalism, the hydrogel is an effective continuum made of the solvent
phase of volume fraction φf and the solid network phase of volume fraction
φs = 1−φf . Each phase obeys its own volume-conservation and momentum
equations:

∂φs
∂t

+∇ · (φsvs) = 0, (A.1)

∇ · (φsvs + φfvf ) = 0, (A.2)

∇ · (φfσf )− φf∇p+ ξφfφs (vs − vf ) = 0, (A.3)

∇ · (φsσs)− φs∇p+ ξφfφs (vf − vs) = 0, (A.4)

dus

dt
− vs = 0, (A.5)

where vf and vs are the phase-averaged velocities of the fluid and solid
phases, σf and σs are their Cauchy stress tensors, p is the shared pressure,
and us is the displacement of the solid phase in the hydrogel. The mo-
mentum exchange between the phases is via the Darcy drag terms, with a
constant drag coefficient ξ. Note that Eq. (A.1) is the continuity of the solid
phase. A similar one can be written for the fluid phase, but in its place, we
have used the sum of the two in Eq. (A.2).

The solvent is a viscous fluid of viscosity µ, with a Brinkman stress
tensor σf = µ[∇vf + (∇vf )T ]. The solid network obeys the neo-Hookean
model:

σs = µsJ
−1(F · FT − I) + λs(J − 1)I, (A.6)

where F is the deformation gradient, J = det(F) is its determinant, I is
the unit tensor, and λs and µs are the Lamé parameters related to Young’s
modulus E and Poisson’s ratio ν as follows:

λs =
Eν

(1 + ν)(1− 2ν)
, µs =

E

2(1 + ν)
. (A.7)

From F we compute the Green-Lagrangian strain tensor E = (F ·FT − I)/2,
and use its components to analyze the hydrogel and the cell deformation in
the main text.

For the flow of the viscous solvent outside the gel, we neglect inertia and
pose the Stokes equation for the exterior velocity V and the pressure P :

∇ ·V = 0, (A.8)

∇ ·Σ−∇P = 0, (A.9)
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where Σ = µ[∇V + (∇V)T ] is the viscous stress tensor, µ being the solvent
viscosity.

The embedded cells are also modeled as hyperelastic neo-Hookean solids,
with Lamé constants λc and µc and a Cauchy stress tensor σc. We describe
the cell deformation and movement using the displacement field uc and
velocity field vc inside the cell, which evolve according to

∇ · σc = 0, (A.10)

duc

dt
− vc = 0. (A.11)

As a representation of the intensity of the stress in the gel or inside the
cell, we define a scalar von Mises stress from the components of the stress
tensor in 2D planar geometry. Take the cell stress σc for example:

σcv =
√
σ2cxx + σ2cyy − σcxxσcyy + 3σ2cxy. (A.12)

A von Mises strain can be similarly defined as a scalar representation of the
intensity of deformation in the gel or inside the cell.

A.2 Boundary conditions

Because of symmetry, only the upper half of the domain of Fig. 1 will be
computed. On the bottom (y = 0) and the midline (y = 0.5L0) of the
domain, symmetric conditions are used, with ∂/∂y = 0. On the surface of
the solid posts, the interstitial flow and the solid displacement both vanish:
vf = 0, us = 0. On the entry on the left, we impose a uniform velocity
V0. On the exit on the right, we employ the zero-stress natural boundary
condition.

On the fluid-gel interfaces Γ1 and Γ3, we impose the boundary conditions
BC2 in the following form [19]:

V − vs = φf (vf − vs) · n, (A.13)

(−pI + φfσf + φsσs) · n = (−P I + Σ) · n, (A.14)

(V − vf ) · n = ηn · [(Σ− P I)− (σs − pI)] · n, (A.15)

(V − vf ) · t = β(Σ · n) · t, (A.16)

φs(vs − vf ) · t = −β(σs · n) · t, (A.17)

where n is the normal vector pointing outward from the gel toward the fluid,
η is an interfacial permeability, and β is an interfacial slip coefficient. On
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interfaces Γ2 separating the hydrogel and the cells, we impose continuity of
displacement, velocity and normal traction:

vs = vf = vc, (A.18)

us = uc, (A.19)

σc · n = (φsσs + φfσf − pI) · n. (A.20)

where n represents the normal vector to Γ2.

A.3 Scaling and dimensionless parameters

Referring to Fig. 1, we take L0 to be the characteristic length L0 and L0/V0
to be the characteristic time. Furthermore, we adopt µs for the hydrogel
solid network as the characteristic stress. With these three characteristic
quantities, all variables and parameters of the problem, as well as the gov-
erning equations and boundary conditions, can be made dimensionless. Out
of the geometric and physical parameters, we can extract the following 10
dimensionless groups, each denoted by an overbar,

ē = e/L0, h̄ = h/L0, λ̄s = λs/µs, λ̄c = λc/µs, µ̄c = µc/µs,

ξ̄ = ξL2
0/µ, η̄ = ηµ/L0, β̄ = βµ/L0, Ca = V0µ/(L0µs), φs0,

(A.21)

where φs0 is the initial solid fraction in the undeformed hydrogel. Ca in-
dicates the ratio between the external viscous stress and the elastic stress
of the solid skeleton, and can be viewed as an effective capillary number.
Besides, certain length ratios are fixed for the rest of the paper, including
ā = 0.2, D̄ = 0.4, d̄ = 0.06 and other ratios indicated in Fig. 1.

Since the main text uses mostly dimensionless variables, we will drop the
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overbar for simplicity. The dimensionless governing equations are as follows:

∂φs
∂t

+∇ · (φsvs) = 0, (A.22)

∇ · (φsvs + φfvf ) = 0, (A.23)

∇ · (φfσf )− φf∇p+ ξCaφfφs (vs − vf ) = 0, (A.24)

∇ · (φsσs)− φs∇p+ ξCaφfφs (vf − vs) = 0, (A.25)

dus

dt
− vs = 0, (A.26)

∇ ·V = 0, (A.27)

∇ ·Σ−∇P = 0, (A.28)

Σ = Ca(∇V +∇VT ), (A.29)

∇ · σc = 0, (A.30)

σf = Ca(∇vf +∇vT
f ), (A.31)

σs = J−1(F · FT − I) + λs(J − 1)I. (A.32)

The dimensionless boundary conditions appear the same as the dimen-
sional ones given in Section A.2, except for the following corresponding to
Eqs. (A.15–A.17) on the gel-fluid interface:

Ca (V − vf ) · n = η n · [(Σ− P I)− (σs − pI)] · n. (A.33)

Ca (V − vf ) · t = β (Σ · n) · t, (A.34)

Caφs(vs − vf ) · t = −β (σs · n) · t. (A.35)

Appendix B Parameter estimation

Most of the model parameters can be estimated from typical material prop-
erties and experimental devices. In presenting results in the main text, we
have omitted the overbar for dimensionless groups since the discussion does
not concern dimensional parameters. In this appendix, however, both types
are present as we will first estimate the dimensional parameters before eval-
uating the dimensionless groups. Thus, we revert temporarily to using an
overbar to distinguish dimensionless parameters from dimensional ones.

Initial solid fraction: Many hydrogels have high porosity, with a
swelling ratio reaching 40 or higher (corresponding to solid fraction of 2.5%
or lower) [38]. We have taken the initial solid fraction φs0 = 0.01 for an
initial 99% porosity [39].
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Elastic moduli: Hydrogels can have a wide range of stiffness, with
Young’s modulus E ranging from hundreds of pascals to tens of kPa [6].
The Poisson ratio ν has been reported to be about 0.2 [40] or 0.33 [41]. For
simplicity, we choose ν = 0.25 such that the two Lamé constants are equal
(see Eq. A.7). However, the experiments measured the response of the entire
hydrogel, including both the solid and the liquid. In the notation of our BC
(Eq. A.14), they measured P − p = φsσs. Thus, a measured Em = 103 Pa
translates to E = Em/φs = 105 Pa in our constitutive equation (Eqs. A.6,
A.7). This further translates to λs = µs = 4× 104 Pa.

Biological cells also exhibit a wide range of stiffness, with a Young’s
modulus ranging from 100 Pa up to tens of kPa [42, 43]. These values are
largely comparable to those of hydrogels. In all the simulations presented,
we have matched the cell moduli with those of the surrounding gel at solid
fraction φs = 0.01: µc = λc = 0.01µs = 0.01λs. Thus, we have the following
baseline values for the dimensionless groups: λ̄s = 1, λ̄c = µ̄c = 0.01, and a
Poisson ratio for the cell νc = 0.25.

Darcy drag coefficient: ξ appears in the momentum equation, which,
if written in the traditional Darcy’s law or Brinkman’s form, involves the
bulk permeability k. Comparing these two forms establishes the following
connection:

ξ =
µ

k

φf
φs
, (B.1)

so that ξ can be evaluated from the more familiar parameter k. In particular,
we adopt the Darcy permeability formula suitable for high porosity media
[44,45]:

k =
2r2

9

φf
φs
, (B.2)

where r is a characteristic pore radius, which falls in the wide range of 0.1–
100 µm for hydrogels [11–13]. Thus, ξ = 4.5µ/r2. Taking µ = 10−3 Pa·s
for water, and r = 2.5 µm as a typical pore size, we get ξ = 7.2 × 108

kg/(m3·s). The dimensionless group ξ̄ = ξL2
0/µ = 4.5(L0/r)

2 is directly
related to the pore-to-sample size ratio. The macroscopic size of the devices
ranges from hundreds of microns to millimeters [14,15]. Taking r = 2.5 µm
and L0 = 250 µm, we get ξ̄ = 4.5× 104.

Interfacial permeability and slip coefficients: The boundary condi-
tion BC2 introduces the permeability η via Eq. (A.15), which can be rewrit-
ten as

µ
(V − vf ) · n

µη
= n · [(Σ− P I)− (σs − pI)] · n, (B.3)
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Dimensionless groups Baseline values

e 1.2

φs0 0.01

λs 1

λc 0.01

µc 0.01

ξ 4.5× 104

β 0.02

η 0.02

Ca 3× 10−11

Table 1: Baseline values for the dimensionless parameters used in the shear-
flow and normal-flow simulations.

which gives the quantity µη the meaning of a “penetration length”, i.e., the
depth into the gel over which the fluid’s normal velocity changes from V to
vf . This idea has been explored in a pore-scale model, which shows that
for hydrogels, this penetration length ranges from r to 4r [21]. Taking an
intermediate value of 2r, we get the dimensionless η̄ = µη/L0 = 2r/L0 =
0.02 for r = 2.5 µm, L0 = 250 µm.

Similarly, the dimensionless slip coefficient β̄ = µβ/L0 can be seen as
the slip length divided by the macroscopic length scale. Prior calculations
showed that shear flow past the surface of a porous medium entrains the
interstitial fluid down to a depth on the order of 2r [46]. This yields β̄ = 0.02.

Capillary number: In their experimental device, Polacheck et al. [14]
tested interstitial velocities vf = 0.3 µm/s and 3 µm/s. Because of the
high porosity of typical hydrogels (0.9 or higher), the free-stream velocity
V0 should be only slightly smaller than vf . Thus, we adopt V0 = 0.3 µm/s
as a representative velocity. With the length L0 = 0.25 mm typical of
microfluidic devices, µ = 10−3 Pa·s, and µs = 4 × 104 Pa, we obtain Ca =
µV0/(µsL0) = 3× 10−11 for our normal-flow geometry.

Based on the above, we have chosen the baseline dimensionless parame-
ters in Table 1, which are used in all the results reported in the main text.
The different simulations correspond to different configurations of the cell
array and different values of the cell-cell separation h.
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