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Traumatic brain injury (TBI) is a serious health issue. Studies have highlighted the
severity of rotation-induced TBI. However, the role of cerebrospinal fluid (CSF) in trans-
mitting the impact from the skull to the soft brain matter remains unclear. Herein, we
use experiments and computations to define and probe this role in a simplified setup. A
spherical hydrogel ball, serving as a soft brain model, was subjected to controlled rotation
within a water bath, emulating the CSF, and filling a transparent cylinder. The cylinder
and ball velocities, as well as the ball’s deformation over time, were measured. We found
that the soft hydrogel ball is very sensitive to decelerating rotational impacts, experiencing
significant deformation during the process. A finite-element code is written to simulate
the process. The hydrogel ball is modeled as a poroelastic material infused with fluid
and its coupling with the suspending fluid is handled by an arbitrary Lagrangian-Eulerian
method. The results indicate that the density contrast, as well as the rotational velocity
difference, between the hydrogel ball and the suspending fluid, play a central role in
the ball’s deformation due to centrifugal forces. This approach contributes to a deeper
understanding of brain injuries and may portend the development of preventive measures
and improved treatment strategies.

DOI: 10.1103/PhysRevFluids.10.030502

I. INTRODUCTION

Traumatic brain injury (TBI) is a common injury that occurs when the brain is damaged due to
a sudden impact to the skull. Situations in which people can experience TBI are widespread, such
as for military personnel, during athletics, or from accidents such as falls or automobile collisions.
Each case can have minor to fatal outcomes for all age ranges. The Centers for Disease Control and

*These authors contributed equally to this work.
†Contact author: ptyue@vt.edu
‡Contact author: qianhong.wu@villanova.edu

2469-990X/2025/10(3)/030502(17) 030502-1 ©2025 American Physical Society

https://orcid.org/0000-0002-3556-1372
https://orcid.org/0009-0003-5521-6263
https://orcid.org/0000-0002-7141-5823
https://orcid.org/0000-0002-6216-5674
https://ror.org/02g7kd627
https://ror.org/02g7kd627
https://ror.org/022k4wk35
https://ror.org/04snvc712
https://ror.org/03rmrcq20
https://ror.org/03rmrcq20
https://ror.org/02smfhw86
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevFluids.10.030502&domain=pdf&date_stamp=2025-03-28
https://doi.org/10.1103/PhysRevFluids.10.030502


WANG, ZHANG, BATES, FENG, YUE, AND WU

FIG. 1. The structure of a head.

Prevention (CDC) reported 214,110 TBI-related hospitalizations in 2020 and 69,473 TBI-related
deaths in 2021 [1]. Overall, an estimated $40.6 billion was directed to nonfatal TBI treatment in
2016 alone, with an expected loss from all cases to be even greater [2].

The concern about TBI’s prevalence has motivated a wide range of experimental and theoretical
approaches in uncovering the behavior of the brain during impact. To observe TBI directly, animal
testing can be performed for accuracy in biology and impact response [3,4]. These biological models
are necessary for observing post-injury effects, but they are limited in observing impacts at the time
of blow due to the opaque skull. Clinical studies have used advanced tools like MRI to examine the
brain’s condition after a concussion [5]. Yet, these studies also focus on what happens post-injury,
often overlooking the critical moments during the impact itself. Physical models can be created
to capture impact data by allowing transparency and sensors into the brain’s otherwise isolated
environment. These models can then be subject to consistent translational impact tests to capture
impact data. Scientists have also used numerical studies and simulations to examine which part of
the brain is injured [6]. The challenge is that numerical studies need experiments to validate their
results.

Figure 1 shows the basic structure of the head, where the soft brain tissue is enclosed in the hard
skull; between them, there is a thin subarachnoid space (SAS) which is filled with cerebrospinal
fluid (CSF). Two types of impacts can affect the head: translational and rotational impacts. A
translational impact results in rapid linear acceleration and deceleration of the brain within the
skull. This relative motion can cause various types of brain injuries through different biomechanical
processes, including coup and contrecoup injuries [7], shearing forces [8], intracranial pressure
changes [9], and secondary injury processes [10]. A rotational impact on the head involves angular
acceleration and deceleration of the brain within the skull, leading to shearing forces and diffuse
axonal injury (DAI) [8], tissue strain [11], rotational cavitation [12], and secondary injury processes
[10]. Rotational impacts are particularly harmful because the brain is less able to withstand angular
acceleration than linear acceleration. The complex and interconnected nature of the brain’s neural
networks makes them especially vulnerable to rotational forces.

Despite extensive studies on the injury mechanisms of TBI, the way brain injuries transpire,
mechanically and biologically, is still not fully understood. Intuitively, when an impact is imposed
on the head, it will be transmitted from the hard skull through the viscous CSF to the soft brain
matter. The presence of the CSF will also dampen the force and mitigate the impact on the brain.
However, in current brain concussion research, the role of transient CSF flow in the SAS has
long been overlooked. For example, finite element analysis (FEA) of brain injury [13], although
it considers the detailed properties of the brain, often treats the CSF as part of the solid brain
with certain viscoelastic properties. Consequently, it misses the key physics of the CSF during
the brain concussion process. One of the few studies related to the CSF flow during a rotational
impact process was performed by Lang et al. [14], who utilized an egg analog to investigate how
rotational impacts are transmitted through a liquid medium to affect the soft matter within. A novel
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experimental study was developed where egg yolk bathed in a liquid environment and enclosed in
a rigid container was exposed to rapid impacts. An intriguing observation was made, which shows
that the egg yolk experienced the largest deformation during a rotational deceleration process. A
simplified theoretical model was developed which shows that the fluid pressure outside the egg
yolk was not large enough during the deceleration process to balance the centrifugal force. The
study with egg yolk represents the first effort in demonstrating that decelerational impact is the
primary factor influencing brain injury. However, the simplified theoretical model treats the egg
yolk as a spherical ball of liquid surrounded by a massless membrane without deformations. While
it outlines pressure variations outside the spherical ball during rotation, it lacks the complexity
required for a true fluid-structure interaction model. As a result, it cannot accurately predict the
real-time deformation of the egg yolk during impact events. A fundamental question arises: How can
we precisely describe the highly transient fluid-structure interaction (FSI) between the CSF and the
soft brain matter, and how can we relate this interaction to brain injury? Because rotational impacts
are particularly harmful, we are especially interested in understanding the interaction between the
CSF and the soft brain matter when the head is subjected to a sudden rotational impact.

To address this question, we are developing, in this paper, a comprehensive numerical and
experimental study to create a fully validated theoretical framework. Although the brain is a
complex, inhomogeneous biological system, our goal is to develop a high-fidelity numerical scheme
that captures the key physics of the FSI between a soft matter and its liquid surroundings, both
enclosed in a rigid container, when a rapid rotational impact is imposed on the container. To
this end, we will use a simplified experimental setup where a homogeneous soft gel enclosed in
a cylindrical container is exposed to sudden rotational impact. The motion and deformation of
the soft matter will be recorded. Meanwhile, we will develop a numerical model based on the
arbitrary Lagrangian-Eulerian (ALE) formulation, which will be compared and validated against
experimental data. In this model, the soft gel that mimics the brain matter is treated as a poroelastic
material while the surrounding liquid that mimics the CSF is treated as a Newtonian fluid. Once the
theoretical framework is fully verified and validated, we aim to apply it to the prediction of brain
injury in future studies.

II. EXPERIMENTS

We mimic the brain with a hydrogel sphere that is suspended in a liquid bath that simulates the
CSF. The sphere and the liquid are contained in a horizontal cylindrical container, and the rotational
impact is realized by sudden changes in the rotational speed of the cylinder, as shown in Fig. 2.

In forming the hydrogel spheres, two spherical molds of 1.3 in and 1 in diameter are 3D printed
out of photopolymer resin using an ELEGOO Saturn 2 MSLA 3D printer. The molds are used to
shape a specialized PVA/BN (polyvinyl alcohol/boron nitride) gel for this experiment. The gel is
formed by first dispersing BN (BN, powder, 1 µm, Sigma-Aldrich) in de-ionized water at room
temperature, followed by sonication for 1 h. Then, PVA (Mw 146 000-186 000, 99% hydrolyzed,
Sigma-Aldrich) is dissolved in the solution at a ratio of 3% PVA and 97% distilled water which
is heated to 90 ◦C, and vigorously stirred for 5 h. After cooling down to room temperature, the
solution is cast into the molds, frozen at −20 ◦C for 24 h, and then set to thaw for 12 h at room
temperature (25 ◦C). Finally, the PVA/BN gel is broken out of the mold for further experimentation.
This meticulous formation process is followed to ensure reproducibility in the physical properties
of the gel sphere, especially its density and Young’s modulus, and to fine-tune these properties to
mimic the human brain. The density of the gel is calculated by measuring the volume of a sample
in a graduated cylinder along with the mass on a scale. This determined the gel to have a density
of 1.0456 g/ml, which is similar to real brain matter of 1.081 g/ml [15]. The Young’s Modulus
was determined to be between 0.2 and 1 kPa, within the range of real brain matter of 0.1 to 16 kPa
[16–19].

Figure 2 displays the experimental setup of the cylinder and the contained gel ball to be rotated
by the attached electric motor. To ensure the gel ball remains suspended and maintains a central
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FIG. 2. Rotational experimental setup. The hydrogel ball is bathed in the rotating cylinder.

position during rotation, the surrounding fluid must have a higher density than the gel. Hence,
an 80% glycerin solution of density 1.202 g/ml was used for this purpose [20]. The gel ball is
encapsulated in the rigid transparent cylinder while fully submerged in the glycerin solution to
eliminate air bubbles from being trapped inside. The sealed cylinder is then mounted with an electric
motor on an 80/20 aluminum T-slot frame to increase rigidity. The motor is turned on, causing the
cylinder to rotate. This motion, in turn, drives the fluid inside the cylinder to rotate, which then drags
the soft gel ball suspended in the glycerin into rotation until it reaches a steady state. The motor is
then turned off, causing the cylinder to stop rotating. Consequently, the soft gel ball experiences
a deceleration process until it finally stops rotating as well. During this process, the rotation of
the cylinder and the deformation of the hydrogel ball are captured by a Phantom® Miro® C110
high-speed camera at a frame rate of 1000 fps and a resolution of 1280 by 720 PPI. The velocity of
the cylinder is calculated by tracking the rate of eight equally spaced markings on the cylinder wall
passing the front view.

A representative experimental result is shown in Fig. 3. Figure 3(a) shows a snapshot of the
cylinder and the gel ball during the rotation process, where the image of the hydrogel ball is
characterized by its radial and axial dimensions, â and b̂, respectively. To precisely capture the actual
shape of the soft ball inside the cylinder, one must account for the refraction introduced by the liquid
in the cylinder. According to Snell’s law, the actual radial and axial dimensions of the gel ball can

FIG. 3. (a) A snapshot of the cylinder and the gel ball whose shape is fitted with an ellipse with labeled
radial dimension â and axial dimension b̂. (b) Experimental data of ball deformation, characterized by the
values of a/R0 and b/R0 over time, where R0 is the initial radius of the hydrogel ball and a = â/n, b = b̂.
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FIG. 4. A schematic of the computational domain.

be expressed as a = â/n and b = b̂, where n is the refractive index. The detailed derivation of the
conversion can be found in Appendix A. The liquid used in this experiment is a mixture of 80%
glycerol and 20% water with a refractive index of 1.428 based on our experimental measurements.
Figure 3(b) depicts the experimental data where the cylinder is brought from a stationary state to a
steady speed of 20 rev/s. Accompanying this acceleration process is the deformation of the gel ball,
characterized by the values of a and b in the radial and axial directions, respectively. As shown in
Fig. 3(b), the radial dimension of the ball a shrinks by 8.2% while its axial dimension b lengthens by
28.9%. This is maintained until the cylinder is set to stop at t = 6.4 s. The glycerin and the gel ball
then experience a decelerating rotation process. Associated with this process is a sharp deformation
of the gel ball, with a being stretched and b compressed, both overshooting their equilibrium values
in a short period of 0.7 seconds. Finally, the ball reaches rest at t = 7.3 s where both deformation
values equalize, representing a return to the ball’s original spherical shape. An associated video of
the experimental results shown in Fig. 3 can be found in Supplemental Material [21].

III. COMPUTATIONAL METHODOLOGY

A. Mathematical model

Deforming hydrogel in a suspending fluid constitutes a fluid-structure interaction problem. The
computational domain, as shown in Fig. 4, comprises a hydrogel domain �i and a clear fluid domain
�o, partitioned by an interface �. The hydrogel can be conceptualized as a poroelastic medium
composed of a solid structure along with an interstitial fluid.

Following [22], we have the following equations for hydrogel in �i:

ρ f

(
∂v f

∂t
+ v f · ∇v f

)
= ∇ · (φ f σ f ) − φ f ∇p + F s→ f , (1)

ρs

(
∂vs

∂t
+ vs · ∇vs

)
= ∇ · (φsσs) − φs∇p + F f →s, (2)

∇ · (φ f v f + φsvs) = 0, (3)

∂φs

∂t
+ ∇ · (φsvs) = 0, (4)

dus

dt
= vs, (5)

where ρ f and ρs are the densities of the interstitial fluid and solid network, φ f and φs, satisfying
φ f + φs = 1, are the fluid and solid volume fractions, σ f and σs are the fluid and solid stress tensors,
p is the pressure, and d

dt denotes the material derivative. The Darcy drag between the solid skeleton
and the solvent is defined as F s→ f = −F f →s = ξφ f φs(vs − v f ). Equations (3) and (4) are the
continuity equations of the hydrogel and its solid component, respectively. It should be noted that,
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although both the solid and fluid components are incompressible, the hydrogel may expand or shrink
through the variation of volume fractions. The solid stress is a function of solid displacement us,
which is connected to the solid velocity vs by the kinematic equation (5).

The clear fluid in �o is governed by the incompressible Navier-Stokes equation:

ρo

(
∂V
∂t

+ V · ∇V
)

= ∇ · (� − PI), (6)

∇ · V = 0, (7)

where ρo, V, and P are the density, velocity, and pressure of the clear fluid, respectively.
We assume both the the interstitial and clear fluids to be Newtonian and the viscous stresses are

given by σ f = μe[∇v f + (∇v f )T] and � = μo(∇V + (∇V)T ), where μe is the effective viscosity
of the interstitial fluid and μo is the viscosity of clear fluid. Regarding the solid stress, σs, it is
feasible to adopt hyperelastic models, as exhibited by Li et al. [22] However, for the sake of
simplicity, we opt to use the following small-deformation linear elastic model in this context:

σs = 2μsε + λstr(ε)I, (8)

where μs and λs represent the Lamé constants corresponding to the solid skeletal phase, whereas
ε = [∇us + (∇us)T]/2 is the linear strain tensor.

On the gel-fluid boundary �, which moves with solid velocity vs, we impose the following
boundary conditions:

n · (V − vs) = φ f n · (v f − vs), (9)

n · (� − PI) = n · (φsσs + φ f σ f − pI), (10)

(V − v f ) · n = η n · [(� − PI) − (σs − pI)] · n, (11)

(V − v f ) · t = β n · � · t, (12)

φs(vs − v f ) · t = −β n · σs · t, (13)

where n and t are the outward unit normal and tangent vectors to the hydrogel surface, and η and β

are interfacial permeability and slip coefficients, respectively. Equations (9) and (10) denote mass
balance and total traction balance, respectively. Equations (11)–(13), referred to as BC2 in [23], are
designed such that the free energy of the isolated gel-fluid system does not increase in time [24,25].
The readers are referred to [23] for a detailed discussion of different boundary conditions between
the hydrogel and the clear fluid.

B. Numerical methods

The physical problem can be better described in the cylindrical frame with coordinates (r, z, θ ).
If we ignore the initial transient when the hydrogel ball is off-center, then the flow is axisymmetric,
i.e., all functions are independent of the azimuthal coordinate θ . Thus the three-dimensional problem
reduces to a two-dimensional axisymmetry problem in the (r, z) plane, as shown in Fig. 4. However,
due to rotation, velocity and displacement can have nonzero θ components and thus we have to
consider additional θ components for vectors (such as vs, us, and V ) and rθ , zθ , and θθ components
for tensors (such as ε, σs, and �).

In our recent work [22], we formulated a finite-element algorithm to resolve the integrated motion
and deformation of a gel-fluid system, where inertia is ignored. A C + + code was developed
using the open-source finite-element library deal.II [26]. To simulate the rotational deformation
of hydrogel in this work, we extend our previous formulation and code to include inertia and
axisymmetry, with the weak form given in Appendix B. To track the motion of the gel-fluid interface
as well as hydrogel deformation, we adopt a fixed-mesh ALE approach. Then the weak form (B1)
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and the mesh displacement equation are solved implicitly in a monolithic manner. P1 elements
are used for pressures p and P, and P2 elements are used for all other unknown functions. Time
derivatives, which appear in the momentum equations [(1), (2), (6)] and the kinematic equation (5),
are discretized using the first-order backward Euler method. Newton’s method is used to solve
the discretized nonlinear system that includes all the governing equations. More numerical details
including mesh convergence tests can be found in [22].

In the following, we only focus on two numerical techniques specific to high-speed rotation.
The governing equations (1)–(7), together with boundary conditions (9)–(13), guarantee energy
dissipation, thus our mathematical problem is well posed. However, the high-speed rotation may
cause numerical instabilities in the computation.

First, the hydrostatic pressure generated by the centrifugal force may obscure the pressure
component that is responsible for fluid motion and hydrogel deformation in the r-z plane. Both
the solid and liquid components in our system are incompressible, and thus the pressures p and
P are essentially Lagrange multipliers that enforce incompressibility. For a system with no stress
boundary condition, a potential body force can be absorbed into the pressures without causing any
flow or hydrogel deformation. We thus add a potential body force that counters the centrifugal force
associated with the rigid-body rotation of the exterior fluid:

f = −∇� = −ρorω̄2er, (14)

where � = 1
2ρor2ω̄2 is the potential function, er is the unit vector in r direction, and ω̄ is an angular

velocity that characterizes the rotational flow. To be more specific, we add body forces f , φ f f , φsf to
the right-hand side of the momentum equations [(6), (1), (2)], respectively. It should be noted that
the exact choice of ω̄ does not matter as long as the potential � can cancel out most of the pressure
variation caused by centrifugal force. We find from numerical simulations that the average angular
velocity of the exterior fluid is a good choice:

ω̄ =
∫
�o

Vθ

r d�∫
�o

d�
. (15)

Second, when the hydrogel undergoes rotation, the azimuthal displacement us,θ , most of which
comes from rigid-body rotation and does not trigger strain,1 keeps increasing and leads to the so-
called catastrophic cancellation (due to the subtraction of nearly equal numbers) in the evaluation of
strain tensor. We therefore need to remove this contribution from rigid-body rotation such that the
magnitude of us,θ is always at the same order as the other components of us. To achieve this goal,
we compute an instantaneous average angular displacement of the hydrogel

α =
∫
�i

us,θ

r d�∫
�i

d�
, (16)

and then reset us,θ to us,θ − rα. This operation is performed every few time steps before the
magnitude of us,θ gets large.

IV. RESULTS AND DISCUSSIONS

A. Computational setup and parameter evaluation

Figure 4 shows the computational domain. A hydrogel ball, initially spherical with radius R0, sits
at the center of a cylinder with radius Rc and half length Lc. The whole system is initially at rest and

1Consider a rigid-body rotation about the z axis by an angle α. The displacement is u = (αez ) × r = αxey −
αyex , where ex , ey, and ez are standard basis vectors and r = xex + yey + zez. It follows that ∇u = α(ey ⊗
ex ) − α(ex ⊗ ey ) is an antisymmetric tensor, and ∇u + ∇uT = 0, i.e., the strain is identically zero.
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TABLE I. Computational parameters.

parameters values

solid density ρs (Kg/m3) 1.0456 × 103

solvent density ρ f (Kg/m3) 1.0456 × 103

initial solid volume fraction φ0 0.03
solvent viscosity μe (Pa s) 10−3

shear modulus μs (Pa) 5.75 × 103

Lamé’s first parameter λs (Pa) 5.16 × 104

Darcy drag coefficient ξ (Pa s/m2) 2.5 × 1010

interfacial permeability η (m/(Pa s)) 4.24 × 10−5

interfacial slip coefficient β (m/(Pa s)) 4.24 × 10−5

exterior fluid density ρo (Kg/m3) 1.202 × 103

exterior fluid viscosity μo(Pa s) 0.06
hydrogel initial radius R0 (m) 1.27 × 10−2, 1.65 × 10−2

cylinder inner radius Rc (m) 1.905 × 10−2

cylinder half length Lc (m) 2.29 × 10−2

steady angular velocity ω0 (rad/s) 94.88, 125.66, 152.68

then the cylinder starts to rotate with a constant acceleration until the angular velocity reaches ω0.
The cylinder maintains steady rotation for a few seconds and then decelerates to a complete stop.
The computational parameters, listed in Table I, are chosen based on experiments.

The effective viscosity of the solvent μe takes the value of water. The Lamé parameters μs and
λs correspond to a solid skeleton with Poisson’s ratio ν = 0.45 and effective Young’s modulus
φs,0E = 500 Pa, where E is the Young’s modulus of the pure solid phase. The Darcy drag coefficient
ξ corresponds to the experimentally measured permeability k = μe(1−φ0 )

ξφ0
= 1.3 × 10−12 m2. On

the gel-fluid interface, there is no existing experimental measurement of interfacial permeability η

and slip coefficient β. The current choice corresponds to a penetration length η

μe
= 4.24 × 10−2 m

and a slip length β

μo
= 7.07 × 10−4 m, which means the exterior fluid can freely penetrate into the

hydrogel and the velocity slip between exterior fluid and the hydrogel is negligible.

B. Comparison with experiments

Figure 5(a) shows the computed hydrogel deformation history together with experimental mea-
surements. Here, we use two dimensionless parameters, namely Da = a−R0

R0
and Db = b−R0

R0
, to

quantify the deformation of hydrogel. Good agreement is achieved for the whole transient process
and for different ball sizes and rotational velocities. For the small ball (R0 = 1.27 × 10−2 m),
Figs. 5(a) and 5(b) show essentially the same trend in deformation with the overshoot in defor-
mation during the deceleration stage. This overshoot is however absent for the big ball (R0 =
1.65 × 10−2 m), as shown in Fig. 5(c). This is probably due to the constraint of the cylinder walls.

For the steady-state deformation, we can get some qualitative results through a simple analysis.
The effect of rotation can be reproduced by imposing a centrifugal force inside the hydrogel and a
pressure load (caused by the centrifugal force in the exterior fluid) on the surface of the hydrogel.
If we approximate the hydrogel as a linearly elastic solid and assume small deformation, then the
elasticity problem becomes linear and the deviatoric strain is a function of Poisson’s ratio ν and a
dimensionless group We = �ρ(R0ω0 )2

φ0μs
only. Here, �ρ = ρo − ρs is the density difference between

the exterior fluid and the hydrogel. This parameter We, characterizing the ratio between inertia and
elasticity, plays a similar role as the Weber number in drop dynamics. To be more specific, if ν is
fixed, there exists the following relation for steady-state deformation:

Db − Da ∝ We. (17)
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FIG. 5. Comparison of drop deformation history between computations and experiments. (a) R0 = 1.27 ×
10−2 m, ω0 = 125.66 rad/s, (b) R0 = 1.27 × 10−2 m, ω0 = 152.68 rad/s, and (c) R0 = 1.65 × 10−2 m, ω0 =
94.88 rad/s.

For the three test cases in Fig. 5, we have We = 0.7967, 1.1761, and 0.7675, respectively. The
ratio of the first two is consistent with the steady-state deformations Db − Da ≈ 0.38 and 0.45 in
Figs. 5(a) and 5(b).

For transient behavior, simple analysis as above is no longer sufficient and we have to resort to
numerical simulations based on our hydrogel FSI model. Besides, numerical simulations offer us
detailed information on the flow field, which may help us better understand the physical process.

C. Flow field

In this subsection, we will take the test case in Fig. 5(a) as an example and showcase the flow
field during the transient process. In the beginning, we increment the cylinder’s rotational velocity
from 0 to 20 rev/s with a constant acceleration of 42.51 rev/s2, and in the end, we slow down the
cylinder’s rotation with a constant acceleration of −64.73 rev/s2. The whole process can be roughly
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×10−2

×10−2 ×10−2

×10−1

×10−3

×10−1

×10−6

×10−2

×10−4

FIG. 6. Velocity and pressure inside the hydrogel ball. R0 = 1.27 × 10−2 m, ω0 = 125.66 rad/s. The
velocity value is dimensionless with the reference vre f = Rcω0 = 2.88 m/s. The pressure value, normalized
by pref = μs = 2.49 kPa, is relative to the average pressure on the cylinder wall.

030502-10



FLUID MECHANICAL STUDY OF ROTATION-INDUCED …

×10−4

FIG. 7. Angular velocity of the hydrogel ball and the suspending fluid. The values are dimensionless
with the reference ωre f = ωo = 125.66 rad/s. The layer of cells adjacent to the axis of symmetry, where the
evaluation of angular velocity is inaccurate, is not shown.

divided into three distinct stages based on cylinder motion: acceleration (0 to 0.5 s), steady rotation
(0.5 to 6.6 s), and deceleration (>6.6 s).

Equating the Darcy drag ξφ f φs|v f − vs| with the centrifugal force (ρo − ρs)rω2, we get a
dimensionless group characterizing the ratio between interphase slip |v f − vs| in the hydrogel and
the rotational velocity rω: |v f −vs|

rω = (ρo−ρs )ω
ξφ f φs

= 2.7 × 10−6 � 1. This means the relative motion be-
tween the solvent and the solid skeleton is vanishingly small. Our numerical computation confirms
that |v f −vs|

Rcω0
is typically of order 10−6 ∼ 10−5. This has two consequences in our favor. First, the flow

is insensitive to the interfacial permeability η, which lacks experimental data. Second, the continuity
condition (9), which is derived for equal densities between the solvent and the exterior fluid, can be
directly adopted for nonequal densities with reasonable accuracy because of negligible interfacial
permeation.
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×10−1

×10−1 ×10−1

×10−1 ×10−2

FIG. 8. Solid displacement u in the hydrogel. The values are made dimensionless by the reference length Rc.

The snapshots of v f (only components in the meridian r-z plane) and p inside the hydrogel and
the angular velocity are given in Figs. 6 and 7. Figure 6(a) shows the typical flow field during
cylinder acceleration—the hydrogel is being squeezed in the radial direction and stretched in the
axial direction due to the centrifugal force of the exterior fluid. Due to inertia, the acceleration of
hydrogel lags behind that of the exterior fluid, and consequently, the hydrogel has a lower angular
velocity than the exterior, as shown in Fig. 7(a). At steady rotation, the hydrogel assumes a prolate
spheroidal shape as shown in Fig. 6(b). Since vs ≈ v f , the small magnitude of v f indicates that the
hydrogel is no longer deforming and the deformation has stabilized. Meanwhile, the hydrogel and
the exterior fluid rotate with the same constant angular velocity ω0, i.e., the whole system is making
a rigid-body rotation, as shown in Fig. 7(b).

The cylinder starts to decelerate at t = 6.60 s. Due to inertia, the deceleration of hydrogel lags
behind that of the exterior fluid, and thus the hydrogel has a higher angular velocity as shown in
Fig. 7(c). This causes the retraction of the hydrogel in the axial direction as indicated by the velocity
vectors in Fig. 6(c). When the hydrogel returns to a shape close to its original spherical shape, as
shown in Fig. 6(d), the magnitude of v f peaks and the deformation continues. This causes a reversal
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FIG. 9. Velocity V and pressure P in the suspending fluid. The parameters are the same as Fig. 6.

of deformation and the hydrogel continues to evolve into an oblate spheroid as shown in Fig. 6(e).
As the rotation dies down, the hydrogel eventually restores to its original shape as shown in Figs. 6(f)
and 7(f).

For completeness, we also provide the solid displacement field inside the hydrogel in Fig. 8 and
the flow field outside the hydrogel in Fig. 9. The displacement u behaves as expected from the shape
of the hydrogel. The only thing worth noting is that the hydrogel remains slightly dilated when it
stops rotating as shown in Fig. 8(f). This can be explained by the long time scale for the elastic stress
to squeeze out the interstitial fluid. This time scale, denoted by ts, can be estimated by balancing the
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elastic stress gradient μs

R0
with the Darcy drag ξv ∼ ξ R0

ts
, which leads to ts ∼ ξR2

0
μs

≈ 700 s. Thus we
expect the solid displacement to approach zero at a much later time.

When the liquid rotates [see Figs. 9(a)–9(e)], the pressure P in the exterior fluid is dominated by
the hydrostatic pressure due to the centrifugal force, as evidenced by the pressure gradient only in
the radial direction. Since the outer fluid has no resistance from the Darcy drag, the flow velocity
V in the r-z plane appears to have greater magnitude than that inside the hydrogel (see Fig. 6). The
velocity field in Fig. 9(b) appears irregular, which is a result of numerical error and visualization
artifact. In this snapshot, the whole system is under steady rotation and the velocity magnitude in
the r-z plane approaches zero. However, the rotational velocity Vθ has a dimensionless value of
order O(1). This makes it difficult to accurately resolve the vanishing velocity components in the
r-z plane with numerical values of order O(10−3).

V. CONCLUSIONS

Traumatic brain injury inflicts a significant health and economic burden on society. To develop
effective prevention and intervention strategies, it is critical to understand how the cerebrospinal
fluid (CSF)-bathed brain responds to sudden external impacts. However, due to the brain’s for-
bidding complexity, the small confines of the subarachnoid space (SAS), the extremely transient
feature, and the skull’s opacity preventing direct visualization of any complex physical interactions
between the CSF flow and the compliant brain, the mechanism of brain concussion, especially
the critical role of the transient CSF flow through the thin SAS during the concussion process,
remains unclear.

In this paper, we have developed an experimental and theoretical approach to examine the
fluid-structure interaction between a soft gel and its liquid surroundings, both enclosed in a rigid
container, as a rapid rotational impact is imposed on the container. Our experimental results indicate
that the gel ball experiences significant deformation during the decelerating rotational impact pro-
cess. Our theoretical model, based on the arbitrary Lagrangian-Eulerian method, precisely captures
this feature. More importantly, the numerical model is conclusively verified and validated against
the experimental data. With a fully verified theoretical framework, this paper establishes a strong
foundation for studying the highly transient fluid-structure interaction between soft matter, such as
brain tissue, and the surrounding fluid, like CSF, when a sudden external impact is applied to the
enclosing outer shell.

Our results suggest that decelerating rotational impact is a key factor in causing brain tissue
injury. To mitigate such injuries, one effective approach is to reduce the severity of rotational
impacts by extending the deceleration time, which can be achieved by adding cushioning materials
to protective gear like helmets.
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APPENDIX A: BALL SHAPE CONVERSION DUE TO REFRACTION OF LIQUID

Suppose the hydrogel ball is a spheroid with equatorial radius a and polar radius b, and its polar
axis aligns with the axis of the cylindrical container. In the high-speed camera footage, the image of
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FIG. 10. Distortion of hydrogel ball image due to refraction.

the ball can be approximated as an ellipse with semi-axes â and b̂, as shown in Fig. 3(a). Since the
cylinder is straight in the horizontal direction, we have b̂ = b; but in the vertical direction we have
â 
= a due to refraction, as shown in Fig. 10. According to Snell’s law, the refracted angle α and the
incident angle β satisfy

sin α/ sin β = n, (A1)

where n is the refractive index of the fluid in the cylinder. From geometry, both a and â are related
to the radius of the cylinder Rc: a = Rc sin β and â = Rc sin α. We therefore get the relationship
between actual height a and image height â:

â/a = n. (A2)

This relation is exact as long as the ball is axisymmetric and centered in the cylinder and the
thickness of the cylinder wall is negligible.

APPENDIX B: FINITE-ELEMENT FORMULATION

In this Appendix, we provide a succinct summary of the weak form, in which inertia is taken
into account. We define a weak solution of V, P, v f , vs, us, p, and φs, and the corresponding test
functions �V, �P, �v f , �vs , �us , �p, and �φs , respectively. The weak form of Eqs. (1)–(3) and
(6) and (7) can be obtained by taking the inner products of Eq. (1) with �v f , Eq. (2) with �vs , and
Eq. (3) with �p in �i, and Eq. (6) with �V and Eq. (7) with �P in �o. Summing all these inner
products and integrating by parts, we obtain the weak form for the governing equations:(

ρo

(
∂V
∂t

+ V · ∇V
)

, �V

)
�o

+ (�,∇�V)�o
− ((� − PI) · n, �V)∂�o

− (P,∇ · �V)�o
+ (∇ · V, �P )�i

+
(

ρ f

(
∂v f

∂t
+ v f · ∇v f

)
, �v f

)
�i

+ (φ f σ f ,∇�v f )�i

− (φ f (σ f − pI) · n, �v f )∂�i +
(

ρs

(
∂vs

∂t
+ ×vs · ∇vs

)
, �vs

)
�i

+ (φsσs,∇�vs )�i

− (φs(σs − pI) · n, �vs )∂�i
− (p,∇ · (φ f �v f + φs�vs ))�i + (∇ · (φ f v f + φsvs), �p)�i
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+ (ξφ f φs(v f − vs), �v f − �vs )�i , +
(

1

η
(V − v f ) · n, (�V − �v f ) · n

)
�

+
(

1

β
(V − v f ) · t, �V − �v f

)
�

+
(

φ2
s

β
(vs − v f ) · t, �vs − �v f

)
�

= 0, (B1)

where n is the unit normal vector pointing from the gel domain to the fluid domain and (·, ·) denotes
the inner product over the region specified by the subscript. The weak forms of Eqs. (4) and (5)
remain the same as in [22].
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