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Synopsis

This paper gives the results of a study of the nonlinear viscoelastic behavior of three heavy crude
oils from California and Venezuela. A linear combination of normal stress coefficients at zero shear
is expressed in terms of the quantity (the climbing constant) used to measure the height rise on a
rotating rod. Measurements of the climbing constants are given for the crude oils. Values of both the
first and second normal stress coefficients at zero shear are determined by the climbing constant
when another combination of the two coefficients is known. In principle, the required information
can be obtained by back extrapolation of the first normal stress difference, by back extrapolation of
the dynamic modulus or by back extrapolation of the ratio of the second to first normal stress
difference. Back extrapolation of data can be achieved when measurements are available at shear
rates low enough to enter onto the second-order plateau of the functions generated by different
instruments. Examination of previously published data for well-characterized solutions suggests
that second-order rheology is most readily obtained in rod climbing.

I. INTRODUCTION

This work describes the viscoelastic behavior of three very viscous crude oils using a
rotating rod rheometer. A viscoelastic fluid will climb up a rotating rod; a Newtonian
liquid will not. Hence, rod climbing is a purely viscoelastic phenomenon. A rotating rod
rheometer is a simple and convenient device for measuring normal stresses at low rates of
shear. A cup is filled with the sample and a thin rod is partially immersed in the fluid. The
rod is rotated at a given angular speed ) and the height 4 that the fluid rises is measured.
The height of climb at a given angular velocity varies strongly among different viscoelas-
tic fluids. The slope of the & vs 0? curve at the origin determines the climbing constant

R AT
B = —‘2—‘ +2\P20, (1)

where W and Wy are the first and second normal stress coefficients at low rates of
shear, respectively. In principle, the first normal stress coefficient can be obtained by back
extrapolation of the first normal stress difference or the storage modulus under the rules
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given by Egs. (9) below. If B and ¥, are known, then ¥y, = B/2—W¥ /4. Conversely,
if Wyo/¥qp and ,C:} are given, ¥y and ¥ can be computed. The constitutive equation for
each and every viscoelastic fluid is determined asymptotically for sufficiently slow and
slowly varying motion by the zero shear viscosity 7, and by ¥y, and ¥,. In this paper
we will apply this convenient method to characterize three heavy crude oils.

Il. BACKGROUND

A number of good studies on rheological properties of heavy crude oils are available
in the literature. Most of them deal with the viscosity of the oil in shear and are motivated
by problems of transporting highly viscous crudes. Barry (1971) considered problems of
pumping non-Newtonian waxy crude oils. Dealy (1979) measured standard rheological
data for different Alberta bitumens and concluded that these oils were only mildly non-
Newtonian at low rates of shear. A rather remarkable decrease in viscosity for interme-
diate shear rates led Dealy to some conclusions about the nature of the microstructure of
the substance. Dealy also observed a strong temperature dependence of shear viscosity.
He found only weak elastic effects, except for high-frequency oscillations. Christensen
et al. (1984) studied the viscous characteristics of Utah tar-sand bitumens, verifying
Dealy’s results on the weak shear rate dependence of viscosity and strong temperature
effects. Flow properties of Australian crudes were studied by Wardhaugh er al. (1986)
and by Wardhaugh and Boger (1986). The authors last named, Schramm and Kwak
(1988), and Van Hombeck (1988) discuss the strong dependence of rheology of waxy
crudes on the temperature and thermal history that is associated with the melting and
recrystallization of the waxes. At relatively high temperatures, these oils usually act like
a Newtonian liquid, exhibiting at most weak shear thinning with low viscosity. Yet when
the temperature is below a certain threshold value, crystallization of the waxes gives rise
to complex microstructures that produce a sudden increase in viscosity and viscoelastic
behavior. This phenomenon was also studied by Herh (1992) at Rheometrics Inc [see also
Rheometrics (1990)]. In a recent paper, Wardhaugh and Boger (1991) describe and com-
pare different ways to measure the yield stress and fracture stress for waxy crude oils.
They found that the characteristics seen in the yielding behavior of these oils “do not
conform to any (existing) rheological model, are entirely consistent with the mechanisms
of the fracture of solids, showing a transition from ductile to brittle fracture behavior as
the strain rate is increased or the temperature reduced.”

Ill. ROTATING ROD RHEOMETER

The theory of rod climbing was given by Joseph and Fosdick (1973) and the applica-
bility of the theory to measurements of the properties of normal stresses at low rates of
shear was demonstrated by Joseph et al. (1973), Beavers and Joseph (1975), Joseph et al.
(1984), Hu et al. (1990), and in other papers reviewed in the book by Joseph (1990). The
theory emerges from a series solution for steady flow in a general (model-independent)
viscoelastic fluid in powers of w(rad/s) induced by the rotation of the rod. The first
deviation of the free surface from flatness arises at second order O(wz). At this order, the
constitutive equation of every viscoelastic (simple) fluid collapses into a universal form,
called a second-order fluid, in which the stress T is given by

= — _‘_p_lﬂ ¥ 2
T = —pl+noA; > A+ (W g+ Trp)AT, )
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where A; is twice the symmetric part of the velocity gradient, A, the second Rivlin—
Ericksen tensor, and p the pressure. The only parameters entering into Eq. (2) are the zero
shear viscosity 7 and the two normal stress coefficients given by Eq. (4), which are also
zero shear rheological parameters. The second-order fluid is the first nonlinear approxi-
mation of a general fluid under slow and slowly varying motions, which Coleman and
Noll (1960) called retarded. At the risk of boring some readers, it is necessary to assert
for others that the rheology of rod climbing does not depend on the rheological equation
of state since every equation of state reduces asymptotically to a second-order fluid in
motions that are nearly steady and sufficiently slow. Any such motion, including slow,
steady extensional flow, is determined once the zero shear parameters in Eq. (2) have
been measured.

When a rod of radius a is rotated slowly at an angular speed () (rev/s), the resulting
velocity field can be considered to satisfy the aforementioned conditions in which the
fluid response is described asymptotically by a second-order fluid. Theory shows that for
slow rotation, the fluid level at the rod surface rises to a height

47a 4,3 pa2
2 . 2 4
h(a,)°) = hs(a)+2 \/— T ——2_”\)9 +0(Q%), (3)

where hg(a) is the static chmb on the rod due to capillarity, o the surface tension, p the
fluid density, § = pg/o, A2 = 4°$ and ,B is the climbing constant.

We compute ,B from measurements of the slope of the linear asymptote at low angular
velocities of the curve [h(a) — h(a)] vs 02, as given by Eq. (3)—a procedure illustrated
in Fig. 2. As one increases the angular velocity, the higher-order terms in Eq. (3) become
predominant, giving the curve its nonlinear shape.

The climbing constant is a linear combination [see Eq. (1)} of the first and second
normal stress coefficients

[¥10,¥p] = lim
¥—0

; S

.2 9 )

{Nm‘/) Ny(%)
Y Y

where N(y) and N,(¥) are the first and second normal stress differences and

(N1, N2] = [Ty = T2, T2~ T33), (5)

where T is the normal stress in the direction of shear, Ty, the normal stress in the
direction perpendicular to the direction of shear in the plane of shear, and 733 the normal
stress in the third direction. N{(y) and N5(v) are even functions of y. Any fluid for which

b ©)
Yio 4
will not climb a rod when vy is small. Lodge er al. (1988) have shown that the Doi—
Edwards model of a fluid will not climb a rod, and they have discussed some other
consequences of rod climbing for critical evaluation of other models and even some
contradictory rheological data.

Many models of a viscoelastic fluid satisfy Weissenberg’s hypothesis that the second
normal stress is zero in all motions. In this case, ¥,y = 0 and [3 W, 0/2. Measurements
do not support ¥,y = 0, but they appear to show that ¥ is small and negative for many
fluids. Ever since the pioneering works of Kuo and Tanner (1974) and Keentok et al.
(1980) using the shape of a free surface on a fluid flowing down a tilted trough as a
second normal stress difference stress meter, it has been widely assumed that the mag-
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nitude of the ratio of the second to the first normal stress is usually of the order or less
than 0.1 I'for examnle. see Rarnes ef al (10920\ and Rird ef al. (1 QR7\ amonge others], For

Aical Ved a0 CAQIGPEC, SOC Dalnls €0 G (17387, Al DL & Gl 17387/, QiIVNE LQUlCis .

Yoo = —15%10> B =3V 10/10 and if the usual ratio is between 0 and —1/10, then

3 v
ﬂrlo = [3 = — 10 (7)
2
10 2
where the measured values cluster more nearly around 3/10 value in the typical cases [see
KCUIILU}\ Cl ul,, \1980}J FGI' SHCu l,_ylllbcll l)UlylllCllb llqu.lub, ‘f ]0 = 1UIJIJ lb a éUUu Cbll_

mate of the first normal stress coefficient. The measurement of B is easy and accurate; it
can be done in any laboratory because expensive rheometers with torque and force
transducers are not required.

On the other hand, it is clear that the stress ratio is not always in the usual range [Eq.
(7)). Tanner (1985) cites a range of 0.05 < —N,/N| < 0.2 as typical, and he cites a
measured value of 0.3 for National Bureau of Standards nonlinear fluid number 1 from
Keentok et al. (1980). This fluid should not, but it does, climb a rod [see Lodge et al.
(1988)] The values of y rep0ueu in the expenmema Uy Keentok are cv1uc:uuy not in the
region of low shear in which N, and N are quadratic functions of . To our knowledge,
the tilted trough has not been used by any rheologist outside of Tanner’s group, so that
direct verification of their results has not been carried out.

Like the tilted trough, the rotating rod is a free-surface rheometer which, when com-
bined with backward extrapolation of the first normal stress difference or the storage

modulus, gives rise to the following expressions:

B NP B G'(w)
2

= —— lim 8
) 2 L 2wl (8)

for the second normal stress coefficient. The backward extrapolation of N; and G’ to
plateau values using data from standard rheometers is not accurate and the extrapolated
amAd 3 landias +a mmd Aamam e AGvrAs XX 2 amntdtin

sing ~fF M P < [N
valuca UL AVl alu U lcadllg o ‘1’ 10 UU LUt d.PPCd.l o aglec, Wll.ll lllC llllllllllg VdJ.UCb Ul.

2G' I larger than the limiting values of N/v 'y

IV. WHAT IS A SMALL SHEAR RATE?

The answer to this question depends on the function being measured. Low shear rates
on one instrument can be high on another.
In principle,

Ni(#)
Yo = lim 1.2 (9a)
:y-> 0 Y
) 2G (w)
= lim 7 . (9b)
w—0 o

The relation (9a) implies that for small 7,
RPN - .2 JN
Ni(y) = ¥y (10)

so that W1 appears as a plateau at the origin in a plot of N;()/%* vs 7. The values of
N1(7) can be obtained by thrust measurements and cone and plate devices. Relation (9b)
implies that for small «,

26" (w) = ¥ g0, (11)
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so that ¥, appears as a plateau at the origin in a plot of 2G’ (w)/?* vs w which is a
dynamic measurement using a torque transducer rather than a force transducer. The
accurate measurements of W, using either Eq. (9a) or (9b) depends on whether or not
measurements can be carried out at values of ¥ or w that are small enough to enter the
plateau, Eq. (10) in one case and Eq. (11) in the other.

It does not matter that good G'(w) may be obtained at values of w that are much less
than the ¥ for which good values of N1(y) can be obtained. It only matters that the
apparatus on which measurements are taken is sensitive enough to record reliable data in
the plateau region of the function they are supposed to measure. Comparing y or @ can
be like comparing apples and oranges. Our point here is brought out clearly in Fig. 12 of
the paper by Blndmg et al. (1990) which is reproduced in Fig. 1. The back extrapolation
of data for N 1/2y and G'/w’ suggest a common value of ¥ of approximately 0.3
Pas?, but nelther graph has definitely entered onto the plateau region. In fact, it appears
that N 1/2)/ is closer to a plateau value than G’ /w?, even though the effective shears w of
G'(w) are an order of magnitude smaller than y of N(y). The conclusion is that the
decision about how small the shear rate must be to enter on the plateau depends on the
function being measured, on the fluid, and on the device being used.

The limiting relation (9b) is cited by Bird et al. (1987) and by Barnes et al. (1989) and
in some other textbooks of rheology. The proof of (9b) is given in the book by Joseph
(1990, Sec. 16.6) and is close to the original proof of Coleman and Markovitz (1964),
which is actually quite deep and very important. The proof requires that one compare two
different asymptotic expressions: one for small amplitude unsteady motions and the the
other for slow steady motions leading to second-order fluids for which the normal stress
coefficients arise naturally. After expanding for small frequencies of w, one finds that

G (w) = JO ooG(s)w sin (ws) ds = w* fo wsG(s)ds+0(w4),
where
Vio=2 J sG(s)ds. (12)

There is no way to come up with Eq. (12) without doing the mathematics of continuum
mechanics, and Eq. (12) is not more fundamental than the second-order fluid or any other
asymptotic relation on which it is based.

It appears to be quite generally true that plots of the type shown in Fig. 1 are such that
2G' (w)/w?* < N{()/%* for larger values of w = 7 with the inequality reversed for
smaller values. This reversal is clearly evident in Fig. 1 and is yet more evident in Fig.
4.15 of Bamnes et al. (1989) and Fig. 9 of Hudson and Jones (1993). These two figures
suggest that the zero shear value of G'(w)/w® as given by backward extrapolation of data
from standard rheometers can be as much as ten times more than the backward extrapo-
lation of N 1('y)/'y For the case displayed in Fig. 1 the results of Laun and Hingmann
(1990) suggest that the limiting value of 2G’ (w)/w? is over twice the backward extrapo-
lation of N{/% y . We do not find agreement between dynamic and thrust measurements at
low shears.

The problem of determining ¥ by thrust measurements [Eq. (9a)] has been consid-
ered by Quinzani ef al. (1990) in an interesting study of weakly concentrated solution of
polyisobutelene in a viscous solvent (Boger fluids). They find that ¥ () is a decreasing
function of ¥, as expected, and they find easily detected plateaus for W¥;(y) when vy lies
between 1 and 30 s, depending on the fluid. This plateau is not the zero shear plateau
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FIG. 1. Comparison of N 1/2)"2 and G'/e? for fluid M1 at 20 °C. [Reproduction with permission of Fig. 12 from
Binding er al. (1990).]

on which W(%) =~ ¥,,(3?) because W, () again begins to increase for lower ¥ values.
In some cases, the data suggest a low shear plateau which can be reasonably assumed to
be near to zero shear plateau. They note that the high shear plateau can easily be mistaken
for a zero shear plateau, giving rise to too small of a value for ¥ . The data of Quinzani
et al. (1990) at the lowest shears may be uncertain because the lowest shear rates probed
in the experiments are already in regimes of low thrust in which the normal stress
transducers are unreliable. We think that it is also necessary to remark that “false”
plateaus may be found in some kinds of polymeric solutions and not in others.

Quinzani et al. (1990) also compare thrust and dynamic measurements on the same
graph, and their data are consistent with the crossover that we have observed in all data
from all sources; namely, there is a crossover frequency @ such that

2G'(w)  Ny(9) .
wz < »y2 y w > w, Y > w,

2G' (@)  Ny(®)

=, 0=6, Y=a,
@

(52

2G'(w)  Ny(%) L
——wz—> ’}_/2 , w<a, yvy<ao.

Of course, the values at the lowest shears are in much better agreement than when the
shear rates are on the high shear plateaus of V(7).

Zero shear plateaus can be reached easily with rotating rod rheometers because in
many fluids, (h— k) is linear in w? even for not so small @’s of the order of 1-10 rad/s
or even higher. It follows that a plot of (h—h S)/wz give rise to a plateau region for
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normal stresses which can be easily accessed. This is not true for all fluids; for some
fluids like the polyacrilamide solutions studied by Beavers et al. (1980) and Al [see Liao
et al. (1994)], no second-order range can be observed and higher-order effects are ob-
served immediately. As a rule of thumb, we may expect a measurable second-order climb
in fluids that climb well for rates of shear below those for which marked shear thinning
first becomes evident.

V. PREVIOUS RESULTS

Rod climbing results have been compared with standard rheological data in some
previous papers. Joseph et al. (1973) did an independent determination of B for STP
motor oil additive from normal stress data obtained by W. M. Davis and C. W. Macosko,
who used a Rheometrics Mechanical Spectrometer in both the cone and plate and
parallel-plate modes. They obtained

(v
¥,y = lim —‘f— =2.95+0.1 glem (13)
y—o0 7Y
and
Ni—N,
‘Plo q’20~ lim =3.2*0.2 g/CI'ﬂ (14)
y—0 Y
Hence
. Y
B=—242¥,,=0.98%0.5 glm, (15)

which compares with values
063 <3 <0.94

directly measured by Joseph et al. (1973).
A second independent determination of the value of ,B was obtained by assuming that

Ny
—-0.1 > — = —-0.15.
N,

When combined with Egs. (13) and (14), this gives
06<3<09

which is in excellent agreement with the values obtained by direct measurement Joseph
et al. (1984) reported that the scatter of data for N(y) for small y of O(1 s~ 1) taken on
the Rheometrics System Four cone and plate rheometer was too great to permit the
backward extrapolation to zero shear rate.

Hu et al. (1990) have given very extensive reliable values for climbing constants in
M1 as a function of temperature. M1 has a large second-order range so that 8 was
accurately measured with reproducible results. They find that

B = 1.68 g/cm at 20 °C,

B =0.54 glem at 27.2 °C.
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Measured values for N 1/2)’/2 and G'/w? taken from Binding et al. (1990) are shown in

Fie. 1. These curves mav be imagined to back extrapolate to a value of \Vm = 6 g/cm

s 21050 CRIVES 1iaYy Aag e 10 Dalk wigplalc 0 2 valle ol v &ML,

which when combined with ,8 W,0/2+2¥,, = 1.68 glem gives ‘1’20/‘1’10 = —0.11.
Back extrapolation of N 1/27 data at 27.2 °C of Prud’homme given on page 524 of
Joseph (1990) leads to oo/ ¥y = —O 12.

The back extrapolatlon of 2G'fw? given by Binding et al. (1990) does not agree with
the back extrapolation of apparently accurate data at 20 °C for very low values of w
offered by Laun and Hingmann (1990). The data are presented in their Fig. 9, and
2AG'/w2 extrapolates to a value of 1.24 Pa 2 =124 g/cm. When combined with
B = 1.68 g/cm, this leads to

& Vi, S 1

v 2.26
22— o8
Vv, 124

nnnnn A ~F Nn 11 Taia 3. cOoTrAanamAaT A AF thn ctancs watia 1o

umtcau UL TU.ll. J.lllb 1\1uu Ul um\dcycuu/_y' ill Pi.lUllbllCU VCUUCD o1 l.llC DSLITddS 1alv 1b 1101.
uncommon. As a matter of fact, the special issue of the Journal of Non-Newtonian Fluid
Mechanics (Vol. 35, Nos. 2 and 3, July 1990) dedicated to M1 fluid contains at least a

dozen papers in which authors measure the first normal stress coefficient at low shear

rates. Some authors get Wy by thrust measurements, some through dynamic measure-
ments and others use both techniques. At 20 °C, the values reported for ¥, range from
0.55 to 1.24 Pas>. Te Nijenhius (1990) summarizes results of the round-robin tests of
M1, as “presented by various authors at the Combloux Conference,” concludes that ‘“‘the
agreement between the storage modulus and the first normal stress difference is good”
and point to a value of ¥'13 = 0.81 Pa s2. Together with the climbing constant, this result
yields ‘I’Z()/\I’]Q = —0.15.

V1. COMPARISON OF DIFFERENT METHODS FOR MEASURING THE FIRST
AND SECOND NORMAL STRESS COEFFICIENTS

There are a few conventional methods for measuring normal stresses. Whorlow (1992)
recommends either pressure gradient distributions [as in Christiansen and Leppard
(1974)] and total force measurements for flow between a cone and plate or the
Wineman-Tanner-Kuo tilted trough. This latter method, like rod climbing, is a free-
surface method in which the deflection of the free surface is proportional to the normal
stress coefficients at second order in slowness. The trough is interesting because at lowest
order, the deflection is proportional only to the second normal stress coefficient. The
deflections of the free surface in the trough are very small even in fluids with modest
values of the first normal stress coefficient, so that reliable data can be expected only in
fluids with relatively large values of the second normal stress coefficient {see Joseph
(1990), pages 525-526, and Sturges and Joseph (1975) for discussion of the accuracy of
the trough]. In contrast, the rise in the height of the free surface next to a rotating rod is
appreciable even in fluids with normal stresses so low that deflections could not be read
in the trough. The rotating rod is a more convenient instrument whose configuration
closely adheres to the model that guides the rheological measurements.

We have compared the rotating rod to state-of-the-art mechanical rheometers (Rheo-
metrics RFS-II) equipped with the best transducer available for normal stress measure-
ment, the Force Rebalanced Transducer (FRT). These transducers are said to be capable
of measuring normal forces “as low as 0.2 g.”” At 24 °C, however, we could not sense
normal stresses on Zuata crude oil even at shear rates as low as 0.5 s~ L. By contrast, we
had no trouble detecting a climb for shear rates as of about 0.2 s ! when the Zuata was
at 25 °C, and we also had no trouble in getting G’ and G” data.
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Another way to get the second normal stress is to compare total force measurements
for flow between a cone and plate and flow between parallel plates [Ginn and Metzner
(1969)]. Despite recent advances in transducer technology, these methods are either very
costly (a new RFS-II rheometer with a FRT transducer can cost upwards of $150,000) or
provide data with a high uncertainty at low shear rates.

The high scatter in the data is inherent for these measurements. Consider, for example,
comparing cone-plate (which measures N{) and parallel-plate (which measures Nq—N»)
force measurements. As stated previously in this paper, N, is usually an order or magni-
tude smaller than N{ and is negative. This means that at low shear rates, N; — N, mea-
sured on the parallel-plate rheometer is slightly larger than the N measured on the cone
and plate. Thus, when the difference is computed, the resulting number is of the same
size as the uncertainty of the instrument. And many things can influence the results of
cone and plate/parallel plate rheometry, e.g., thermal gradients or background vibrations.

In contrast, the rod climbing technique is relatively low in cost (a good instrument can
be quickly built for under $10,000). Also, rod climbing uses very sensitive hydrostatic
and surface-tension forces. There is no need for transducers and signal conditioners.

VIi. MODEL-INDEPENDENT RHEOMETRY FOR RETARDED MOTIONS

We wish to draw the reader’s attention to the fact that we are using second-order fluids
not as models in their own right, but as asymptotic forms that all the models assume
when they are evaluated on the slow and slowly varying motions which Coleman and
Noll (1960) called retarded. The first approximation for slowness gives rise to a New-
tonian fluid in which the relevant stress parameter is the zero shear viscosity 7. At the
second order of slowness, we find zero shear values of the two normal stress coefficients
W10 and Wy. Then, up to order three, all the retarded motions are completely described
by a second-order fluid with three rheometrical parameters 7y, ¥, and ¥,q, which may
be determined by direct measurements that are apparently sound, widely applicable, and
do not involve any direct measurement of normal stresses.

All motions in the second-order range are determined by these three constants. Of
particular interest is the Roscoe (1965) formula for the extensional viscosity

T11~T22 = 3¢ 7}0+ +0(€.‘3), (16)

¥
—f’-m’m)e’

where € is the rate of extension. The Roscoe formula (16) is the only model-independent
formula for the extensional viscosity 7g(€)é, where

v

T::—T
m€) = = =3 g+ | =2 + ¥ || +0(&). (17)
€

The second-order correction W¢/2+W5 of Trouton’s viscosity is slightly larger than the
climbing constant ¥/2+2W5. If ¥pg = — ¥ /10, then

Ty —Ty = 3é(no+3Bé) (18)

is determined by the zero shear viscosity and the climbing constant. It is, of course, better
to measure ¥ and W, by the procedure outlined in Eq. (4).

We have been asked, “How can the extensional viscosity be measured in shear?”” The
answer is that the parameters of the constitutive equation that arise asymptotically in
slowness at second order are measured in shear, and these and only these parameters
enter into each and every motion, including extensional motions, which is evaluated up to
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TABLE 1. Gross composition of the crude oils.

Paraffines and Resins and
Crude oil  Asphaltenes (wt %) naphtenes (wt %) aromatics (wt %)

CND 13 15 72
Zuata <4 .2 ...
Lakeview 24 20 56

?No information provided.

the second order in slowness. There is not much to this; it is equivalent to saying that at
first order of slowness, there is only one rheological parameter to consider, the viscosity
779, which is measured in shear and determines the Trouton viscosity 37, which arises in
extension without shear. :

VIil. SAMPLE DESCRIPTION

Three samples of heavy crude oil were used in this study. Two of them are from the
Zuata and Cerro Negro fields of the Venezuelan Orinoco Belt. Qil was extracted from the

11 £ tha Carra N
Zuata fields by conventional mechanical pumping, whereas oil from the Cerro Negro

field was recovered by a downhole emulsification procedure. This emulsion is formed by
the controlled injection of a water and surfactant solution into the well bottom. This
solution is mixed with the oil and reservoir water, thus becoming an emulsion with a
viscosity considerably smaller than that of the oil at the same temperature. Once the
emulsion is formed, it is removed from the well and the oil is obtained by breaking and
separating the emulsion components by mechanical means. The final water content of the
oil after the referred dehydration procedure is typically 2%. Hereinafter, this report will
refer to these hydrocarbons simply as Zuata and CND. These samples were provided by
INTEVEP S.A.-PDVSA. The other sample examined originated from the Californian
Lakeview field, and was provided by Shell Research Co. It is a very viscous crude with
high asphaltene and wax content, thoroughly dried. In this paper, it will be simply called
Lakeview. Table I presents the original composition of each of these oils.

In Table II we display the relevant physical properties of these oils. The viscosity
versus shear rate was measured using the cone-and-plate fixture in the Rheometrics
System Four Rheometer (Lakeview) and the parallel plate apparatus in the Rheometrics

TABLE II. Physical properties of the crude oils.

Lakeview CND Zuata
Zero shear 2.78X10° (25°C) 1.29X10° (25°C) 806 (10 °C)
viscosity (Pas) 646 (36 °C) 56.9 (50 °C) 115.2 (25 °C)
18.5 (56 °C)
Density (kg/m®) 1001 (25 °C) 1009 (25 °C) 1003 (10 °C)
998 (36 °C) 992 (50 °C) 996 (25 °C)
995 (56 °C)
Surface tension 21 (25 °C) 35 (25°C) 36 (10 °C)
(mN/m) 20 (36 °C) 33 (50 °C) 35 (25°C)
19 (56 °C)

Pour point (°C) 27 21 <20
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TABLE III. Measured climbing constants.

Sample Temperature (°C) Climbing constant (kg/m)
25 565
Lakeview 36 81
56 0.32
CND 25 170
50 0.27
Zuata 10 18
25 54

RFS-1I theometer (Zuata and CND). Our results were consistent with those presented by
Dealy (1979). From our measurements we estimated the zero shear viscosity 7, shown
in Table II. Density was measured by using a picnometer, and surface tension by a ring
tensiometer, capillary rise and/or drop weight method. Pour point was measured accord-
ing to ASTM D-97-66.

Although many authors stress the dependence of rheological properties of heavy
crudes on their thermal history, we did not investigate these effects. Therefore, all mea-
surements reported here correspond to oil without any prescribed thermal treatment.

IX. MEASUREMENTS OF CLIMBING CONSTANTS FOR THE OIL SAMPLES

In these experiments, a tungsten rod of 3.01 mm radius was used. The fluid sample
was placed in a glass container of 30 mm radius. The shear rate may be computed from
v = 47} where (} is in rev/s. The sample temperature was controlled by covering the
container and immersing it in a constant-temperature water bath. When measuring the
climbing constant at temperatures different from ambient, one could speculate that ther-
mal conduction through the rod would adversely affect its temperature and create un-
wanted thermal gradients in the fluid. We found that typically, even under severe condi-
tions, this should not be a problem. We modeled the rod as a long, thin cylindrical fin and
applied the classical theory of heat transfer to show, for example, that for a fluid tem-
perature of 50 °C with air at 22 °C immediately above, the temperature of the rod 1 mm
above the fluid would be 49.5 °C as a worst case.

The measurements of the height of climb were done with the help of a microscope
system and are repeatable within 0.02 mm. Uncertainty in the measured values of surface
tension is a source of error. An error of 1% in the measurement of the surface tension
leads to an error of about 0.35% in the value of the climbing constant.

Table I displays the measured values for climbing constants. For Lakeview, rod
climbing measurements were done at 25, 36, and 56 °C. The high climbing constants at
lower temperatures, indicate strong normal stress effects. At 56 °C, smaller climbs were
observed; this is probably explained by the melting and dissolution of the heavy compo-
nents (e.g., asphaltenes and/or paraffins). For the CND sample, the test temperatures were
25 and 50 °C; for the Zuata sample, 10 and 25 °C.

Figure 2 shows the height rise at the rod versus the square of the angular velocity ()
(rev/s) plots, obtained at the test temperatures for Lakeview. In all cases, we can identify
a second-order region where 2— hg is proportional to 0? [see Fig. 2(b)]. In Fig. 3, we
exhibit photographs of rod climbing in Lakeview crude, at 25 °C, for two angular speeds.

The climbing constants for CND are smaller than the corresponding constants for
Lakeview crude. The Zuata sample climbed a rod, but with only a small climb at ambient
temperatures, where it behaves almost as a very viscous Newtonian fluid. This behavior
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FIG. 2. (a) Height climb vs the square of angular velocity of Lakeview for all temperatures and (b) with axes
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(o)

FIG. 3. (a) Rod climbing in Lakeview crude oil at 25 °C, 0.033 rev/s and (b) rod climbing in Lakeview crude
oil at 25 °C, 0.72 rev/s. The climb in (b) is obviously nonlinear, so it was not used to compute the climbing
constant.

was also observed by Dealy (1979) in Alberta tar sands. For the Zuata sample attempts
were made to measure the climbing constant at 50 °C, but no noticeable climb was
observed at this temperature. Figures 4 and 5 show, respectively, the height rise versus the
square of the angular velocity for one experiment with CND (at 25 °C) and for the
experiment with Zuata at 10 °C.

X. SECOND NORMAL STRESS COEFFICIENTS AND THE SECOND-ORDER
CORRECTION OF TROUTON’S VISCOSITY

In Table IV we present the values for the first normal stress coefficient ¥y, and for
the second-order correction of Trouton’s viscosity calculated from the climbing constant
ﬁ, assuming \I’20 = —\1’10/10

For the Lakeview sample, at 25 °C, we attempted to compare the values of ¥y,
obtained by rod climbing with direct measurements made in a Rheometrics System Four
rheometer using the cone and plate fixtures. Because of the limitations of the normal
force transducer, we could not measure ¥ for shear rates below 0.5 s~ L. At this shear
rate, we measure Wy = 943 Pa $2. By comparison, the rod climbing measurements along
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TABLE IV. First normal stress coefficient and second-order correction of Trouton’s viscosity calculated from
the climbing constant by assuming that ¥p5 = —¥0/10.

Extensional viscosity 7,

Sample Temperature (°C) W, (Pas?) W, (Pas?) (Pa s)—from Eq. (18)
Lakeview 25 1.88x10° - —188 8340+2300€
36 270 -27 1940+320e
56 1.1 —0.11 55.5+1.3e
CND 25 550 ~55 3870+ 660&
50 0.90 -0.09 171+1.1¢
Zuata 10 58 -58 2420+70é
25 18 -18 346+22¢
with ¥yg = =W/ 10 yield ¥, = 1.88x10°> Pa s, and dynamic measurements

Vi = 2. 99%10° Pas? (at 30 °C). We also tried to obtain parallel-plate normal stress
measurements for Zuata and CND using a Rheometrics RFS-II rheometer, but the trans-
ducer was not sensitive enough to give consistent data at low rates of shear. Since the
viscosity of the oils is very high, high shear rate measurements could not be done without
damaging the torque transducer. Joseph ez al. (1984) also report difficulties of the same
kind in their attempt to obtain reliable normal stress measurements at rates of shear low
enough to compare with rod climbing measurements.

Figures 6, 7, and 8 show the results of dynamic measurements for Lakeview at 30 °C,
which we obtained with a Rheometrics System Four with a cone-and-plate device and for
Zuata and CND at 25 °C, which we obtained on the Rheometrics RMS-800 and the
Rheometrics Fluid Spectrometer with cone-and-plate or parallel-plate fixtures. The data
in Fig. 6, 7, and 8 along with the climbing constant (interpolated to the proper tempera-
ture), allow us to calculate values for the second normal stress coefficient by using Eq.
(8) and the second-order correction to Trouton’s viscosity by using Eq. (17). These values
are shown in Table V.

Table V can be compared with Table IV. Both tables use the measured values of the
climbing constant but in Table V, ¥, is a measured value from dynamic measurements
rather than an assumed value from W5y/¥ 1y = —1. The limiting or plateau values used
in Table V are taken from Figs. 6(b), 7(b), and 8(b). These are guessed values which may
be low. There is only a rather limited form of agreement between Tables IV and V.

XI. DISCUSSION AND SUMMARY

The constitutive equation of all simple fluids in slow, and slowly varying flows are
fixed once and for all by the values of three constants: the zero shear viscosity 7, the
first normal stress coefficient Wy, and the second normal stress coefficient Wyq. This
second-order rheology applies on the zero shear plateau of the first and second normal
stress coefficient and on the zero w plateau of 2G’ (w)/w The extent of the plateau
depends on the function plotted and not on the shear rate. The measurement of ¥y is
difficult and W,q is more difficult. Many different methods of measurement have been
proposed and we have considered the ones based on backward extrapolation,
NI/'y — Y0, 2G' (w)w* — ¥yg, and Np/N{ — Wa0/¥10, and the climbing constant
ﬂ ¥10/2+2Wy;. It appears that the measurement of ,8 is most sensitive in the sense
that for many fluids (but not all) the existence of a second-order plateau in which the
height rise is linear in «” is evident. Given ﬁ we can get Vg and ¥, from any one of
the three other measurements. It is believed that [¥,o/¥ ol < 0.1 in most fluids. We
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TABLE V. Second normal stress coefficient and second-order correction of Trouton’s viscosity calculated from
the climbing constant and dynamic measurements.

!
. ¥o= lim _G_g (Pas?)? Extensional viscosity 7g,

Sample A (kg/m)® ©0 @ Wyo(Pas?) ¥,y¥,, (Pas)—from Eq. (17)
Lakeview 220 3.0x10° ~640 -0.21 4300+2600¢

(30°C) (02-1.75s57Y 0.03-0.07 s7 Y

CND 170 1.6X10° -317.5 ~0.20 3900+ 1500¢&

(25°C) (0.1-0.09 s™ 1 (0.1-04 s

Zuata 5.4 18 -17 =010 350+21¢é

(25°C) (02-14s7YH 0.1-04 s7Y

“Also displayed is the corresponding shear rate range in which the normal stress parameters were measured.

examined the literature and found that in every case, the backward extrapolation of
2G ! (oa)/a)2 was larger than the backward extrapolation of N/ 72 perhaps ten times larger

o oo Tha ~anca of thia di ~r
in some cases. The cause of this discrepancy is not known. The values ef Uio and Uyg

obtained from the climbing constant and backward extrapolation of N{/% y give rise to the
expected values of [¥,/W | while the climbing constant and backward extrapolation of
2G'( m\/m2 may give rise to larger values closer to 0.2 than to 0.1.

We have characterized the normal and extensional stresses of three heavy crude oils at
low rates of shear using the rotating rod rheometer and dynamic measurement. All these
crudes exhibit normal stress effects, with small but measurable effects for CND and
Zuata crude oils and much larger effects for the Lakeview crude. Normal stresses could
not be reliably measured at any rate of shear in CND and Zuata with the Rheometrics
RFS-II theometer or at low rates of shear in the Lakeview crude with the Rheometrics
System Four rheometer. We obtained estimates of the values of the first and second
normal stress coefficients for our three oils using rod climbing and dynamic measure-
ments (Table V). These values may not be compatible with the backward extrapolation of
thrust data, even if we could find transducers sensitive enough to carry out thrust mea-
surements in the regions of low thrust that we encountered in the experiments reported
here.
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