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Abstract 

In this note we show that the normal stresses on a solid body in plane flow of a second-order fluid are compressive 
and such as to turn long bodies into the stream and to cause circular particles to aggregate and chain. 
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The stress in an incompressible fluid of  second order is given by 

T= - p l +  qAl + elA2 + e2 A2 (1) 

where A) and A2 are the first and second Rivl in-Er icksen tensors. The expression (1) arises at 
quadratic order in an expansion for slow and slowly varying motions (first proved in Ref. [1]; 
see Ref. [2]). Such motion can be greatly simplified in two dimensions [3] or when el + e2 = 
(~l  + 2~2)/2 = O, where kIJ 1 and kI/2 a r e  the first and second normal stress coefficients [4]. In 
either case, the velocity field is the same as that of  the Stokes flow while the pressure is modified 
as 

P =PN -}- ]- + AI:AI 
q Dt  

where PN is the Stokes pressure. 
For  plane flows, the stress can be written as [5] 

I T~xT ~, TT.~ ~y ] - -  N + el DpN + ~el )[10 0 1 1 F  
'v r/ Dt  

(2) 

+ q+e~ b + c  2a ' 
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E J - b - c  2a 
+ ~ l ( b - c )  2a b + c  ' 

where D/Dt  is the substantial  derivative, a = au/©x  = - a v / ~ y ,  b = ~?u/~?y, c = Ov/ax,  oq = - u d l / 2  

and F = 4a 2 + (b + c) 2. Now choose a generic point  P on the boundary  ~I2 of  the body f2 and 
define local coordinates (x, y) with velocity (u, v) where x is tangential and y normal  to Of 2. 
Since f2 is a rigid body, there is no variation of  u or v along Of 2. So a = c = 0, b = );. The stress 
at P is 

I rxyl /p IkIJ l DpN lkI'J ' )[ 10 ~] t I'IJl D tI0:1 I'lUl I -1 ~1 N 0 

(4) 

It follows that  the normal  componen t  of  the stress Ty), is given by [6] 

% DpN % .2 
T , , y = - - p N + 2 q  Dt 4 7 (5) 

The foregoing analysis works also in three dimensions when ~1 = -~2(~P1 = -2W2) [4]. In either 
case, the total stress depends on qJl, but the pressure is given by (2). 

In determining the contr ibut ion of  the pressure to the total normal  stress in the plane case 
where c~2 is actually irrelevant, it is necessary to assign a value to c~2. The irrelevance of  ~a stems 
f rom the fact that  in the reduct ion of  (1) to (3), the 72 in the pressure 

~ , D p N  ( 3 )  
P = P N  2V/ Dt  + ~ 2 + ~  ~2 (6) 

cancels an identical contr ibut ion in the extra stress 

Ty~, + p  = (2~, + ~2)?~ 2 (7) 

The decomposi t ion  of  the total normal  stress into a "pressure" and extra stress is unique 
because of  (2), but  the decision to call (2) a pressure is arbitrary. Since (3)  

+ 5 = d/2,  

where fl > 0 is the climbing constant ,  and 

2 ~  + ~2 = ~2 < 0 

for nearly all solutions and melts, both quadrat ic  contr ibut ions to (6) and (7) are compressive. 
Moreover ,  in many  cases fl is large and R*2 is small, so that  the main compressive stresses are 
generated by the normal  stresses in the pressure (6) [7]. 

The time derivative ofpN vanishes in steady flows over stationary bodies. The form of  normal  
stresses in (6) and (7) informs intuit ion about  how particles move and turn in a slow flow of  a 
viscoelastic liquid; one has only to look for crowded streamlines in the Stokes flow near the 
body to see how the normal  stresses are distr ibuted over the body. If  the particle has fo re -a f t  
symmetry,  the Stokes pressure and viscous shear stress each yield a zero torque on the body; 
thus the normal  stresses will turn the body into the stream [7,8] as in Fig. l(a). For  two identical 
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spheres or circular cylinders settling side by side (Fig. l(b)), strong shears occur on the outside 
and the resulting compressive stresses push the particles together; they then act like a long body 
and are turned into the stream by torques like those in Fig. l(a). Two particles settling in 
tandem experience imbalanced compressive normal stresses at the bottom of the leading particle 
and the top of the trailing particle, causing them to chain as in Fig. l(c). The lateral attraction 
of a particle to a nearby wall can be explained by a similar mechanism (Fig. l(d)). Experimental 
evidence of particle-particle and particle-wall interactions has been documented in Ref. [9]. 
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(a) (b) 

i, 
(c) (d) 

Fig. 1. Stokes flows around particles in sedimentation and the surface forces due to normal stresses. (a) Compressive 
surface forces on an ellipse in sedimentation. Note that the normal stress vanishes at the stagnation points of the 
Stokes flow. (b) Attraction between two particles settling side by side. (c) Attraction between two particles settling in 
tandem. (d) Wall attraction on a sedimenting particle. 
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The compressive stresses which are generated by the motion of particles in plane flow of a 
second-order fluid produce aggregation rather than dispersion; they align long bodies with the 
stream and produce chains of particles aligned with the stream. 
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