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Abstract 

We study the startup flow of dilute polymer solutions in a four-roll mill by using FENE dumbbell models. Because 
this flow is inhomogeneous and contains an extension-dominated region at the stagnation point, strong coupling 
between the flow field and the polymer configuration can be expected. Our effort at simulating such flows and making 
meaningful comparisons with experiments is a major step toward assessing and improving molecularly-based 
constitutive models for dilute solutions. The first objective of the paper is to examine the behavior of the 
Chilcott-Rallison version of the FENE model (FENE-CR) with varying parameters c, De and L. At moderately high 
values of De and L, the polymer stretching mainly happens within a 'birefringent strand' along the exiting flow axis 
emanating from the stagnation point. The coupling between flow and polymer stretching is exhibited by concerted 
flow suppression and reduction of polymer extension. In particular, the model predicts double-humped velocity and 
strain rate profiles across the outflow axis, in qualitative agreement with experiments. The second objective of the 
paper is to examine the effects of two additional features that can be added to the basic FENE-CR model: 
shear-thinning and an extra viscous stress. For shear-thinning we use the FENE-P model and for the viscous stress 
we adopt the expression recently proposed by Rallison [J. Non-Newtonian Fluid Mech., 68 (1977) 61-83]. For the 
Deborah numbers studied here, shear-thinning causes a small increase in the steady-state polymer stretching at the 
stagnation point. The strain rate there is also somewhat higher than the corresponding FENE-CR value. The extra 
viscous stress tends to reduce polymer stretching and the strain rate at the stagnation point. In previous studies, the 
FENE-CR model has been shown to over-predict polymer stretching. Thus, the extra viscous stress will bring 
predictions of the model closer to experiments. © 1997 Elsevier Science B.V. 
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1. Introduction 

The capability of predicting complex polymer flows in processing has two essential compo- 
nents: a constitutive model that adequately characterizes the material and a numerical algorithm 
that is able to solve the constitutive equation coupled with flow equations. Recently, great 
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progress has been made on achieving convergent and accurate solutions at high Deborah 
numbers, and the constitutive model has become by far the more pressing issue of the two [1]. 
Interestingly, development of efficient numerical methods opens a new channel for assessing 
constitutive models, i.e. computing non-homogeneous flows with selected models and comparing 
the results with experimental measurements made in similar flows. Non-homogeneity is a key 
word in this context. The first thing one would do to test a constitutive equation is to compare 
its predictions in simple shear and elongational flows with rheometric measurements. This is 
fundamentally important but has proven inadequate. The reason is two-fold. First, it is difficult, 
if not impossible, to generate flows of homogeneous rate of deformation in the laboratory. This 
is particularly true for purely extensional flows; a large literature has developed on the art of 
producing such flows and making accurate measurements (e.g. see [2,3]). Thus, one needs 
knowledge of non-homogeneous flows in order to interpret data obtained in real flows that are 
approximately homogeneous in a localized region. Second, behavior of complex fluids in 
non-homogeneous flows often cannot be anticipated from their behavior in homogeneous flows 
[4], and non-homogeneous flows are invariably what one finds in polymer processing. 

To evaluate constitutive equations by carrying out numerical and experimental studies in 
parallel, we have to decide what flows and constitutive models to study. The flow will have at 
least localized regions in which the flow field is strongly coupled with the configuration of the 
polymer. Two-dimensional flows are preferred to three-dimensional ones because flow birefrin- 
gence, the most frequently measured indicator for polymer orientation and stretch, gives only 
cumulative effects along the light path and thus is difficult to interpret for three-dimensional 
structures. In our laboratory, we have used the two-roll mill and the four-roll mill to generate 
two-dimensional flows [5]. By controlling the relative rotation rates of the rollers (for the 
four-roll mill) or the ratio of roller radius to gap width between rollers (for the two-roll mill), 
one may produce a spectrum of locally linear flows between simple shear and pure extension. An 
attractive feature of these devices is the central stagnation point which affords large strain for 
stretching polymers. Recently, numerical simulations have been carried out for the two-roll mill 
[6] and compared with birefringence data [7]. For comparison between numerical simulations 
and experimental measurements, the four-roll mill offers some advantages over the two-roll mill. 
Firstly, a wider range of flows can be generated in the four-roll mill. In particular, the two-roll 
mill cannot access flows close to pure extension even for a Newtonian fluid, and the flow 
becomes even weaker when modified by polymer stress [6]. Secondly, when operating in the 
mode of pure extension, the four-roll mill has a fixed outflow axis, and this greatly facilitates 
study of the relaxation process downstream of the stagnation point. Finally, the symmetry of 
this extensional flow in the four-roll mill means that the only flow modification by the polymer 
in the region around the stagnation point is in the magnitude of the velocity gradient. In this 
sense, flow in the four-roll mill is simpler than that in the two-roll mill and more suitable for the 
comparative studies we are to undertake. In this paper, we will concern ourselves only with the 
'normal mode' of purely extensional flows in the four-roll mill. 

Constitutive equations derived from kinetic theory of polymer molecules suit our purpose 
better than phenomenological models. The former explicitly show the coupling between polymer 
configuration and fluid flow, and the results are directly comparable with polymer configura- 
tions measured through flow birefringence. We have been using the FENE dumbbell models in 
simulating the flow of dilute polymer solutions. The Chilcott-Rallison version of the model 
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(FENE-CR) and the effects of conformation-dependent friction have been examined in the 
two-roll mill [6,8]. The emphasis of the present work will be on the FENE-CR model. In 
addition, we will report preliminary studies of the shear-thinning FENE-P model and the FENE 
model with an extra viscous stress recently proposed by Rallison [9]. A parametric study of the 
FENE-CR model is designed to reveal the sensitivity of its behavior to the model parameters. 
On the other hand, comparison with models with added features will illuminate the effects of the 
physical assumptions inherent in the models and suggest whether they approximately represent 
the true behavior of the polymer molecules. 

On the experimental side, systematic studies of the conformation change of polymers in 
extension-dominated flows were pioneered by a group at the University of Bristol. Extensional 
flows were generated by using opposed jets [10], the two-roll mill [11], the four-roll mill [12] and 
cross-slots [13]. Two French groups did similar work in the two-roll mill [14,15] and cross-slots 
[16,17]. Birefringence patterns were recorded for dilute, semi-dilute and concentrated solutions 
and velocity profiles are measured by LDV. Experiments in our group have concentrated on the 
two-roll and four-roll mills. A two-color flow birefringence measurement system has been used 
to study the stretch and alignment of polymer chains. Dynamic light scattering is used to take 
simultaneous measurements of the velocity gradient in the flow. Dilute solutions have been 
studied by Fuller and Leal [18], Dunlap and Leal [19] and Dunlap et al. [20] and semi-dilute and 
concentrated solutions by Ng and Leal [21], Fuller and Leal [22], Geffroy and Leal [23,24] and 
Yavich, Mead and Leal [25]. Previous experiments on dilute solutions in our laboratory have 
focused on steady flows. Recently we have started a systematic study of dilute solutions in 
transient flows in the two-roll and four-roll mill [7], which will parallel the current series of 
numerical simulations using the FENE dumbbell models. 

The work of the UK and French groups has been summarized by Keller and Odell [26] and 
Keller et al. [27]. The main findings are as follows. A critical concentration c ÷ is identified, 
which is one order of magnitude smaller than c*, the concentration of domain overlap for 
polymers in the coiled state. For c < c ÷ , no flow modification can be discerned even for the 
largest flow-rate (or Deborah number De). Flow birefringence is restricted to a very thin strand 
along the outgoing streamline emanating from the stagnation point. The width of the birefrin- 
gent strand increases with increasing c and De but has an upper bound. For c > c + , the 
birefringent strand broadens with increasing De until a dark line of non-birefringent (or weakly 
birefringent) fluid emerges in the middle of the birefringent strand, giving rise to the so-called 
birefringent pipe. This is also when flow modification is first detected; in a cross-slot device, the 
velocity profile across the slow downstream of the stagnation point develops a dip at the apex. 
At still higher De, instability sets in and the flow becomes unsteady. 

The above picture raises the question of flow modification in dilute solutions (c < c ÷). If the 
birefringent pipe, which occurs only in semi-dilute and concentrated solutions, is a result of the 
strain rate being suppressed in the middle [27], this signals a very severe degree of flow 
modification. It is then natural to expect milder and evolving flow modifications before the 
birefringent pipe emerges and also in more dilute solutions. With direct measurements the 
velocity gradient, Dunlap and Leal [19] were able to resolve the relatively small flow modifica- 
tions in dilute solutions. There is no flow modification if the Deborah number is below the 
critical value for the coil-stretch transition; the onset of flow modification seems to correlate 
with a certain degree of polymer stretching. The suppression of the local velocity gradient 
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becomes more severe with increasing De and c. Based on these results, a more consistent picture 
emerges about the coupling of fluid flow and polymer configuration in dilute solutions. Since the 
FENE dumbbell models studied here do not account for interactions among stretched polymer 
chains, experiments in dilute solutions form the basis for comparison with our numerical results. 

The outline of the paper is as follows. The numerical problem will be described in Section 2. 
Numerical results will be reported in Section 3 for the FENE-CR model and in Section 4 for 
FENE models with additional features. Finally, the main conclusions of the paper will be 
summarized in Section 5. 

2. Formulation of the problem 

The geometry of the four-roll mill flow cell is shown in Fig. 1. The four rollers are initially at 
rest and abruptly start to rotate with angular velocity 1) at time t = 0. The fluid is a dilute 
polymer solution in a Newtonian solvent. With the fluid inertia neglected, the flow equations are 
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Fig.  1. A ske tch  o f  the  four- ro l l  mill  f low cell. rz/r ~ = 0.204, (Xo, Yo) = ( - 0.33, 0.33)r 1. 
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f V'u = O, #u p-~- - -  - - V p  + u~V2u + V ' z ,  
(]) 

where ~ is the extra stress due to the polymer, p is the density of the solution and Ps is the 
solvent viscosity. If one models a polymer chain by a dumbbell, its configuration is simply 
represented by an end-to-end vector R. Then the polymer stress is proportional to a configura- 
tion tensor which is the second moment of the configuration distribution function [28]: 
A = ( R R ) .  The trace of the second moment tensor tr A = ( R  2) is a measure of the average 
length of the polymer chain. 

In the Chilcott-Rallison model, the finitely extensible elastic spring has a maximum length L 
and the spring force obeys the Warner force law. After using the pre-averaged spring length in 
the spring force along with other approximations, the following constitutive model is obtained 
[291: 

p~cf(tr A) 
r - ,2 A, (2) 

5A - _ _  
5 t  + u. VA - (Vu) T. A - A. Vu f( tr  A) ( I -  A), (3) 

,2 

where I is the unit tensor, ,2 is the relaxation time of the spring and 

1 
f ( t r  A) - 

1 - tr A / L  2" 

c is the concentration parameter defined by c = (,u - ,Us)/,us where p is the shear viscosity of the 
solution. For shear-thinning versions of the FENE model (e.g. FENE-P), p is taken to be the 
zero shear-rate viscosity of the solution. In Eqs. (2) and (3), A has been scaled such that A -- I 
when there is no flow; L is scaled using the same length. 

For a Stokes flow in the four-roll mill, the angular velocity of the roller f~ is linearly related 
to the velocity gradient (or elongation rate) at the stagnation point i0. If we use r~ as the 
characteristic length, rlio as the characteristic velocity and i~  1 as the characteristic time, the 
governing equations can be made dimensionless: 

V,u = 0,  (4 )  

~u  c 
Re a t  = - Vp + V2u + ~ V " ( f A ) ,  (5) 

5t + u" VA - (Vu) a'. A - A-Vu _ f ( t r  A) ( I -  A), (6) 
D e  

where p has been scaled by Psi0. The Reynolds number Re = pr~io/p~ and the Deborah number 
De = ,2io. The problem thus contains seven dimensionless parameters: Re, De, c, L, r2/r~, Xo/rl 

and yo/r~. Eq. (6) describes how the flow field stretches and orients the polymer and Eq. (5) 
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Fig. 2. A typical mesh used in the computations. Only pressure elements are shown. The mesh has 5596 elements and 
11 490 nodes, and the number of unknowns is 60 397. 

shows how the polymer configuration modifies the flow field in return. In other words, these 
equations describe the coupling between the configuration of microstructures (,4) and the 
macroscopic flow field (u and p). Dirichlet boundary conditions are specified for u and no 
boundary condition is needed for A because of the hyperbolic nature of Eq. (6). 

Eqs. (4)-(6) are solved by using a finite element method; the algorithm has been described by 
Singh and Leal [30]. Here we only note two key features of the code: a third-order upwinding 
scheme for the convection term (u "VA) in Eq. (6) and a special procedure to ensure the 
positive-definiteness of the configuration tensor .4. These features help make the code accurate, 
efficient and capable of computing flows at relatively high Deborah numbers. Because of the 
symmetry of the flow cell, we need only use a quarter of the domain in calculation; a typical 
mesh is shown in Fig. 2. Because of the strong stretching of polymers in the extensional flow, 
large stress gradients arise which require sufficiently refined mesh to resolve. This proves to be 
cumbersome because progressively finer mesh is needed for larger values of De or L. For a set 
of parameters, several meshes often have to be tested and convergence confirmed. Because the 
four-roll mill generates a stronger flow than the two-roll mill, this requirement on mesh 
refinement is more stringent than in [6]. 

The geometry of the flow cell was set so that it matches the flow device used in our 
experiments: r2/rl = 0.204, (xo, Yo)= ( -  0.33, 0.33)rl. In the next section, we fix the Reynolds 
number Re -- 0.136 and systematically investigate the effects of c, De and L for the FENE-CR 
model. In Section 4, other forms of the FENE dumbbell model will be discussed along with 
numerical results. 
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3. Numerical results for the FENE-CR model 

Numerical simulations have been carried out for De=0 .335-4 .02 ,  c = 0 ,  0.1 and 1 and 
L 2 =  100-1000. As c represents the fractional viscosity contribution from the polymer, it is 
proportional to the polymer concentration in a dilute solution; the coefficient of proportionality 
depends on the polymer's molecular weight and solvent quality among other factors. From the 
intrinsic viscosity data of Dunlap and Leal [19], c = 0.1 corresponds to roughly 200 ppm of a 
polystyrene sample of Mw = 8.42 x 106 in a Chlorowax LV solvent. In an ideal solvent, the 
contour length of a polymer chain is proportional to the square-root of the number of Kuhn 
steps. Based on a molecular weight Mw--- 106, the dimensionless parameter L in our dumbbell 
model may be roughly estimated to be 20 < L < 50. As mentioned above, large L entails a 
refined mesh and high cost of computation. In our geometry, the behavior of the dumbbell 
model does not vary qualitatively with L and we have done the majority of the calculations with 
L = 20. 

3.1. The limit of  infinite diluteness: c = 0 

c = 0 represents the limiting case where the polymer does not produce any change in the flow 
but is allowed to deform under the Stokes flow. The significance of this idealized situation lies 
in the fact that the conformational evolution of the polymer can be examined without the 
complication of flow modification. So this serves as a probe on polymer stretching on the one 
hand and as a baseline for studying coupled flow modification and polymer deformation on the 
other. 

3. I. 1. Evolution of  polymer configuration after startup 
The flow field approaches its steady-state very rapidly after the startup; the initial transient 

takes a dimensionless time t = 0.033. Then the configuration of the polymer starts to evolve 
under the steady Stokes flow. The kinematic features of this flow are shown in Fig. 3. There is 
an area around the stagnation point in which the strain rate is uniform and the flow type is 
nearly purely extensional (~ ~ 1). We define the strain rate as 1 = ( 0 " 0 / 2 )  1/2 where D = [Vu + 
(Vu)r]/2 is the rate-of-strain tensor. At the stagnation point and along the x- and y-axes, i is 
equal to the velocity gradient. On the x- and y-axes near the nips of the roller, there are two 
localized regions with virtually zero strain rate (i  ~ 0). The flow-type parameter reaches its 
minimum in these two areas: e ~ - 1, indicating purely rotational flow. The area next to the 
roller contains shear flow; the maximum strain rate occurs on the surface of the cylinder. For 
this geometry, the roller speed and the strain rate at the stagnation point are related by 
f2 = 1.5i0. 

Because of the long residence time of polymer molecules in the region surrounding the 
stagnation point, the polymer there essentially behaves as in a homogeneous extensional flow. 
This is borne out by the evolution of tr A at the stagnation point (Fig. 4). If the steady-state tr A 
is plotted against De, one will see the coil-stretch transition at a critical Deborah number 
Dec = 0.5. Another interesting feature of Fig. 4 is that the time needed to reach steady state is 
short for Deborah numbers that are much smaller or larger than Dec, but is very long for 
De ~ Dec. This phenomenon has been discussed by Fuller and Leal [31]. At De ~ Dec, the spring 
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force and the hydrodynamic friction are roughly balanced, and the approach to steady state is 
largely through Brownian diffusion. Since the strain grows exponentially at the stagnation point, 
large fractional extension (nearly 90% for De = 4.02) of the dumbbell is achieved in a few units 
of dimensionless time. 

The highly homogeneous flow near the stagnation point suggests that the four-roll mill may 
be used as an extensional rheometer. One may measure the flow birefringence and the velocity 

(a) (b) 

(c) (d) 

Fig. 3. Kinematic fields of the Stokes flow in the four-roll mill. (a) The streamlines; (b) contours of the strain rate ~. 
The maximum of ~ occurs on the surface of the roller and the minimum on the two axes where the gap is narrowest 
between two rollers; (c) contours of the flow type parameters ~. The maximum of ~ occurs at the stagnation point 
and the minimum on the axes; (d) contours of the residence time. The residence time is longest at the stagnation point 
and generally decreases toward the roller. See [6] for definitions of the flow type parameter and the residence time. 



J. Feng,  L . G .  L e a l  / J .  N o n - N e w t o n i a n  Flu id  M e c h ,  72 (1997)  1 8 7 - 2 1 8  195 

100- 

trA 

8 0 -  I 

I 
i 

601 

40 

20- 

D e  = 4 .02  

D e  = 2 .68  

D e  = 1.34 

D e  = 1.0 

D e  = 0 . 6 7  

D e  = 0 .335  
0 , ' ' I . . . .  I . . . .  I ' 

0 5 10 15 25 

D e  = 0 .536  

D e  = 0 . 4 6 9  

i i i I ' ' i i 

20 

Fig. 4. Stretching of a FENE-CR dumbbell at the stagnation point after startup. The length of the dumbbell is 
indicated by tr A. The time is made dimensionless by the steady-state strain rate at the stagnation point i'o, which is 
also used in calculating the Deborah number De. L 2 =  100. 

gradient at the stagnation point and obtain the extensional viscosity through the stress-optic 
law. This scheme works, of course, only before the stress-optical law is invalidated by nonlinear 
spring effects. 

The evolution of tr A in the entire flow cell demonstrates the non-homogeneity of the flow. 
Fig. 5 shows contours of tr A at two different times. At short times (t = 0.33 in Fig. 5(a)), the 
polymer has not sampled a large flow area. The extension of a polymer chain is determined by 
the flow along the short path that it has travelled. Thus, tr A reflects the magnitude of the local 
strain rate (Fig. 3(b)); the maximum of tr A occurs on the surface of the roller. At later times, 
the maximum of tr A moves to the stagnation point, and a thin strip of highly stretched polymer 
forms along the outgoing flow axis downstream of the stagnation point (Fig. 5(b)). This is 
evidently the consequence of the long residence time and strong flow near the stagnation point. 
The fluid far from the x- and y-axes circles around the roller; during each orbit the polymer 
goes through areas of low strain rate and weak flow type and relaxes. The fluid near the x-axis 
has a longer residence time, but the deformation history is weak leading to the stagnation point 
and thus the stretching is weak, too. The highly localized region with stretched polymers 
downstream of the stagnation point closely resembles the birefringence pattern observed in 
experiments [12,18], and may be called the 'birefringent strand' following Harlen et al. [32]. 
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A more precise view of the evolution of polymer configuration can be gained from the profile 
of tr A along the 45 ° line between the roller and the stagnation point and along the x- and y- 
axes (Fig. 6). At short times, the polymer next to the roller starts to stretch first. Later, the 
maximum of tr A shifts to the stagnation point (Fig. 6(a)). The surface of the roller remains a 
local maximum of tr A because of the high shear rate there. The distribution of tr A along the 
two axes is best understood by following the streamlines. At the solid wall (x = - 1), the strain 
rate is always zero and the polymer remains relaxed. Off the wall there is a weak converging 
flow, which gives rise to a mild stretch in the x-direction. As the flow passes through the 
rotational region (Fig. 3(c)), the polymer relaxes somewhat and then encounters the extensional 
flow near the stagnation point. The dumbbells are turned to the y-direction and there is a sharp 
rise in tr A; the polymer has a long time for stretching within a small neighborhood of the 
stagnation point. The plateau downstream of the stagnation point represents large stretching 
sustained by the extensional flow. Further downstream, the polymer passes through the 
rotational region and again relaxes. There is a weak squeezing flow toward the wall, which leads 
to mild stretching in the x-direction near y = 0.7. 

Though the development of tr A at the stagnation point is monotonic, it appears to be 
oscillatory in other regions of the flow cell (Fig. 6(a)). This is more conspicuous at larger De. 
Fig. 7 shows the history of tr A at the point P on the roller that is closest to the y-axis (the point 
is fixed in space, not attached to the roller). The oscillatory behavior highlights the non-homo- 
geneity of the flow. Since the residence time next to the roller is much shorter than the relaxation 
time of the polymer, the polymer does not have enough time to relax and thus 'remembers' its 
flow history. So an Eulerian point in space sees the arrival of polymer molecules that carry 
different deformation histories since the start of the flow. Because of the variation of } around 
the roller (see Fig. 3(b)), strongly and weakly stretched polymers show up alternately at a point 

(a) (b) 

Fig. 5. Con tours  of  t r  A at an  early and  a late stage of  stretching. L 2 =  100, De = 1.34. (a) Dimensionless  t ime 
t = 0.33; (b) t = 10. 
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F i g .  6.  Evolution of tr A profiles after startup. L 2 = 1 0 0 ,  D e  = 1 . 3 4 .  ( a )  The profile along the 45 ° line between the 
roller and the stagnation point; (b) profiles along the inflow and outflow axes. 

fixed in space. After the roller makes a few turns, the history effects start to be smoothed out. 
During the first turn of the roller, each fluid particle on the roller surface passes the test point 
P once. After that, each goes through the same cycle of  deformation. The temporal variation at 
P reflects the difference in flow history incurred during the first turn. This difference will fade 
in time because of the fading memory of the polymer and the addition of more cycles to its 
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deformation history. Thus, the oscillation at P dies out after a few turns of the roller and a 
steady state is reached. Incidentally, the FENE dumbbell models yield a monotonic stress 
growth at the start of a simple shear at moderately low De. For large De, a stress overshoot 
occurs. This is obviously not the cause of the oscillation in Fig. 7. 

The transient in tr A due to kinematics of the flow has some interesting implications in 
experiments. For a dilute solution, the growth of the flow birefringence at the stagnation point 
is monotonic after startup in a two-roll mill [7]. If the measuring volume is off the stagnation 
point, however, one may get an oscillatory signal as in Fig. 7, which must not be construed as 
an intrinsic reaction of the polymer to a uniform extensional flow. For semi-dilute and 
concentration solutions, the growth of the flow birefringence is not monotonic even in locally 
homogeneous extensional flows [21]. It is then important to recognize the two possible 
mechanisms for the transient in a non-homogeneous flow. 

3.1.2. Effects of  De on the steady state 
The effect of De on the steady-state distribution of tr A is, in a sense, also not monotonic. At 

small De, the polymer has a short relaxation time and reacts to the local deformation quickly. 
Thus the tr A contours resemble the ~ contours of the Stokes flow (Fig. 8(a)). At larger De, 
strong stretching occurs in the birefringent strand along the y-axis and stretching near the roller 
is relatively weak (Fig. 8(b)). At still larger De, there is a reversal of this trend; the birefringent 
strand widens and there is again considerable stretching at the roller (Fig. 8(c)). This reversal is 
manifest of the fact that at De >> Dec, the dumbbell tends to deform more affinaly with the fluid 
and thus needs shorter time to achieve a large fractional stretch. The effect of De in Fig. 8 is 
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Fig. 7. Transient of  tr A at a spatial point P that is at the surface of  the roller (indicated by an arrow). L 2 = 100, 
De = 2.68. The roller makes one turn in time t = 4.19 and the residence time at P is only about  7.2% of  the relaxation 
time of  the polymer. 
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(a) (b) 

(c) 

Fig. 8. Comparison of the steady-state tr A contours at different Deborah numbers. L 2 =  100. (a) De = 0.335; (b) 
De = 0.67; (c) De = 2.68. 

consistent with that  in Fig. 4. I f  the polymer  needs a long time to reach steady-state extension, 
the long residence time at the stagnation point  gives rise to a localized birefringent strand. 
Conversely, if the polymer  reaches steady-state extension rapidly (as for very small or large De), 
the residence t ime at the stagnation point  is less of  a factor and the birefringent area is 
de-localized. The sequence described above is more  precisely illustrated by the steady-state tr A 
profiles along the 45 ° line (Fig. 9). As De increases, there is more  stretching everywhere in the 
flow field. At larger De, the increase in stretching is most  p rominen t  near the roller, and a valley 
forms between the roller and the stagnation point.  
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3.1.3. Effects o f  L on the steady state 
The effects of L on polymer stretching may be analyzed from two limiting cases. Since L 

enters Eq. (6) only through the spring force f, it has little effect on the polymer where the 
stretching is small. The other limit is for very large stretching, in which case the Brownian force 
is negligible as compared with the spring force. This is tantamount to setting I -  A ~ - A in Eq. 
(6), and it becomes obvious that tr A / L  2 will be independent of L. The two limits are clearly 
shown by tr A profiles along the x- and y-axes (Fig. 10). L has virtually no effect on tr A at 
x ~ - 0.4 and y ~ 0.7, where the stretching is weak and the finite extensibility is hardly felt. On 
the other hand, the plateau of tr A downstream of the stagnation point increases proportionally 
with L 2. The temporal evolution of tr A at the stagnation point is compared in Fig. 11 for 
different values of L. The steady-state value of t r A / L  2 agrees closely among the curves, 
although it takes longer time to achieve the steady state for larger L. The different behavior of 
tr A in different regions of the flow implies that as L 2 increases, the peak in tr A will become 
more pointed; relatively more stretching happens inside the birefringent strand and less happens 
in other areas. 

Another implication of the above analysis is that the early stage of polymer deformation is 
independent of L before large fractional stretch happens anywhere. A somewhat more general 
statement can be made about a startup flow, though based on entirely different arguments: the 
initial moments of polymer stretching in a dilute solution is independent of all three parameters 
De, c and L. Before the flow starts, the spring force and the Brownian force are in balance. 
Thus, the initial stretching will be completely determined by the velocity gradient. Our numerical 
results show that tr A stays independent of L until t = 0.33 after the startup. By that time tr A 
already strongly depends on De. 
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Fig. 10. Compar i son  of  tr  A profiles a long the x-  and  ),-axes for different values of L 2. De = 1.34. 

3.2. Coupling of  flow and polymer configuration at c > 0 

In the presence of polymer stress, the strain rate at the stagnation point will be different from 
%. The calculations reported hereafter are for the same rotation speed f~ of the rollers and the 
same nominal Reynolds number Re = prE~o/Ps = 0.136. We will continue to use ~o to form the 
dimensionless time, dimensionless strain rate and the Deborah number. 

3.2.1. Flow modification 
The effect of polymer stress on the flow is most readily seen from ~ at the stagnation point 

(Fig. 12(a)). The initial development of the flow field is not affected by the polymer and the fluid 
quickly assumes the Stokes flow which is the steady state for c = 0. Then the polymer starts to 
stretch, causing ~ at the stagnation point to undershoot before approaching a steady-state value 
that is smaller than ~o. The transient of ~ agrees qualitatively with previous results of Harris and 
Rallison [33], who studied the startup of extensional flows in a cross-slot geometry by 
asymptotic analysis. Using a dilute polystyrene solution, Harrison et al. [7] measured the 
velocity gradient at the stagnation point of a two-roll mill after startup. The strain rate ~ rapidly 
reaches the Newtonian value and then gradually decreases to the steady-state limit; there is no 
undershoot in this process. Wang et al. [34] did similar measurements on concentrated 
polystyrene solutions and the evolution of ~ is very similar to the curves in Fig. 12(a); there is 
an undershoot before ~ approaches its steady-state value. One must note a fundamental 
difference between the two-roll and four-roll mills. The flow modification at the stagnation point 
consists in a reduction in ~ in the four-roll mill. In a two-roll mill, the flow type parameter is also 
seriously reduced by polymer stress [6]. The effect of polymer on the steady-state flow is such 
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that with increasing c, the flow and deformation of the fluid is enhanced in the area around the 
roller and suppressed near the stagnation point and the outflow axis where the polymer is highly 
stretched. Fig. 13 demonstrates this trend in the profile of p between the roller and the 
stagnation point. The flow suppression near the stagnation point and the y-axis is evidently a 
result of the polymer stress. 

The effect of flow suppression agrees qualitatively with the experimental observations of 
Dunlap and Leal [19] in a four-roll mill. In particular, they measured profiles of the velocity 
gradient across the outgoing axis at various distances from the stagnation point. Immediately 
downstream of the stagnation point, the profile develops a dip in the middle, which becomes 
deeper further downstream. Fig. 14 shows similar profiles from our simulation at a small 
distance downstream of the stagnation point, along with the profiles of the velocity v and tr A 
at the same station. Curve 1 in Fig. 14(a), for the Stokes flow, has a small decrease in ~ toward 
the y-axis; this is due to the kinematics of the flow in this geometry. With increasing c, much 
larger flow suppression happens and this effect also extends farther from the outflow axis. The 
most interesting feature of Fig. 14(b) is the suppression of the fluid velocity near the y-axis; the 
profile is very similar to the 'double-humped' velocity profiles measured in the cross-slot device 
[13,16]. The peaks of tr A in Fig. 14(c) are extremely narrow, but the influence of the stretched 
polymer on the fluid flow spreads to a much wider region. This effect has also been observed by 
Dunlap and Leal [19] in experiments. 

3.2.2. Polymer configuration 
The change in the flow field in turn leads to changes in the polymer configuration, most 

conspicuously a reduced stretch at the stagnation point and downstream (Fig. 12(b) and Fig. 

0.7 

0.6 

0.5 

0.4 

trA/L 2 

0.3 

0.2 

0.1 

0 

." = 

5 10 15 20 25 30 35 

Fig. 11. The evolution of  tr A at the stagnation point for different values of  L 2. De = 1.34. 
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14(c)). There is no overshoot in the growth of the birefringence at the stagnation point, 
consistent with experimental measurements in dilute solutions [7]. Fig. 15 compares the 
steady-state contours of tr A at c = 0.1 and 1. Apparently with increasing c, the stretching 
becomes less concentrated in the birefringent strand. This implies a decrease of tr A near the 
stagnation point and an increase near the roller, which is consistent with the modification in the 
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flow discussed above. As a rule, larger c means more severe flow suppression, accompanied by 
larger decrease in tr A at the stagnation point and downstream. Polymer stretching also becomes 
de-localized. 

3.2.3. Coupling of flow and polymer stretching 
A more quantitative analysis of  the flow-polymer coupling can be done by following the 

streamline that passes through the stagnation point. Fig. 16 shows steady-state profiles of  the 
velocity, strain rate and the two components of  gl along the x- and y-axes. AI2 = 0 because of  
symmetry. 

On the x-axis, Eq. (5) reduces to 

(~2U (~2U dp c d 
c~x -----5 + c~y ~ - d x  - D e  d x  (fAll). 

Owing to a locally converging flow, A~ increases along the x-axis off the wall, the polymer 
stress gives 

d 
d---~ (f/~l 1) > O, 

which causes a decrease in 02u/Ox z, and hence the suppression of u and ~ along the left part of  
the incoming flow axis (x < - 0.4). Further down the axis, A~ is compressed by the decelerating 
flow: 
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F i g .  13.  Effects of polymer concentration on the profile of ~ along the 45 ° line between the stagnation point ( r  = 0 )  

and the roller ( r  = 0 . 2 6 7 ) .  L 2 =  4 0 0 ,  D e  = 1 .34 .  
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d 
d-~ ( fAin)  < 0, 

and the polymer stress tends to increase O2u/Ox2. Since Ou/Ox < 0, this means a dip in the strain 
rate i, as indeed happens in Fig. 16(b). Next to the stagnation point, there is a small but steep 
increase in A ll. This, together with the sharp increase in A22 and thus in the spring force, gives 
a very large stress gradient 
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Fig.  14. Effects of polymer concentration on profiles of 9, v and tr A downstream of the stagnation point (y = 0.089). 

L 2 = 400. The position of the profiles is indicated by a horizontal line in (b). C u r v e  3, fo r  a higher Deborah number, 
is also shown for comparison. The small wriggle in the p and v profiles next to the y-axis indicates a narrow boundary 
layer which will be further discussed as related to Fig.  16 a n d  Fig.  19. 

d 
d--x ( f A , O  > O, 

which explains the upturn of ~ near x = 0. On the y-axis, there is a concerted suppression of  flow 
and polymer stretching. 

The above analysis offers some insights on the interplay between the flow and the polymer 
stress. It may not be appropriate to claim one as the cause of the other, and some of  the physics 
behind the numerical results remains veiled. For example, we see the connection between the 
sharp rise of  A~ and the upturn in ~ on the x axis next to the stagnation point. But the reason 
why such a boundary layer exists is not clear. 

3 . 2 . 4 .  E f f e c t s  o f  D e  a n d  L 

At larger De the flow suppression becomes more severe. For L 2 = 4 0 0  and c = 0 . 1 ,  a 
calculation at De = 2.68 is compared with one at De = 1.34 in Fig. 12(a) and Fig. 14. The 
Deborah number, representing strength of the flow, enhances polymer stretching. The larger 
gradient of  polymer stress in turn promotes flow suppression much like the effect of  increasing 
c. Fig. 17 compares the tr A profiles for these two runs. As De changes from 1.34 to 2.68, the 
increase in tr A is greater, in percentage, in regions of  weak flows (x ~ - 0 . 3 ;  y ~ 0.7) than at 
the stagnation point. This is because the nonlinearity of  the spring is hardly felt in areas of weak 
stretching. At the stagnation point, on the other hand, further stretching becomes harder. This 
is in fact the same mechanism that operates at c = 0 to make the stretching more spread out as 
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Ca) (b) 

Fig. 15. Steady state contours of tr A at different polymer concentration. L2= 400, De :- 1.34. (a) c = 0.1; (b) c = 1. 

De increases (Fig. 8). Similar de-localization of stretching is observed here, but to a lesser degree 
because of flow modification. 

For relatively small c and De, the effects of L on the polymer configuration are qualitatively 
the same as in the case of c = 0. A increases proportionally with L 2 n e a r  the stagnation point 
and downstream on the y-axis but hardly changes in other regions of the flow (Fig. 18). 
Therefore, the polymer stress increases linearly with L 2 within the birefringent strand. For larger 
c and De, the above statements become less accurate because of flow modification. But 
qualitatively, one may expect that larger L values lead to more severe flow suppression within 
the birefringent strand, similar in effect to an increase in c (Fig. 14(a) and 14(b)). Profiles of 
along the x- and y-axes show that at larger L, the flow suppression is indeed more severe except 
in a 'boundary layer' next to the stagnation point (Fig. 19). The climb of 9 toward the 
stagnation point that has been analyzed in Fig. 16(b) grows with L 2. For L 2 =  100, 9 at the 
stagnation point even exceeds ~0, the value for c = 0. This implies that for larger L 2, polymer 
extension actually enhances the flow in a very localized region. Harrison et al. [7] obtained a 
similar result using the FENE-CR model in the two-roll mill. To resolve the sharp gradient in 
the boundary layer, we have used refined mesh in the area (see Fig. 2). There are 38 mesh points 
within - 0.05 < x < 0, which may be considered the width of the boundary layer. Hence the 
boundary layer is not an artifact due to poor resolution. Since there has been no experimental 
evidence for such a flow enhancement, this might indicate a defect of the FENE-CR model. We 
will return to this issue in the next section as related to the extra viscous stress. 

4. Numerical results for other FENE models 

In this section we study FENE models with shear-thinning (FENE-P) and extra viscous stress 
(FENE-V). No parametric matrix will be covered; the focus will be on the effects of the physical 
assumptions in these models on the flow. 



4.1, The FENE-P model 

u;v 

The FENE-P model is very similar to the FENE-CR model except that it has shear-thinning. 
In general, shear-thinning is not a critical property in FENE dumbbell models, firstly because 
dilute solutions usually are only mildly shear-thinning and secondly because the FENE-dumb- 
bell models are meant to mimic polymer behavior in extensional flows, not shear flows. In the 
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two-roll and four-roll mills, the flow is driven by the rollers. Changes in the roller speed are 
transmitted through shear layers toward the stagnation point where measurements are made. 
Thus the transient at the stagnation point may be affected by shear-thinning and hence our 
interest in the FENE-P model. 

For the FENE-P model, Eq. (6) is changed to 

OA 1 
~ t  + u"  V A  - (Vu) T" A - A .  Vu = Dee ( / - f A ) "  

At large De, the shear viscosity varies as ~-  2/3 [35,36]. The onset of shear-thinning is at higher 
De for larger values of L2. Therefore, at a given De more shear-thinning occurs for smaller L. 
Besides L and c, there is no other parameter by which to control the amount of shear-thinning. 

Our simulation covers c up to 1, L 2 to 400 and De to 1.34. In all these cases, shear-thinning 
does not produce a major effect. Fig. 20 shows the evolution of ~ and tr ,4 at the stagnation 
point after a startup in the four-roll mill. There is virtually no shear-thinning effect in the early 
transient. The steady-state values of ~ and tr ,4 are both a little larger than the corresponding 
values for the CR model. The lack of a strong shear-thinning effect in these calculations is not 
entirely surprising since for L 2 = 400, significant shear-thinning does not set in until De is on the 
order of 100. Still larger De is needed for L 2 =  O(2000), which is more appropriate for the 
polystyrene solutions we have been using in experiments. Therefore, the FENE-P model, 
without a separate parameter to adjust the amount of shear-thinning, is not a good choice for 
testing shear-thinning effects. This, however, may not be a serious shortcoming of the FENE-P 
as a dilute solution model. The actual magnitude of shear-thinning effects in extension-domi- 
nated flows, to our knowledge, has not been documented experimentally. 
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4.2. The  F E N E -  V m o d e l  

The concept of an extra viscous stress in a dumbbell model was prompted by the failure of 
the elastic dumbbell models to quantitatively predict the stress in large De and highly transient 
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flows. For instance, unreasonably small values of L have to be used to fit rheological data; 
otherwise the measured stress is larger than can be accounted for by the elastic stress alone. The 
origin of the viscous stress is commonly believed to be the instantaneous rigidity of the polymer 
chain. Different pictures have been proposed for this instantaneous rigidity, including knots or 
self-entanglement [37], the 'yo-yo' configuration [38], 'back-loops' [39] and 'kinks' [40]. The 
latest effort along this line used computer simulations to directly study the conformation of a 
single model chain in an extensional flow [9,41]. A transient viscous stress is identified and 
modeled by an additional term in the FENE dumbbell model. Strictly speaking, this stress is not 
genuinely viscous as the polymer chains are not permanently rigid. 

Another possible cause of viscous-like responses of polymer solutions is polydispersity. Even 
for polymer samples with narrow molecular weight distributions, there is a significant separation 
of the longest and shortest relaxation times. Modes faster than the response of the detector will 
be recorded as a viscous stress. In principle, this effect can be modeled by multimodal FENE 
models. It will be interesting to compare simulations of non-trivial flows based on the two 
different ideas. Experimentaly, it appears impossible to distinguish between viscous stresses due 
to chain rigidity and faster elastic modes. Orr and Sridhar [42] have used the abrupt cessation 
of filament stretching to measure the relaxation of stresses. The resolution of short time scales 
proved to be a delicate matter and the identification of viscous stress is not without ambiguity. 

We have done some preliminary simulations using the FENE-V model proposed by Rallison 
[9]. The deformation of the dumbbell is still described by Eq. (3). The polymer stress is changed 
from Eq. (2) to 

Fig. 20. Compar i son  of  the evolut ion of  ~ and  t r  A at the s tagnat ion  poin t  between the F E N E - P  and  F E N E - C R  
models. Filled symbols are for  the F E N E - P  model  and  open ones for  the C R  model.  L z= 400, De = 1.34, c = 0.1. 
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where O = [Vu + (Vu)'r]/2; ~ is a dimensionless parameter. Simulations in [9] suggest ~ = 0.5. The 
second term is proportional to the strain rate and is thus viscous. The elastic stress contains only 
a linear spring force. As noted by Hinch [41], the viscous term will guarantee a plateau for the 
extensional viscosity at high strain rate, thus eliminating the need for a nonlinear spring. 
Further, using a linear spring force in the elastic stress gives the model a desirable feature as 
explained below. The nonlinear spring force is retained in describing the polymer's deformation 
(Eq. (6)) to avoid unbounded extension of the dumbbell. 

The FENE-V model can be compared with recent experimental measurements of Orr and 
Sridhar [42]. In an extensional flow of strain rate ~:,, the viscous stress in Eq. (7) can be 
approximated by vv ~ ~Ct~s~A provided that the Deborah number De = 2i exceeds the critical 
value for the coil-stretch transition. Thus the ratio of the magnitudes of the viscous and elastic 
stresses in Eq. (7) is 

rv ~2~" ~De. (8) 
2" e 

This equation holds for uniaxial and planar extensional flows. If the nonlinear spring 
coefficient f is included in the elastic stress, the stress ratio will simply be a constant ~/2. Thus, 
omitting f is in fact necessary if the ratio r~/re is to increase with the Deborah number, a feature 
that is evident in both simulations [9] and experiments [42]. By recording the relaxation from a 
transient uniaxial straining flow, Orr and Sridhar [42] determined a viscous stress that can be 
described by the following correlation: 

Z'v = K~(Z 'e )  TM, (9) 

where tc is a constant. It is easy to show, by using a FENE model for re, that Eq. (9) differs from 
Eq. (8). A more quantitative comparison can be made based on a subset of data in [42] for 
which the strain rate ;~ is given. This data set fits Eq. (8) well with e = 0.872. Therefore, the 
viscous stress estimated from Rallison's simulations is smaller than that obtained experimentally 
over the De range studied (1.66 _< De _ 3.17), but the two are of the same order of magnitude. 

Our calculations are done in dimensionless variables. The viscous term, if computed explicitly 
using the D tensor of the previous time step, tends to cause numerical instability. We have solved 
the flow equation iteratively, updating the tensor D in each iteration until convergence. Fig. 21 
compares the evolution of ;~ and tr A at the stagnation point for the FENE-V model with the 
results for the FENE-CR model. There is a small initial overshoot in ~ for the FENE-V model, 
and the steady-state strain rate is smaller than that for the CR model. The stretching of the 
polymer does not show any effect of the viscous stress at the beginning, but the steady-state 
value of tr A is also smaller than its FENE-CR counterpart. Away from the stagnation point, 
the viscous term causes a mild reduction in flow and polymer stretching. The velocity profile 
across the outgoing streamlines is shown in Fig. 22. Therefore, for this set of parameters, the 
main effect of the viscous stress is a mild reduction in flow and polymer stretching throughout 
the flow field. We have also tested L 2 =  100 and 400. The results are qualitatively the same 
though the magnitude of reductions in tr A and ~ is smaller for smaller L. 

In Fig. 19 we have noted that for large L values, the FENE-CR model predicts a curious 
increase in flow strength at the stagnation point. Experiments in the two-roll mill show that )~ 
at the stagnation point attains the Newtonian values io shortly after startup, and then decreases 
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toward a steady-state value which is smaller than ~o [7]. The FENE-CR model, with the 
parameters fitted to the polystyrene solution used in the experiments ( c = 0 . 1 ,  L2=2500) ,  
predicts a strain-rate greater than ~o at the stagnation point. The predicted birefringence is about 
twice the measured value. This discrepancy seems to point to a defect of  the FENE-CR model. 
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In this context, it is interesting that adding the viscous stress term reduces both ~ and tr A at the 
stagnation point. For the parameters used here, the reduction in tr A is small and the 
steady-state ~ is still above the Newtonian value. However, Fig. 21 demonstrates the possibility 
that a viscous stress effect may partly account for the discrepancy between theory and 
experiments. 

To persue this idea further one needs to undertake two tasks. First, the functional form and 
magnitude of the viscous stress must be firmly established. Currently there is much disagreement 
among the few results in the literature (see Eqs. (8) and (9)). Second, more comprehensive 
simulations should be carried out for a wide range of model parameters. In particular, 
parameter values appropriate for the polymer solutions used in experiments should be covered. 

Besides viscous stress, other remedies have been proposed for the FENE-CR model in order 
to produce quantitative agreement with experiments. An interesting idea is the interaction 
among extended polymer chains that reduces chain extensions as well as flow modification [21]. 
A theory of interacting dumbbells has recently appeared [43]. 

5. Conclusions 

The following conclusions can be drawn within the parameter ranges covered in this study. (i) 
Coupling between the flow field and the polymer configuration is such that the flow is 
suppressed and the polymer stretching is reduced. The region of significant flow suppression is 
much wider than the birefringent strand, within which the polymer is highly stretched. (ii) The 
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non-homogeneity of the flow has a profound effect on the flow-polymer coupling. Experiments 
done in non-homogeneous flows need be interpreted with caution; possible effects of non-homo- 
geneous kinematics should be distinguished from the physical effects inherent in the flow-poly- 
mer coupling. (iii) The FENE-P model is not a good choice for studying the effects of 
shear-thinning because the amount of shear-thinning is not controllable and significant shear- 
thinning sets in only at very high Deborah numbers. This may not be a major shortcoming of 
the model, however, since the dilute solutions it proposes to model usually are not strongly 
shear-thinning. (iv) The extra viscous stress of Rallison [9] reduces the strain rate and polymer 
stretching at the stagnation point. Previous comparison with experiments in the two-roll mill has 
shown that the FENE-CR model over-predicts the birefringence and the strain rate. Thus, the 
viscous stress will probably bring model predictions closer to experiments. It is possible but not 
certain at present that the discrepancy between model predictions and experiments is in part due 
to the lack of a viscous stress contribution in the FENE-CR model. 
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