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General information

When and where: Tue and Thu 2-3:30, Math 126.

My website and email: jhermon@math.ubc.ca,
www.math.ubc.ca/∼jhermon/.

Office hours: Math annex 1224, to be determined next week.

(Contact me if you want to meet this week.)
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Final grade

100% based on 4 homework assignments.

There will probably be additional exercises that I will not grade. I will
provide solutions to some of them.
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About me

I am new faculty.

My research is mainly on mixing times of Markov chains.

Only a small part of the course will be about my own research.
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Ask questions!

I expect you to ask questions!
If what I am saying or my handwriting is unclear, or if I have a typo, let me
know! You will be doing yourselves and your classmates a service.
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Literature

I will follow the lecture notes of Perla Sousi
https://www.dpmms.cam.ac.uk/∼ps422/mixing.html. I will expand upon
them throughout the semester. They will be available on my website.

The presentation will be close to the 2nd edition of the book by Levin and
Peres (with contributions by Wilmer) - available on Levin’s website - very
accessible, and has a lot of examples.

Another good book (with a heavy analytic flavour) is R. Montenegro and P.
Tetali, Mathematical aspects of mixing times in Markov chains. Foundations
and Trends in Theoretical Computer Science: Vol. 1: No. 3, pp 237-354,
2006. Available online at Prasad Tetali’s website.

D. Aldous and J. Fill, Reversible Markov Chains and Random Walks on
Graphs. Unfinished manuscript, available online at David Aldous’ website.
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What are Markov chains?

A sequence of random variables (Xn)n≥0 taking values in a state space E is
called a Markov chain if for all x0, . . . , xn ∈ E such that
P(X0 = x0, . . . ,Xn−1 = xn−1) > 0 we have

P(Xn = xn | X0 = x0, . . . ,Xn−1 = xn−1) = P(Xn = xn | Xn−1 = xn−1)

= P(xn−1, xn).

In other words, the future of the process is independent of the past
given the present.

A Markov chain is defined by its transition matrix P given by

P(i , j) = P(Xn+1 = j | Xn = i) ∀ i , j ∈ E , n ∈ N.
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Note that Pn is the time n transition probabilities

Pn(i , j) = P(Xn = j | X0 = i) =: Pi [Xn = j ] ∀ i , j ∈ E .

Under mild conditions there exists a unique invariant distribution π, and the
law of the chain at time n converges to π as n→∞. That is, for all x , y

lim
n→∞

Pn(x , y) = π(y).

In this course, the state space will almost always be finite. If the chain is
periodic, we fix this by replacing P with its δ lazy version δI + (1− δ)P, or
by working in continuous-time.
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Under mild conditions there exists a unique invariant distribution π, and the
law of the chain at time n converges to π as n→∞. That is, for all x , y

lim
n→∞

Pn(x , y) = π(y).

But how quickly does this occur? This does not say anything about the rate
of convergence!

To talk about rate of convergence we need to pick a metric.
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To quantify this, we define the ε-total-variaiton mixing time to be

tmix(ε) := inf{n : max
x
‖Pn(x , ·)− π‖TV ≤ ε},

where

‖µ− ν‖TV :=
1

2

∑
x

|µ(x)− ν(x)|.

We will see that tmix(2−k) ≤ ktmix(1/4), and so the choice of ε < 1/2 is
not important.

So we can define the mixing time as tmix := tmix(1/4).
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From a theoretical perspective, it is natural to look at a sequence of Markov
chains and study the asymptotics of the mixing times for a sequence of
Markov chains of increasing size.

We will see that this is a natural also from the perspective of applications.

The theory of mixing times is rich and has connections to other areas of
mathematics, like statistical mechanics, combinatorics and representation
theory.

Nevertheless, it is an area with a relatively low entry threshold.
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Card shuffling

Consider a deck of n cards. At each step pick two cards at random and swap
them w.p. 1/2

(or, e.g., at each step pick a random card and move it to the top of the
deck).

How many shuffles are required until the deck is shuffled well?

We will see that some card shuffling schemes can be analyzed using a
powerful technique called coupling.

This technique is indispensible part of
the toolkit of anyone working in discrete-probability.

Surprisingly, another useful technique is to use representation theory.
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Random walks on graphs

Simple random walk on a sequence of graphs. E.g., the n-cycle (at each step
stay put w.p. 1/2 and otherwise, move left or right with equal probability).
What is the order mixing time?

Hint: if the state space is {0, 1, . . . , n − 1} (this of n = 0) then P t(x , ·) is
roughly the law of [Y ] mod n, where Y ∼ N(0, t/2), where [a] is the integer
closest to a.

Answer: By the (local) CLT it is n2 � (diameter)2.
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Random walks on graphs

Simple random walk on a sequence of graphs. E.g., the n-cycle. What is the
order mixing time?
Answer: By the (local) CLT it is n2 � (diameter)2.

As we shall see, this is the case for any sequence of vertex-transitive graphs
of polynomial growth.

(G = (V ,E ) is vertex-transitive if for all x , y ∈ V there is an automorphism
mapping x to y .)

To do so, we will develop general technique to transform isoperimetric
estimates into bounds on mixing times.
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Applications to sampling and counting

Given a target distribution π, often a complicated one for which we have
some local (Gibbs measure) or recursive description, there are standard ways
of setting up a Markov chain whose stationary distribution is π.

Hence, if we want to sample from a distribution close to π, we just run such
a chain. We need to know the mixing time of the chain!

This can be used to simulate complicated distributions arising e.g. in
Bayesian statistics or statistical mechanics, and approximate certain
quantities that calculating their exact value is a hard problem.

As we will see, this is used to estimate the size of complicated combinatorial
sets (e.g., number of q-colorings of a large graph; this can be done even
when exact counting is “hard”).

The mixing time of an auxiliary Markov chain is the main component in the
running time of the randomized algorithms.
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Connections with statistical mechanics
In statistical mechanics a model on a graph G = (V ,E ) is just a distribution
π over SV , where S is some finite set.

A generic way of introducing a dynamics (Markov chain) whose invariant
distribution is π is by picking a site x at random and updating its spin (=
value) according to the distribution π conditioned on the values of the spins
of the rest of the vertices. This is called a Glauber dynamics.

This can be simmulated efficiently when π has a local description, meaning
that the update probabilities depend only on the spins of the neighbors of
the chosen vertex. Examples:

q-colorings of a graph G = (V ,E ): Pick v at random and update its color
from the uniform distribution over allowed colors. Here S := {1, . . . , q} and
π is the uniform distribution on all proper q-colorings.

Ising model: A model for ferromagnetism. Here S = {±1} and
π(σ) = 1

Z(β) exp
(
β
∑

uv∈E σ(u)σ(v)
)
.

Here the mixing time corresponds to the time it takes the system to relax to
equilibrium. It depends on the inverse temperature β, and may exhibit a
phase transition.

We will see how to approximate the partition function Z (β) using the
Glauber dynamics.
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Particle systems - the interchange process

Let G = (V ,E ) be a connected graph of size n.

Consider the model in which we have n distinct particles, one at each site.

At each step we pick a random edge xy and swap the particles currently at x
and y .

We will develop general comparison techniques that would allow us to
reduce the problem to the case that G is the complete graph.
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A sequence of MCs exhibits (TV) cutoff if the ε-mixing time is
asymptotically indep. of ε:

lim
n→∞

t
(n)
mix(ε)/t

(n)
mix(1− ε) = 1, ∀ 0 < ε < 1. (1)

Figure: The worst case TV distance of the nth chain,
dn(t) := maxx ‖P t(x , ·)− π‖TV as a function of t when cutoff occurs.
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Figure: David Aldous and Persi Diaconis - the founders of the modern study of
Markov chains.

In 86 they coined the term cutoff.

While it appears that cutoff is more the norm than the exception, it is
extremely challenging to prove, and only relatively few cases are completely
understood.
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Figure: David Aldous and Persi Diaconis

We will prove a necessary and sufficient condition for cutoff.

We will transform it into a simple spectral condition for chains for which the
graph supporting the transition probabilities is a tree.

We will prove cutoff for some card shuffling schemes and for random walk
on some random graphs.
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Transition matrix and continuouos-time

We sometimes work with continuous-time Markov chains.

Consult Levin-Peres Ch. 20 for more details.

In the finite state space setup, cts-time chains can be described as follows:
When at state x wait Exp(c) time units, and then move to state y w.p.
P(x , y). (Possibly y = x!)
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Continuouos-time Markov chains

Continuous-time Markov chains: When at state x wait Exp(c) time units,
and then move to state y (possibly y = x!) w.p. P(x , y).
The time t transition probabilities are given by the matrix
Pt := ect(P−I ) =

∑
n≥0 P[Poisson(ct) = n]Pn, where eQ :=

∑
n≥0 Q

n/n!.

Thus for all x , y ∈ E

Pt(x , y) = P[Xt = y | X0 = x ] =
∑
n≥0

P[Poisson(ct) = n]Pn(x , y).

We say that P is the jump matrix (of the cts-time chain), and that
Q := c(P − I ) is its infinitesimal (Markov) generator.

The name comes from the fact that d
dtPt = QPt = PtQ and thus

d
dtPt(x , y) |t=0= Q(x , y).
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Irreducibility, aperiodicity, recurrence

A Markov chain is called irreducible if for all x , y ∈ E there exists n ≥ 0
such that Pn(x , y) > 0.

A Markov chain is called aperiodic, if for all x we have
g.c.d.{n ≥ 1 : Pn(x , x) > 0} = 1.

A Markov chain is recurrent if Px [T+
x <∞] = 1 for all x ∈ E and is

transient otherwise, where T+
x := inf{n > 0 : Xn = x}.

It is positively recurrent if Ex [T+
x ] <∞ for all x .

Finite state space + irreducibility =⇒ positive recurrence.
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Stationary = invariant = equilibrium distribution

We call π an invariant distribution if πP = π.

(Recall: For a signed measure (row vector) σ,

(σPn)(x) :=
∑
y

σ(y)Pn(y , x).

If σ is a distribution and X0 ∼ σ, then Xn ∼ σPn.)

This means that if X0 ∼ π, then Xn ∼ π for all n ∈ N.
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Stationary = invariant = equilibrium distribution

We call π an invariant distribution if πP = π. This means that if X0 ∼ π,
then Xn ∼ π for all n ∈ N.

For a continuous-time chain (Xt)t≥0 with jump matrix P, the condition
πP = π is equivalent to πPt = π for all t ≥ 0 (check!)
and then Xt ∼ π for all t ∈ R+ whenever X0 ∼ π.

If the chain is irreducible and positively reccurent, it has a unique invariant
distribution π given by

π(x) :=
1

Ex [T+
x ]

(in continuous-time π(x) := 1
c(1−P(x,x))Ex [T

+
x ]

).
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Stationary = invariant = equilibrium distribution

Consider an irreducible, positively reccurent Markov chain.

π(x) is the asymptotic frequency of the time spent at x :

π(x) = lim
n→∞

1

n + 1

n∑
i=0

P i (y , x).

If the chain is also aperiodic then limn→∞ P[Xn = x | X0 = y ] = π(x) for all
x , y ∈ E .

In continuous-time this does not require aperiodicity!
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Reversibility
We say that P is reversible wrt π if for all x , y

(Detailed balance equation) π(x)P(x , y) = π(y)P(y , x).

This implies that (πP)(x) =
∑

y π(y)P(y , x) = π(x)
∑

y P(x , y) = π(x).

Generally, if π is invariant for P, we define the time reversal P∗ by

P∗(x , y) =
π(y)

π(x)
P(y , x).

This is a transition matrix for which π is also invariant (check!).

It is the dual operator of P wrt to the inner-product induced by π,
〈f , g〉π :=

∑
x π(x)f (x)g(x) = Eπ[fg ]. That is,

〈Pf , g〉π = 〈f ,P∗g〉π.

Recall: for a function f : State-space→ R (column vector)

(Pnf )(x) :=
∑
y

Pn(x , y)f (y) = E[f (Xn) | X0 = x ] =: Ex [f (Xn)].
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Reversibility

We say that P is reversible wrt π if for all x , y

(Detailed balance equation) π(x)P(x , y) = π(y)P(y , x).

Generally, if π is invariant for P, we define the time reversal P∗ by

P∗(x , y) =
π(y)

π(x)
P(y , x).

Hence P is reversibile iff P = P∗.

By induction: for all a0, . . . , an we have

π(a0)P(a0, a1) · · ·P(an−1, an) = π(an)P∗(an, an−1) · · ·P∗(a1, a0).

Reversibility means that at equilibrium the chain looks the same forward and
backwards: (X0, . . . ,XN) has the same distribution as (XN , . . . ,X0), when
X0 ∼ π.
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Reversibility = weighted random walks

Call a chain reversible if its transition matrix (jump matrix) is reversible.

Most of the chains that we shall study will be reversible.

This is partially due to the fact that the theory is nicer for them, as they
admit a spectral-decomposition.

It is a huge class of chains: it is the collection of weighted random walks on
graphs.
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Reversibility = weighted random walks

A finite connected (undirected) graph G = (V ,E ) and a collection of
symmetric positive weights c := (ce : e ∈ E ) is called a network.

(Symmetric means cxy = cyx ; if xy /∈ E set cxy = 0.)

A random walk on the network (G , c)
(or a weighted random walk on G with weights c)
is the Markov chain with transitions proportional to the weights c:

P(x , y) := cxy/cx ,

where cv :=
∑

u cvu for v ∈ V .

It is reversible w.r.t. π(x) := cx∑
y cy

as

π(x)P(x , y) =
cxy∑
y cy

=
cyx∑
y cy

= π(y)P(x , y).

Conversely, if P is reversible, then the chain is a weighted random walk
w.r.t. weights cxy := π(x)P(x , y), on the graph in which x ∼ y iff
P(x , y) > 0. (Check!)
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Reversibility = weighted random walks

A finite connected (undirected) graph G = (V ,E ) and a collection of
symmetric positive weights c := (ce : e ∈ E ) is called a network.

A random walk on the network (G , c) is the Markov chain with
transitions proportional to the weights c:

P(x , y) := cxy/
∑
u

cxu.

Taking ce = 1 for all e ∈ E gives rise to simple random walk on G

P(x , y) =
1{x ∼ y}

deg(x)
.
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