
MATH 220 (all sections)—Homework #12
not to be turned in

posted Friday, November 24, 2017

Definition: A set A is finite if there exists a nonnegative integer c such that there exists a bijection
from A to {n ∈ N : n ≤ c}. (The integer c is called the cardinality of A.)

I. (a) Let A be a finite set, and letB be a subset ofA. Prove thatB is finite. (Hint: induction
on |A|. Note that our proof can’t use induction on |B|, or indeed refer to “the number
of elements in B” at all, because we don’t yet know that B is finite!)

(b) Prove that the union of two disjoint finite sets is finite.
(c) Prove that the union of any two finite sets is finite. (Hint: A ∪B = A ∪ (B − A).)
(a) We proceed by induction on the nonnegative integer c in the definition that A is finite

(the cardinality of c).
Basis step: c = 0. Then there is a bijection from A to {n ∈ N : n ≤ 0} = ∅, and
thus A = ∅ (and, for that matter, the bijection is also the empty function). This forces
B = ∅ as well (since that is the only subset of ∅), which is certainly finite.
Induction step: Let c ≥ 0. The induction hypothesis is: if A has cardinality c, then
any subset of A is finite. Now suppose A has cardinality c + 1, and let f : A→ {n ∈
N : n ≤ c+1} be a bijection. Define A1 = f−1({1, . . . , c}), and note that f restricted
to A1 is a bijection from A1 to {1, . . . , c}, so that A1 has cardinality c. Finally, let B
be a subset of A.

Case 1: f−1(c + 1) /∈ B. Then B is a subset of f−1({1, . . . , c}) = A1, which has
cardinality c; by the induction hypothesis, B is finite.

Case 2: f−1(c + 1) ∈ B. Then define B1 = B − f−1(c + 1). As before, B1 is a subset
of A1 and hence finite. Let d be the cardinality of B1 and let g1 : B1 → {n ∈
N : n ≤ d} be a bijection. Now define a function g : B → {n ∈ N : n ≤ d+ 1}
by

g(x) =

{
g1(x), if x ∈ B1,

d+ 1, if x = f−1(c+ 1).

It is not hard to check that g is a bijection from B to {n ∈ N : n ≤ d + 1}. In
particular, B is finite.

(b) Let C and D be finite sets with C ∩ D = ∅, and let f : C → {n ∈ N : n ≤ c} and
g : D → {n ∈ N : n ≤ d} be bijections. Define h : C ∪D → {n ∈ N : n ≤ c+ d} by

h(x) =

{
f(x), if x ∈ C,
g(x) + c, if x ∈ D.

It is (somewhat tedious but) not hard to check that h is a bijection from C ∪ D to
{n ∈ N : n ≤ c + d}. (The fact that C ∩ D = ∅ is necessary to show that h is a
well-defined function.) In particular, C ∪D is finite.

(c) Let A and B be finite sets. Then B − A is a subset of the finite set B and hence is
itself finite by part (a). Consequently, since A and B − A are always disjoint, the set
A ∪B = A ∪ (B −A) is the union of two disjoint finite sets and is therefore finite by
part (b).



II. Let A and B be nonempty sets. Prove that there exists an injective function f : A → B if
and only if there exists a surjective function g : B → A.

First assume that f : A → B is injective. Let D = f(A) be the range of A; then f
is a bijection from A to D. Choose any a ∈ A (possible since A is nonempty). Define
g : B → A by

g(y) =

{
f−1(y), if y ∈ D,
a, if y ∈ B −D.

It is not hard to show that g is a well-defined function that is surjective.
Conversely, assume that g : B → A is surjective. Define a function f : A → B as

follows: for each a ∈ A, choose ba ∈ B such that g(ba) = a, and define f(a) = ba. It
is not hard to check that f is a well-defined function that is injective. [Interested students
who just read this proof might wish to find some introductory information about something
called the “Axiom of Choice”.]

SECTION 13.1

Show that the two given sets have equal cardinality by describing a bijection from one to
the other. Describe your bijection with a formula (not as a table).

2. R and (
√
2,∞)

4. The set of even integers and the set of odd integers
8. Z and S = {x ∈ R : sinx = 1}

10. {0, 1} × N and Z
14. N × N and {(n,m) ∈ N × N : n ≤ m}. (Hint: draw “graphs” of both sets. The

northwest–southeast diagonal slices of the first set look a lot like the horizontal slices
of the second set. . . .)

2. Adapting one of the bijections from the book, define f : R → (
√
2,∞) by f(x) =

ex+
√
2. It’s easy to check that f is a well-defined and bijective function (for example,

f−1(y) = ln(y −
√
2) is its inverse function).

4. A bijection f : {even integers} → {odd integers} is f(n) = n + 1; or f(n) = n− 1;
or indeed f(n) = n+ k or f(n) = n− k for any fixed odd integer k.

8. Note that S = {x ∈ R : sinx = 1} = {. . . ,−7π
2
,−3π

2
, π
2
, 5π

2
, . . . }. We see that one

bijection f : Z→ S is f(n) = 2πn+ π
2
.

10. Define a function f : {0, 1} × N→ Z by

f
(
(b, n)

)
=

{
n, if b = 0,

1− n, if b = 1.

It is not hard to show that f is a bijection; for example, its inverse function is

f−1(m) =

{
(0,m), if m ≥ 1,

(1, 1−m), if m ≤ 0.

14. Inspired by the given hint, define a function f : {(n,m) ∈ N×N : n ≤ m} → N×N
by f

(
(n,m)

)
= (n,m+1−n). Since n ≤ m for elements of the domain, we see that

m+1−n ≥ 1, and so the values really do lie in the codomain. One can check that this
function is a bijection; for example, its inverse function is f−1

(
(x, y)

)
= (x, x+y−1).



III. Suppose that two sets A and B have the same cardinality. Prove that P(A) and P(B) have
the same cardinality as each other.

Let f : A → B be a bijection. Define a function g : P(A) → P(B) by g(X) = f(X)
for any X ∈ P(A). (Let’s interpret the notation carefully: g(X) is a function value since
X is an element of the domain P(A) of g, while f(X) is an image since X is a subset of
the domain A of f .) We claim that g is a bijection.

First, let Y ∈ P(B). Then if we set X = f−1(Y ), then g(X) = f(X) = f(f−1(Y )) =
Y . (The identity f(f−1(Y )) = Y isn’t true in general, but it is true when f is surjective, as
shown on the previous homework.) In particular, g is surjective.

Next, let X1 and X2 be elements of P(A) and suppose that g(X1) = g(X2). Then
f(X1) = f(X2) (as images). Taking preimages of both sets yields f−1(f(X1)) = f−1(f(X2)).
Since f is injective, we have f−1(f(X1)) = X1 and f−1(f(X2)) = X2 as shown on the
previous homework; therefore X1 = X2. In particular, h is surjective.

SECTION 13.2

2. Prove that the set A = {(m,n) ∈ N× N : m ≤ n} is countably infinite.
We already know that N×N is countably infinite. By problem 14 in Section 13.1 (above),

A has the same cardinality as N× N. Therefore A is also countably infinite.
4. Prove that the set of all irrational numbers is uncountable.

Let I be the set of irrational numbers. Suppose for the sake of contradiction that I is
countably infinite. We already know that Q is countably infinite. Then R = Q∪I , the union
of two countably infinite sets, would be countably infinite as well; but this contradicts the
known fact that R is uncountable. Therefore I is not countably infinite; since I is certainly
an infinite set, we conclude that I is uncountable.

6. Prove or disprove: There exists a bijective function f : Q→ R.
Disproof: if there were such a bijective function, then Q and R would have the same

cardinality. But we know that Q is countably infinite while R is uncountable, and therefore
they do not have the same cardinality. We conclude that there is no bijection from Q to R.

8. Prove or disprove: The set Z×Q is countably infinite.
Proof: we know that both Z and Q are countably infinite, and we know that the Cartesian

product of two countably infinite sets is again countably infinite. Therefore Z × Q is
countably infinite.

12. Describe a partition of N that divides N into ℵ0 countably infinite subsets.
We know that N × N is countably infinite, so let f : N × N → N be a bijection. For

each m ∈ N , define Am = f
(
{m} × N

)
. The sets {m} × N form a partition of the

domain N × N; since f is a bijection, the sets Am form a partition of the codomain N.
Also, each set {m} × N is countably infinite (there is an obvious bijection from each to
N), and therefore their images Am under the bijection f are also each countably infinite.
Therefore {Am : m ∈ N} is the desired partition of N; this partition has |N| = ℵ0 elements,
as desired.

For example, if we take the bijection f : N×N→ N defined by f
(
(m,n)

)
= 2m−1(2n−

1), as in problem #15 of Section 13.2, then Am = {2m−1(2n− 1) : n ∈ N} is the set of all



positive integers that are divisible by 2m−1 but not divisible by 2m. For example,

A1 = {1, 3, 5, 7, 9, 11, . . . }
A2 = {2, 6, 10, 14, 18, 22, . . . }
A3 = {4, 12, 20, 28, 36, 44, . . . }
A4 = {8, 24, 40, 56, 72, 88, . . . }

...

These {Am : m ∈ N} form a partition of N into ℵ0 countably infinite subsets.
14. Suppose A = {(m,n) ∈ N× R : n = πm}. Is it true that |N| = |A|?

Yes. Note that A = {(1, π), (2, 2π), (3, 3π), . . . }. Define a function f : A → N by
f
(
(m,n)

)
= m. It is easy to check that f is a bijection. Therefore |A| = |N|.

SECTION 13.3

4. Prove or disprove: If A ⊆ B ⊆ C and A and C are countably infinite, then B is countably
infinite.

Proof: SinceA is infinite andA ⊆ B, we see thatB is infinite. (This is the contrapositive
of the first problem of this homework.) ThenB is an infinite subset of the countably infinite
set C, and therefore B is itself countably infinite.

6. Prove or disprove: Every infinite set is a subset of a countably infinite set.
Disproof: consider R, which is uncountable. If R were a subset of a countably infinite

set, then it too would be countably infinite, which is a contradiction. Therefore R is an
infinite set that is not a subset of any countably infinite set. (Indeed, no uncountable set is
a subset of a countably infinite set.)

8. Prove or disprove: The set {(a1, a2, a3, . . . ) : ai ∈ Z} of infinite sequences of integers is
countably infinite.

Disproof: let S = {(a1, a2, a3, . . . ) : ai ∈ Z}, and let f : N → S be a function. We
claim that f is not surjective. In particular, this will show that there is no bijection from N
to S, and so S is not countably infinite.

Let a(j)i denote the ith element in the sequence f(j). Define a sequence (b1, b2, b3, . . . )
where

bi =

{
1, if a(i)i 6= 1,

−1, if a(i)i = 1.

Then (b1, b2, b3, . . . ) ∈ S. On the other hand, for every i, we see that (b1, b2, b3, . . . ) 6=
f(i), since their ith coordinates bi and a(i)i are different. Therefore (b1, b2, b3, . . . ) is not in
the range of f , and therefore f is not surjective.



9. Prove that if A and B are finite sets with |A| = |B|, then any injection f : A→ B is also a
surjection. Show this is not necessarily true if A and B are not finite.

Suppose, for the sake of contradiction, that f is not surjective, and choose b ∈ B that is
not in the range of f . Let z be an object that is not an element of A, define A1 = A ∪ {z},
and define a function g : A1 → B by

g(x) =

{
b, if x = z,

f(x), if x 6= z.

It is easy to check that g is also injective. However, |A1| = |A| + 1 = |B| + 1 > |B|,
which violates the Pigeonhole Principle and is thus a contradiction. Therefore f must be
surjective.

If A and B are not finite, we have counterexamples such as A = N, B = Z, and
f : A → B being the inclusion map f(n) = n; then f is injective but not surjective (since
−1 is not in the range, for example).

10. Prove that if A and B are finite sets with |A| = |B|, then any surjection f : A→ B is also
an injection. Show this is not necessarily true if A and B are not finite.

Suppose, for the sake of contradiction, that f is not injective, and choose a1, a2 ∈ Awith
a1 6= a2 such that f(a1) = f(a2). DefineA1 = A−{a2}, and define g : A1 → B by g(x) =
f(x). It is easy to check that g is also surjective. However, |A1| = |A|−1 = |B|−1 < |B|,
which violates the Pigeonhole Principle and is thus a contradiction. Therefore f must be
injective.

If A and B are not finite, we have counterexamples such as A = N × N, B = N, and
f
(
(m,n)

)
= n; then f is surjective but not injective (since f

(
(2, 3)

)
= 3 = f

(
(7, 3)

)
, for

example).


