MATH 220 (all sections)—Homework #12

not to be turned in posted Friday, November 24, 2017

Definition: A set A is *finite* if there exists a nonnegative integer c such that there exists a bijection from A to $\{n \in \mathbb{N} : n \le c\}$. (The integer c is called the cardinality of A.)

- I. (a) Let A be a finite set, and let B be a subset of A. Prove that B is finite. (Hint: induction on |A|. Note that our proof can't use induction on |B|, or indeed refer to "the number of elements in B " at all, because we don't yet know that B is finite!)
	- (b) Prove that the union of two disjoint finite sets is finite.
	- (c) Prove that the union of any two finite sets is finite. (Hint: $A \cup B = A \cup (B A)$.)
	- (a) We proceed by induction on the nonnegative integer c in the definition that A is finite (the cardinality of c).

Basis step: $c = 0$. Then there is a bijection from A to $\{n \in \mathbb{N} : n \le 0\} = \emptyset$, and thus $A = \emptyset$ (and, for that matter, the bijection is also the empty function). This forces $B = \emptyset$ as well (since that is the only subset of \emptyset), which is certainly finite.

Induction step: Let $c \geq 0$. The induction hypothesis is: if A has cardinality c, then any subset of A is finite. Now suppose A has cardinality $c + 1$, and let $f : A \to \{n \in \mathbb{R}\}$ $\mathbb{N}: n \leq c+1$ } be a bijection. Define $A_1 = f^{-1}(\{1, \ldots, c\})$, and note that f restricted to A_1 is a bijection from A_1 to $\{1, \ldots, c\}$, so that A_1 has cardinality c. Finally, let B be a subset of A.

Case 1: $f^{-1}(c+1) \notin B$. Then B is a subset of $f^{-1}(\{1,\ldots,c\}) = A_1$, which has cardinality c ; by the induction hypothesis, B is finite.

Case 2: $f^{-1}(c+1) \in B$. Then define $B_1 = B - f^{-1}(c+1)$. As before, B_1 is a subset of A_1 and hence finite. Let d be the cardinality of B_1 and let $g_1: B_1 \to \{n \in$ $\mathbb{N}: n \leq d$ be a bijection. Now define a function $g: B \to \{n \in \mathbb{N}: n \leq d+1\}$ by

$$
g(x) = \begin{cases} g_1(x), & \text{if } x \in B_1, \\ d+1, & \text{if } x = f^{-1}(c+1). \end{cases}
$$

It is not hard to check that q is a bijection from B to $\{n \in \mathbb{N} : n \leq d + 1\}$. In particular, B is finite.

(b) Let C and D be finite sets with $C \cap D = \emptyset$, and let $f: C \to \{n \in \mathbb{N} : n \leq c\}$ and $g: D \to \{n \in \mathbb{N} : n \leq d\}$ be bijections. Define $h: C \cup D \to \{n \in \mathbb{N} : n \leq c + d\}$ by

$$
h(x) = \begin{cases} f(x), & \text{if } x \in C, \\ g(x) + c, & \text{if } x \in D. \end{cases}
$$

It is (somewhat tedious but) not hard to check that h is a bijection from $C \cup D$ to ${n \in \mathbb{N} : n \leq c + d}$. (The fact that $C \cap D = \emptyset$ is necessary to show that h is a well-defined function.) In particular, $C \cup D$ is finite.

(c) Let A and B be finite sets. Then $B - A$ is a subset of the finite set B and hence is itself finite by part (a). Consequently, since A and $B - A$ are always disjoint, the set $A \cup B = A \cup (B - A)$ is the union of two disjoint finite sets and is therefore finite by part (b).

II. Let A and B be nonempty sets. Prove that there exists an injective function $f: A \rightarrow B$ if and only if there exists a surjective function $q: B \to A$.

First assume that $f: A \rightarrow B$ is injective. Let $D = f(A)$ be the range of A; then f is a bijection from A to D. Choose any $a \in A$ (possible since A is nonempty). Define $g: B \to A$ by

$$
g(y) = \begin{cases} f^{-1}(y), & \text{if } y \in D, \\ a, & \text{if } y \in B - D. \end{cases}
$$

It is not hard to show that q is a well-defined function that is surjective.

Conversely, assume that $g: B \to A$ is surjective. Define a function $f: A \to B$ as follows: for each $a \in A$, choose $b_a \in B$ such that $g(b_a) = a$, and define $f(a) = b_a$. It is not hard to check that f is a well-defined function that is injective. [Interested students who just read this proof might wish to find some introductory information about something called the "Axiom of Choice".]

SECTION 13.1

Show that the two given sets have equal cardinality by describing a bijection from one to the other. Describe your bijection with a formula (not as a table).

- 2. R and $(\sqrt{2}, \infty)$
- 4. The set of even integers and the set of odd integers
- 8. Z and $S = \{x \in \mathbb{R} : \sin x = 1\}$
- 10. $\{0, 1\} \times \mathbb{N}$ and \mathbb{Z}
- 14. $\mathbb{N} \times \mathbb{N}$ and $\{(n,m) \in \mathbb{N} \times \mathbb{N} : n \leq m\}$. (Hint: draw "graphs" of both sets. The northwest–southeast diagonal slices of the first set look a lot like the horizontal slices of the second set. . . .)
- 2. Adapting one of the bijections from the book, define $f: \mathbb{R} \to (\sqrt{2\pi})^n$ positing one of the bijections from the book, define $f: \mathbb{R} \to (\sqrt{2}, \infty)$ by $f(x) =$ $e^x + \sqrt{2}$. It's easy to check that f is a well-defined and bijective function (for example, $f^{-1}(y) = \ln(y - \sqrt{2})$ is its inverse function).
- 4. A bijection f : {even integers} \rightarrow {odd integers} is $f(n) = n + 1$; or $f(n) = n 1$; or indeed $f(n) = n + k$ or $f(n) = n - k$ for any fixed odd integer k.
- 8. Note that $S = \{x \in \mathbb{R} : \sin x = 1\} = \{\ldots, -\frac{7\pi}{2}\}$ $\frac{7\pi}{2}, -\frac{3\pi}{2}$ $\frac{3\pi}{2}, \frac{\pi}{2}$ $\frac{\pi}{2}, \frac{5\pi}{2}$ $\frac{\sin \pi}{2}, \ldots$ }. We see that one bijection $f: \mathbb{Z} \to S$ is $f(n) = 2\pi n + \frac{\pi}{2}$ $\frac{\pi}{2}$.
- 10. Define a function $f: \{0, 1\} \times \mathbb{N} \to \mathbb{Z}$ by

$$
f((b,n)) = \begin{cases} n, & \text{if } b = 0, \\ 1 - n, & \text{if } b = 1. \end{cases}
$$

It is not hard to show that f is a bijection; for example, its inverse function is

$$
f^{-1}(m) = \begin{cases} (0, m), & \text{if } m \ge 1, \\ (1, 1 - m), & \text{if } m \le 0. \end{cases}
$$

14. Inspired by the given hint, define a function $f: \{(n,m) \in \mathbb{N} \times \mathbb{N} : n \le m\} \to \mathbb{N} \times \mathbb{N}$ by $f((n,m)) = (n, m+1-n)$. Since $n \leq m$ for elements of the domain, we see that $m+1-n \geq 1$, and so the values really do lie in the codomain. One can check that this function is a bijection; for example, its inverse function is $f^{-1}((x, y)) = (x, x+y-1)$.

III. Suppose that two sets A and B have the same cardinality. Prove that $P(A)$ and $P(B)$ have the same cardinality as each other.

Let $f: A \to B$ be a bijection. Define a function $g: \mathcal{P}(A) \to \mathcal{P}(B)$ by $g(X) = f(X)$ for any $X \in \mathcal{P}(A)$. (Let's interpret the notation carefully: $g(X)$ is a function value since X is an element of the domain $\mathcal{P}(A)$ of g, while $f(X)$ is an image since X is a subset of the domain A of f.) We claim that q is a bijection.

First, let $Y \in \mathcal{P}(B)$. Then if we set $X = f^{-1}(Y)$, then $g(X) = f(X) = f(f^{-1}(Y))$ Y. (The identity $f(f^{-1}(Y)) = Y$ isn't true in general, but it is true when f is surjective, as shown on the previous homework.) In particular, g is surjective.

Next, let X_1 and X_2 be elements of $\mathcal{P}(A)$ and suppose that $g(X_1) = g(X_2)$. Then $f(X_1) = f(X_2)$ (as images). Taking preimages of both sets yields $f^{-1}(f(X_1)) = f^{-1}(f(X_2))$. Since f is injective, we have $f^{-1}(f(X_1)) = X_1$ and $f^{-1}(f(X_2)) = X_2$ as shown on the previous homework; therefore $X_1 = X_2$. In particular, h is surjective.

SECTION 13.2

2. Prove that the set $A = \{(m, n) \in \mathbb{N} \times \mathbb{N} : m \leq n\}$ is countably infinite.

We already know that $N \times N$ is countably infinite. By problem 14 in Section 13.1 (above), A has the same cardinality as $N \times N$. Therefore A is also countably infinite.

4. Prove that the set of all irrational numbers is uncountable.

Let I be the set of irrational numbers. Suppose for the sake of contradiction that I is countably infinite. We already know that $\mathbb Q$ is countably infinite. Then $\mathbb R = \mathbb Q \cup I$, the union of two countably infinite sets, would be countably infinite as well; but this contradicts the known fact that $\mathbb R$ is uncountable. Therefore I is not countably infinite; since I is certainly an infinite set, we conclude that I is uncountable.

6. Prove or disprove: There exists a bijective function $f: \mathbb{Q} \to \mathbb{R}$.

Disproof: if there were such a bijective function, then $\mathbb Q$ and $\mathbb R$ would have the same cardinality. But we know that $\mathbb Q$ is countably infinite while $\mathbb R$ is uncountable, and therefore they do not have the same cardinality. We conclude that there is no bijection from $\mathbb Q$ to $\mathbb R$.

8. Prove or disprove: The set $\mathbb{Z} \times \mathbb{Q}$ is countably infinite.

Proof: we know that both $\mathbb Z$ and $\mathbb Q$ are countably infinite, and we know that the Cartesian product of two countably infinite sets is again countably infinite. Therefore $\mathbb{Z} \times \mathbb{Q}$ is countably infinite.

12. Describe a partition of N that divides N into \aleph_0 countably infinite subsets.

We know that $\mathbb{N} \times \mathbb{N}$ is countably infinite, so let $f : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ be a bijection. For each $m \in N$, define $A_m = f(\lbrace m \rbrace \times \mathbb{N})$. The sets $\lbrace m \rbrace \times \mathbb{N}$ form a partition of the domain $\mathbb{N} \times \mathbb{N}$; since f is a bijection, the sets A_m form a partition of the codomain \mathbb{N} . Also, each set $\{m\} \times \mathbb{N}$ is countably infinite (there is an obvious bijection from each to N), and therefore their images A_m under the bijection f are also each countably infinite. Therefore $\{A_m : m \in \mathbb{N}\}\$ is the desired partition of N; this partition has $|\mathbb{N}| = \aleph_0$ elements, as desired.

For example, if we take the bijection $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ defined by $f((m, n)) = 2^{m-1}(2n-1)$ 1), as in problem #15 of Section 13.2, then $A_m = \{2^{m-1}(2n-1): n \in \mathbb{N}\}\)$ is the set of all positive integers that are divisible by 2^{m-1} but not divisible by 2^m . For example,

$$
A_1 = \{1, 3, 5, 7, 9, 11, \dots\}
$$

\n
$$
A_2 = \{2, 6, 10, 14, 18, 22, \dots\}
$$

\n
$$
A_3 = \{4, 12, 20, 28, 36, 44, \dots\}
$$

\n
$$
A_4 = \{8, 24, 40, 56, 72, 88, \dots\}
$$

\n
$$
\vdots
$$

These $\{A_m : m \in \mathbb{N}\}\$ form a partition of N into \aleph_0 countably infinite subsets.

14. Suppose $A = \{(m, n) \in \mathbb{N} \times \mathbb{R} : n = \pi m\}$. Is it true that $|\mathbb{N}| = |A|$?

Yes. Note that $A = \{(1, \pi), (2, 2\pi), (3, 3\pi), \dots\}$. Define a function $f: A \to \mathbb{N}$ by $f((m, n)) = m$. It is easy to check that f is a bijection. Therefore $|A| = |\mathbb{N}|$.

SECTION 13.3

4. Prove or disprove: If $A \subseteq B \subseteq C$ and A and C are countably infinite, then B is countably infinite.

Proof: Since A is infinite and $A \subseteq B$, we see that B is infinite. (This is the contrapositive of the first problem of this homework.) Then B is an infinite subset of the countably infinite set C , and therefore B is itself countably infinite.

6. Prove or disprove: Every infinite set is a subset of a countably infinite set.

Disproof: consider $\mathbb R$, which is uncountable. If $\mathbb R$ were a subset of a countably infinite set, then it too would be countably infinite, which is a contradiction. Therefore $\mathbb R$ is an infinite set that is not a subset of any countably infinite set. (Indeed, no uncountable set is a subset of a countably infinite set.)

8. Prove or disprove: The set $\{(a_1, a_2, a_3, \dots): a_i \in \mathbb{Z}\}\$ of infinite sequences of integers is countably infinite.

Disproof: let $S = \{(a_1, a_2, a_3, \dots) : a_i \in \mathbb{Z}\}\$, and let $f : \mathbb{N} \to S$ be a function. We claim that f is not surjective. In particular, this will show that there is no bijection from $\mathbb N$ to S , and so S is not countably infinite.

Let $a_i^{(j)}$ ^(j) denote the *i*th element in the sequence $f(j)$. Define a sequence (b_1, b_2, b_3, \dots) where

$$
b_i = \begin{cases} 1, & \text{if } a_i^{(i)} \neq 1, \\ -1, & \text{if } a_i^{(i)} = 1. \end{cases}
$$

Then $(b_1, b_2, b_3, \dots) \in S$. On the other hand, for every i, we see that $(b_1, b_2, b_3, \dots) \neq S$ $f(i)$, since their *i*th coordinates b_i and $a_i^{(i)}$ $iⁱ$ are different. Therefore (b_1, b_2, b_3, \dots) is not in the range of f , and therefore f is not surjective.

9. Prove that if A and B are finite sets with $|A| = |B|$, then any injection $f: A \rightarrow B$ is also a surjection. Show this is not necessarily true if A and B are not finite.

Suppose, for the sake of contradiction, that f is not surjective, and choose $b \in B$ that is not in the range of f. Let z be an object that is not an element of A, define $A_1 = A \cup \{z\}$, and define a function $g: A_1 \rightarrow B$ by

$$
g(x) = \begin{cases} b, & \text{if } x = z, \\ f(x), & \text{if } x \neq z. \end{cases}
$$

It is easy to check that q is also injective. However, $|A_1| = |A| + 1 = |B| + 1 > |B|$, which violates the Pigeonhole Principle and is thus a contradiction. Therefore f must be surjective.

If A and B are not finite, we have counterexamples such as $A = \mathbb{N}$, $B = \mathbb{Z}$, and $f: A \to B$ being the inclusion map $f(n) = n$; then f is injective but not surjective (since −1 is not in the range, for example).

10. Prove that if A and B are finite sets with $|A| = |B|$, then any surjection $f: A \rightarrow B$ is also an injection. Show this is not necessarily true if A and B are not finite.

Suppose, for the sake of contradiction, that f is not injective, and choose $a_1, a_2 \in A$ with $a_1 \neq a_2$ such that $f(a_1) = f(a_2)$. Define $A_1 = A - \{a_2\}$, and define $g: A_1 \to B$ by $g(x) =$ $f(x)$. It is easy to check that g is also surjective. However, $|A_1| = |A| - 1 = |B| - 1 < |B|$, which violates the Pigeonhole Principle and is thus a contradiction. Therefore f must be injective.

If A and B are not finite, we have counterexamples such as $A = \mathbb{N} \times \mathbb{N}$, $B = \mathbb{N}$, and $f((m, n)) = n$; then f is surjective but not injective (since $f((2, 3)) = 3 = f((7, 3))$, for example).