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Preface

The materials presented in this book is based on a graduate course at the
University of British Columbia, Vancouver, which was delivered by the author in
the fall semester of 2021.

The essential theme of the book is about basic properties of the stationary
points of the volume functional of submanifolds in various geometric settings. Af-
ter a motivative discussion on fundamental rigidity and curvature estimates re-
sults for stable hypersurfaces, we mainly focus on a distinguished class of higher
co-dimensional volume critical points, namely, within the space of Lagrangian sub-
manifolds in a symplectic manifold.

We provide a precise introduction on the background, necessary to the devel-
opments in the book, on symplectic geometry, and provide detailed proofs of some
important facts, such as the Darboux’s theorem, Weinstein’s Lagrangian neighbour-
hood theorem, the Darboux coordinates with estimates of Lee-Joyce-Schoen, which
will be needed in the later part of the discussion. Our main concentration is on the
so-called Hamiltonian stationary Lagrangian submanifolds, in Cn and beyond.

Regularity of HSL submanifolds lies in the central place of the book. Two
approaches are presented in full detail. The first one observes the delicate boot-
strapping by viewing the HSL equation as factorized fourth order elliptic equation
into a Laplace operator acting on the second order elliptic operator Θ, which admits
a geometric interpretation when the ambient is Cn as the Lagrangian phase function
and most importantly it can be written a sum of the arctangent for further linkage
to the Evans-Krylov theory, now in the inhomogeneous setting as demonstrated by
Cabré-Caffarelli. Secondly, we deliver a fourth order elliptic theory, which applies
to a reasonably large class of elliptic equations in the double divergence form. Our
regularity theory on 4th-order equations, in this less geometric approach, enables us
to conclude statements in a general symplectic manifold. Getting rid off the special
arctan expression of Θ in Cn separates the two situations (based on ambient space
is Cn or not) is a conceptual advance for our understanding.

We will also address issues on removable singularity (in graphical setting or
general setting) and on compactness of the space of compact HSL with bounded
extrinsic total curvature and volume.

vii



1

Riemannian Geometry of Submanifolds

1.1. First and second variations of volume

Let Σ be a manifold of dimension k and M be a manifold of dimension n > k.
Suppose f : Σ → M is an immersion. We will write Σ ⊂ M by identifying Σ with
f(Σ) is no confusion arises. Let h be the induced metric on Σ from (M, g). The
second fundamental form of Σ of Σ in M at p is a map

A : TpΣ× TpΣ→ (TpΣ)⊥

defined by

A(X,Y ) = (∇XY )⊥, X, Y ∈ TpΣ.
Note that A is symmetric. The trace of A is the mean curvature H = TrhA =
hijA(∂i, ∂j) where ∂1, . . . , ∂k is a basis for TpΣ and (hij) is the inverse of (hij) with
hij = h(∂i, ∂j).

Let Ft : M →M be a family of diffeomorphisms with F0 being the identity map for
t ∈ (−ε, ε). The variation vector field generated by Ft is denoted by X = dFt

dt |t=0.
Write Σt = Ft(f(Σ)). Consider a family of maps

ϕ : Σ× (−ε, ε)→M

given by

ϕ(x, t) = Ft(f(x))

In the following, if no confusion arises, we will identity Σ with f(Σ) from now
on. Let g be a Riemannian metric on M . Take a coordinate system (x1, . . . , xk)
around some p ∈ Σ. Denote the volume of the Σt in the induced metric h = ϕ∗g
on Σ by |Σt|. Then

d

dt

∣∣∣
t=0
|Σt| =

∫
Σ

d

dt

∣∣∣
t=0

√
detht=0 dx

=

∫
Σ

hij(∇∂xiϕ
′, ∂xj )t=0

√
detht=0 dx

=

∫
Σ

divΣX
√

detht=0 dx.

Therefore, we have the 1st variation formula:

(1.1) δ|Σ|(X) =

∫
Σ

divΣX dµh.

Note that divΣX =
∑k
i=1〈∇eiX, ei〉 with e1, . . . , ek o.n. basis for Σ.

Decompose X = XT +X⊥ along Σ. We have

divΣX = divΣX
T + divΣX

⊥

1



1.1. FIRST AND SECOND VARIATIONS OF VOLUME 2

where, by setting N1, . . . , Nn−k o.n. basis for TΣ⊥, X⊥ =
∑n−k
j=1 〈X,Nj〉Nj

divΣX
⊥ =

k∑
i=1

〈∇eiX⊥, ei〉 =

n−k∑
j=1

k∑
i=1

〈X,Nj〉〈∇eiNj , ei〉 = −〈X⊥, H〉

by Weingarten’s equations. By the divergence theorem, we get the first variation
formula of volume:

(1.2) δ|Σ|(X) =

∫
Σ

〈X,H〉dµ+

∫
∂Σ

〈X, η〉dν

where η is the outward unit normal of ∂Σ in Σ. We say Σ is a minimal subman-
ifold in (M, g) if δ|Σ|(X) = 0 for any C1-regular X.

We now compute the 2nd variation of volume for a normal variation X at t = 0.
First,

d

dt

√
deth =

1

2
hijh′ij

√
deth.

Then

d2

dt2

√
deth =

1

4
(hijh′ij)

2
√

deth+
1

2
(hij

′
h′ij)
√

deth+
1

2
hijh′′ij

√
deth.

At t = 0, we compute

h′ij = 〈∇∂tϕ∂iϕ, ∂jϕ〉+ 〈∇∂tϕ∂jϕ, ∂iϕ〉
= 〈∇∂iϕ∂tϕ, ∂jϕ〉+ 〈∇∂jϕ∂tϕ, ∂iϕ〉
= 〈∇ϕiX, ∂jϕ〉+ 〈∇ϕjX, ∂iϕ〉
= −〈X,∇ϕj∂iϕ〉 − 〈X,∇ϕi∂jϕ〉
= −〈Aij , X〉 − 〈Aji, X〉
= −2〈Aij , X〉

Therefore, at t = 0,

hijh′ij = −2〈H,X〉 (= 0 if Σ is minimal)

Next,

hij
′
h′ij = −2hij

′
〈Aij , X〉 = 2hikhljh′kl〈Aij , X〉

= −4hikhjl〈Akl, X〉〈Aij , X〉
= −4|〈A,X〉|2.

Thirdly,

h′′ij = 〈∇∂tϕ∇∂iϕ∂tϕ, ∂jϕ〉+ 〈∇∂tϕ∂iϕ,∇∂tϕ∂jϕ〉+ 〈∇∂tϕ∇∂jϕ∂tϕ, ∂iϕ〉+ 〈∇∂tϕ∂jϕ,∇∂tϕ∂iϕ〉
= 〈R(∂tϕ, ∂iϕ)∂tϕ, ∂jϕ〉+ 〈∇∂iϕϕ′′, ∂jϕ〉+ 〈∇∂tϕ∂iϕ,∇∂tϕ∂jϕ〉+ i, j swapped terms

= −R(X, ∂iϕ,X, ∂jϕ) + 〈∇∂iϕϕ′′, ∂jϕ〉+ 〈∇∂iϕX,∇∂jϕX〉+ i, j swapped terms.

It follows, at t = 0,

hijh′′ij = −2R(X, ∂iϕ,X, ∂jϕ) + 2divΣϕ
′′ + 2|∇⊥X|2 + 2hij(∇T∂iX,∇

T
∂jX)

= −2R(X, ∂iϕ,X, ∂jϕ) + 2divΣϕ
′′ + 2|∇⊥X|2 + 2|〈A,X〉|2.

Hence,

d2

dt2

∣∣∣
t=0

√
deth = divΣϕ

′′ + |∇⊥X|2 − |〈A,X〉|2 − hijR(X, ∂iϕ,X, ∂jϕ).
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Integrating, we get the second variation formula of volume:

(1.3) δ2|Σ|(X,X) =

∫
Σ

|∇⊥X|2 − |〈A,X〉|2 −
k∑
i=1

R(X, ei, X, ei) + 〈X,H〉2

where e1, . . . , ek is am o.n. basis for the tangent space of Σ and X is normal to Σ.

A minimal submanifold is stable is its second variation is nonnegative for all
X. When Σ is complete noncompact, we use compactly supported X. Σ is volume
minimizing if any compact region Ω ⊂ Σ has least volume among k-dimensional
submanfolds in M with the same boundary ∂Ω. When ∂Σ is nonempty, we can
consider the so-called Morse index. Suppose the normal v.f. X vanishes on ∂Σ.
Integration by parts allows us to write

δ2|Σ|(X,X) = −
∫

Σ

〈LX,X〉dµΣ

where

LX = ∆⊥X + trRM (·, X, ·, X) +
∑
i,j

〈A(ei, ej), X〉A(ei, ej)

and

∆⊥ =

k∑
i=1

(∇ei∇eiX)⊥ −
k∑
i=1

(∇(∇eiei)TX)⊥

is the normal Laplacian along Σ. We call L stability operator or Jacobi operator
(defined on the normal bundle of Σ). A Jacobi field is a normal vector field X
with LX = 0. We can verify that L is self-adjoint. It has discrete real eigenvalues
λ1 ≤ λ2 ≤ · · · → ∞ on compact Ω ⊂ Σ for nontrivial normal v.f. X vanishing on
∂Σ such that

LX + λX = 0.

The number of negative eigenvalues of L (counting multiplicity) acting on the space
of smooth sections of the normal bundle which vanish on ∂Σ is called the Morse
index of the minimal submanifold Σ.

1.2. Minimal Submanifolds

1.2.1. Examples and basic facts.

(1) Graphs in Rn+1. Let f : Ω ⊆ Rn → R be a smooth function. Its graph
(x, f) = {(x, f(x) : x ∈ Ω} is a hypersurface in Rn+1 whose mean curva-
ture is

H = div

(
Df√

1 + |Df |2

)
in turn the divergence form of the minimal surface equation (MSE) is

∂

∂xi
ui√

1 + |Df |2
= 0.

Work out n = 2, the classical MSE. Catenoid is a complete embedded
minimal surface in R3 with two ends. Search for other minimal surfaces
in R3 on-line!

(2) Sn ∩ Pk is minimal in Sn with the standard metric, where Pk is a k-plane
through 0.
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(3) M,N are minimal submanifolds in (M × N, g1 × g2). In fact, they are
totally geodesic, i.e. A ≡ 0.

(4) Every compact surface can be minimally immersed into Sn. (Calabi)
(5) Any minimal submanifold in Sn is unstable! (Lawson-Simons)
(6) Simons cone. The 7-dimensional cone

{(x, y) ∈ R4 × R4 : |x| = |y|}
has zero mean curvature outside 0.

(7) If M ⊂ Sn is an immersed minimal submanifold, then the cone over M

C(M) = {tx : t > 0, x ∈M}
is minimal in Rn+1.

(8) Every complex submanifold, for example the 0-locus of a holomorphic
polynomial, in CPn with the Fubini-Study metric is minimal and in fact is
volume minimizing in its homology class. More generally, every complex
submanifold ino a Kähler manifold minimizes volume in its homology
class, therefore is a minimal submanifold. (Wirtinger’s inequality)

(9) There is no compact immersed minimal submanifolds in Rn (any co-
dimension!). This is due to the Liouville property: for a minimal im-
mersion F : Σ→ Rn

∆F = H = 0.

(10) The Plateau Problem: Show the existence of a minimal surface with a
given boundary, a problem raised by Lagrange in 1760. However, it is
named after Plateau who experimented with soap films. The affirmative
answer to this question was credited to Douglas (awarded the Fields medal
for this work) and Rado. It does not say the solution is unique.

(11) Minimal surfaces. Let f : Σ2 → (M, g) be an immersion. The, f(Σ)
is a minimal submanifold in (M, g) if and only if f is conformal, i.e.
f∗g = e2uh where h is a metric on Σ, and f is a harmonic map from
(Σ, h) to (M, g) defined by

τ(f)α := hij∂2
ijf

α − hij(ΓΣ)kij∂kf
α + hij(ΓM )αβγ∂if

β∂jf
γ = 0,

where i, j = 1, . . . ,dim Σ and α = 1, . . . ,dimM . τ(f) is called the tension
field of f .

1.2.2. Simons identity and Simons inequality. This refers to the impor-
tant formula, first derived by J. Simons (1967), that computes the Laplacian of the
second fundamental form A of a minimal submanifold in a Riemannian manifold.
We will follow S. S. Chern [“Minimal submanifolds of a Riemannian manifold”,
lecture notes, Univ. Kansas, 1969], as recorded in Schoen-Simon-Yau (1975).

Let Σn be an oriented minimal submanifold in (Mn+1, g). Choose local o.n.
frame e1, . . . , en+1 on N such that ei|Σ is tangential to Σ. Let ω1, . . . , ωn+1 be the
dual frames, i.e. ωi(ej) = δij . The structure equations of M are given by

(1.4) dωi = −
n+1∑
j=1

ωij ∧ ωj , ωij + ωji = 0.

(1.5) dωij = −
n+1∑
k=1

ωik ∧ ωkj + Ωij .
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defining the connection matrix ωij and the curvature matrix

Ωij =
1

2

n+1∑
k,l=1

Kijklωk ∧ ωl, Kijkl +Kijlk = 0,

respectively. Restricting to Σ,

ωn+1 = 0.

So

0 = dωn+1 = −
n∑
i=1

ω(n+1)i ∧ ωi

and by Cartan’s lemma we can write

(1.6) ω(n+1)i =

n∑
j=1

Aijωj , Aij = Aji.

Then

dωi = −
n∑
j=1

ωij ∧ ωj , ωij + ωji = 0

dωij = −
n∑
k=1

ωik ∧ ωkj +
1

2

n∑
k,l=1

Rijklωk ∧ ωl

where

Rijkl = Kijkl +AikAjl −AilAjk.
This is the Gauss equations, relating curvature R of Σ to K and the 2nd fundamen-
tal form A =

∑n
i,j=1Aijωiωj . The mean curvature nH =

∑n
i=1Aii. By exterior

differenting (1.6),

dω(n+1)i =

n∑
j=1

dAij ∧ ωj +

n∑
j=1

Aijdωj =

n∑
j=1

dAij ∧ ωj −
n∑

j,k=1

Aijωjk ∧ ωk

and recalling ω(n+1)(n+1) = 0, so

dω(n+1)i =

n+1∑
j=1

ω(n+1)j ∧ ωji +
1

2

n∑
j,k=1

K(n+1)ijkωj ∧ ωk

=

n∑
j,k=1

Ajkωk ∧ ωji +
1

2

n∑
j,k=1

K(n+1)ijkωj ∧ ωk

(1.7)

n∑
k=1

Aijkωk := dω(n+1)i(ej) = dAij −
n∑
k=1

Aikωkj −
n∑
k=1

Akjωki.

Then

(1.8) Aijk −Aikj = K(n+1)ikj = −K(n+1)ijk.

Exterior differentiatie (1.7) and define

n∑
l=1

Aijklωi = dAijk −
n∑
l=1

(Aljkωli +Aijlωlk +Ailkωlj) .
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Then

n∑
k,l=1

(
Aijkl −

1

2

n∑
m=1

AimRmjkl −
1

2

n∑
m=1

AmjRmikl

)
ωk ∧ ωl = 0

and

(1.9) Aijkl −Aijlk =

n∑
m=1

(AimRmjkl +AmjRmikl) .

Covariantly differentiating the 4-tensor Kijkl then restricting to Σ

K(n+1)ijk;l = K(n+1)ijkl −K(n+1)i(n+1)kAjl −K(n+1)ij(n+1)Akl −
n∑

m=1

AmlKmijk

where

n∑
l=1

K(n+1)ijklωl = dK(n+1)ijk−
n∑

m=1

(
K(n+1)mjkωmi +K(n+1)imkωmj +K(n+1)ijmωmk

)
.

Define

∆Aij =

n∑
k=1

Aijkk.

Then, by (1.8)

∆Aij =

n∑
k=1

(
Aikjk −K(n+1)ijkk

)
=

n∑
k=1

(
Akijk −K(n+1)ijkk

)
.

By (1.9)

Akijk = Akikj +

n∑
m=1

(AkmRmijk +AmiRmkjk) .

Combining the previous formulas

∆Aij =

n∑
k=1

(
Akkij −K(n+1)kik;j −K(n+1)ijk;k −AkkK(n+1)ij(n+1) −AijK(n+1)k(n+1)k

)
+

n∑
m,k=1

(AmjKmkik +AmiKmkjk + 2AmkKmijk)

+

n∑
m,k=1

(AmiAmjAkk +AkmAkiAmj −AkmAkmAij −AmiAmkAkj) .(1.10)

When nH =
∑n
k=1Akk = 0, we have

n∑
i,j=1

Aij∆Aij = −
n∑

i,j,k=1

(
AijK(n+1)kik;j +AijK(n+1)ijk;k +A2

ijK(n+1)k(n+1)k

)
+

n∑
m,i,j,k=1

(2AmjAijKmkik + 2AmkAijKmijk)− |A|4.(1.11)
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For simplicity, we will assume the curvature tensor K of M is 0. More general
situation is treated in Schoen-Simon-Yau. Now, (1.11) becomes

(1.12)

n∑
i,j=1

Aij∆Aij = −|A|4.

It follows

1

2
∆|A|2 =

n∑
i,j=1

Aij∆Aij +
n∑

i,j=1

|∇Aij |2 = −|A|4 +
n∑

i,j=1

|∇Aij |2.

In turn, we obtain the so-called Simons identity:

(1.13) ∆|A|2 = 2

n∑
i,j=1

|∇Aij |2 − 2|A|4

where |A|2 =
∑
i,j A

2
ij .

At any p ∈ Σ, we can choose our frame {e1, . . . , en} so that the 2nd fundamental
form is diagonalized at p (one can only do this for codimension one case):

Aij = λiδij .

At such a point p, we have

4|A|2|∇|A||2 = |∇|A|2|2

=
∑
k

(
∑
i,j

A2
ij)k

2

= 4
∑
k

∑
i,j

λiAiik

2

≤ 4|A|2
∑
i,k

A2
iik.
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Assume |A|(p) 6= 0. Then we see

|∇|A||2 ≤
∑
i,k

A2
ijk

=
∑
i 6=k

A2
iik +

∑
i

A2
ii;i

=
∑
i 6=k

A2
iik +

∑
i

∑
i 6=j

Ajji

2

(by minimality)

≤
∑
i 6=k

A2
iik + (n− 1)

∑
i

∑
i6=j

A2
jji

= n
∑
i6=k

A2
iik

= n
∑
i6=k

A2
iki (by (1.8) and K = 0)

=
1

2

∑
i6=k

A2
iki +

∑
i 6=k

A2
kii

 .

Therefore, we can sum up the observations above:

(1.14)

(
1 +

2

n

)
|∇|A||2 ≤

∑
i,k

A2
iik +

∑
i 6=k

A2
iki +

∑
i 6=k

A2
kii ≤

∑
i,j,k

A2
ijk.

We arrive at Simons inequality for a minimal submanifold in a flat Riemannian
manifold M :

(1.15) ∆|A|2 ≥ −2|A|4 + 2

(
1 +

2

n

)
|∇|A||2.

1.2.3. Stability inequality and Curvature estimate. Let Σn ⊂Mn+1 be
a orientable stable minimal hypersurface. There exists a unit normal vector field
N along Σ and every section (TX)⊥ can be written as X = fN for some smooth
function f on Σ with compact support. Then

0 ≤ −
∫

Σ

〈L(fN), fN〉 = −
∫

Σ

f∆f + |A|2f2 +Ric(N,N)f2.

Integrating by parts, we obtain the stability inequality

(1.16)

∫
Σ

|A|2f2 +Ric(N,N)f2 ≤
∫

Σ

|∇f |2.

In particular, when M = Rn+1, the stability reads

(1.17)

∫
Σ

|A|2f2 ≤
∫

Σ

|∇f |2.

We now derive the integral curvature estimates of Schoen-Simon-Yau.

Step 1. Replacing f by |A|1+qf with q ≥ 0 in the stability inequality leads to
(1.18)∫

Σ

|A|4+2qf2 ≤ (1+q)2

∫
Σ

|A|2q|∇|A||2f2+

∫
Σ

|A2+2q|∇f |2+(2+2q)

∫
Σ

|A|1+2qf |∇|A|·∇f.
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On the other hand, multiplying the Simons inequality

|A|∆|A|+ |A|4 ≥ 2

n
|∇|A||2

by f2|A|2q and integrating by parts

2

n

∫
Σ

|A|2q|∇|A||2f2 ≤
∫

Σ

|A|4+2qf2 − 2

∫
Σ

f |A|2q+1∇f∇|A| − (1 + 2q)

∫
Σ

f2|A|2q|∇|A||2.

Combining the above inequalities(
2

n
− q2

)∫
Σ

|A|2q|∇|A||2f2 ≤
∫

Σ

|A|2+2q|∇f |2 + 2q

∫
Σ

f |A|1+2q∇f∇|A|

and observing

2q

∫
Σ

f |A|2q+1∇f∇|A| ≤ εq2

∫ 2

Σ

f2|A|2q|∇|A||2 +
1

ε

∫
Σ

|A|2+2q|∇f |2,

we can arranger terms to obtain

(1.19)

(
2

n
− (1 + ε)q2

)∫ 2

Σ

f2|A|2q|∇|A||2 ≤
(

1 +
1

ε

)∫
Σ

|A|2+2q|∇f |2

Step 2. The cross term in (1.18) can be absorbed by the Cauchy-Schwarz inequality
for any

ε <
2/n− q2

q
, q2 < 2/n

leading to∫
Σ

|A|4+2qf2 ≤ 2(1 + q)2

∫
Σ

f2|A|2q|∇|A||2 + 2

∫
Σ

|A|2+2q|∇f |2

≤
(

2(1 + q)2(1 + q/ε)

2/n− q2 − εq
+ 2

)∫
Σ

|A|2+2q|∇f |2.

Let p = 2 + q and f = ηp. Then 2 ≤ p < 2 +
√

2/n and apply Hölder’s inequality
to (1.19) gives∫

Σ

|A|2pη2p ≤ C(n, p)

(∫
Σ

|A|2pη2p

) p−1
p
(∫

Σ

|∇η|2p
) 1
p

.

Theorem 1.2.1 (Schoen-Simon-Yau). Suppose that Σn is an orientable stable

minimal surface in Rn+1. Then for all 2 ≤ p < 2 +
√

2/n and Lipschitz continuous
function η with compact support, it holds

(1.20)

∫
Σ

|A|2pη2p ≤ C(n, p)

∫
Σ

|∇η|2p.

This result has important applications when n ≤ 5. A ratio bound in the
following form is useful in many problems on minimal submanifolds

(1.21) sup
R

|Σ ∩BR|
Rn

≤ C0 < +∞

where |Σ ∩BR| denotes the volume of Σ ∩BR(0) for the euclidean ball in Rn+1 of
radius R centred at the origin.
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Suppose that Σ is volume minimizing. Then ∂BR(0) ∩ Σ divides ∂BR(0) into
two components and at least one of them has volume at most half of the volume of
∂BR(0). Thus

|Σ ∩BR(0)| ≤ ωn
2
Rn.

By a calibration argument, it can be shown that minimal graphs in euclidean space
are volume minimizing.

Theorem 1.2.2 (Schoen-Simon-Yau). If Σn is a complete orientable stable
minimal hypersurface in Rn+1, n ≤ 5 and (1.21) holds, then Σ is a hyperplane.

Proof. Take a radial function η = 1 on BR(0), η = 0 on B2R(0) and |η′| ≤
C/R on B2R(0)\BR(0), and take

2p = 4 +
√

7/5 < 4 +
√

8/n.

By (1.20),∫
Σ∩BR(0)

|A|4+
√

7/5 ≤ C(n, p)R−4−
√

7/5(2R)n → 0 as R→∞

since n− 4−
√

7/5 < 0 as n ≤ 5. Therefore A ≡ 0. �

Pointwise curvature estimates are available and can be used to prove result
above:

Theorem 1.2.3 (Schoen-Simon-Yau). If Σn is an orientable stable minimal
hypersurface in Rn+1, n ≤ 5 and (1.21) holds, then

sup
BθR∩Σ

|A| ≤ C(n, θ, C0)

R

for each θ ∈ (0, 1).

Proof. Using Simons inequality, we can check that the function u = |A|2 +
C2

0/R
2 satisfies an inequality of the form

∆u+ C(n)(|A|2 +R−2)u ≥ 0.

Recall a well known result from the theory of elliptic equations (Theorem 5.3.1 in
“Multiple integrals of in calculus of variations”, C.B. Morrey): If φ ≥ 0 satisfies

∆φ+ cφ ≥ 0

on BR(0), then for any θ ∈ (0, 1) and ε > 0

∑
BθR(0)

φ ≤ c1

(
R−n

∫
BR(0)

φ2dx

)1/2

where c1 = c1(n, ε, θ, Rε
∫
BR(0)

|c|(n+ε)/2dx). Then

(1.22) sup
BθR(0)

|A|2 ≤ sup
BθR(0)

u ≤ c2

(
R−n

∫
BR(0)

(R−2C0 + |A|2)2

)1/2

,
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where c2 depends on n, ε,Rε
∫
BR(0)

[C(n)(|A|2 +R−2)](n+ε)/2. Choose ε > 0 so that

n+ ε < 4 +
√

8/n (can be done for n ≤ 5). Using (1.20) for p ∈ [2, 2 +
√

2/n), we
have ∫

BR(0)

|A|2p ≤ CR−2p|Σ ∩B2R(0)| ≤ CRn−2p.

Taking 2p = n+ ε, we see

Rε
∫
BR(0)

|A|2p ≤ CRεRn−(n+ε) ≤ C

and

Rε
∫
BR(0)

R−(n+ε) ≤ C,

so, c2 is bounded. Finally, taking p = 2 in (1.20) gives the desired result from
(1.22). �

Bernstein conjecture: The only entire solutions of MSE are linear functions.

Theorem 1.2.4 (Bernstein n = 2, De Girogi n = 3, Almgren n = 4, Simons
n = 5, 6, 7; Bombieri-De Giorgi-Giusti n > 7). The only entire solutions of MSE
over Rnare linear functions for n ≤ 7. There are non-linear entire solutions for
n > 7.

Using the above estimates Schoen-Simon-Yau gave a simplified proof of Simons’
result on minimal cones in Rn, n ≤ 6, but not for the last dimension n = 7.

Theorem 1.2.5. Every 6-dimensional stable minimal cone in R7 is a hyper-
plane.

Theorem 1.2.6 (De Giorgi for all n in the non-parametric case and Fleming
for n ≤ 6). If there is no non-trivial stable minimal cones in Rn then the only entire
solutions of MSE in are the linear functions on Rn.

Combining the above two theorems yields the affirmative answer to the Bern-
stein conjecture for n ≤ 6.

1.3. Closed stable geodesics in a hyperkähler surface

Theorem 1.3.1 (Bourguingnon-Yau). Let M be a hyperkähler manifold of di-
mension 4. If there exists a nontrivial closed stable geodesic γ in M , then the Rie-
mann curvature tensor of M vanishes along γ. In particular, there are no nontrivial
closed stable geodesics in the Eguchi-Hanson space (in fact, in any hyperkähler 4-
manifold whose Riemann curvature tensor is nowhere vanishing).

Proof. Let R be the Riemannian curvature tensor of M and let I, J,K =
IJ be the parallel complex structures with respect to the covariant derivative ∇
on M which determine the hyperähler structure compatible with the Riemannian
metric on M . Parametrize γ by its arc-length and consider the unit vector fields
Iγ′, Jγ′,Kγ′ along γ.

From the second variation formula of length at a closed geodesic and the as-
sumption that γ is stable, we have the stability inequality for any variation vector
field X of γ:

0 ≤
∫
γ

(
|∇γ′X|2 − 〈R(γ′, X)γ′, X〉

)
:= Ind(X,X).



1.3. CLOSED STABLE GEODESICS IN A HYPERKÄHLER SURFACE 12

Substituting X with Iγ′, Jγ′,Kγ′ into the stability inequality above and taking
summation:

0 ≤ Ind(Iγ′, Iγ′) + Ind(Jγ′, Jγ′) + Ind(Kγ′,Kγ′)

=

∫
γ

(
|∇γ′(Iγ′)|2 + |∇γ′(Jγ′)|2 + |∇γ′(Kγ′)|2

)
− (〈R(γ′, Iγ′)γ′, Iγ′〉+ 〈R(γ′, Jγ′)γ′, Jγ′〉+ 〈R(γ′,Kγ′)γ′,Kγ′〉)

= −
∫
γ

Ric (γ′, γ′)

= 0

where we have used

∇γ′(Iγ′) = I∇γ′γ′ = 0,

∇γ′(Jγ′) = J ∇γ′γ′ = 0,

∇γ′(Kγ′) = K∇γ′γ′ = 0

since I, J,K are parallel w.r.t. ∇ and γ is a geodesic and that Iγ′, Jγ′,Kγ′, γ′

form an orthonormal frame along γ and M is Ricci flat. Therefore, since each of
the three terms on the right hand side of the inequality above is nonnegative due
to stability of γ, we have

Ind(Iγ′, Iγ′) = Ind(Jγ′, Jγ′) = Ind(Kγ′,Kγ′) = 0.

Stability of γ then implies that the first eigenvalue λ0 of the Jacobi operator is
nonnegative:

λ0 = inf
X

Indγ(X,X)∫
γ
|X|2

≥ 0

for any variation field X along γ which is not identically zero. Therefore λ0 = 0 and
Iγ′, Jγ′,Kγ′ are eigenfunctions for λ0, hence they are Jacobi vector fields along γ.
Since the vector fields Iγ′, Jγ′,Kγ′ are parallel along γ, the first term in the Jacobi
equation

D2X

dt2
+R(γ′(t), X(t))γ′(t) = 0

vanishes for X = Iγ′, Jγ′,Kγ′, and this leads to

R(γ′, Iγ′)γ′ = R(γ′, Jγ′)γ′ = R(γ′,Kγ′)γ′ = 0.

By the Kähler identities for curvature [21]:

R(JX, JY ) = J ◦R(X,Y ) and R(X,Y ) ◦ J = J ◦R(X,Y )

we see the sectional curvature

〈R(Jγ′, Iγ′)Jγ′, Iγ′〉 = 〈R(Jγ′, JKγ′)Jγ′, Iγ′〉
= −〈R(γ′,Kγ′)γ′, Iγ′〉
= 0.

Similarly,
〈R(Kγ′, Iγ′)Kγ′, Iγ′〉 = 0.

We conclude that the sectional curvatures vanish on the sections containing Iγ′.
The same reasoning shows all sectional curvatures vanish on sections containing Jγ′

and on those containing Kγ′. It then follows that the Riemann curvature tensor R
vanishes along γ [?].
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Since the Eguchi-Hanson space is a hyperkähler 4-dimensional manifold whose
Riemann curvature tensor is nowhere vanishing [14], it does not admits any non-
trivial closed stable geodesics. �

1.4. Volume minimizing via calibrations

We begin with a fundamental observation of Harvey-Lawson [“Calibrated ge-
ometries”, Acta Math. (1982)]. Let (M, g) be a Riemannian manifold. Suppose ϕ
is a closed exterior p-form on M which satisfies

ϕ|P ≤ volP
for all oriented tangent p-planes P on M . Suppose that Σ is an oriented p-
dimensional submanifold of M with the property that

(1.23) ϕ|Σ = volΣ.

Then Σ is volume minimizing in its homology class, i.e., vol(Σ) ≤ vol(Σ′) for any
Σ′ ⊂M so that ∂Σ′ = ∂Σ and [Σ− Σ′] = 0 in Hp(M ;R). To see this,

vol(Σ) =

∫
Σ

ϕ =

∫
Σ′
ϕ ≤ vol(Σ′).

Note that ∫
Σ

ϕ−
∫

Σ′
ϕ =

∫
Σ−Σ′

ϕ =

∫
∂K

ϕ =

∫
K

dϕ = 0

since dϕ = 0, where ∂K = Σ− Σ′ from [Σ− Σ′] = 0. A closed p-form ϕ satisfying
(1.23) is called a calibration and (M, g, ϕ) is a calibrated manifold.

A k-dimensional submanifold Σ in M is a ϕ-submanifold associated to an ex-
terior k-form ϕ (not necessarily closed) if ϕ|Σ = volΣ. If dϕ = 0 and ϕ|P ≤ volP
for every tangent k-plane on M , then a ϕ-submanifold is homologically volume
minimizing.

1.4.1. ϕ-submanifolds and differential forms of comass one. We begin
with an example from complex geometry. Let (M,J, g, ω) be a Hermitian complex
manifold of complex dimension n. Set

ϕ =
1

k!
ωk.

The ϕ-submanifodsl Σ, i.e. ϕ|Σ = volΣ, are complex submanifolds of dimension k
by Wirtinger’s theorem:

vol(Σ) =
1

k!

∫
Σ

ωk.

When M is Kähler, dϕ = 0 and Σ is volume minimizing in its homology class
(Federer).

Now, let M be an n-dimensional Riemannian manifold, and let ϕ ∈ Λk be a
k-form on M , k < n. At each x ∈M , define the comass of ϕx to be

(1.24) ‖ϕ‖∗x = sup {〈ϕx, ξx〉 : ξx is a unit simple k-vector in TxM} .

For any A ⊂M , define comass of ϕ on A to be

‖ϕ‖∗A = sup
x∈A
‖ϕ‖∗x.
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Lemma 1.4.1. Suppose that ϕ is of comass one on M . Let Σ be a k-dimensional
compact oriented submanifold (possibly with boundary) in M . Then∫

Σ

ϕ ≤ vol(Σ)

with equaility if and only if Σ is a ϕ-submanifold.

Proof. Let e1, . . . , ek be o.n. tangent vectors in TxΣ. Then dµΣ(e1, . . . , ek) =
1. e1 ∧ · · · ∧ ek is a unit simple k-vector in TxM . At x ∈ Σ

ϕ|Σ = ϕ(e1, . . . , ek)e∗1 ∧ · · · ∧ e∗k
≤ ‖ϕ‖∗xe∗1 ∧ · · · ∧ e∗k
≤ ‖ϕ‖∗Me∗1 ∧ · · · ∧ e∗k
= e∗1 ∧ · · · ∧ e∗k.

When “=” holds, ϕ(e1, . . . , ek) = 1 (almost, hence) everywhere on Σ, i.e. ϕ|Σ =
volΣ; so Σ is a ϕ-submanifold in M . �

1.4.2. Complex manifolds. The calibrated manifolds root in complex geom-
etry. A complex manifold of complex dimension n is a real 2n-dimensional manifold
whose transition functions are holomorphic. This means that there is local coordi-
nates zj : Uj → Cn such that

(1) M = ∪jUj .
(2) The maps zj ◦ (zk)−1 are holomorphic for all j, k with Uj ∩ Uk 6= ∅.

Two such complex coordinate systems {zj}, {wk} are equivalent if the maps zj(p)→
wk(p) are biholomorphic, i.e. holomorphic and the inverse is holomorphic, when
and where defined. A complex structure on a manifold is an equivalence class of
complex coordinate systems on it.

An almost complex structure on a manifold M is a smooth field of automor-
phisms J of TM so that the linear map Tx : TxM → TxM satisfies

J2
x = −Ix, x ∈M.

An almost complex structure is integrable if its Nijenhuis tensor N defined by

4N(X,Y ) = [X,Y ] + J [JX, Y ] + J [X, JY ]− [JX, JY ], X, Y ∈ TxM,x ∈M

vanishes. A manifold with an almost complex is called an almost complex manifold.
Its dimensional is necessarily even.

A famous theorem of Newlander-Nirenberg asserts that an integrable complex
structure is induced by a unique complex structure.

A Hermitian metric on complex manifold M is a Riemannian metric g such
that

g(JX, JY ) = g(X,Y ), X, Y ∈ TxM,x ∈M.

From a Riemannian metric on (M,J), we can always obtain a Hermitian metric by
setting

h(X,Y ) = g(X,Y ) + g(JX, JY ).

Locally, a Hermitian metric can be written as

ds2 = gαβ̄dz
αdzz̄β

for some positive definite Hermitian matrix (gαβ̄).
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The Kähler form (or the fundamental 2-form) ω is defined as

ω(X,Y ) = g(X, JY ).

Note
ω(JX, JY ) = g(JX, JJY ) = g(X, JY ) = ω(X,Y ).

When ∇J = 0 where ∇ is the Levi-Civita connection of g, the Hermitian metric is
called a Kähler metric and (M, g, J, ω) is a Kähler manifold. This is equivalent to
that ω is closed.



2

Lagrangian Submanifolds

2.1. Basic symplectic geometry

2.1.1. Symplectic manifolds. A symplectic manifold M is a smooth 2n-
dimensional manifold equipped with a closed 2-form ω which is non-degenerate in
the sense ωn = ω ∧ · · · ∧ ω is nowhere zero, and ω is called a symplectic 2-form or
a symplectic structure on M . As ωn nowhere vanishes, any symplectic manifold is
orientable.

Examples of symplectic manifolds include

(1) R2n with ω0 =
∑n
i=1 dx

i∧dyi where (x1, . . . , xn, y1, . . . , yn) is the standard
coordinates.

(2) Any Kähler manifold (M,ω). In particular, S2 viewed as CP 1.
(3) The cotangent bundle π : T ∗M → M of a smooth manifold M admits a

natural symplectic structure. For x ∈ T ∗M,V ∈ TxT ∗M , define a 1-form
(Liouville form) β on T ∗M by

β(V )x = x(π∗V ).

Let (x1, . . . , xn) be local coordinates on M , set qi = xi◦π and the fibre co-
ordinates p1, . . . , pn for local coordinates on T ∗M . Then β =

∑n
i=1 p

idqi,
and ω = dβ is a symplectic 2-form on T ∗M .

Let (M2n, ω) be a symplectic manifold. Then ωn is a closed 2n-form on M .
Suppose thatM is compact and without boundary. Thus ω represents a cohomology
class in H2(M,R) and ωn ∈ H2n(M,R). The non-degeneracy of ω implies∫

M

ωn 6= 0.

It follows that ω and ωn cannot be exact exterior differential forms. SinceH2n(S2n,R) =
0 for n > 1, there do not exist any symplectic structures on S4,S6, . . . .

A symplectomorphism between two symplectic manifolds (M1, ω1), (M2, ω2) is
a diffeomorphism f : M1 →M2 such that f∗ω2 = ω1.

Let (M,ω) be a symplectic manifold and let (U, φ) be a local coordinate chart
with φ : U ⊆ M → φ(U) ⊆ R2n. Then (φ(U), φ−1∗ω) is a symplectic manifold.
Note that (φ(U), ω0) is also symplectic. A local chart is called a Darboux chart if
φ∗ω0 = ω.

Let V be a finite dimensional vector space over R. Let ω : V × V → R
be a bilinear map that is skew-symmetric, i.e. ω(X,Y ) = −ω(Y,X), and non-
degenerate, i.e. ω(X,Y ) = 0 for all Y ∈ V only if X = 0. The non-degeneracy of
ω implies V must have even dimension, say 2n, since 0 is an eigenvalue of a real
skew-symmetric matrix of odd size. The pair (V, ω) is called a symplectic vector
space. The following is a linear version of the Darboux theorem.

16
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Theorem 2.1.1. Let (V, ω) be a symplectic vector space of dimension 2n. Then
V has a basis u1, . . . , un, v1, . . . , vn with

(2.1) ω(ui, uj) = 0 = ω(vi, vj) and ω(ui, vj) = δij .

There is an isomorphism φ : R2n → V satisfying φ∗ω = ω0.

Proof. We use induction on n. For n = 1, there exist u1, v1 ∈ V such that
ω(u1, v1) = 1 by the non-degeneracy of ω. Thus ω = u∗1 ∧ v∗1 . Assume the theorem
holds for n = k. For n = k + 1, take u1, v1 with ω(u1, v1) = 1 and set W =
{w ∈ V : ω(w, u1) = 0 = ω(w, v1)}. Then (W,ω|W ) is a symplectic vector space
of dimension 2k. The induction hypothesis then asserts that there exist a basis
u2, . . . , uk, v2, . . . , vk for W so that ω|W (ui, uj) = 0 = ω(vi, vj), ω(ui, vj) = δij for
2 ≤ i, j ≤ k + 1. Therefore u1, . . . , uk+1, v1, . . . , vk+1 has the same property.

We can take

φ(

n∑
i=1

(xiei + yiei+n)) =

n∑
i=1

(xiui + yivi).

for φ : R2n → V . �

We now use the so-called Moser’s trick to prove

Theorem 2.1.2 (Darboux). Every point in a symplectic manifold (M,ω) has
a Darboux chart.

Proof. For any p ∈ M , let (u1, . . . , un, v1, . . . , vn) be local coordinates such
that (2.1) holds at p and denote the chart by (U,ϕ) where ϕ : U ⊆M → R2n. We
assume U is simply connected. Take ω0 =

∑n
i=1 dui ∧ dvi on R2n. Then ϕ∗ω − ω0

is closed and vanishes at p. By Poincaré lemma, there is a 1-form η on ϕ(U) such
that

dη = ϕ∗ω − ω0.

Define

ωt = ω0 + tdη.

As dη = 0 at p, ωt is non-degenerate in a neighbourhood of p (still denote by U).
For each t let Xt be the uniquely determined vector field on M such that

ιXt ωt = −η.
Then we consider the diffeomorphisms ψt on M generated by Xt via

d

dt
ψt = Xt(ψt), ψ0 = id.

Then by using Cartan’s magic formula,

d

dt
ψ∗t ωt = ψ∗t (LXtωt +

d

dt
ωt)

= ψ∗t (ιXtdωt + dιXtωt +
d

dt
ωt)

= ψ∗t (−dη +
d

dt
ωt)

= 0.

Since ψ0 = id, we have

ψ∗1ω1 = ω0.
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Therefore
ω0 = ψ∗1(ω0 + dη) = ψ∗1(ϕ∗ω).

�

In fact, we can modify the argument to show

Lemma 2.1.1. Let M be a 2n-dimensional smooth manifold and α1, α2 are
closed 2-forms on M such that α1 = α2 on a compact submanifold Σ and they are
non-degenerate on TqM, q ∈ Σ. Then there exists neighbourhoods N1, N2 of Σ and
a diffeomorphism F : N1 → N2 such that F ∗α2 = α1 and F equals the identity
map on Σ.

An almost complex structure J on a symplectic manifold (M,ω) is compatible
with ω if

ω(JX, JY ) = ω(X,Y ), ω(X, JX) > 0

for all X,Y ∈ TxM,x ∈M . Let Jω(M) be the set of almost complex structures on
(M,ω) that are compatible with ω.

Theorem 2.1.3. Jω(M) is non-empty and contractible.

Theorem 2.1.4. Let (V 2n, ω) be a symplectic vector space and g : V ×V → R
be positive definite symmetric bilinear form (i.e. an inner product). Then there ex-
ists a symplectic basis u1, ..., un, v1, ..., vn which also satisfies g(ui, uj) = δijg(vi, vj)
and g(ui, vj) = 0.

Proof. Define f : V → R2n by f(X) = ~x such that

g(X,Y ) = 〈f(X), f(Y )〉 = 〈~x, ~y〉.
Define a 2n× 2n matrix A by

ω(X,Y ) = 〈~x,A~y〉, ∀X,Y ∈ V.
Since ω is non-degenerate and ω(X,Y ) = −ω(Y,X), the real matrix A is non-
degenerate and skew symmetric. Then

√
−1A ∈ GL(2n,C) is a positive definite

Hermitian matrix, hence it is unitarily diagonalizable with pure imaginary eigen-
values ±

√
−1λj , λj > 0, j = 1, . . . , n, i.e., there are eigenvectors ~zj = ~uj+

√
−1~vj ∈

C2n where ~uj , ~vj ∈ R2n satisfying

A~zj =
√
−1λj~zj , 〈~zi, ~̄zj〉 = δij .

Taking complex conjugate, we have

A~̄zj = −
√
−1λj~̄zj , 〈~zi, ~zj〉 = 0

because ~z1, . . . , ~zn, ~̄z1, . . . , ~̄zn form a unitary basis of C2n. In real form:

A~uj = −λj~vj
A~vj = λj~uj

and

|~uj |2 = |~vj |2 =
1

2
, 〈~uj , ~vj〉 = 0, ∀j

〈~uj , ~vk〉 = 〈~uj , ~uk〉 = 〈~vj , ~vk〉 = 0, j 6= k.

Let Λ be the n× n diagonal matrix with diagonal entries λ1, . . . , λn and set

Q =

(
Λ 0
0 Λ

)
, J0 =

(
0 I
−I 0

)
.
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It follows

A = QJ0, QJ0 = J0Q, A2 = −Q2.

Then {U ′j = f−1(λ
−1/2
j J0~uj), V

′
j = f−1(λ

−1/2
j J0~vj) : 1 ≤ j ≤ n} is a symplectic

basis:

ω(U ′j , V
′
j ) = 1 = −ω(V ′j , U

′
j), ∀j

ω(U ′j , V
′
k) = ω(U ′j , U

′
k) = ω(V ′j , V

′
k) = 0, j 6= k.

Now we talk about g:

g(U ′i , U
′
j) = λ

−1/2
i λ

−1/2
j δij = g(V ′i , V

′
j )

g(U ′i , V
′
j ) = 0.

〈f(U ′i), f(U ′j)〉 = g(U ′i , U
′
j) = λ

−1/2
i λ

−1/2
j g(Ui, Uj) = λ

−1/2
i λ

−1/2
j 〈~ui, ~uj〉 = λ−1

i δij .

Thus, the symplectic basis if also orthogonal w.r.t. g with the above property. �

Remark 1. Geometrically, this means: Any ellipsoid

E = {w ∈ R2n :

2n∑
i,j

aijwiwj ≤ 1}

can be symplectically (by a linear symplectomorphism) mapped to an ellipsoid

{z ∈ Cn :
∑
|zj/rj |2 ≤ 1}

where rj are uniquely determined by E. Non-squeezing of the unit ball through a
small hole! Demonstrating symplectic rigidity vs diffeomorphism.

Now, given g and ω on V , define B : V → V by

g(BX,Y ) = ω(X,Y ) = 〈~x,A~y〉 = 〈−A~x, ~y〉.
Then

g(BX,Y ) = 〈f(BX), f(Y )〉 = 〈fBf−1~x, ~y〉
In the g-orthogonal symplectic basis {U ′j , V ′j : 1 ≤ j ≤ n} from the previous result,

for f : V (= R2n)→ R2n with f(X) = ~x, we see

g(U ′i , U
′
j) = 〈f(U ′i), f(U ′j)〉 = 〈Q−1/2~ui, Q

−1/2~uj〉 = λ−1
i δij

so g = f∗g0 = (Q−1/2J0)∗g0 and f = −Q−1/2J0 ∈ Sp(V, ω0) (linear symplecto-
morphisms of V , f∗ω0 = ω0). It follows that (ω, J0, (Q

1/2J0)∗g) is compatible.
Then

Jg = Jf∗(f−1∗g) = f−1J0f = Q1/2J0Q
−1/2 = Q−1A.

Here we have used the fact: If g is replaced by φ∗g for a φ ∈ Sp(V, ω) then Jφ∗g =
φ−1Jgφ as B is replaced by φ−1Bφ. We conclude (ω, g, Jg) compatible.

A vector field X on a symplectic manifold (M,ω) is called symplectic (or La-
grangian) if ιXω is closed, and X is Hamiltonian if ιXω is exact:

ιXω = dH

for some smooth function H : M → R. The vector field X generates a family of
diffeomorphisms φH of M from solving

d

dt
φH = X(φH), φH(·, 0) = id.
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This is called the Hamiltonian flow associated to H. The derivative of H in the X
direction vanishes:

dH(X) = ιXω(X) = ω(X,X) = 0

so the Hamiltonian vector field X is tangent to the level sets of its generating
function H.

2.1.2. Lagrangian submanifolds. We now discuss Lagrangian submanifolds.
Let (M,ω) be a symplectic manifold and J an almost complex structure compatible
with ω and g a Riemannian metric on M induced by ω, J in the sense

g(X, JY ) = ω(X,Y ).

A submanifold L of dimension n = 1
2 dimM is called Lagrangian if ω|L = 0. This

means: for any X,Y ∈ TxL, x ∈ L
g(X, JY ) = ω(X,Y ) = 0.

In other words, J maps TxL to its g-orthogonal complement (TxL)⊥.

We now discuss two classical examples of Lagrangian submanifolds.

Lemma 2.1.2. The zero section of T ∗L is a Lagrangian submanifold in T ∗L
with ωcan = dβ.

Proof. At a point x ∈ T ∗L, V ∈ TxT
∗L, the canonical 1-form is β(V ) =

x(π∗V ) and ωcan = dβ is a symplectic form on T ∗L. We wrote (cf. Example)
β =

∑n
i=1 pidqi, which equals 0 along the zero section, i.e. pi = 0. Define L→ T ∗L

by the inclusion `. So `∗ωcan = 0. �

Lemma 2.1.3. Let α be a 1-form on L. The graph of α is a Lagrangian sub-
manifold of T ∗L if and only if α is closed.

Proof. A 1-form α on L can be viewed as a mapping L → T ∗L as a graph
over L. Then for V ∈ TxT ∗L, x ∈ T ∗M we have

α∗β(V ) = β(α∗V )

= x(π∗α∗V )

= α(V )

because π ◦ α = id as η is a section of T ∗M and x = α along the image of the
mapping η.

Observe

α∗ωcan = α∗dβ

= d(α∗β)

= dα

where we used α∗β =
∑
pi(α)dqi = α. So the section α is Lagrangian in (T ∗M,ωcan

) if and only if dα = 0. �

The next result shows that symplectic vector fields generate symplectic diffeo-
morphisms and the flow moves Lagrangian submanifolds to Lagrangian submani-
folds.

Proposition 2.1.1. Let X be a symplectic vector field and φt be the diffeo-
morphisms generated by X with φ0 = id. Then φ∗tω = ω. If L is a Lagrangian
submanifold in M , so is Lt = φt(L).
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Proof. To see this,

d

dt
φ∗tω = φ∗t lim

t→0

φ∗tω − ω
t

= φ∗tLXω

= φ∗t (ιXdω + dιXω)

= φ∗t dιXω

= 0

because X is symplectic. It follows φ∗tω = φ∗0ω = ω. Next, we verify ω|Lt =
φ∗tω|Lt = ω|L = 0. So Lt is Lagrangian in (M,ω). �

The second example we include is a classical fact (cf. Harvey-Lawson):

Lemma 2.1.4. Suppose Ω is an open dopmain in Rn and f : Ω → Rn is a C1

mapping. Then the graph Σ = (x, f) in Cn = Rn+
√
−1Rn is Lagrangian w.r.t. ω0

if and only if the Jacobian matrix of f is symmetric. When Ω is simply connected,
Σ is Lagrangian if and only if f = Du for some u ∈ C2(Ω).

Proof. Write (x, y), J0, ω0 for the standard coordinates, the complex structure
and symplectic form of Rn ⊕ Rn, respectively. A basis of the tangent space of Σ
is given by Xi := ∂i(x, f(x)) = (0, ..., 1, ..., 0, ∂if), and Σ is Lagrangian w.r.t. ω0

if and only if 〈Xi, J0Xj〉 = 0 for i, j = 1, ..., n, which is if and only if ∂if
j = ∂jf

i,
i.e. the Jacobi matrix of f is symmetric. If Ω is simply connected, the symmetry
of the Jacobian of f is equivalent to there is a potential function u ∈ C2(Ω) such
that f = Du, by the Poincaré lemma. �

The following Lagrangian neighbourhood theorem is due to A. Weinstein.

Theorem 2.1.5. Let (M,ω) be a symplectic manifold and L is a Lagrangian
submanifold. Then there exists a neighbourhood N(L0) of the zero section L0 = L
of T ∗L and a neighbourhood N(L) of L in M and a diffeomorphism φ : N(L0) →
N(L) such that

φ∗ω = −dβ, φ|LL = id

where β is the canonical 1-form on T ∗L.

Proof. Let J be a ω-compatible almost complex structure on M and g a
Riemannian metric compatible with ω, J . Recall the natural coordinates (q, p) for
T ∗L where q ∈ L. Let Φq : T ∗q L→ TqL be the isomorphism defined by

g(X,Φq(p)) = p(X).

Consider the map

φ(q, p) = expq(JΦq(p)).

Along the zero-section in T ∗L, T(q,0)T
∗L is isomorphic to TqL ⊕ T ∗q L, so V ∈

T(q,0)T
∗L can be identified with (v, η) ∈ TqL⊕ T ∗q L. Then

dφ(q,0)(v, η) = v + JΦq(η).
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Since L is Lagrangian,

φ∗ω(q,0)((v1, η1), (v2, η2)) = ωq(v1 + JΦq(η1), v2 + JΦq(η2))

= ωq(v1, JΦq(η2))− ωq(v2, JΦq(η1))

= g(v1,Φq(η2))− g(v2,Φq(η1))

= η1(v2)− η2(v1)

= −dβ(q,0)((v1, η1), (v2, η2)).

This shows that along the zero-section

φ∗ω = −dβ.

We complete the proof by using Lemma 2.1.1. �

2.2. Mean curvature form of a Lagrangian submanifold

The mean curvature vector H of a Lagrangian submanifold L gives rise to a
1-form αH when taking interior product with the symplectic 2-form. When the
ambient space M is Kähler, the exterior differentiation of αH is Ricci 2-form of
the Kähler metric restricted to L; when M is Kähler-Einstein αH is closed hence
represents a class in H1(L,R); when M is a Calabi-Yau space, αH is determined by
the gradient of the so-called Lagrangian phase Θ of L acted upon by the complex
structure J .

2.2.1. Kähler ambient space. On a Kähler manifold, the Riemannian cur-
vature R and the Ricci tensor S possess the following properties ([Kobayashi-
Nomizu]):

(1) R(X,Y ) ◦ J = J ◦R(X,Y ) and R(JX, JY ) = R(X,Y );
(2) S(JX, JY ) = S(X,Y ) and S(X,Y ) = 1

2 traceg(J ◦R(X, JY )).

The Kähler curvature R is a real 2-form of type (1,1) with values in Λ1,1M . It may
be viewed as a symmetric endomorphism of Λ1,1M . The Kähler curvature operator
is the same as the Riemannian curvature operator but viewed as an endomorphism
of Λ1,1M , instead of Λ2M . The Ricci 2-form is R(ω).

Recall

S(X,Y ) = traceg(V → R(X,V )Y ).

The Ricci 2-form Ric of a Kähler manifold is the skew-symmetric 2-form

Ric(X,Y ) = S(X, JY )

and

S(X,Y ) =
∑
i

g(R(ei, X)ei, Y ) +
∑
i

g(R(Jei, X)Jei, Y )

=
∑
i

g(R(ei, X)Jei, JY ) +
∑
i

g(R(Jei, X)ei, Y )

=
∑
i

g(R(ei, Jei)X, JY ).

Therefore

Ric(eB , eC) = −
∑
i

g(R(ei, Jei)eB , eC) = −Ri(i+n)BC .
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Theorem 2.2.1. Let M be a Kähler manifold with Kähler form ω, complex
structure J and Kähler metric g. Let ` : L → M be a Lagrangian immersion and
denote the mean curvature form by ιHω where H is the mean curvature vector of
L in M . Then

dιHω = `∗Ric

where Ric is the Ricci 2-form of g. In particular, when M is Kähler-Einstein, i.e.
Ric = cω for some real constant c, ιHω is closed.

Proof. Along the Lagrangian submanifold L, we can take positively oriented
local orthonormal frame e1, ..., en, Je1, ..., Jen for M where ej are tangential to L
and Jei are normal to L w.r.t. g. Let θj , θj+n be the duals of ej , Jej respectively.
We have θj+n = −θj ◦ J . The Kähler form can be written as

ω =
n∑
j

θj ∧ θj+n.

The connection 1-forms for the Kähler metric g possess the following symmetry
([Kobayashi-Nomizu, p.153]):

(2.2) ωij = ω(i+n)(j+n), ωi(j+n) = ωj(i+n), ωij = ω(i+n)(j+n).

On L,

θj+n = 0.

(strictly speaking, the pullback from `)
The structure equations (the fundamental theorem of local Riemannian geom-

etry)

0 = dθj+n = −
n∑
k

ω(j+n)k ∧ θk −
n∑
k

ω(j+n)(k+n) ∧ θk+n = −
n∑
k

ω(j+n)k ∧ θk

ω(j+n)k + ωk(j+n) = 0.

By Cartan’s lemma

ω(j+n)k =

n∑
i

hj+nik θi, hj+nik = hj+nki .

Moreover, from (2.2), the second fundamental form of the Lagrangian submanifold
enjoys total symmetry in its indices, in the sense

(2.3) hj+nik = hk+n
ij = hi+njk .

This can also be seen by using ∇J = 0 from the calculation

hk+n
ij = g(∇eiej , Jek) = −g(ej ,∇eiJek) = −g(ej , J∇eiek) = g(Jej ,∇iek) = hj+nik .

The mean curvature vector field is (without dividing n for simplicity of writing)

H =

n∑
i,j

hj+nii Jej :=

n∑
j

Hj+nJej .
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dω(j+n)k =
∑
i

(hj+nik dθi + dhj+nik ∧ θi)

=
∑
i,A

hj+nik θA ∧ ωAi +
∑
i

dhj+nik ∧ θi

=
∑
i

dhj+nik ∧ θi

where we assumed ωij = 0 at a fixed point p ∈ L.
Thus the mean curvature 1-form of a Lagrangian L is

(2.4) ιHω =

n∑
i,j

hj+nii θj .

Exterior differentiation, assuming ∇ejei = 0 at the point under consideration, i.e.
ωij = 0,

dιHω =
∑
i,j

dhj+nii ∧ θj

=
∑
i,j

dhi+nij ∧ θj

=
∑
i

dω(i+n)i

=
∑
i

−1

2

2n∑
B,C

R(i+n)iBCθB ∧ θC +

2n∑
A

ω(i+n)A ∧ ωAi


=
∑
i

n∑
k,l

1

2
Ri(i+n)klθk ∧ θl

=

n∑
k,l

Ric(ek, el)θk ∧ θl

= `∗Ric.

When M is Kähler-Einstein, Ric = cω restricts to zero along the Lagrangian
submanifold L, hence ιHω is a closed 1-form on L, in particular, it represents an
elment in H1(L,R). �

2.2.2. Calabi-Yau ambient space. A Calabi-Yau manifold is a Kähler man-
ifold of complex dimension n with a nowhere vanishing holomorphic n-form Ω. It
is stronger than vanishing of the first Chern class c1(M) ∈ H1,1(M,R). It holds,
up to a scaling constant,

(2.5) Ω ∧ Ω = (−1)n(n−1)/2 2n
√
−1

n
n!
ωn. (

ωn

n!
??)

Theorem 2.2.2 (Yau). Any compact Kähler manifold with zero first Chern
class admits a Kähler metric g with zero Ricci form.

Let L be a Lagrangian submanifold in a Calabi-Yau manifold (M,ω, g,Ω). Then

(2.6) Ω|L = e
√
−1ΘdµL
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where dµL is the volume form of L in the induced metric from g and Θ : L → S1.
To see this, locally we can write Ω = fdz1 ∧ · · · dzn for some local holomorphic
function f . Write the holomorphic coordinates zj = xj +

√
−1yj , j = 1, ..., n where

x1, ..., xn are coordinates on L. Then

Ω|L = fdx1 ∧ · · · ∧ dxn.

dµL =
√

det gdx1 ∧ · · · ∧ dxn.

ω = gij̄dz
i ∧ dz̄j

where g is a positive definite Hermitian matrix

gij̄ = gjī.

In real coordinates,

gij̄ = g(∂xi +
√
−1∂yi , ∂xj −

√
−1∂yj )

= g(∂xi −
√
−1J∂xi , ∂xj +

√
−1J∂xj )

= g(∂xi , ∂xj ) + g(J∂xi , J∂xj ) +
√
−1 (g(∂xi , J∂xj )− g(J∂xi , ∂xj ))

= 2g(∂xi , ∂xj ) + 2
√
−1g(∂xi , J∂xj )

Ω ∧ Ω = |f |2dz1 ∧ dz̄1 · · · dzn ∧ dz̄n

ωn = det(gij̄)dz
1 ∧ dz̄1 · · · dzn ∧ dz̄n

From (2.5)

|f |2 = 2−n det(gij̄).

It follows that along L,

|f |2 = det(gij).

Therefore,

Ω|L = fdx1 ∧ · · · ∧ dxn

= e
√
−1Θ

√
det(gij)dx

1 ∧ · · · ∧ dxn

= e
√
−1ΘdµL.

The following dates back at least to [Harvey-Lawson], it can also be found in
[Oh], [Schoen-Wolfson?], [Thomas-Yau] and perhaps others.

Lemma 2.2.1. Let L be a Lagrangian submanifold in a Calabi-Yau manifold
(M,Ω, ω). Then

H = J∇Θ.

Proof. Let e1(p), ..., en(p) be local orthonormal basis of TpL. Parallel trans-
port them along L to get a local orthonormal frame e1, ..., en. Then e1, ..., en, Je1, ..., Jen
form a local orthonormal frame for TpM . Since Ω is parallel,

0 = ∇ekΩ

= ∇ek
(
f (θ1 +

√
−1Jθ1) ∧ · · · ∧ (θn +

√
−1Jθn)

)
= ∇ekff−1Ω + f

∑
(θ1 +

√
−1Jθ1) ∧ ... ∧ (∇ekθj +

√
−1J∇ekθj) ∧ ... ∧ (θn +

√
−1Jθn).
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Now restricting along L, we have f = e
√
−1Θ

√
det(gij) and ∇Lekej = 0

0 = ∇ekff−1Ω|L + f
∑

θ1 ∧ ... ∧
(
−
√
−1hl+nkj

)
θl ∧ ... ∧ θn

= ∇ekff−1Ω|L −
√
−1
∑

hl+nkl Ω|L

= ∇ekff−1Ω|L −
√
−1
∑

hk+n
ll Ω|L

=
(
∇ekff−1 −

√
−1Hk

)
Ω|L

=
(√
−1∇ekΘ−

√
−1Hk

)
Ω|L.

Therefore

g(∇Θ, ek) = ∇ekΘ = Hk = g(H,Jek) = −g(JH, ek)

in turn

H = J∇Θ.

This proves the desired statement. �

2.2.3. Phase function Θ for a gradient graph in R2n. Consider the
graphic Lagrangian submanifold L = (x,Du) ⊂ Rn ⊕ Rn for u ∈ C2(K) where
K is an open domain in Rn. The induced metric on L from the euclidean metric
on R2n is

g = I +D2uD2u

and the induced volume form is

dµL =
√

det(I +D2uD2u) dx1 ∧ · · · ∧ dxn =
√

(1 + λ2
1) · · · (1 + λ2

n) dx1 ∧ · · · ∧ dxn

where λi’s are the eigenvalues of the Hessian D2u when diagonalized at a point
x0 ∈ Rn. The holomorphic n-form

(2.7) Ω = dz1 ∧ · · · ∧ dzn

restricts to L is

Ω|L = (dx1 +
√
−1u1kdx

k) ∧ · · · ∧ (dxn +
√
−1unkdx

k)(2.8)

= (1 +
√
−1λ1) · · · (1 +

√
−1λn) dx1 ∧ · · · ∧ dxn.

Therefore, we have

e
√
−1Θ

√
(1 + λ2

1) · · · (1 + λ2
n) = (1 +

√
−1λ1) · · · (1 +

√
−1λn)

leading to

e
√
−1Θ =

1 +
√
−1λ1√

1 + λ2
1

· · · 1 +
√
−1λn√

1 + λ2
n

= e
√
−1(arctanλ1+··· arctanλn).

Therefore

(2.9) Θ = arctanλ1 + · · · arctanλn

In particular, the graph L is minimal if u ∈ C3 and

(2.10) Θ = F (D2u) = arctanλ1 + · · · arctanλn = C.

In particular, when n = 3, for C = nπ, (2.10) becomes

detD2u = ∆u.
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The ellipticity of (2.10) can be seen from

(2.11)
∂F (D2u)

∂λj
=

1

1 + λ2
j

> 0.

The operator F is concave if u is convex as

(2.12)
∂2F (D2u)

∂λi∂λj
= − 2λjδij

(1 + λ2
j )

2
.

2.2.4. Darboux coordinates with estimates. We summarize a result of
[Lee-Joyce-Schoen]. Let (M,ω) be a symplectic 2n-dimensional manifold, J an
almost complex structure compatible with ω and g a Riemannian metric compat-
ible with ω, so that g(X,Y ) = ω(X, JY ). For p ∈ M , the Darboux theorem for
symplectic vector space (TpM,ωp) asserts existence of a linear mapping

v : R2n → TpM

such that

(2.13) v∗ωp = ω0 and v∗gp = g0.

Denote
U = {(p, v) : p ∈M, v satisfies (2.13)}

and π : U → M with π(p, v) = p. For any γ ∈ U(n), the mapping v ◦ γ also
satisfies (2.13). Therefore π : U → M is the U(n)-frame bundle of M . The action
of U(n) on the right is free and π : U →M is a principal U(n)-bundle. As U(n) is
a compact Lie group, it follows that U is compact when M is compact.

Proposition 2.2.1 (Joyce-Lee-Schoen). Let (M,ω) be a compact symplectic
manifold of dimension 2n with a compatible almost complex structure J and a
Riemannian metric g compatible with ω, J . Let π : U →M be the U(n)-bundle as
above. Then for small ε > 0 there exist a family of embeddings Υp,v : Bε ⊂ Cn →M
depending smoothly on (p, v) ∈ U , such that

(1) Υp,v(0) = p and dΥp,v|0 = v;
(2) Υp,v◦γ = Υp,v ◦ γ;
(3) Υ∗p,v(ω) = ω0;
(4) Υ∗p,vg = g0 +O(|z|).

Moreover, if (M,ω) is Kähler, then (4) can be improved with O(|z|) replaced by

1

2
Re
(
Rij̄kl̄z

izkz̄j z̄ldz̄jdz̄l
)

+O(|z|3).

Proof. Let ε′ > 0 and Bε′ be the ball of radius ε′ about 0 ∈ Cn. For each
(p, v) ∈ U define Υ′p,v : Bε′ →M by

Υ′p,v = expp ◦ v|Bε′
which is diffeomorphic if ε′ is small. It holds that Υ′p,v is smooth in p, v and

Υ′p,v(0) = p

dΥ′p,v|0 = v

Υ′p,v ◦ γ = Υ′p,v ◦ γ, γ ∈ U(n)

Υ′∗p,vg|0 = g0

Υ′∗p,vω|0 = ω0.
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By Taylor’s theorem,

Υ′∗p,vω = ω0 +O(|z|)(2.14)

Υ′∗p,vg = g0 +O(|z|)(2.15)

where O(|z|) means that the coefficients of the 2-forms in (2.14) and the (0, 2)
tensors in (2.15), in terms of dz and dz̄, are functions satisfying the estimate O(|z|),
respectively.

We now modify Υ′p,v to a symplectomorphism Υp,v on Bε so that Υ∗p,vω = ω0

while keeping all of the other requirements in the proposition that Υ′p,v already
achieved. Define closed 2-forms on Bε′ by

(2.16) ωtp,v = (1− t)ω0 + tΥ′∗p,vω

for t ∈ [0, 1]. Note ωtp,v is non-degenerate in a neighbourhood of 0 ∈ Bε′ since
Υ′∗p,vω|0 = ω0|0. The U(n)-frame bundle U is compact as M is compact, in turn,

[0, 1] × U is compact. Hence by choosing ε′ small enough, we may assume ωtp,v is
non-degenerate on Bε′ for all t ∈ [0, 1] and (p, v) ∈ U . By Poincaré’s lemma, there
exist 1-forms βp,v on Bε′ so that

dβp,v = ω0 −Υ′∗p,vω.

We may further assume that each βp,v smoothly depends on p, v and

(2.17) |βp,v| = O(|z|2)

in light of (2.14), and this estimate is uniform in (p, v) as U is compact.

Each γ ∈ U(n) : Cn → Cn restricts to a mapping Bε′ → Bε′ and defines a map
(p, v)→ (p, v ◦ γ) which we will still denote γ. Let

(2.18) αp,v =
1

|U(n)|

∫
γ∈U(n)

(γ−1)∗βp,v◦γdµU(n)

where we use the bi-invariant metric on the Lie group U(n). For any γ0 ∈ U(n),

αp,v◦γ0 =
1

|U(n)|

∫
γ∈U(n)

(γ−1)∗βp,v◦γ0◦γdµU(n)

=
1

|U(n)|

∫
γ0◦γ∈U(n)

γ∗0 ((γ0 ◦ γ)−1)∗βp,v◦γ0◦γdµU(n)

= γ∗0

(
1

|U(n)|

∫
γ0◦γ∈U(n)

(γ0 ◦ γ)−1)∗βp,v◦γ0◦γdµU(n)

)
= γ∗0αp,v.

Thus, the 1-form αp,v is U(n)-equivariant:

(γ0|Bε′ )
∗αp,v = αp,v◦γ0

Moreover αp,v are closed non-degenerate 1-forms and satisfy (2.14).
Since αp,v is non-degenerate, there is a unique vector vtp,v on Bε′ satisfying

ιvtp,vω
t
p,v = αp,v.

As αp,v satisfies (2.17), we have

(2.19) |vtp,v| = O(|z|2).
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By (2.14),

d
(
ιvtp,vω

t
p,v

)
= dαp,v(2.20)

=
1

|U |

∫
γ∈U(n)

d
(
(γ−1)∗βp,v◦γ

)
dµU(n)

=
1

|U |

∫
γ∈U(n)

(γ−1)∗dβp,v◦γdµU(n)

=
1

|U |

∫
γ∈U(n)

(γ−1)∗(ω0 −Υ′∗p,v◦γ)dµU(n)

= ω0 −Υ′∗p,vω

= O(|z|).

Since [0, 1] × U is compact, there is 0 < ε ≤ ε′, such that we can solve the
following initial value problem on [0, 1] × Bε to get a family of diffeomorphisms
(onto the images)

φtp,v : Bε → Bε′

(2.21)
d

dt
φtp,v = vtp,v ◦ φtp,v, φ0

p,v = id : Bε → Bε ⊂ Bε′ .

Then by Cartan’s formula

d

dt

(
(φtp,v)

∗ωtp,v
)

= (φtp,v)
∗
(
Lvtp,vω

t
p,v +

d

dt
ωtp,v

)
= (φtp,v)

∗
(
ιvtp,vdω

t
p,v + dιvtp,vω

t
p,v +

d

dt
ωtp,v

)
= (φtp,v)

∗
(
αtp,v +

d

dt
ωtp,v

)
= 0

where the last step follows from (2.16) and (2.20). Therefore, as φ0
p,v = id we have

(2.22) (φ1
p,v)
∗Υ′∗p,vω = ω0.

As |vtp,v| = O(|z|2) from (2.19), we see, in fact, we may assume that both

vtp,v and dvtp,v are uniformly Lipschitz in Bε, then by the Picard-Lindelöf theorem
([Hartman]) solution for (2.21), and for uniqueness of (2.23), uniquely exists in
[0, 1]

(2.23)
d

dt
dφtp,v = dvtp,v ◦ dφtp,v, dφ0

p,v = id : TBε → TBε.

In particular,

φtp,v(0) = 0

dφtp,v|0 = id

We now verify

Υp,v = Υ′p,v ◦ φ1
p,v

fufills the requirements in the proposition: For (1) we have

Υp,v(0) = Υ′p,v(φ
1
p,v(0)) = Υ′p,v(0) = p
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and
dΥ∗p,v|0 = dΥ′∗p,v ◦ dφ1

p,v(0) = dΥ′∗p,v(0) = v.

For (2), the U(n)-equivariance of αp,v implies the U(n)-equivariance of vtp,v, and it

then follow that φtp,v = γ−1 ◦ φtp,v ◦ γ which together with the U(n)-invariance of
Υ′p,v yields the U(n)-invariance of Υp,v. (3) follows directly from (2.22); and (4)
follows from

φ1
p,v(0) = 0, dφ1

p,v|0 = id

and (2.15). �

The following result is an application of Proposition 2.2.1 on scaled metrics,
and it is useful for regularity estimates when the local behaviour of g in a Darboux
coordinates is concerned.

Proposition 2.2.2 (Lee-Joyce-Schoen). Let gtp,v = t−2(Υp,v ◦ T (t))∗g where
T (t) is the dilation z → tz.

(2.24) ‖gtp,v − g0‖C0 ≤ C0t and ‖∂kgtp,v‖C0 ≤ Cktk

for any positive integer k, where the norms are w.r.t. g0 and ∂ is the Levi-Civita
connection of g0.

Proof. For each (p, v) ∈ U , by (4) in Proposition 2.2.1 and since U is compact,
there is a constant C > 0 independent of (p, v) ∈ U so that |Υ∗p,vg − g0| < C|z| on

Bε/2, where | · | is in g0. For t ∈ (0, ε
2R ], it is clear T (t)(BR) ⊆ Bε/2 ⊂ Bε/2.

(Υp,v ◦ T (t))∗g (X,Y ) = g((Υp,v)∗tX, (Υp,v)∗tY )

= t2g((Υp,v)∗X, (Υp,v)∗Y )

= t2Υ∗p,vg (X,Y )

= t2g0(X,Y ) + t3O(|z|)

where t3 arises from a factor t from coefficient functions and a factor t2 from the
(0, 2) tensors, as noted in the Taylor expansion for (2.15). Therefore∣∣gtp,v − g0

∣∣ ≤ Ct|z| ≤ CRt
on BR. Setting C0 = CR we get the first inequality in Proposition 2.2.2.

For the second inequality, for each fixed k = 1, 2..., note that ∂kΥ∗p,vg(z) is C0

in the compact set U × Bε/2, so over there, there is a constant Ck > 0 such that∣∣∂kΥ∗p,vg(z)
∣∣ ≤ Ck. A scaling argument for t ∈ (0, ε

2R ], z ∈ BR leads to∣∣∂k(t−2(Υp,v ◦ T (t))∗g(z)
∣∣ = tk

∣∣∂kΥ∗p,vg(tz)
∣∣ ≤ Cktk

as tz ∈ Bε/2. �
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Minimal Lagrangian Submanifolds

3.1. Special Lagrangian calibrations in Cn

We follow [Harvey-Lawson].
Let z = (z1, ..., zn) be the coordinate on Cn and z = x +

√
−1y where x =

(x1, ..., xn), y = (y1, ..., yn) ∈ Rn. Take Ω = dz1 ∧ ...dzn. Consider

ατ = Re (e
√
−1τΩ)

for 0 ≤ τ < 2π yields a S1-family of closed holomorphic n-forms of constant length,
each of them defines ατ -submanifolds in Cn. Without loss of generality, we shall
only consider τ = 0. Our aim is to show α0 gives rise to a calibration.

Let Lag be the set of all Lagrangian n-planes (therefore oriented positively ...)
in Cn, and Gr(n, 2n) the Grassmannian of oriented n-planes in R2n. U(n) acts on
Lag, i.e. sending Lag to Lag, and the action is transitive. Let L1 = e1 ∧ ...∧ en and
L2 = f1∧ ...∧fn be two Lagrangian planes in Lag where {e1, ..., en} and {f1, ..., fn}
are orthonormal bases. Then the linear map A : R2n → R2n given by

A(ej) = fj , A(Jej) = Jfj

is unitary. The isotropy subgroup of U(n) at L0 = Rn ⊕ {0}, i.e. the actions
fixing the plane L0, is SO(n) acting diagonally on Rn⊕Rn. Therefore we have the
identification

Lag ∼= U(n)/SO(n).

A Lagrangian plane L ∈ Lag is special Lagrangian if L = AL0 for some A ∈ U(n)
with detA = 1. So the fibre at 1 of the fibration

U(n)/SO(n)
det−→ S1

consists of all the special Lagrangian n-planes.

Proposition 3.1.1 (Larvey-Lawson). For any P ∈ Gr(n, 2n), we have

(1) |Ω(P )|2 = |(ReΩ)(P )|2 + |(ImΩ)(P )|2 = |P ∧ JP |2.
(2) |P ∧ JP | ≤ |P |2 with equality if and only if P ∈ Lag.
(3) ReΩ has comass one. In fact, ReΩ(P ) ≤ |P | with equality if and only if

P is special Lagrangian n-plane.
(4) Let L ∈ Lag. Then L is special Lagrangian if and only if ImΩ(L) = 0.

Proof. �

ImΩ(L) = 0 implies

31
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Proposition 3.1.2. Let u ∈ C2(K) where K is an open domain in Rn satis-
fying

(3.1)

[(n−2)/2]∑
k=0

(−1)kσ2k+1(D2u) = 0.

Then the graph (x,Du) is volume minimizing in R2n.

3.2. Special Lagrangian submanifolds in a hyperkähler manifold

A hyperkähler manifold is a 4n-dimensional Riemannian manifold (M, g) with
parallel complex structures I, J,K with IJ = −JI = K. Often, it is also defined
as a 4n-dimensional Riemannian manifold whose holonomy group is contained in
Sp(n).

Theorem 3.2.1 (Berger). A hyperkähler manifold is Ricci-flat.

Compact hyperkähler manifolds of real dimensional four are the K3 surfaces
and the complex tori. A K3 surface is a complex surface with vanishing first Chern
class and no global holomorphic 1-forms. It can also be defined as a simply con-
nected compact complex surface with a nowhere vanishing holomorphic 2-form.

Theorem 3.2.2 (Siu). Every K3 surface is Kähler.

Calabi-Yau manifolds generalized K3 surfaces to arbitrary complex dimension.
Using a hyperkähler rotation of complex structures, every I-holomorphic curve

in a hyperkáhler surface is minimal and Lagrangian w.r.t. ωJ and ωK . An I-
holomorphic curve is a real 2-dimensional surface Σ such that ITpΣ = TpΣ for all
p ∈ Σ.

3.3. Minimal Lagrangian submanifolds in a Kähler-Einstein manifold

The standard embedding RPn ⊂ CPn.
Wolfson, Chen-Tian, Webster
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Hamiltonian Stationary Lagrangian Submanifolds

First, we recall some basic facts about the Hodge ∗ operator acting on differ-
ential forms. The Hodge dual of a k-form α is a n− k-form ∗α such that

β ∧ ∗α = 〈β, α〉gdµg
where dµg is the volume form of (M, g), in particular,

dµg = ∗1

and

∗ ∗ β = (−1)k(n−k)β.

It is worth noting that ∗∗ = −1 for 1-forms when n = 2.
In local coordinates

∗(dxi1 ∧ · · · dxik) =

√
det g

(n− k)!
gi1j1 · · · gikjkεj1···jndxjk+1 ∧ · · · ∧ dxjn .

The Hodge star ∗ can be used to define the operator

δ : ∧k(M)→ ∧k−1(M)

by

δ = (−1)n(k−1)+1 ∗ d ∗ .
As M is assumed to be compact without boundary, Stokes’s theorem implies

0 =

∫
M

d(β∧∗α) =

∫
M

dβ∧∗α−β∧(−1)k+1d∗α =

∫
M

〈dβ, α〉gdµg−
∫
M

〈β, δα〉gdµg.

The operator δ satisfies ∫
M

〈β, δα〉gdµg =

∫
M

〈dβ, α〉gdµg

and

δ2 = 0.

So δ is the L2 adjoint of d. The Hodge Laplacian operator on differential forms is

∆ = (δ + d)2 = δd+ dδ.

The Hodge theory asserts that the k-th de Rham cohomology, which is independent
of the Riemannian metric g on M , is isomorphic to the space of harmonic k-forms.

Let L be a Lagrangian submanifold in a symplectic manifold (M,ω). For any
Hamiltonian vector field X = J∇f for some f ∈ C1(M). Recall

df(Y ) = ιXω(Y ) = ω(X,Y ) = g(X,JY ) = g(∇f, Y ).

33
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The first variation formula reads

d

dt
vol(Lt)|

∣∣
t=0

(X) = −
∫
L

〈H,X〉gdµL(4.1)

= −
∫
L

ιHω(X)dµL

= −
∫
L

〈αH , df〉gdµL

= −
∫
L

〈δαH , f〉gdµL

where δ is the Hodge adjoint operator of d w.r.t. the induced metric on L from g.

A Lagrangian submanifold L is Hamiltonian stationary if

d

dt
vol(Lt)|

∣∣
t=0

(X) = 0

for any Hamiltonian vector field X on M . It was formally introduced by Oh. From
(4.1), this is equivalent to αH is co-closed:

δαH = 0.

In particular, we have

Proposition 4.0.1. Suppose that L is a Hamiltonian stationary Lagrangian
submanifold in a Kähler-Einstein manifold (M,ω). Then the mean curvature form
αH of L is a harmonic 1-form on L. If (M,ω) is a Calabi-Yau manifold, the phase
function Θ : L→ S1 satisfies

(4.2) ∆Θ = 0

where ∆ is the Laplacian operator of L in the induced metric.

Proof. When M is Calabi-Yau, we know H = J∇Θ. From (4.1),

0 =

∫
L

〈J∇Θ, J∇f〉dµL =

∫
L

〈∇Θ,∇f〉dµL

for all f ∈ C1(M). �

4.0.1. The Euler-Lagrange equations. For a bounded domain Ω ⊂ Rn, let
u : Ω → R be a smooth function. The gradient graph Γu = {(x,Du(x)) : x ∈ Ω}
is Lagrangian in Cn = Rn ⊕

√
−1Rn with z = x +

√
−1y. Consider the volume

functional on the space of C2 functions on a bounded domain Ω in Rn

(4.3) FΩ(u) =

∫
Ω

√
det
(
I + (D2u)

T
D2u

)
dx.

Note that for the gradient graph of a function u, we have the induced metric

(4.4) gij = δij + uikδ
klulj

in which case the above functional becomes

(4.5) FΩ(u) =

∫
Γu

√
det g dx.

Note that we can define the volume FΩ(u) whenever u ∈ W 2,n(Ω). We will
seek critical points in this Sobolev space.
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Definition 4.0.1. A function u ∈W 2,n(Ω) is a critical point for FΩ(u) under
compactly supported variations of the scalar function u if u satisfies the Euler-
Lagrange equation

(4.6)

∫
Ω

√
det g gijδkluikηjl dx = 0, for all η ∈ C∞c (Ω).

We call this equation the variational Hamiltonian stationary equation and u a weak
solution if D2u exists almost everywhere and (4.6) holds.

Here, summation convention is applied over repeated indices, δkl is the Kro-
necker delta, and g is the induced metric from the Euclidean metric on R2n, which
can be written as

g = I + (D2u)TD2u.

If the potential u is in C4(Ω), the equation (4.6) is equivalent to the following
geometric Hamiltonian stationary equation

(4.7) ∆gθ = 0

where ∆g is the Laplace-Beltrami operator on Γu for the induced metric g and θ is
the Lagrangian phase function for the gradient graph Γu.

Definition 4.0.2. We say a function u is a weak solution of (4.7) if

(1) u ∈W 2,n(Ω);
(2) θ ∈W 1,2(Ω) is weakly harmonic in the sense that for all η ∈ C∞c (Ω)

(4.8)

∫
Γu

〈∇θ,∇η〉dµg = 0.

Proposition 4.0.2. Suppose that u ∈ C3(Ω). Then u is a weak solution to
(4.6) on Ω if and only if u is a weak solution to (4.7) on Ω, in which case (4.6) and
(4.7) are each the Euler-Lagrange equation for the functional (4.3).

Proof. First we consider the case where u solves (4.6). Take a variation
generated by η ∈ C∞c (Ω), which varies the manifold along the y-direction in Cn.
Computing the volume for the path of potentials

(4.9) γ[t](x) = u(x) + tη(x),

we get

d

dt
FΩ(γ[t])

∣∣∣∣
t=0

=

∫
Ω

1

2

√
g[t]gij [t]

d

dt
gij [t]

∣∣∣∣
t=0

dx

=
1

2

∫
Ω

√
ggij

(
uikδ

klηlj + ηikδ
klulj

)
dx

=

∫
Ω

√
ggijuikδ

klηljdx.

Thus, the first variation of FΩ at u is given by

δFΩ(η) =

∫
Ω

√
ggijuikδ

klηljdx.

We note that while defining FΩ(u) requires only that u ∈W 2,n(Ω).
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On the other hand, we may compute the variation using the standard first
variational formula for (4.5), when u ∈ C3:

d

dt
FΩ(γ[t])

∣∣∣∣
t=0

=
d

dt
V ol(Γu) = −

∫
Ω

〈 ~H, V 〉dµg

where ~H is the mean curvature vector, and V is the variational field. Recall that
the variation V is Hamiltonian if V = JDf for some compactly supported function
f in Cn. For a Lagrangian submanifold, we also have [18, 2.19]

~H = −J∇θ.

Therefore, a C2 Lagrangian submanifold is critical for the volume functional under
Hamiltonian variations if and only if its Lagrangian phase is weakly harmonic.

For the gradient graph of u ∈ C3(Ω), we have a vertical variational field, i.e.
the x-component is 0, that is Hamiltonian:

(4.10) V (x) =
d

dt
(x,Du(x) + tDη(x))

∣∣∣∣
t=0

= (0, Dη(x)) .

We claim that u is a weak solution to (4.7) is equivalent to that the gradient
graph is critical for all vertical variations. In fact,

δFΩ(η) =

∫
Ω

〈J∇θ, (0, Dη)〉 dµg

=

∫
Ω

〈∇θ,−J(0, Dη)〉 dµg

=

∫
Ω

〈∇θ, (Dη, 0)〉 dµg.

with all inner products thus far being computed with respect to the ambient Eu-
clidean metric. Now

∇θ = gijθi∂j

where

∂1 = (1, 0, . . . , 0, u11, u21, . . . , un1),

· · ·
∂n = (0, 0, . . . , 1, u1n, u2n, . . . , unn),

so we have

δFΩ(η) =

∫
Ω

〈
gijθi∂j , (Dη, 0)

〉
dµg

=

∫
Ω

gijθiηj dµg

=

∫
Ω

〈∇θ,∇η〉g dµg.

Thus we have

δFΩ(η) = 0 for all η ∈ C∞0 (Ω)

if and only if ∫
Ω

〈∇θ,∇η〉 dµg = 0 for all η ∈ C∞c (Ω).
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This equation has the weak form∫
Ω

η∆gθ dµg = 0 for all η ∈ C∞c (Ω)

that is

(4.11) ∆gθ = 0.

It follows that for u ∈ C3(Ω), the volume (4.5) is stationary under Hamiltonian
variations precisely when (4.7) is satisfied. Because (4.3) and (4.5) are the same
functional, if follows that for u ∈ C3(Ω), (4.6) and (4.7) are equivalent. �

Observe that, for the gradient graph Γu = {(x,Du(x)) : x ∈ Ω}, the vertical
variations constructed by (4.100) are in 1-1 correspondence with C∞c (Ω). Note that
one can also construct a variational field, V = J∇η for each η ∈ C∞c (Γu). This
is the traditional way of producing Hamiltonian variations along any Lagrangian
submanifold, graphical or not. If the potential u is smooth, then C∞c (Γu) = C∞c (Ω)
where Ω is identified with Γu by Fu(x) = (x,Du(x)), and the sets of variations are
in 1-1 correspondence. One can then compute geometrically

d

dt
FΩ(γ(t))

∣∣∣∣
t=0

=

∫
Ω

〈
− ~H, V

〉
dµg(4.12)

=

∫
Ω

〈J∇θ, J∇η〉 dµg

=

∫
Ω

〈∇θ,∇η〉 dµg.

In particular, the first variational formula is the same.
When u is not smooth, in general C∞c (Γu) 6= C∞c (Ω). For example if the

submanifold Γu is smooth but the gradient graph has vertical tangents (for instance,

the curve Γu = {(x, x 1
3 ) : x ∈ (−1, 1)} and u = 3

4x
4
3 is the same smooth curve

(y3, y) for y ∈ (−1, 1)), one would expect some nearby Lagrangian manifolds that
are not graphical over x: These clearly cannot be reached through a path of vertical
variations. In this case, we have strict containment

C∞c (Ω) 6⊆ C∞c (Γu).

Thus a Hamiltonian stationary Lagrangian submanifold, whose volume by definition
is stationary under the larger set of variations, satisfies the equation (4.6) as well.
In this sense, (4.6) is formally weaker than (4.7). It is worth asking when these
equations are the same. We delve into this in the next section.

We note, as it will become useful later, that if D2u is bounded by a fixed
constant almost everywhere, then from (4.4) we see that the operator

∆g =
1
√
g
∂i
(√
ggij∂j

)
is uniformly elliptic.

4.1. Regularity of HSL submanifolds in Cn

First, we collect some properties of Sobolev functions for the reader’s conve-
nience. Let f : Ω ⊆ Rn → R be a function. We have
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(1) L∞ is the space of Lebesques measurable functions bounded a.e. with the
norm ‖f‖L∞(Ω) = inf{C ≥ 0 : |f(x| ≤ C a.e. x ∈ Ω}. For 1 ≤ p ≤ ∞,
Lp(Ω, ‖ · ‖Lp(Ω)) is a Banach space.

(2) f is locally Lipschitz in Ω if and only if f ∈W 1,∞
loc (Ω).

(3) f ∈W 1,p(Ω) for some 1 ≤ p <∞ can be approximated by fk ∈W 1,p(Ω)∩
C∞(Ω) in W 1,p(Ω).

(4) If f ∈W 1,p(Ω) for some n < p ≤ ∞, then f is differentiable a.e. in Ω and
its gradient equals the weak gradient a.e.

(5) f ∈W 1,∞(Ω) if and only if f is Lipschitz continuous in Ω.
(6) Trace operator T : W 1,p(Ω) → Lp(∂Ω,Hn−1) such that Tf = f on ∂Ω

can be defined when Ω is bounded with Lipschitz boundary, 1 ≤ p < ∞.
It holds∫

Ω

fdivX dx = −
∫

Ω

Df ·X dx+

∫
∂Ω

(X · ν)Tf dHn−1, ∀X ∈ C1(Ω,Rn).

The main results in this chapter are

Theorem 4.1.1 (Chen-Warren). Let Ω be a domain in Rn and let Q ⊂ Ω be a
compact subset (possible empty) with capacity zero. There is a c(n) > 0 such that
if u ∈ C1,1(Ω\Q) is a weak solution to (4.6) on Ω\Q satisfying

‖u‖C1,1(Ω\Q) ≤ c(n),

then u is a smooth solution of both (4.7) and (4.6) on Ω.

Recall that the capacity of a set Q is defined as

Cap(Q) = inf
φ∈C∞c (Rn),

0≤φ≤1,
φ=1 near Q

∫
|Dφ|2 dx.

In particular, if the Hausdorff dimension of Q is less than n − 2 then Cap(Q) is
zero.

Theorem 4.1.2 (Chen-Warren). Suppose that u ∈ C1,1 (B1(0)) and u is a weak
solution of (4.7). If either

(4.13) θ ≥ δ +
π

2
(n− 2) a.e.

for some constant δ ∈ (0, π); or

(4.14) u− δ |x|
2

2
is convex

for some constant δ > 0; or

(4.15) ‖u‖C1,1(B1(0)) ≤ 1− δ

for some constant δ ∈ (0, 1), then for k ≥ 2 we have

‖u‖Ck,α(B1/2(0)) ≤ C(k, n, ‖u‖C1,1(B1(0)) , δ).

The conclusion still holds if B1(0) is replaced by B1(0)\Q, where Q is a compact
subset of B1(0) with capacity zero.
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Theorem 4.1.3. Any C1 Hamiltonian stationary Lagrangian submanifold of
Cn is real analytic. More generally, suppose u ∈ W 2,n (Ω), and u satisfies equation
(4.6) on Ω. There is a constant c0 (n) such that if the image of the tangent planes
(where defined) of the gradient graph

Γu = {(x,Du(x)) : x ∈ Ω}

lies in a ball of radius c0(n) in the Grassmannian Gr(n, 2n), then Γu is a real
analytic submanifold of R2n.

In particular, if D2u is within distance c(n) to a continuous function, then u
must be smooth, hence real analytic [?, p.203]. For example, while we cannot rule
out non-flat tangent cones occurring, we can rule out non-flat tangent cones that
are nearly flat.

In two dimensions, regularity results have been obtained by Schoen and Wolfson
[28, Theorem 4.7] in a general Kähler manifold setting, where singularities are
known to occur. The examples of singularities are non-graphical over an open
domain [?, Section 7]. On the other hand, the Euclidean case of [?, Proposition
4.6] states that u solving (4.7) is smooth whenever u ∈ C2,α. Theorem 4.1.3 is a
generalization of this result when the ambient space is Cn, see Corollary 4.3.1.

4.1.1. W 3,2 estimates. Now we shall consider a general fourth order equation
of the form

(4.16)

∫
Ω

aijkl(D2u)uik ηjl dx = 0

for all η ∈ C∞c (Ω), where each aijkl is a smooth function defined on the Hessian
space, i.e. the space Sn×n of real symmetric n×n matrices, and uik are the second
order weak partial derivatives. A function u ∈ W 2,∞(Ω) is called a variational
solution to (4.16) on Ω, if (4.16) is satisfied for all η ∈ C∞c (Ω). We will be mainly
concerned with u ∈ C1,1(Ω) for our geometric applications.

We will write a matrix B ∈ Sn×n as (bij) for 1 ≤ i, j ≤ n. When bij appears in
the denominator of a partial derivative it means the variable at the (i, j) position
of the n(n+ 1)/2 dimensional vector space Sn×n, not the second derivatives.

The key link between the two Euler-Lagrange equations is supplemented by the
following W 3,2 estimates:

Proposition 4.1.1 (Chen-Warren). Suppose that u ∈ W 2,∞ (Ω) is a weak
solution to (4.16) on Ω for n ≥ 2, and that there is a convex neighborhood U ⊂ Sn×n
such that for all M,M∗,M ′ ∈ U , all W ∈ Sn×n and some constant β > 0

(4.17)
∂aijkl

∂upq
(M∗)M ′ikWpqWjl + aijkl(M)WikWjl ≥ β

∑
r,s

W 2
rs.

If D2u (Ω) ⊂ U wherever D2u is defined, then u ∈W 3,2
loc (Ω).

Proof. By approximation, the equation (4.16) must hold for compactly sup-

ported test functions in W 2,∞
0 (Ω); in particular, it must hold for the double differ-

ence quotient

η = −
[
ζ4u(hm)

](−hm)
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where ζ ∈ C∞c (Ω) is a cutoff function that is 1 on some interior set, and the upper
(hm) refers to the difference quotient

f (hm)(x) :=
f (x+ hem)− f(x)

h

and we have chosen h small enough (depending on ζ) so that η is well defined and
compactly supported. We have

(4.18)

∫
Ω

aijkl(D2u)uik

(
−
[
ζ4u(hm)

](−hm)
)
jl

dx = 0.

For h small, we can “integrate by parts” with respect to the difference quotient, i.e.∫
Ω

[
aijkl(D2u)uik

](hm)
(
ζ4u(hm)

)
jl
dx = 0.

Now the “product rule” for difference quotients gives[
aijkl(D2u) uik]

(hm)
(x) = uik(x+ hem)aijkl(D2u)(hm)(x) + aijkl(D2u(x))u

(hm)
ik (x)

= uik(x+ hem)
1

h

∫ 1

0

d

dt
aijkl

(
(1− t)D2u(x) + tD2u(x+ hem)

)
dt

+ aijkl(D2u(x))u
(hm)
ik (x)

= uik(x+ hem)

∫ 1

0

∂aijkl

∂upq

(
(1− t)D2u(x) + tD2u(x+ hem)

)
u(hm)
pq (x)dt

+ aijkl(D2u(x))u
(hm)
ik (x)

= Aijkl,pq(x)uik(x+ hem)vpq(x) + aijkl(D2u(x))vik(x)

where

v = u(hm)

and

Aijkl,pq(x) =

∫ 1

0

∂aijkl

∂upq

(
(1− t)D2u(x) + tD2u(x+ hem)

)
dt =

∂aijkl

∂upq
(M∗(x))

where

M∗(x) := (1− t∗)D2u(x) + t∗D2u(x+ hem)

for some t∗ by the mean value theorem. (Note that for a fixed h, D2u exists at
both x and x + hem, for almost every x, so all of the above quantities are defined
for x almost everywhere.) So equation (4.18) becomes∫

Ω

(
∂aijkl

∂upq
(M∗(x))uik(x+ hem)vpq(x) + aijkl(D2u(x))vik(x)

)(
ζ4v(x)

)
jl
dx = 0.

Now differentiating the second factor,
(4.19)∫

Ω

( (
∂aijkl

∂upq
(M∗(x))uik(x+ hem)vpq(x) + aijkl(D2u(x))vik(x)

)
×
(
ζ4vjl + 4ζ3ζjvl + 4ζ3ζlvj + 4v(ζ3ζjl + 3ζ2ζjζl)

)
(x)

)
dx = 0.

By the condition (4.17) in the hypothesis we have that∫
Ω

(
∂aijkl

∂upq
(M∗(x))uik(x+ hem)vpq(x) + aijkl(D2u(x))vik(x)

)
ζ4vjldx ≥ β

∫
Ω

ζ4
∑
r,s

v2
rsdx.
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For the remaining terms, note that for the second term in the expansion of
(4.19) we have by Young’s inequality∣∣∣∣∂aijkl∂upq

(M∗(x))uik(x+ hem)vpq(x)4ζ3(x)ζj(x)vl(x)

∣∣∣∣ ≤
C(n)

1

ε

(
∂aijkl

∂upq
(M∗(x))

)2

(uik(x+ hem))
2
ζ2(x) |Dζ(x)|2 |Dv(x)|2 + εζ4(x)v2

pq(x).

A similar expression can be made for each of the terms. Noting that D2u is bounded
and v is the different quotient of u, we obtain∫

Ω

( (
∂(aijkl

∂upq
(M∗(x))uik(x+ hem)vpq(x) + aijkl(D2u(x))vik(x)

)
×
(
4ζ3ζjvl + 4ζ3ζlvj + 4v(ζ3ζjl + 3ζ2ζjζl)

)
(x)

)
dx

≤ C
(
|Du|, |D2u|, |Dζ| ,

∣∣D2ζ
∣∣2 , ∣∣Daijkl∣∣) 1

ε

∫
Ω

|Dv|2dx+ ε

∫
Ω

∑
r,s

ζ4v2
rsdx

where
∣∣Daijkl∣∣ is a norm on the total derivative of the functions aijkl on the space

of symmetric matrices.
We conclude that by choosing ε appropriately, we have

β

2

∫
Ω

ζ4
∑
r,s

v2
rsdx ≤ C

(
|Du|, |D2u|, |Dζ| ,

∣∣D2ζ
∣∣2 , ∣∣Daijkl∣∣) 1

ε

∫
Ω

|Dv|2dx

≤ C ‖v‖W 1,2(Ω)

≤ C ‖u‖W 2,2(Ω) .

Thus

‖v‖W 2,2({x|ζ(x)=1}) ≤ C.

Now this estimate is uniform in h and direction em so we conclude that the deriva-
tives are in W 2,2 (Ω) and thus u ∈W 3,2({x|ζ(x) = 1}). �

Proposition 4.1.2. There is a bound c(n) such that if

‖u‖C1,1(Ω) ≤ c(n)

for a weak solution u to the variational Hamiltonian stationary equation (4.6), then

u ∈W 3,2
loc (Ω).

Proof. First recall (cf. [15, section 5.8.2]) that D2u is defined almost every-
where and bounded where it is defined in terms of the C1,1 norm. Considering (4.6)
in the notation of (4.16) we have

aijkl =
√
ggijδkl.

Our goal is to show that the condition (4.17) is satisfied on the set

U =
{
M ∈ Sn×n : ‖M‖∞ ≤ c(n)

}
.

For simplicity, we shall write |M | for ‖M‖∞, especially when Hessian is involved.



4.1. REGULARITY OF HSL SUBMANIFOLDS IN Cn 42

Computing, we see

∂aijkl

∂ump
=

1

2

√
ggab

∂

∂ump
gabg

ijδkl −√ggiagbj ∂

∂ump
gabδ

kl(4.20)

=

(
1

2
gabgijδkl − giagbjδkl

)
√
g

∂

∂ump
gab

=

(
1

2
gabgijδkl − giagbjδkl

)
√
g

∂

∂ump

(
δab + uacδ

cdudb
)

=

(
1

2
gabgijδkl − giagbjδkl

)
√
g
(
δmp,acδ

cdudb + uacδ
cdδmp,db

)
.

In particular,

(4.21)

∣∣∣∣∂aijkl∂upq
(D2u)

∣∣∣∣ ≤ C(n)
∣∣D2u

∣∣ (1 +
∣∣D2u

∣∣2)n/2 .
Next, note that if we let

Gij =
√
ggij ,

we can write √
ggijδklWikWjl = Trace(GTWInW

T ).

But G can be diagonalized by an orthogonal matrix O :

GT = OTDO

where

D =
√
g


1

1+λ2
1

. . .
1

1+λ2
n

 .

Then
√
ggijδklWikWjl = Trace(OTDOWWT )

= Trace(OOTDOWWTOT )

= Trace(D (OW ) (OW )T )

≥ min
i
Dii · Trace ((OW ) (OW )T )

= min
i
Dii ‖OW‖2HS

= min
i
Dii ‖W‖2HS ,

where we are using the Hilbert-Schmidt norm on matrices. Thus

(4.22)
√
ggijδklWikWjl ≥

1

1 + c(n)2
‖W‖2HS .

Combining (4.21) and (4.22) and plugging this into (4.17) we see for M∗,M ′, and
M in U we have

∂aijkl

∂upq
(M∗)M ′ikWpqWjl + aijkl(M)WikWjl

≥ 1

1 + c(n)2
‖W‖2HS − C(n) |c(n)|2

(
1 + c(n)2

)n/2 ‖W‖2∞
≥ β ‖W‖2HS
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for some β > 0, using the equivalence of norms, when c(n) is chosen small. The
conclusion follows from Lemma 4.1.1. �

Proposition 4.1.3. There is c(n), such that if u is a weak solution of (4.6)
and ‖u‖C1,1(Ω) ≤ c(n), then θ is a weak solution of the uniformly elliptic equation
(4.7).

Proof. First, let us consider the case when Q is the empty set. Because
u ∈W 3,2

loc (Ω) ∩ C1,1(Ω) we may use a standard mollification construction, letting

uε = ρε ∗ u

for an appropriate function ρε as in [15, Appendix C.4]. In particular (see [15,
Appendix C, Theorem 6])

lim
ε→0
‖uε − u‖W 3,2

loc (Ω) = 0

and each uε is smooth.
Now we define functionals on C∞c (Ω) by

F ε(η) =

∫
Ω

[√
ggijδkluik

]ε
ηjldx

F (η) =

∫
Ω

√
ggijδkluikηjldx

with the notation
[√
ggijδkluik

]ε
means “expression constructed from uε using

(4.4)” (in particular, this does not mean the mollification of the expression).
First we check that for each η,

F (η) = lim
ε→0

F ε(η).

We have

F ε(η)− F (η) =

∫
Ω

([√
ggijuik

]ε −√ggijuik) δklηjldx
=

∫
Ω

([√
ggijuik

]ε − [√ggij]ε uik +
[√
ggij

]ε
uik −

√
ggijuik

)
δklηjldx

=

∫
Ω

([√
ggij

]ε
(uεik − uik) +

([√
ggij

]ε −√ggij) gijuik) δklηjldx
Now because u ∈ C1,1 and ηjl is bounded, we simply have to check that

uεik − uik → 0 in L1
loc[√

ggij
]ε −√ggij → 0 in L1

loc.

The first assertion is clear as u ∈W 3,2
loc (Ω) .

Next, ∣∣∣[√ggij]ε −√ggij∣∣∣ ≤ sup
i,j

∣∣∣∣∣∂
(√
ggij

)
∂uab

∣∣∣∣∣ (uεab − uab) .
Mimicking computations following (4.20) we see∣∣∣∣∣∂

(√
ggij

)
∂uab

∣∣∣∣∣ ≤ C(n)
∣∣D2u

∣∣ (1 +
∣∣D2u

∣∣2)n/2 ≤ C.
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Thus

(4.23)
∣∣∣[√ggij]ε −√ggij∣∣∣ ≤ C ∣∣D2uε −D2u

∣∣
and the second assertion then follows from the first.

We conclude that

F (η) = lim
ε→0

F ε(η).

Next, we define functionals

Gε(η) =

∫
Ω

[√
ggijθi

]ε
ηj dx

G(η) =

∫
Ω

√
ggijθiηjdx =

∫
Ω

√
ggijgabuabiηj dx

recalling that

θi =
(
Im log det

(
I + iD2u

))
i

= gabuabi

and noting that since u ∈W 3,2
loc (Ω), the third order derivatives exist almost every-

where.
Applying the first variational formulae for smooth submanifolds in section 2 to

the smooth Γuε , we see that

δFΩ(η) =

∫
Ω

[√
ggijδkluik

]ε
ηjl dx =

∫
Ω

[√
ggijθi

]ε
ηj dx

that is

Gε(η) = F ε(η).

So clearly, from our observations on F ε(η) we see that

lim
ε→0

Gε(η) = 0.

All that remains is to show that

lim
ε→0

Gε(η) = G(η).

We follow the same procedure as above:

Gε(η)−G(η) =

∫
Ω

([√
ggijθi

]ε −√ggijθi) ηj dx
=

∫
Ω

([√
ggijθi

]ε − [√ggij]ε θi +
[√
ggij

]ε
θi −

√
ggijθi

)
ηj dx

=

∫
Ω

([√
ggij

]ε
([θ]εi − θi) +

([√
ggij

]ε −√ggij) θi) ηj dx
where [θ]ε stands for the angle function in (??) using uε. Now we have to be slightly
more careful, but proceed as before: Starting with the last term, we use (4.23)∫

Ω

([√
ggij

]ε −√ggij) θiηj dx ≤ ‖Dθ‖L2 ‖Dη‖L∞
∥∥∥[√ggij]ε −√ggij∥∥∥

L2

≤ ‖Dθ‖L2 ‖Dη‖L∞ C
∥∥D2uε −D2u

∥∥
L2

→ 0

as

‖Dθ‖L2(K) ≤ C ‖u‖W 3,2(K)
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for any K compact inside Ω. Next∫
Ω

[√
ggij

]ε
([θ]εi − θi) ηj dx

=

∫
Ω

[√
ggij

]ε ([
gab
]ε
uεabi −

[
gab
]ε
uabi +

[
gab
]ε
uabi − gabuabi

)
ηj dx

≤ C(‖u‖C1,1(Ω)) ‖Dη‖L∞
{∥∥∥[g−1

]ε∥∥∥
L2

∥∥D3uε −D3u
∥∥
L2 +

∥∥∥[g−1
]ε − g−1

∥∥∥
L2

∥∥D3u
∥∥
L2

}
by noticing that |D2uε| is bounded by ‖u‖C1,1 for the chosen mollifiers ρε. Because

uε → u in W 3,2
loc , these terms go to zero.

We conclude that

G(η) =

∫
Ω

√
ggijθiηj dx = 0

for all test functions η. It follows that θ is a weak solution of the uniformly elliptic
equation (4.7). �

4.2. Lewy-Yuan rotations

In this section we discuss and motivate the Lewy-Yuan rotation. We risk giving
extra descriptions here in order to give a clear motivation as to what the rotation
is useful for. We also rigorously justify low regularity versions of the rotation.

In the special Lagrangian setting, Yuan [37] used the following unitary change
of coordinates

U : Cn → Cn(4.24)

U(x+
√
−1y) = e−

√
−1π/4

(
x+
√
−1y

)
.

In this case, a surface Γ that was the gradient graph of a convex function u over
the original Rn-plane, is now represented as a gradient graph of a new function ū
over the new Rn-plane, but this time with

−In ≤ D2ū ≤ In.

We call this a downward rotation by angle π/4 : The word ‘downward’ refers to the

fact that the argument of the complex number e−
√
−1π/4 (4.24) is negative. Any

surface Γ that is the gradient graph of a semi-convex function u can be rotated
downward ([38]). If for β ∈ (0, π/2) we have

D2u ≥ − tanβ In

then we can rotate the graph downward by any positive angle α < π/2− β. More
precisely, given

Γ = {(x,Du(x)) , x ∈ Ω} ⊂ Rn +
√
−1Rn

over Ω, let

(4.25) Γ̄ = UαΓ

where

(4.26) Uα =

 e−
√
−1α

. . .

e−
√
−1α

 .
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Clearly, Γ̄ is isometric to Γ via the unitary rotation. In coordinates, this is equivalent
to the following map:

x̄ = cos(α)x+ sin(α)Du(x)(4.27)

ȳ = − sin(α)x+ cos(α)Du(x).

Here x̄ and ȳ are simply the projections onto Rn and
√
−1Rn of Γ̄, respectively.

Considering the functions x̄(x), ȳ(x) we may compute the differential form∑
i

ȳidx̄i =
∑
i

(
− sin(α)xi + cos(α)ui(x)

) (
cos(α)dxi + sin(α)uij(x)dxj

)
=
∑
i

(
− sin(α) cos(α)xidxi + cos2(α)ui(x)dxi

− sin2(α)xiuij(x)dxj + cos(α) sin(α)ui(x)uij(x)dxj

)

= − sin(α) cos(α)D
|x|2

2
+ cos2(α)Du(x)

− sin2(α) (D(x ·Du(x))−Du(x)) + cos(α) sin(α)D
|Du(x)|2

2

= Du+ sin(α) cos(α)D
|Du(x)|2 − |x|2

2
− sin2(α) (D(x ·Du))

= D

(
u(x) + sin(α) cos(α)

|Du(x)|2 − |x|2

2
− sin2(α) ((x ·Du(x)))

)
.

We see that the 1-form
∑
i ȳ
idx̄i is exact (regardless of cohomological conditions)

as we can exhibit ū (x̄) = ū (x̄(x)) solving Dx̄ū = ȳdx̄i. It follows that

(x̄, ȳ) = (x̄, Dx̄ū(x̄))

for some function ū (x̄). The potential ū is given explicitly, however, the explicit
formula is only given in terms of the x coordinates. Fortunately, x̄(x) is a change
of coordinates (this follows from the semi-convexity, see Proposition 4.2.1 below)
and is invertible.

To summarize, we have exhibited Γ̄ both as the gradient graph of a function ū
and as an isometric image of Γ. The result will be a new graph with a potential
whose Hessian satisfies (see [35, (1.5) and (1.6)])

− tan(β + α)In ≤ D2ū ≤ tan(π/2− α)In.

The takeaway is that any semi-convexity guarantees that the graph has a represen-
tation of bounded geometry. Also note that there is nothing sacred about downward
rotations: A function with a Hessian upper bound may always be rotated upwards
to obtain a representation with a Hessian lower bound as well.

4.2.1. When Γ is not smooth. In the above computation, we referenced the
second derivatives of u, despite the fact that the rotation itself is actually a map
on first derivatives. Our goal in this section is to rigorously show that the Lewy-
Yuan rotation can be performed in some low regularity settings where the second
derivatives need not exist everywhere, as long as some semi-convexity is satisfied.

For a constant K ∈ R, we say that u is K-convex on Ω if

u(x)−K |x|
2

2
is convex.
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For u ∈ C1 this is equivalent to the condition that, for all x0, x1 ∈ Ω

(4.28) 〈Du(x1)−Du(x0), x1 − x0〉 ≥ K |x1 − x0|2 .

Proposition 4.2.1. Suppose that Γ = (x,Du(x)) is a Lagrangian graph in
Ω +
√
−1Rn ⊂ Cn with Du continuous. Suppose that

(4.29) u+ (cot(σ)− ε) |x|
2

2
is convex

for some ε > 0, σ > 0. Consider the function

ū(x) = u(x) + sin (σ) cos (σ)
|Du(x)|2 − |x|2

2
− sin2 (σ)Du(x) · x

and the function x̄ : Ω→ Ω̄ ⊂ Rn given by

(4.30) x̄(x) = cos (σ)x+ sin (σ)Du(x).

Then

(1) The coordinate change (4.30) is invertible with Lipschitz continuous in-
verse,

(2) The derivative of ū in x̄ coordinates Dū
dx̄ exists everywhere, and

(3) The gradient graph Γ̄ = (x̄, Dū(x̄)) ⊂ Ω̄ +
√
−1Rn ⊂ Cn is the isometric

image of Γ under the rotation through σ as in (4.25).

Proof. Note that the convexity condition can be written as, for any two points
x0, x1 ∈ Ω,

〈Du(x1)−Du(x0) + (cot(σ)− ε) (x1 − x0) , x1 − x0〉 ≥ 0.

This leads to

(4.31)

〈
Du(x1)−Du(x0)

|x1 − x0|
,
x1 − x0

|x1 − x0|

〉
≥ − cot(σ) + ε.

It then follows, for x1 6= x0, that

∣∣∣∣ x̄(x1)− x̄(x0)

|x1 − x0|

∣∣∣∣ ≥ 〈 x̄(x1)− x̄(x0)

|x1 − x0|
,
x1 − x0

|x1 − x0|

〉(4.32)

=

〈
cos (σ) (x1 − x0) + sin (σ) (Du(x1)−Du(x0))

|x1 − x0|
,
x1 − x0

|x1 − x0|

〉
= cos (σ) + sin (σ)

〈
Du(x1)−Du(x0)

|x1 − x0|
,
x1 − x0

|x1 − x0|

〉
≥ cos (σ)− cot(σ) sin (σ) + sin (σ) ε

= sin (σ) ε

using (4.31). Therefore the continuous map x̄ is invertible and its inverse is Lipschitz
continuous with a Lipschitz constant 1/ (sin(σ)ε).

Next, for the gradient of ū in terms of x̄, we shall compute a difference quotient

ūj̄(x̄0) = lim
h→0

ū(x̄0 + hēj)− ū(x̄0)

h
.



4.2. LEWY-YUAN ROTATIONS 48

Since x̄ is invertible, for x̄0 ∈ Ω̄ we may solve, for small fixed h

x̄(x0) = x̄0

x̄(xh) = x̄0 + hēj

that is

cos (σ)x0 + sin (σ)Du(x0) = x̄0

cos (σ)xh + sin (σ)Du(xh) = x̄h = x̄0 + hēj .

Let

~v = xh − x0.

Then ~v will satisfy

(4.33) cos (σ)~v + sin (σ) [Du(xh)−Du(x0)] = hēj .

Since ~v 6= 0 for h 6= 0, there is a unique ~V with

~v = h~V

while the vector ~V depends on h, we suppress this dependence. Observe that∣∣∣~V ∣∣∣ =
|~v|
h

=
|xh − x0|

|x̄(xh)− x̄(x0)|
≤ 1

ε sinσ

by (4.32). In particular, ~V is a bounded vector. The function ū is given in term of
x coordinates, so in order to evaluate it, we have to use the change of coordinates,
that is

ū (x̄0) = ū(x̄−1(x̄0)) = ū(x0).

So we may compute the difference quotient of ū in terms of x

ū (x̄h)− ū (x̄0)

h
=
ū(x̄−1(x̄h))− ū(x̄−1(x̄0))

h

=
u(xh)− u(x0)

h
+ sin (σ) cos (σ)

|Du(xh)|2 − |Du(x0)|2 − |xh|2 + |x0|2

2h

− 1

h
sin2 (σ) (Du(xh)−Du(x0)) ·

(
x0 + h~V

)
− 1

h
sin2 (σ)Du(x0) ·

((
x0 + h~V

)
− x0

)
=
u(x0 + h~V )− u(x0)

h
− sin2 (σ)Du(x0) · ~V

+ cos (σ)

[
sin (σ)

(
Du(x0 + h~V )−Du(x0)

)] [
Du(x0 + h~V ) +Du(x0)

]
2h

− sin (σ) cos (σ)

(
x0 · ~V +

h

2

∣∣∣~V ∣∣∣2)
− 1

h
sin (σ)

[
sin (σ)

(
Du(x0 + h~V )−Du(x0)

)]
·
(
x0 + h~V

)
.

Rewriting (4.33) as

(4.34) sin (σ) [Du(xh)−Du(x0)] = hēj − cos (σ)h~V
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we see

ū (x̄h)− ū (x̄0)

h
=
u(x0 + h~V )− u(x0)

h
− sin2 (σ)Du(x0) · ~V

+ cos (σ)

[
hēj − cos (σ)h~V

] [
Du(x0 + h~V ) +Du(x0)

]
2h

− sin (σ) cos (σ)

(
x0 · ~V +

h

2

∣∣∣~V ∣∣∣2)− 1

h
sin (σ)

[
hēj − cos (σ)h~V

]
·
(
x0 + h~V

)
=
u(x0 + h~V )− u(x0)

h
− sin2 (σ)Du(x0) · ~V

+ cos (σ)
1

2

[
ēj − cos (σ) ~V

] [
2Du(x0) +

hēj − cos (σ)h~V

sin (σ)

]

− sin (σ) cos (σ)

(
x0 · ~V +

h

2

∣∣∣~V ∣∣∣2)− sin (σ)
[
ēj − cos (σ) ~V

]
·
(
x0 + h~V

)
=
u(x0 + h~V )− u(x0)

h
− sin2 (σ)Du(x0) · ~V

+ cos (σ)
[
ēj − cos (σ) ~V

]
·Du(x0) +

h

2

cos (σ)

sin (σ)

∣∣∣ēj − cos (σ) ~V
∣∣∣2

− sin (σ) cos (σ)x0 · ~V − sin (σ) cos (σ)
h

2

∣∣∣~V ∣∣∣2 − sin (σ) ēj · x0 − h sin (σ) ēj · ~V

+ sin (σ) cos (σ)x0 · ~V + h sin (σ) cos (σ)
∣∣∣~V ∣∣∣2

=
u(x0 + h~V )− u(x0)

h
− sin2 (σ)Du(x0) · ~V

+ cos (σ) ēj ·Du(x0)− cos2 (σ)Du(x0) · ~V − sin (σ) ēj · x0

+ h

 cos(σ)
sin(σ)

1
2

∣∣∣ēj − cos (σ) ~V
∣∣∣2 − sin (σ) cos (σ) 1

2

∣∣∣~V ∣∣∣2
− sin (σ) ēj · ~V + sin (σ) cos (σ)

∣∣∣~V ∣∣∣2


= Du(x∗) · V −Du(x0) · ~V + cos (σ) ēj ·Du(x)− sin (σ) ēj · x0

+ h

 cos(σ)
sin(σ)

1
2

∣∣∣ēj − cos (σ) ~V
∣∣∣2 − sin (σ) cos (σ) 1

2

∣∣∣~V ∣∣∣2
− sin (σ) ēj · ~V + sin (σ) cos (σ)

∣∣∣~V ∣∣∣2


where x∗ is some value between x0+h~V and x0 obtained by the mean value theorem.

Now we may take a limit with h vanishing. Because ~V (which a priori can point
in many directions) is bounded, the h-term vanishes in the limit. Because Du is
continuous, and x(x̄) is Lipschitz, we also have that

lim
h→0
|(Du(x∗)−Du(x0)) · V | ≤ lim

h→0
sup |Du(x∗)−Du(x0)| |V | = 0.

We are left with

(4.35) lim
h→0

ū(x̄0 + hēj)− ū(x̄0)

h
= cos (σ)uj(x0)− sin (σ)xj0.
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This is precisely the ȳ-component of the image of the rotation (4.27). It follows that
the gradient graph of ū exists everywhere and is isometric to the gradient graph of
u. �

Corollary 4.2.1. An analogous result holds when u is semi-concave, and σ
is negative. The rotations through σ and −σ are inverse operations where they are
defined, up to an additive constant in the potential function.

Proof. While we could claim a proof that is formally the same as the proof of
Proposition 4.2.1, we offer an alternative argument based on the fact that, when-
ever u is semi-concave, −u must be semi-convex. Starting with a semi-convex
−u, we may rotate the graph Γ−u by a downward rotation through −σ, applying
Proposition 4.2.1, and then take the complex conjugate of the result in Cn. This
follows from the fact that, as operators on Cn (R-linear on R2n) for any diagonal
unitary matrix U we have

c ◦ U ◦ c = U−1 = U∗

where c is the R-linear complex conjugation map on R2n, that is

c(x+
√
−1y) = x−

√
−1y.

In particular, taking−(−u) via rotation of−u (not complex conjugation), we obtain
the potential ū for the graph rotated through a negative angle −σ. �

The following technical result is useful when we approximate u while keeping
K-convexity.

Lemma 4.2.1. Let uε be a standard mollification of u. If u is K-convex on
Ω, then so is uε on

(4.36) Ωε = {x : d(x, ∂Ω) > ε} .

Proof. Consider a mollifier φ that is radial, supported in Bε (0) and has unit
integral. Given a point x ∈ Ωε,

uε(x) =

∫
Ω

φ(x− y)u(y)dy

=

∫
Bε(x)

φ(x− y)u(y)dy

=

∫
Bε(0)

φ(z)u(x+ z)dz

so we have

Duε(x) =

∫
Bε(0)

φ(z)Du(x+ z)dz



4.2. LEWY-YUAN ROTATIONS 51

Now consider, for x1, x0 ∈ Ωε, the expression

〈Duε(x1)−Duε(x0), x1 − x0〉

=

〈∫
Bε(0)

φ(z)Du(x1 + z)dz −
∫
Bε(0)

φ(z)Du(x0 + z)dz, x1 − x0

〉

=

∫
Bε(0)

〈φ(z) (Du(x1 + z)−Du(x0 + z)) , x1 − x0〉 dz

=

∫
Bε(0)

φ(z) 〈Du(x1 + z)−Du(x0 + z), (x1 + z)− (x0 + z)〉 dz

≥
∫
Bε(0)

φ(z)K |x1 − x0|2 dz

= K |x1 − x0|2 .
�

Proposition 4.2.2. Suppose that u is tan(κ)-convex and C1 and ū is obtained
as in Proposition 4.2.1. If κ, σ, κ− σ ∈ (−π/2, π/2), then ū is tan(κ− σ)-convex.

Proof. We define the following functions

x̄ε = cos(σ)x+ sin (σ)Duε(x)

ȳε = − sin (σ)x+ cos(σ)Duε(x).

Note that, as before, the set

Γ̄ε = {(x̄ε(x), ȳε(x)) : x ∈ Ω}
is the rotation of the gradient graph of uε through angle σ. (To be clear, we are not
taking the gradient graph of the mollified rotated function, rather we are rotating
the gradient graph of the mollified function.)

Now Du is continuous, so the mollified derivatives Duε will converge locally
uniformly to Du as ε → 0 (cf. [15, Appendix C, Theorem 6]). It follows that the
functions x̄ε and ȳε will also converge locally uniformly, to x̄ and ȳ respectively, as
functions of x, where

x̄ = cos(σ)x+ sin (σ)Du(x)

ȳ = − sin (σ)x+ cos(σ)Du(x).

We have seen in Proposition 4.2.1 that

Γ̄ = {(x̄(x), ȳ(x)) : x ∈ Ω}
is precisely the gradient graph of the function ū over Ω̄. The semi-convexity condi-
tion (4.28) on ū that we are trying to show is

〈ȳ(x1)− ȳ(x0), x̄(x1)− x̄(x0)〉 ≥ tan(κ− σ) |x̄(x1)− x̄(x0)|2 .
We claim that

(4.37) 〈ȳε(x1)− ȳ(x0), x̄ε(x1)− x̄(x0)〉 ≥ tan(κ− σ) |x̄ε(x1)− x̄(x0)|2

for all ε > 0. The local uniform convergence of x̄ε and ȳε will then give us the
result. To show (4.37), we start by computing the Jacobian of the map x̄ε :

Since uε is smooth
dx̄ε
dx

= cos(σ)In + sin (σ)D2uε(x).
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By assumption, u is tan (κ)-convex, and hence so is uε, by Lemma 4.2.1, at least
on Ωε (recall (4.36)). It follows that

D2uε(x) ≥ tan (κ) In.

So

dx̄ε
dx
≥ cos(σ)In + sin (σ) tan (κ) In

=
cos(σ − κ)

cos (κ)
In > 0

since κ and σ − k ∈ (−π/2, π/2). The coordinate change is invertible and the
Jacobian can be computed

dx

dx̄ε
=
(
cos(σ)In + sin (σ)D2uε(x)

)−1
.

Next

Dȳε =
(
− sin (σ) In + cos(σ)D2uε(x)

)
.

Now each Γ̄ε is the gradient graph of a function ūε (x̄ε) on the region x̄ε (Ω). In
order to compute the Hessian of ūε in terms of x̄ε, we compute

D2
x̄ε ūε = Dxȳε ·

dx

dx̄ε
= Dx̄ε ȳε

=
(
− sin (σ) In + cos(σ)D2uε(x)

) (
cos(σ)In + sin (σ)D2uε(x)

)−1
.

At any point, we may diagonalize the expression for D2
x̄ε ūε(x̄) by diagonalizing

D2uε(x(x̄)):

D2
x̄ε ūε =


− sin(σ)+cos(σ)λ1

cos(σ)+sin(σ)λ1
0 0

0
. . . 0

0 0 − sin(σ)+cos(σ)λn
cos(σ)+sin(σ)λn

 =

 λ̄1 0 0

0
. . . 0

0 0 λ̄n

 .

Now

λ̄j =
− sin (σ) + cos (σ)λj
cos (σ) + sin (σ)λj

=
− sin(σ)

cos(σ) + λj

1 + sin(σ)
cos(σ)λj

= tan(−σ + arctan(λj)).

Because

arctan(λj) ≥ κ
we conclude that

λ̄j ≥ tan(−σ + κ)

and D2
x̄ε ūε is tan(−σ + κ)-convex, that is

(4.38) 〈Dx̄ε ūε(x1)−Dx̄ε ūε(x0), x̄ε(x1)− x̄ε(x0)〉 ≥ tan(−σ+κ) |x̄ε(x1)− x̄ε(x0)|2

or

(4.39) 〈ȳε(x1)− ȳε(x0), x̄ε(x1)− x̄ε(x0)〉 ≥ tan(−σ + κ) |x̄ε(x1)− x̄ε(x0)|2

provided that x1 and x0 are at least ε away from the boundary of Ω. By the local
uniform convergence, we conclude that

(4.40) 〈ȳ(x1)− ȳ(x0), x̄(x1)− x̄(x1)〉 ≥ tan(−σ + κ) |x̄(x1)− x̄(x1)|2

that is, ū is tan(κ− σ)-convex. �
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The following is an observation on how semi-convexity can lead to bounded
geometry, even when the potential is not given as being twice differentiable.

Corollary 4.2.2. Suppose that u ∈ C1 and is semi-convex. Then the gradient
graph of u is isometric to the gradient graph of a C1,1 function.

Proof. Choose σ ∈ (0, π/2) and ε > 0 for which (4.29) is satisfied. Now to
control the C1,1 norm of ū we note that

‖ū‖C1,1(Ω̄) = sup
x̄0,x̄1∈Ω̄

|Dū(x̄1)−Dū(x̄0)|
|x̄1 − x̄0|

= sup
x0,x1∈Ω

|ȳ(x1)− ȳ(x0)|
|x̄(x1)− x̄(x0)|

.

So for any pair x0, x1 ∈ Ω

|ȳ(x1)− ȳ(x0)|
|x̄(x1)− x̄(x0)|

=
|cos (σ)Du(x1)− sin (σ)x1 − cos (σ)Du(x0) + sin (σ)x0|
|cos (σ)x1 + sin (σ)Du(x1)− cos (σ)x0 + sin (σ)Du(x0)|

=
|cos (σ) (Du(x1)−Du(x0))− sin (σ) (x1 − x0)|
|cos (σ) (x1 − x0) + sin (σ) (Du(x1)−Du(x0))|

.

To show this is bounded, we explore two cases. Let A = 2 cot(σ) > 0. The first
case is when

(4.41) |Du(x1)−Du(x0)| ≤ A |x1 − x0| .

Recall σ ∈ (0, π/2), we have

|cos (σ) (Du(x1)−Du(x0))− sin (σ) (x1 − x0)|
|cos (σ) (x1 − x0) + sin (σ) (Du(x1)−Du(x0))|

≤ |cos (σ)A |x1 − x0|+ sin (σ) |x1 − x0||
|cos (σ) (x1 − x0) + sin (σ) (Du(x1)−Du(x0))|

and 〈
cos (σ) (x1 − x0) + sin (σ) (Du(x1)−Du(x0)) ,

x1 − x0

|x1 − x0|

〉
= cos (σ) |x1 − x0|+

〈
sin (σ) (Du(x1)−Du(x0)) ,

x1 − x0

|x1 − x0|

〉
≥ cos (σ) |x1 − x0|+ sin (σ) |x1 − x0| (− cot(σ) + ε)

= sin (σ) |x1 − x0| ε

where we used (4.31) in the second line. Thus (4.41) leads to

|ȳ(x1)− ȳ(x0)|
|x̄(x1)− x̄(x0)|

≤
∣∣∣∣cos (σ)A+ sin (σ)

sin (σ) ε

∣∣∣∣ =
cos2 (σ) + 1

sin2 (σ)

1

ε
.

The next case is when

(4.42) |Du(x1)−Du(x0)| ≥ A |x1 − x0| .

Then by the triangle inequality and (4.42)

|cos (σ) (x1 − x0) + sin (σ) (Du(x1)−Du(x0))| ≥ sin(σ)|Du(x1)−Du(x0)| − cos(σ)|x1 − x0|

≥
(

sin (σ)− cos(σ)

A

)
|Du(x1)−Du(x0)|

=
1

2
sin (σ) |Du(x1)−Du(x0)|
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and

|cos (σ) (Du(x1)−Du(x0))− sin (σ) (x1 − x0)|
|cos (σ) (x1 − x0) + sin (σ) (Du(x1)−Du(x0))|

≤
cos (σ) |Du(x1)−Du(x0)|+ sin (σ) |Du(x1)−Du(x0)|

A
1
2 sin (σ) |Du(x1)−Du(x0)|

=
cos2 (σ) + 1

sin (σ) cos (σ)
.

In either case, we have

|ȳ(x1)− ȳ(x0)|
|x̄(x1)− x̄(x0)|

≤ max

{
cos2 (σ) + 1

sin2 (σ)

1

ε
,

cos2 (σ) + 1

sin (σ) cos (σ)

}
= C

and ū is C1,1. �

The following corollary is immediate from the above by applying the De Giorgi-
Nash theorem.

Corollary 4.2.3. Suppose that u ∈ C1 is a semi-convex weak solution to
(4.7). Then the phase θ enjoys interior Hölder estimates (with respect to the metric
distances) on Γu.

Finally, we show that smoothness and strong semi-concavity estimates on the
rotated potential can be used to conclude smoothness on u.

Proposition 4.2.3. Suppose that u and ū are as in Proposition 4.2.1 and ū ∈
C2
(
Ω̄
)
. Suppose also that for some constant ε > 0

(4.43) D2
x̄ū ≤

(
cos (σ)

sin (σ)
− ε
)
In.

Then for any integer k > 1∥∥Dku
∥∥
L∞(Ω)

≤ C (σ, ε, n)
(∥∥Dkū

∥∥
L∞(Ω̄)

,
∥∥Dk−1u

∥∥
L∞(Ω)

)
.

Proof. The function ū was obtained by a downward rotation of σ from u, so
u may be obtained by the inverse rotation. In particular as ū ∈ C2

(
Ω̄
)
, the change

of variable formulae hold on Ω̄:

x = cos(σ)x̄− sin(σ)Dx̄ū(x̄)

y = sin(σ)x̄+ cos(σ)Dx̄ū(x̄).

Differentiating the first formula leads to

dx

dx̄
= cos (σ) In − sin (σ)D2

x̄ū(x̄)

and noting that

y = Dxu(x) = Dxu(x(x̄))

we have

Dxu(x̄) = sin(σ)x̄+ cos(σ)Dx̄ū(x̄).
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Now

D2
xu = DxDxu

= Dx (sin(σ)x̄+ cos(σ)Dx̄ū(x̄))

=
(
sin(σ)In + cos(σ)D2

x̄ū(x̄)
) dx̄
dx
.

Noting (4.43), we may invert (4.2.1) and conclude

D2
xu (x̄) =

(
sin(σ)I + cos(σ)D2

x̄ū(x̄)
)
·
(
cos (σ) In − sin (σ)D2

x̄ū(x̄)
)−1

(4.44)

:= Fσ(D2
x̄ū(x̄(x))).

First, we shall show that if D3
x̄ū exists, then so will D3

xu(x). To do this we
differentiate (4.44) in x, obtaining

DxD
2
xu(x) = DxFσ(D2

x̄ū(x̄(x)))

=
dFσ
dD2

x̄ū
· dD

2
x̄ū

dx̄
· dx̄
dx
.

Combining (4.43), the assumption that D3
x̄ū exists, and the fact that all of these

factors are well-defined and bounded, we conclude that D3
xu exists and is controlled

in terms of D3
x̄ū.

Higher order estimates follow in the same way inductively. �

4.3. Proof of Theorem 4.1.2

Proof. We are assuming that the function θ is a weak solution to a divergence
type equation (4.7) on the set B1(0)\Q. Because the conditions (4.13), (4.14) and
(4.15) each guarantee uniform ellipticity of the Laplace equation, we may immedi-
ately apply Theorem 4.1 and conclude that θ is a weak solution over the whole ball
B1(0).

Recall that

F (D2u) = F (λ1, · · · , λn) =

n∑
i=1

arctanλi.

To begin, we claim that if either of the conditions (4.13) or (4.14) holds, then for u
satisfying

F (D2u) = θ

it follows that u is a solution to a concave equation.
For the case θ ≥ δ + π

2 (n− 2), we recall that by [38, Lemma 2.1] (see also [?,
section 8]) the level sets of F , at any level c with |c| ≥ π

2 (n − 2), are convex. We

have a uniform bound
∣∣D2u

∣∣ ≤ C0 wherever the Hessian exists, so we may find a
compact set K ⊂ Sn×n, where Sn×n is the space of symmetric n× n real matrices,
such that

D2u(B1(0)) ⊂ K

F (M) >
δ

2
+
π

2
(n− 2) for all M ∈ K.

We may smoothly modify F on K,

F̃ = f(F )



4.3. PROOF OF THEOREM 4.1.2 56

so that F̃ is a uniformly concave function and has the same level sets as F on K.
(For a recent detailed proof of this fact, see [?, Lemma 2.2] .) In this case

F̃ (D2u) = θ̃

for some smoothly modified θ̃, constructed from f such that∥∥∥θ̃∥∥∥
Cα
≤ C ‖θ‖Cα .

For the second case, (4.14), u is uniformly convex, and the function F is clearly

concave in the eigenvalues. So by taking F̃ = F (see [?, section 3]) we already have
that

F̃ (D2u) = θ

for some concave F̃ . Again, because
∣∣D2u

∣∣ ≤ C0 where it exists, we can find a
compact set K (still using the same notation as above for simplicity) such that
D2u(B1(0)) ⊂ K and F is uniformly concave on K.

In either case, (4.13) or (4.14), we may extend F̃ beyond K to a global function

F̄ on Sn×n to obtain a uniformly elliptic F̄ , satisfying F̄ (M) = F̃ (M) for M ∈ K,
F̄ is uniformly elliptic, F̄ is concave, and F̄ is continuous on Sn×n and still smooth
on the interior of K. (For example, see [34, Lemma 2.2].)

Now we apply [?, Theorem 8.1 and Remarks 1 and 3 following, see also Remark
1 in 6.2], which is Schauder theory for uniformly elliptic concave equations. Note
that [?, p. 54 ] only requires the function F̄ to be concave and continuous. First
note that by De Giorgi-Nash, when u ∈ C1,1 the equation (4.7) is uniformly elliptic,
so the function θ enjoys Hölder estimates. Thus we also have Hölder estimates on
the modified θ̃. Now our definition of weak solution is that F (D2u) = θ, almost

everywhere, so also, F̄ (D2u) = θ̃ almost everywhere, and we may apply [?, Corol-

lary 3] to conclude that u is also a viscosity solution to F̄ (D2u) = θ̃. Because the
modification of F was either smooth or away from a compact set containing the
image of D2u, we still have ∥∥F̄ (D2u)

∥∥
Cα(B4/5(0)) ≤ C1

for some C1 depending on the ellipticity constants obtained in our application of
De Giorgi-Nash, noting that ‖θ‖L∞ ≤ nπ/2. We conclude from [?] that∥∥D2u

∥∥
Cα(B3/4(0)) ≤ C2

for C2 depending on the ellipticity constants, C1, and the oscillation of u.
Now with interior C2,α estimates in hand, we return to θ, which is a solution

to a divergence type equation with Cα coefficients, so we may apply [19, Theorem
3.13] to conclude that

‖θ‖C1,α(B2/3(0)) ≤ C3.

Now for ek , consider the function

θ(hk)(x) =
θ(x+ hek )− θ(x)

h

defined on some interior region, for small h > 0. Because θ ∈ C1,α
(
B2/3(0)

)
we

have ∥∥∥θ(hk)
∥∥∥
Cα(B2/3−h(0))

≤ C3.
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Now

θ(hk)(x) =
1

h

∫ 1

0

d

dt
F (D2u(x+ hek )t+ (1− t)D2u(x))dt

=
1

h

∫ 1

0

gij
(
D2u(x+ hek )t+ (1− t)D2u(x)

)
(u(x+ hek )ij − uij(x)) dt

=

∫ 1

0

gij
(
D2u(x+ hek )t+ (1− t)D2u(x)

)(u(x+ hek )ij − uij(x)

h

)
dt

= Giju
(hk)
ij (x)

:= Lu(hk)(x)

for some uniformly elliptic L = Gij∂i∂j which is an average of elliptic operators
with Cα coefficients, where

u(hk)(x) =
u(x+ hek)− u(x)

h
.

Thus, each u(hk) satisfies an uniformly elliptic equation of non-divergence type, that
is

Lu(hk) = θ(hk) ∈ Cα
(
B2/3−h(0)

)
with Hölder estimate uniform in h. Noting that each u(hk) ∈ C2,α we may apply
the non-divergence Schauder theory [17, Theorem 6.6] to conclude a uniform C2,α

estimate as h→ 0. Thus, for each uk = limh→0 u
(hk), where k ∈ 1, ..., n, we have

‖uk‖C2,α(B1/2(0)) ≤ C4

that is

u ∈ C3,α
(
B1/2(0)

)
g ∈ C1,α

(
B1/2(0)

)
with estimates.

Now from ∆gθ = 0 we get
√
ggijθij = −∂i

(√
ggij

)
θi ∈ Cα

(
B1/2(0)

)
thus θ satisfies a non-divergence equation with Hölder continuous right hand side
f . By Schauder theory [17, Theorem 6.13], θ must be C2,α. (More precisely, θ is
the unique viscosity solution to the Dirichlet problem

√
ggijϕij = f on B1/2(0) and

ϕ = θ on ∂B1/2(0).) Iterating the previous two steps, we may obtain all higher
order estimates for any region further in the interior.

Next we assume that (4.15) holds. Suppose that a function u satisfies (4.15).
Let

κ = arctan(1− δ) < π

4
.

Condition (4.15) gives us that u is − tan (κ)-convex. Perform a downward rotation
of the graph of u with σ = π

4 . Proposition 4.2.1 implies that the corresponding
coordinate change x̄(x) defined by (4.30) is bi-Lipschitz. It will follow that any
interior region of Ω̄ε (recall (4.36)) will be the homeomorphic image of an interior
region Ω′ with

Ωε2 ⊂ Ω′ ⊂ Ωε1

with ε1/ε and ε2/ε bounded above and away from 0. It follows that interior esti-
mates for ū on Ω̄ will correspond to interior estimates for u on Ω.
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Now by Proposition 4.2.2, ū is β0-convex for

β0 = tan
(

arctan(δ − 1)− π

4

)
=
δ − 2

δ
.

Now letting v = −u, we may also rotate upward by σ = π
4 , to obtain a function v̄

that is β1-convex for

β1 = tan
(

arctan(δ − 1) +
π

4

)
=

δ

2− δ
by Proposition 4.2.2. From the discussion in the proof of Corollary 4.2.1, we have
that v̄ = −ū. In particular, −ū is C1,1, uniformly convex, and clearly is also a weak
solution of (4.7), as the quantity θ is odd in D2u. We are then back to the case
(4.14) , and may conclude interior estimates on the derivatives of −ū for any order,
and hence also for derivatives of ū. Now certainly (4.43) holds for ε = 1, so we
may apply Proposition 4.2.3 and get interior derivative estimates on u. �

4.3.1. Proof of Theorem 4.1.3.

Proof. Let u be a W 2,n (Ω) solution to (4.6). Let Γu = {(x,Du(x)) : x ∈ Ω}.
First note that the Grassmannian geometry (in particular, the distance function)
is invariant under unitary actions on Cn. Observe also that for small enough c0(n),
all Lagrangian planes within distance c0(n) from each other must be graphical over
each other. Thus at any point p where D2u exists, the tangent space to Γ is well-
defined, and we can locally take Γ to be a graph over TpL. By taking a unitary map
sending TpΓ to Rn×{0}, we may express the isometric image Γ̄ locally as a gradient
graph of some function ū over a region Ω̄ ⊂ Rn, with D2ū(p) = 0. For Lagrangian
tangent planes near Rn × {0}, the topology on the Lagrangian Grassmannian is
equivalent to the topology on Hessian space, so by choosing c0(n) small we have
also guaranteed that

‖u‖C1,1(Ω) ≤ c(n) < 1

where c(n) is from Theorem 4.1.1. Applying Theorem 4.1.1, we may conclude that
u is a weak solution to (4.7). By Theorem 4.1.2, ū is smooth inside Ω̄. So Γ̄ is the
gradient graph of a smooth function over Ω̄, hence it is a smooth submanifold of
R2n. �

Our result allows for the Hessian of the potential function u to be just contin-
uous or even have mild discontinuities provided that ‖u‖C1,1 ≤ c(n). The follow-
ing result is obtained by Schoen and Wolfson [?, Proposition 4.6], for Lagrangian
stationary surfaces (when the potential functions are locally in C2,α) in general
Kählerian ambient manifolds.

Corollary 4.3.1. Suppose that u ∈ C2 is a weak solution to (4.6). Then u is
smooth.

Proof. Let Γ = {(x,Du(x)) : x ∈ Ω}. Near any point x0 ∈ Γ, we may write Γ
locally as as gradient graph of a function v over its tangent plane Tx0

Γ. Necessarily,
this choice gives us D2v(0) = 0. Now v is also stationary for compactly supported
variations near x0, so v must satisfy (4.6) as well. Because D2u ∈ C0, the tangent
planes change continuously. It follows that also D2v ∈ C0, and because we have
chosen D2v(0) = 0, we may find a small neighborhood for which∥∥D2v

∥∥
C0 ≤ c(n).
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Applying Theorem 4.1.3, v is smooth near x. It follows that Γ is smooth near x.
Now because D2u was bounded, we may project the smooth object Γ back to the
original coordinates Ω, and the Jacobian does not vanish. Thus we conclude that
u is a smooth function on Ω. �

4.4. Removable singularities

4.4.1. Graphical case. To extend solutions across a small set in Theorem
4.1.1. we shall need the following theorem of Serrin (Theorem 2 in [?]).

Theorem 4.1. (Serrin) Suppose n ≥ 2 and that f is a bounded continuous
weak solution to a uniformly elliptic second order divergence equation with bounded
measurable coefficients on Ω−Q, for an open domain Ω and Q a compact subset. If
Q has capacity zero, then f may be extended to a weak solution across the domain
Ω.

4.4.2. Non-graphical case. The following volume upper estimate is a direct
consequence of the standard monotonicity formula for volumes. It will be used in
the proof of Theorem 1.1.

Proposition 4.4.1. Let L be an integral n-rectifiable varifold in Rn+l, with
generalized mean curvature H locally in Ln(L, µ) where µ is the Radon measure
associated with L. Given any x ∈ Rn+l and any fixed ρ0 > 0, there exists a C such
that

(4.45) µ(Bρ(x)) ≤ C (|ln ρ|+ 1)
n
ρn

for all 0 < ρ < ρ0 with C depending on ρ0, µ(Bρ0(x)) and the Ln norm of H over
Bρ0(x).

In particular if H is Ln(L, µ), µ is finite, and n ≥ 2, then for any 0 ≤ k ≤ n− 2
it holds for small ρ

(4.46) µ(Bρ(x)) ≤ Cρk+ n
n−1

for a constant C not depending on x.

Proof. Recall the monotonicity formula [30, 17.3 p. 84]

d

dρ

(
ρ−nµ(Bρ(x))

)
=

d

dρ

∫
Bρ(x)

|D⊥r|2

rn
dµ+ ρ−1−n

∫
Bρ(x)

〈y − x,H〉dµ(4.47)

≥ ρ−1−n
∫
Bρ(x)

〈y − x,H〉dµ

≥ −ρ−1−n
∫
Bρ(x)

ρ |H|dµ

≥ −ρ−n
(∫

Bρ(x)

|H|n dµ

)1/n

µ(Br(x))
n−1
n .

Now let

w(ρ) =
µ(Bρ(x))1/n

ρ
in which case we have

d

dρ
[w(ρ)]

n ≥ −1

ρ

(∫
Bρ(x)

|H|n dµ

)1/n

wn−1
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and

nwn−1 d

dρ
w ≥ −1

ρ

(∫
Bρ(x)

|H|n dµ

)1/n

wn−1

d

dρ
w ≥ − 1

ρn

(∫
Bρ(x)

|H|n dµ

)1/n

.

Integrating over (ρ, ρ0),

w(ρ0)− w(ρ) ≥

(∫
Bρ(x)

|H|n dµ

)1/n
1

n
[ln ρ− ln ρ0]

that is

w(ρ) ≤ w(ρ0) +

(∫
Bρ(x)

|H|n dµ

)1/n
1

n
(− ln ρ+ ln ρ0)

or

µ(Bρ(x))

ρn
≤

µ(Bρ0(x)) +

(∫
Bρ(x)

|H|n dµ

)1/n
1

n
(|ln ρ|+ ln ρ0)


n

and finally

µ(Bρ(x)) ≤ ρn
µ(Bρ0(x)) +

(∫
Bρ(x)

|H|n dµ

)1/n
1

n
(|ln ρ|+ ln ρ0)


n

.

The estimate (4.45) is immediate. To see (4.46), we have

ρ−k−
n
n−1µ(Bρ(x)) ≤ ρ

n(n−2)
n−1 −k

µ(Bρ0(x)) +

(∫
Bρ(x)

|H|n dµ

)1/n
1

n
(|ln ρ|+ ln ρ0)


n

and the term on the right hand side tends to zero as ρ→ 0 when n > 2, as k ≤ n−2
by assumption; however, when n = 2, this term becomes unbounded.

For n = 2, k must be 0, and the desired result follows from [?, (A.6)] (cf. [?]):
for any 0 < ρ < ρ0,

ρ−2µ(Bρ(x)) ≤ Cρ−2
0 µ(Bρ0(x)) + C

∫
Bρ0 (x)

|H|2dµ <∞.

�

Remark 4.2. Unlike the standard monotonicity formula for rectifiable varifolds
with H ∈ Lp, p > n (in particular for stationary ones), our assumption H ∈ Ln

yields a weaker conclusion as the domination of volume ratio involves a logarithmic
term, instead of a pure constant.

Theorem 4.3. Let N = ∪α0
α=1Nα be a finite union of compact sets Nα in a

domain Ω ⊂ Cn where each Nα has finite kα-dimensional Hausdorff measure with
kα ≤ n− 2 and satisfies the local kα-noncollapsing property

(4.48) inf
x∈Nα

Hkα(Nα ∩Bε(x)) ≥ C3ε
kα

for all ε ∈ (0, δ) for some δ and a constant C3 > 0 independent of ε. Let L be
an immersed Lagrangian submanifold in Ω\N with L\L ⊆ N such that (L, µL) is
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Hamiltonian stationary in Ω\N , where µL = Hnxβ is the measure on L and β is
an N-valued Hn-integrable function on L. Assume

(i)

∫
Ω

|H|ndµL < C1, where H is the generalized mean curvature vector of

(L, µL) in Ω\N ;
(ii) There exists a positive constant C4 such that for any open set E ⊆ L

µL(E) ≤ C4Hn(E);

(iii) For any x ∈ N , (4.46) holds over Bρ(x) for all ρ ≤ ρ0 where ρ0 is a
constant independent of x.

Then the closure L of L is Hamiltonian stationary in Ω: L admits a generalized
mean curvature H in Ω such that for any f ∈ C∞0 (Ω) it holds∫

Ω

〈JDf,H〉 dµL = 0.

Proof. Define the ε-neighborhood of the compact set Nα by

Uαε = {x ∈ R2n : min
y∈Nα

|x− y| < ε}.

Then

Uε =

α0⋃
α=1

Uαε

is the ε-neighborhood of N . Since N is compact, we may assume Uε is contained in
the open domain Ω by choosing ε small. For simplicity of notations, we will assume
(4.46) holds for 3εi’s, where {εi} will be a sequence of radii descending towards 0.

Step 1. Volume estimate of L ∩ Uεj .
For any fixed large j, let {Bεj (xα1 ), ..., Bεj (x

α
`(εj)

)} be the maximal family of

disjoint balls in Ω ⊂ R2n centered at xαi ∈ Nα of radius εj . Compactness of Nα
ensures the number `α(εj) well defined. The maximality assumption then implies

Nα ⊆
`α(εj)⋃
i=1

B2εj (x
α
i ).

To estimate `α(εj), summing the kα-dimensional Hausdorff measures over the dis-
joint balls and using the local kα-noncollapsing assumption (4.48), we have

`α(εj)C3ε
kα
j ≤

`α(εj)∑
i=1

Hkα(Nα ∩Bεj (xαi )) ≤ Hkα(Nα)

Therefore

`α(εj) ≤
Hkα(Nα)

C3 ε
kα
j

.

Next, we claim

Uαεj ⊂
`α(εj)⋃
i=1

B3εj (x
α
i ).
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This can be seen from that for any point p ∈ Uαεj there is a point q ∈ Nα with

|p− q| ≤ εj and q ∈ B2εj (x
α
i ) for some i, and it follows p ∈ B3εj (x

α
i ). Now by the

assumptions (ii) and (iii),∫
Uεj

dµL ≤
α0∑
α=1

∫
Uαεj

dµL

≤
α0∑
α=1

`α(εj)∑
i=1

∫
B3εj

(xαi )

dµL

≤
α0∑
α=1

`α(εj)C4C2 (3εj)
kα+ n

n−1(4.49)

≤
α0∑
α=1

Hkα(Nα)

C3
C4C2 3kα+ n

n−1 ε
n
n−1

j

= C5(N) ε
n
n−1

j .

Step 2. Existence of the generalized mean curvature H of L in Ω.

Let X be an arbitrary C1 vector field on Ω with compact support. Our goal is
to verify [30, Definition 16.5]

(4.50)

∫
Ω

divLX dµL = −
∫

Ω

〈H, X〉dµL

for some locally µL -integrable R2n-valued function H on L.
Let φεj be a cut-off function satisfying

φεj = 0 on Uεj/2

φεj = 1 on Ω\Uεj
0 ≤ φεj ≤ 1

|Dφεj | < C/εj .

The existence of such φεj is given, for example, in Lemma 2.2 in [?] and is also due

to Bochner [?]. Then φεjX is a C1 vector field which vanishes on Uεj/2. By the
standard first variation formula, we have∫

Ω

〈H,φεjX〉 dµL = −
∫

Ω

divL(φεjX) dµL(4.51)

= −
∫

Ω

{
〈∇φεj , X〉+ φεjdivLX

}
dµL.

From the volume estimate (4.49),∣∣∣∣∫
Ω

〈∇φεj , X〉 dµL

∣∣∣∣ ≤ C(X) εj
−1

∫
Uεj \Uεj/2

dµL → 0.

Now letting εj → 0 in (4.51)

(4.52)

∫
Ω

〈H,X〉 dµL = −
∫

Ω

divLX dµL.

By assumption, L\L ⊆ N and Hk(N) < +∞ and k ≤ n − 2, we have
Hn
(
L\L

)
= 0. So L = L ∪ (L\L) is a rectifiable n-varifold. The divergence
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operator divL is defined as divL, by noting that L\L has zero measure (cf. [30,
16.2]). Then by (4.52) ∫

Ω

divLX dµL =

∫
Ω

divX dµL

= −
∫

Ω

〈H,X〉 dµL(4.53)

= −
∫

Ω

〈H, X〉 dµL

where H equals H on L and zero on L\L, so it is locally µL-integrable on L, in
turn H is the generalized mean curvature of L in Ω since X is arbitrary.

Step 3. L is Hamiltonian stationary in Ω.

Our goal is to show that

(4.54)

∫
Ω

〈JDf,H〉dµL = 0

for all f ∈ C∞0 (Ω). For any smooth function f with compact support in Ω,
JD(φεjf) is a Hamiltonian vector field on Ω with compact support, in particu-
lar it vanishes on Uεj/2 containing N . Applying (4.53) with X = J∇f , we see∫

Ω

〈JDf,H〉dµL =

∫
L

〈J∇f,H〉dµL

=

∫
L∩Uεj

〈J∇f,H〉dµL +

∫
L\Uεj

〈J∇f,H〉dµL.(4.55)

Since L is Hamiltonian stationary in Ω\N , we have∣∣∣∣∣
∫
L\Uεj

〈J∇f,H〉dµL

∣∣∣∣∣ =

∣∣∣∣∣
∫
L

〈J∇(φεjf), H〉dµL −
∫
L∩Uεj

〈J∇(φεjf), H〉dµL

∣∣∣∣∣
=

∣∣∣∣∣ 0−
∫
L∩(Uεj \Uεj/2)

(
〈φεjJ∇f,H〉+ 〈fJ∇φεj , H〉

)
dµL

∣∣∣∣∣
≤ C(f)(1 + εj

−1)

∫
L∩(Uεj \Uεj/2)

|H|dµL

≤ C(f)(1 + εj
−1)

(∫
L∩(Uεj \Uεj/2)

|H|n dµL

) 1
n
(∫

Uεj \Uεj/2
dµL

)n−1
n

(4.56)

by Hölder’s inequality, where C(f) depends on f and |Df | as ∇f is the tangential
projection of Df along L so

|J∇f | = |∇f | ≤ |Df |.

Similarly

(4.57)

∣∣∣∣∣
∫
L∩Uεj

〈J∇f,H〉dµL

∣∣∣∣∣ ≤ C(f)

(∫
L∩Uεj

|H|n dµL

) 1
n
(∫

Uεj

dµL

)n−1
n
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It then follows from the assumption (i), and the volume estimate (4.49) that
both terms (4.56) and (4.57) vanish as εj → 0. Combining with (4.55) we conclude
(4.54). �

The local k-noncollapsing property is automatically satisfied if N is a compact
manifold of dimension no larger than n− 2.

Corollary 4.4.1. Let N be a compact submanifold in a domain Ω ⊂ R2n of
dimension k ≤ n− 2. Let L be Hamiltonian stationary in Ω\N as in Theorem 4.3
with (i), (ii) and (iii) therein. Then L is Hamiltonian stationary in Ω.

Corollary 4.4.2. With the assumptions on N and (i), (ii), (iii) as in Theorem
4.3, let ι : M → Ω\N be a proper immersion of an n-dimensional manifold M in
Ω\N and L = ι(M) is Hamiltonian stationary Lagrangian in Ω\N . Then L is
Hamiltonian stationary Lagrangian in Ω.

Proof. In light of Theorem 4.3, the only thing to verify is: L\L ⊆ N . For
any y ∈ L\L, if y 6∈ N then by compactness of N there will be a neighborhood
W of y such that W ∩ N = ∅; then there exists a sequence yj ∈ W ∩ L → y. By
properness of ι, it follows that ι−1({yj : j ∈ N}) contains a converging subsequence

in M since ι−1(W ) is compact in M ; then y is the image of the limit point which
is in L, and we have a contradiction. �

4.5. Regularity of HSL submanifolds in a symplectic manifold

In this section, we provide a different method to the regularity of HSL manifolds
by develop a theory for the regularity of a class of nonlinear fourth order of double
divergence form. This allows to deal with general symplectic ambient space.

We consider

(4.58) ∂xl∂xjF
jl(x,Du,D2u) = ∂xka

k(x,Du,D2u)− b(x,Du,D2u).

The coefficient functions F jl, ak, b are smooth in the entries (x,Du,D2u) over a
convex region U ⊂ Rn × Rn × Sn×n, and the Legendre ellipticity condition holds:
for a constant Λ > 0

(4.59)
∂F jl

∂uik
(ξ)σijσkl ≥ Λ ‖σ‖2 , ∀ σ ∈ Sn×n and ξ ∈ U.

A function u ∈ W 2,∞ is said to be a weak solution to the double divergence equa-
tion (4.58) if each of the derivatives ∂xi presented in (4.58) are taken in a distribu-
tional sense, as in (4.61). For non-classical solutions to nonlinear partial differential
equations, especially of order beyond two, attention needs to be paid even for the
meaning of solutions, due to the fact that no uniform theory exists. In our case,
the double divergence structure on the matrix-valued operator F , which involves
D2u itself, permits us to define solutions, possibly in the weakest form, by flipping
derivatives on F and the lower order terms, to test functions via integration by
parts as traditionally done for distributional solutions, but now only for half of the
total order.

Equations in divergence form occupy an important place in the second order
PDE theory. In fourth order, the most natural counterpart is an equation, linear or
nonlinear, with a double divergence structure. Many well-known equations enjoy
the structure such as for the bi-harmonic functions, extremal Kähler metrics, the
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Willmore surface, and the Hamiltonian stationary Lagrangian equations which are
closely linked to elastic mechanics. We find that the double divergence structure, a
less explored area, shares similar features, as second order equations in divergence
form, toward a regularity theory. We demonstrate that when (4.59) holds, any weak
solution u to (4.58) is smooth, provided that the oscillation of DqF (x,Du,D2u)
can be bounded locally (in x) by a small positive constant.

The above fourth order nonlinear elliptic equation originates in the variational
problem for volume of Lagrangian submanifolds under Hamiltonian variations in a
symplectic manifold (M,ω) with a Riemannian metric g compatible with ω in the
sense that ω(X,Y ) = g(JX, Y ) for an almost complex structure J on M .

In Cn with the standard Kähler structure, a particular expression for Θ is
available, namely, it is a sum of arctan of the eigenvalues of the Hessian of the
potential function u for a local graphical representation L = (x,Du). This decom-
position feature of the fourth order operator into two second order elliptic operators
is essential in the work of Chen-Warren [?] in which it is shown that a C1-regular
Hamiltonian stationary Lagrangian submanifold in Cn is real analytic. However,
the same strategy for a Calabi-Yau other than Cn encounters difficulties for the
reason that Θ, still well-defined by Ω at least locally, now is no longer written in a
clean form as sum of arctan functions, when representing L as a gradient graph in
a Darboux coordinate chart.

To overcome the obstacle presented above in the Calabi-Yau case, we find
that, in a more general standpoint, the Riemannian picture without referring to
a symplectic structure is helpful: dealing directly with the stationary point of the
volume of L = (x,Du) in an open ball B ⊂ R2n equipped with a Riemannian
metric among nearby competing gradient graphs Lt = (x,Du+ tDη) for compactly
supported smooth functions η. This leads us to study the fourth order nonlinear
equation (4.58) with (4.59).

We now outline our approach to the regularity problem. Given a W 2,∞ weak so-
lution u of (4.58) that satisfies the Legendre ellipticity condition (4.59), we show, in
Proposition 4.6.1, that the difference quotient [u(x)−u(x−h)]/|h| can be bounded
in W 2,2 uniformly in h. Letting h → 0 asserts u ∈ W 3,2 with estimates controlled
by ‖u‖W 2,∞ . This boosted regularity is then used to bound the C1,α norm of the
difference quotient uniformly in h in Proposition 4.6.2, leading to a C2,α bound on
u. The key ingredient for this step is a closeness assumption, given by (4.73): this
ensures that the operator is in fact close to a constant coefficient operator, given by
its linearization at the origin, that leads to a uniform C1,α bound on the difference
quotient. Note that reaching C2,α is a crucial step in proving smoothness since

once C2,α is achieved the functions ∂F jl

∂uik
, ∂F

jl

∂uk
, ∂F

jl

∂xp
, which were barely measurable,

are now all Hölder continuous in x, and this is sufficient to prove higher regularity
for the equation satisfied by the difference quotient. The enhanced regularity alone
improves the bound on the difference between the actual operator and its lineariza-
tion by a factor of a power of r, which in turn ultimately leads to u ∈ C3,α. Moving
from C3,α to C∞ involves a similar bootstrapping procedure employed in [4] by
considering the difference quotient.

For the general fourth order nonlinear equation, our main result is the following.

Theorem 4.4. Suppose that u ∈ W 2,∞(B1) is a weak solution of (4.58) that
satisfies condition (4.59) on the unit ball B1 in Rn. There is an ε0(Λ, n) > 0 such
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that if

(4.60)

∣∣∣∣∂F jl∂uik
(x,Du,D2u)− ∂F jl

∂uik
(ξ)

∣∣∣∣ < ε0

for some ξ ∈ U and all x ∈ B1, then u is smooth in B1.

This regularity statement suffices for answering affirmatively the motivating
geometric question on smoothness of a C1-regular critical point under Hamiltonian
deformations in a symplectic manifold. The transition, from the general theory in
euclidean space to the specific symplectic setting, is done in a Darboux coordinate
chart with estimates on the Riemannian metric within the special coordinates. This
is given by [20, Prop. 3.2 and Prop. 3.4]. Our main result is the following.

Theorem 4.5. Let (M,ω) be a compact symplectic manifold with a Riemannian
metric g compatible with ω and some almost complex structure J on M . Let L be
a Hamiltonian stationary Lagrangian C1-regular submanifold in M with respect to
ω, g. Then L is smooth.

4.6. A fourth order elliptic theory

4.6.1. Preliminaries. We consider the following fourth order equation, writ-
ten in double divergence form:

(4.61)

∫
B1

[
F jl(x,Du,D2u)ηjl + ak(x,Du,D2u)ηk + b(x,Du,D2u)η

]
dx = 0

for all η ∈ C∞c (B1) where B1 is the unit ball in Rn. The coefficients are smooth in
the entries (x,Du,D2u) over a given convex region U ⊂ Rn × Rn × Sn×n. Lower
indices on a function stand for partial derivatives, e.g. ηjl, ηk, and summation con-
vention is assumed.

We write hp = hep and denote the difference quotient of u in the ep direction
by uhp . We start by deriving a difference quotient expression from (4.61) in the
direction hp. Fixing a compactly supported function η we can choose h small
enough so the function

(4.62) η−hp(x) =
η(x− hp)− η(x)

h

is a valid test function. Using a change of variables x→ x+ hp on the first term of
(4.62) with the first two terms of (4.61) and recombining, we get
(4.63)∫
B1

(
[F jl(x,Du,D2u)]hpηjl + ak(x,Du,D2u)η

−hp
k + b(x,Du,D2u)η−hp

)
dx = 0.

The function F jl is defined on open subsets of the vector space so for any fixed
x where D2u(x) is defined we can define

ξ0 =
(
x,Du(x), D2u(x)

)
∈ Rn × Rn × Sn×n

ξh =
(
x+ hp, Du(x+ hp), D

2u(x+ hp)
)
∈ Rn × Rn × Sn×n

~V = ξh − ξ0
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in which case we have

[F jl(x,Du,D2u)]hp =
1

h
{F jl(ξ0 + ~V )− F jl(ξ0)}

=
1

h

∫ 1

0

d

dt
F jl(ξ0 + t~V )dt

=
1

h

∫ 1

0

DF jl|ξ0+t~V · ~V dt

=

∫ 1

0

∂F jl

∂uik
(ξ0 + t~V ) · uhpik dt+

∫ 1

0

(
∂F jl

∂uk
(ξ0 + t~V )u

hp
k +

∂F jl

∂xp
(ξ0 + t~V )

)
dt

=

(∫ 1

0

∂F jl

∂uik
(ξ0 + t~V )dt

)
· uhpik +

∫ 1

0

(
∂F jl

∂uk
(ξ0 + t~V )u

hp
k +

∂F jl

∂xp
(ξ0 + t~V )

)
dt

= βij,kl · uhpik + γjl,k1 u
hp
k + γjl2

where we define

(4.64) βij,kl(x) =

∫ 1

0

∂F jl

∂uik
(ξ0 + t~V )dt

and

γjl,k1 (x) =

∫ 1

0

∂F jl

∂uk
(ξ0 + t~V )dt(4.65)

γjl2 (x) =

∫ 1

0

∂F jl

∂xp
(ξ0 + t~V )dt.(4.66)

Letting f = uhp and

ψk (x) = ak(x,Du,D2u)(4.67)

ζ(x) = b(x,Du,D2u),(4.68)

we arrive the following equation by plugging the above expressions into (4.63) gov-
erning the difference quotients∫

B1

(
βij,klfikηjl + γjl,k1 fkηjl + γjl2 ηjl + ψkη

−hp
k + ζη−hp

)
dx = 0.

This linearized equation, which holds true provided η ∈ C∞c (B1−h) governs differ-
ence quotients for solutions to (4.61). Further simplifying notation we define

(4.69) γjl(x) =

∫ 1

0

(
∂F jl

∂uk
(ξ0 + t~V )fk +

∂F jl

∂xp
(ξ0 + t~V )

)
dt

to get

(4.70)

∫
B1

(
βij,klfikηjl + γjlηjl + ψkη

−hp
k + ζη−hp

)
dx = 0.

Observe that since we do not start with a continuous Hessian, we leave the
expressions for the above leading coefficients in their integral form.

Definition 4.6. We define the nonlinear fourth order equation (4.61) to be Λ-
uniform on a convex neighborhood U ⊂ Rn×Rn×Sn×n if the standard Legendre
ellipticity condition is satisfied for any ξ ∈ U
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(4.71)
∂F jl

∂uik
(ξ)σijσkl ≥ Λ ‖σ‖2 , ∀ σ ∈ Sn×n.

Remark 4.7. While this definition is tailored to equations of the form (4.61)
it is important to note that it also applies to linear equations of the form (4.70), in
which case

F jl(x) = βij,kl(x)fik + γjl(x)

and
∂F jl

∂uik
= βij,kl(x).

Thus when the nonlinear equation (4.61) is Λ-uniform, then so is the linearized
equation (4.70).

We will use the following results to prove higher regularity in section 4.6.2. We
state the results here for the convenience of the reader.

Theorem 4.8. [4, Theorem 2.1]. Suppose w ∈ W 2,2(Br) satisfies the Λ-
uniform constant coefficient equation∫

cik,jl0 wikηjldx = 0, ∀η ∈ C∞0 (Br).

Then for any 0 < ρ ≤ r there holds∫
Bρ

|D2w|2 ≤ C1

(ρ
r

)n
||D2w||2L2(Br),∫

Bρ

|D2w − (D2w)ρ|2 ≤ C2

(ρ
r

)n+2
∫
Br

|D2w − (D2w)r|2

where C1, C2 depend on the ellipticity constant Λ and (D2w)ρ is the average value
of D2w on a ball of radius ρ.

Corollary 4.6.1. [4, Corollary 2.2]. Suppose w is as in the Theorem 4.8.
Then for any u ∈W 2,2(Br), and for any 0 < ρ ≤ r, there holds∫

Bρ

∣∣D2u
∣∣2 ≤ 4C1

(ρ
r

)n ∥∥D2u
∥∥2

L2(Br)
+ (2 + 8C1)

∥∥D2(w − u)
∥∥2

L2(Br)

and∫
Bρ

∣∣D2u− (D2u)ρ
∣∣2 ≤ 4C2

(ρ
r

)n+2
∫
Br

∣∣D2u− (D2u)r
∣∣2 + (8 + 16C2)

∫
Br

∣∣D2(u− w)
∣∣2

where C1, C2 depend on the ellipticity constant Λ.

Lemma 4.9. [19, Lemma 3.4]. Let φ be a nonnegative and nondecreasing func-
tion on [0, R]. Suppose that

φ(ρ) ≤ A
[(ρ
r

)α
+ ε
]
φ(r) +Brβ
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for any 0 < ρ ≤ r ≤ R, with A,B, α, β nonnegative constants and β < α. Then
for any γ ∈ (β, α), there exists a constant ε∗ = ε∗(A,α, β, γ) such that if ε < ε∗ we
have for all 0 < ρ ≤ r ≤ R

φ(ρ) ≤ c
[(ρ
r

)γ
φ(r) +Brβ

]
where c is a positive constant depending on A,α, β, γ. In particular, we have for
any 0 < r ≤ R

φ(r) ≤ c
[
φ(R)

Rγ
rγ +Brβ

]
.

The following boundary value problem existence result should come as no sur-
prise, but is included for completeness.

Lemma 4.10. Suppose that g ∈ W 2,2(Br), and cij,kl0 is as in Theorem 4.8.
There exists a unique solution w ∈W 2,2(Br) solving the following BVP∫

Br

cij,kl0 wikηjldx = 0, ∀η ∈ C∞0 (Br)

w = g, Dw = Dg on ∂Br(y).

Proof. By [?, Corollary 6.48, 6.49] the boundary condition is equivalent to
w− g ∈ H2

0 (Br). The problem will be solved if we can find a function v = w− g ∈
H2

0 (Br) such that∫
Br

cij,kl0 (w − g)ik ηjldx+

∫
Br

cij,kl0 gikηjldx = 0.

So it suffices to solve the problem∫
Br

cij,kl0 vikηjldx = −
∫
Br

cij,kl0 gikηjldx

v ∈ H2
0 (Br).

First, we claim that

(4.72) 〈φ, ϕ〉 =

∫
Br

cij,kl0 φikϕjldx

defines a Hilbert space norm on the function space H2
0 (Br). In other words, the

norm defined by (4.72) is equivalent to the W 2,2
0 (Br) norm and the inner product

is symmetric. First note that by the Legendre condition

〈φ, φ〉 ≥ Λ1

∫
Br

∣∣D2φ
∣∣2

where Λ1 depends on Λ, n, and because cij,kl0 is bounded we have

〈φ, φ〉 ≤ Λ2

∫
Br

∣∣D2φ
∣∣2

where Λ2 depends on n, ‖cij,kl0 ‖L∞ for 1 ≤ i, j, k, l,≤ n. Using the Poincaré inequal-

ity [17, (7.44)], for any φ ∈W 2,2
0 (hence Dφ ∈W 1,2

0 )

1

C
〈φ, φ〉 ≤ ‖φ‖2W 2,2(Br) ≤ C〈φ, φ〉.

Thus the norm 〈φ, φ〉 is continuous with respect to the W 2,2 norm.
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Next we argue symmetry of (4.72): For φ, ϕ ∈ H2
0 (Br) we may take φm, ϕm ∈

C∞c (Br) ∩W 2,2(Br), which converge respectively to φ, ϕ in W 2,2 , as m→∞. We
have

〈φ, ϕ〉 = lim
m→∞

〈φm, ϕm〉

= lim
m→∞

∫
Br

cij,kl0 (φm)ik (ϕm)jl dx

= (−1)2 lim
m→∞

∫
Br

cij,kl0 (φm)ikjl (ϕm) dx

= (−1)4 lim
m→∞

∫
Br

cij,kl0 (φm)jl (ϕm)ik dx

= lim
m→∞

〈ϕm, φm〉

= 〈ϕ, φ〉.
The linear operator

f(φ) = −
∫
Br

cij,kl0 gikφjldx

on W 2,2
0 (Br) is bounded with respect to the norm defined by (4.72). To see this,

take any φ in H2
0 (Br), then

|f(φ)| =
∣∣∣∣−∫

Br

cij,kl0 gikφjldx

∣∣∣∣
≤ C1 ‖g‖W 2,2(Br) ‖φ‖W 2,2(Br)

≤ C1 ‖g‖W 2,2(Br) C2 (〈φ, φ〉)1/2
.

By the Riesz representation theorem, there is a unique solution v ∈ H2
0 (Br) such

that

f(η) = 〈η, v〉 =

∫
Br

cij,kl0 vikηjldx

that is

−
∫
Br

cij,kl0 gikηjldx =

∫
Br

cij,kl0 vikηjldx.

Thus we can let

w = v + g.

This gives the solvability of the boundary value problem in H2
0 (Br). �

4.6.2. Main regularity results. We will establish Theorem 4.4 by first prov-
ing the solution is C2,α and then by bootstrapping for smoothness. We state our
two main regularity boosting results below.

Theorem 4.11. Suppose that u ∈ W 2,∞(B1) is a weak solution of the Λ-
uniform equation (4.61) on B1, such that{

(x,Du(x), D2u(x)) : x ∈ B1

}
⊂ U.

Fix α ∈ (0, 1) and let q = n
2(1−α) . There exists an ε0 > 0, depending only on Λ, α

and n such that if the coefficients βij,kl given by (4.64) satisfy

(4.73)
∣∣∣βij,kl(x,Du,D2u)− aij,kl0

∣∣∣ < ε0
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where aij,kl0 = ∂F jl

∂uik
(ξ) for some ξ ∈ U, then u ∈ C2,α(B1) with

||D2u||Cα(B1/4) ≤ C(Λ, α, ||u||W 2,∞(B1), ‖DF‖L∞(U) ,
∥∥ak∥∥

L∞(U)
, ‖b‖L∞(U)).

Theorem 4.12. Suppose that u ∈ C2,α(B1) satisfies the Λ-uniform equation
(4.61) on B1. Then u is smooth in B1.

Remark 4.13. The closeness condition (4.73) is not needed to reach W 3,2 from
W 2,∞. It is used to bootstrap to C2,α from W 3,2, and C2,α is enough to bootstrap
further.

4.6.3. Proof of Theorem 4.11. To boost up regularity, we will work with
equation (4.70) on the difference quotient uhp , rather than directly on (4.61) for u.
Given a solution f to (4.70), we begin with bounding its W 2,2 norm in terms of its
W 1,∞ norm in Proposition 4.6.1, then in Proposition 4.6.2, we show that the C1,α

norm of f depends on its W 2,2 norm. This follows essentially the same arguments
as in [8, Lemma 3.1] and [4, Proposition 1.3].

Theorem 4.11 will then follow from Propositions 4.6.2 and 4.6.1, by taking
f = uhp therein.

Proposition 4.6.1. Suppose that f ∈W 2,∞(B1) satisfies the uniformly ellip-
tic weak double divergence equation (4.70) on B1. Then f satisfies the following
estimate:

(4.74) ||f ||W 2,2(B1/2) ≤ C
(

Λ, ‖f‖W 1,∞(B1) , ‖ψ‖L2(B1) , ‖ζ‖L2(B1) , ‖β‖L∞(B1)

)
.

Proof. Assuming f ∈W 2,∞(B1), f will be W 2,2 and the function τ4f can be
approximated by functions η ∈ C∞c (B3/4) in W 2,2 norm for τ smooth compactly
supported on B3/4 which is 1 on B1/2. Thus∫

B1

[
βij,klfik

(
τ4f

)
jl

+ γjl
(
τ4f

)
jl

+ ψk
(
τ4f

)−hp
k

+ ζ
(
τ4f

)−hp ]dx = 0.

Applying uniform ellipticity to the first term of the above expression, we get

Λ

∫
B1

τ4
∣∣D2f

∣∣2 dx ≤ ∫
B1

∣∣∣βij,klfik ((τ4
)
jl
f +

(
τ4
)
l
fj +

(
τ4
)
j
fl

)∣∣∣ dx
(4.75)

+

∫
B1

(∣∣∣γjl (τ4f
)
jl

∣∣∣+
∣∣∣ψk (τ4f

)−hp
k

∣∣∣+
∣∣∣ζ (τ4f

)−hp ∣∣∣) dx.
Straightforward use of inequalities gives∫

B1

∣∣∣βij,klfik ((τ4
)
jl
f +

(
τ4
)
l
fj +

(
τ4
)
j
fl

)∣∣∣ dx
≤ C

(
Dτ,D2τ, ‖f‖W 1,∞ , ‖β‖L∞

) ∫
B1

τ2
∣∣D2f

∣∣ dx
≤ C

(
Dτ,D2τ, ‖f‖W 1,∞ , ‖β‖L∞

)(1

ε
+ ε

∫
B1

τ4
∣∣D2f

∣∣2 dx) .
Similarly
(4.76)∫

B1

∣∣∣γjl (τ4f
)
jl

∣∣∣ dx ≤ C (Dτ,D2τ, ‖f‖W 1,∞ , ‖β‖L∞
)(1

ε
+ ε

∫
B1

τ4
∣∣D2f

∣∣2 dx) .
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Now for

(4.77)

∫
B1

∣∣∣ψk (τ4f
)−hp
k

∣∣∣ dx
observe that∫

B1

∣∣∣∣∣ψk
(
τ4f

)
k

(x− hp)−
(
τ4f

)
k

h

∣∣∣∣∣ dx =

∫
B1

∣∣ψk∣∣ ∣∣∣∣∫ 1

0

D
(
τ4f

)
k

(x− thp)dt
∣∣∣∣ dx

≤
∫ 1

0

∫
B1

∣∣ψk∣∣ ∣∣D (τ4f
)
k

(x− thp)
∣∣ dxdt

≤
∫ 1

0

‖ψ‖L2(B1)

∥∥D2
(
τ4f

)∥∥
L2(B1)

dt

= ‖ψ‖L2(B1)

∥∥D2
(
τ4f

)∥∥
L2(B1)

which can be treated as in (4.76)∫
B1

∣∣∣ψk (τ4f
)−hp
k

∣∣∣ dx ≤ C (D2τ, ‖f‖W 1,∞ , ‖ψ‖L2(B1)

)(1

ε
+ ε

∫
B1

τ4
∣∣D2f

∣∣2 dx) .
Finally, treating the last term in (4.75) similarly as for (4.77), we can bound (4.75)
in lower order terms of f.

Combining and using the appropriately chosen τ , we choose ε appropriately in
the above equation and in (4.76), to get

Λ

2

∫
B1/2

∣∣D2f
∣∣2 dx ≤ C (‖f‖W 1,∞(B1) , ‖ψ‖L2(B1) , ‖ζ‖L2(B1) , ‖β‖L∞(B1)

)
,

therefore complete the proof. �

Our next result is key in achieving C2,α regularity of u.

Proposition 4.6.2. For a fixed hp with |h| < 1
100 suppose that f ∈ W 2,2(B1)

satisfies the uniformly elliptic double divergence equation (4.70) weakly on B3/4(0).

Suppose that γjl, ψk, ζ ∈ L2q with q = n
2−2α , α ∈ (0, 1). Then, there is an

ε0(n,Λ, α) > 0, such that if (4.73) holds as in Theorem 4.11 then we have Df ∈
Cα(B1/4) and the estimates:
(4.78)
||Df ||Cα(B1/4) ≤ C(Λ, α, ||f ||W 2,2(B1/2),

∥∥γjl∥∥
L2q(B1),

∥∥ψk∥∥
L2q(B1)

, ‖ζ‖L2q(B1)).

Proof. Pick an arbitrary point y ∈ B1/4. Then Br(y) ⊂ B3/4 for any fixed
r < 1/2.

We write v = f −w, where w satisfies the following constant coefficient partial
differential equation on Br(y) ⊂ B3/4:∫

Br(y)

aij,kl0 wikηjldx = 0, ∀η ∈ C∞0 (Br(y))

w = f, Dw = Df on ∂Br(y).

Here aij,kl0 is the symbol occurring in our assumption (4.73). This solution exists
by Lemma 4.10 and is smooth on the interior of Br(y) [?, Theorem 6.33].

We may extend v to a function (still named v) on B3/4 by defining v = 0 on

B3/4\Br(y). As the original v ∈ H2
0 (Br(y)) is the limit of C∞c (Br(y)) functions

η(m) it follows that the extended v must also remain in H2
0 (B3/4).
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Now because v is the W 2,2(Br(y)) limit of functions η(m) ∈ C∞c (Br(y)) ⊂
C∞c (B3/4) we may also write

∫
Br(y)

aij,kl0 vikvjldx = lim
m→∞

∫
Br(y)

aij,kl0 vik(η(m))jldx

= lim
m→∞

∫
Br(y)

aij,kl0 fik(η(m))jldx

= lim
m→∞

∫
B3/4

aij,kl0 fik(η(m))jldx

=

∫
B3/4

aij,kl0 fikvjldx.(4.79)

Now taking limits of (4.70) for η(m) → v we conclude that

(4.80)

∫
B3/4

(
βij,klfikvjl + γjlvjl + ψkv

−hp
k + ζv−hp

)
dx = 0.

Now we subtract (4.80) from (4.79)

∫
Br(y)

aij,kl0 vikvjldx =

∫
B3/4

aij,kl0 fikvjldx−
∫
B3/4

(
βij,klfikvjl + γjlvjl + ψkv

−hp
k + ζv−hp

)
dx

(4.81)

=

∫
B3/4

(
aij,kl0 − βij,kl

)
fikvjldx−

∫
B3/4

γjlvjldx−
∫
B3/4

(
ψkv

−hp
k + ζv−hp

)
dx.

First we note that our condition (4.73), for an ε0 yet to determined, gives us

(4.82)

∫
B3/4

∣∣∣(aij,kl0 − βij,kl)fikvjl
∣∣∣ dx ≤ ε0

∥∥D2f
∥∥
L2(Br(y))

∥∥D2v
∥∥
L2(Br(y))

,

making use of the fact that v is supported in Br(y). Next, by Hölder’s inequality
(4.83)∫
B3/4

|γjlvjl|dx ≤ C(n) ‖γ‖L2(Br(y))

∥∥D2v
∥∥
L2(Br(y))

≤ C(n) ‖γ‖L2q(Br(y)) r
n−2+2α

2

∥∥D2v
∥∥
L2(Br(y))

where q = n
2(1−α) .
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For the third term∫
B3/4

∣∣∣∣ψk vk(x− hp)− vk(x)

h

∣∣∣∣ dx = lim
m→∞

∫
B3/4

∣∣∣∣∣ψk
(
η(m)

)
k

(x− hp)−
(
η(m)

)
k

(x)

h

∣∣∣∣∣ dx
= lim
m→∞

∫
B3/4

∣∣∣∣ψk ∫ 1

0

(
−Dpkη

(m)(x− thp)
)
dt

∣∣∣∣ dx
≤ lim
m→∞

∫
B3/4

∣∣ψk∣∣ ∫ 1

0

∣∣∣Dpkη
(m)(x− thp)dt

∣∣∣ dx
≤ lim
m→∞

∫ 1

0

∫
B3/4

∣∣ψk∣∣ ∣∣∣Dpkη
(m)(x− thp)

∣∣∣ dxdt (Fubini-Tonelli’s Theorem)

≤
∫ 1

0

∫
B3/4

∣∣ψk∣∣ ∣∣D2v(x− thp)
∣∣ dxdt (ηm) → v in W 2,2)

=

∫ 1

0

∫
Br+h(y)

∣∣ψk∣∣ ∣∣D2v(x− thp)
∣∣ dxdt (supp v ⊂ Br(y))

≤ ‖ψ‖L2(Br+h(y))

∥∥D2v
∥∥
L2(Br(y))

(Cauchy-Schwarz inequality)

≤ C(n) ‖ψ‖L2q(Br+h(y)) r
n−2+2α

2

∥∥D2v
∥∥
L2(Br(y))

. (Hölder’s inequality)

(4.84)

A similar computation yields∫
B3/4

∣∣ζ(x)v−hp(x)dx
∣∣ ≤ ‖ζ‖L2(Br+h(y)) · ‖Dv‖L2(Br(y))

≤ C(n)‖ζ‖L2q(Br+h(y))r
n−2+2α

2 · Cp|Br(y)| 1n
∥∥D2v

∥∥
L2(Br(y))

(4.85)

where Cp is from the Poincaré inequality [17, (7.44)].

Now since aij,kl0 has an ellipticity constant Λ, plugging the bounds (4.82), (4.83),
(4.84), (4.85) into (4.81), we have (collecting dimensional constants into a new C(n))

Λ
∥∥D2v

∥∥2

L2(Br(y))
≤ ε0

∥∥D2f
∥∥
L2(Br(y))

∥∥D2v
∥∥
L2(Br(y))

+ C(n) ‖γ‖L2q r
n−2+2α

2

∥∥D2v
∥∥
L2(Br(y))

+ C(n) ‖ψ‖L2q r
n−2+2α

2

∥∥D2v
∥∥
L2(Br(y))

+ C(n) ‖ζ‖L2q r
n−2+2α

2

∥∥D2v
∥∥
L2(Br(y))

.

Dividing by
∥∥D2v

∥∥
L2(Br(y))

and collecting

Λ
∥∥D2v

∥∥
L2(Br(y))

≤ ε0

∥∥D2f
∥∥
L2(Br(y))

+ C(n) (‖γ‖L2q + ‖ψ‖L2q + ‖ζ‖L2q ) r
n−2+2α

2 .

That is

Λ2
∥∥D2v

∥∥2

L2(Br(y))
≤ 2ε2

0

∥∥D2f
∥∥2

L2(Br(y))
+Krn−2+2α

for (again modifying C(n))

K = C(n)
(
‖γ‖2L2q + ‖ψ‖2L2q + ‖ζ‖2L2q

)
.

Recalling f = v + w and Corollary 4.6.1∫
Bρ(y)

∣∣D2f
∣∣2 ≤ 4C1

(ρ
r

)n ∥∥D2f
∥∥2

L2(Br(y))
+ (2 + 8C1)

∥∥D2v
∥∥2

L2(Br(y))



4.6. A FOURTH ORDER ELLIPTIC THEORY 75

for C1 depending on the ellipticity of aij,kl0 we see
(4.86)∫
Bρ(y)

∣∣D2f
∣∣2 ≤ 4C1

(ρ
r

)n ∥∥D2f
∥∥2

L2(Br(y))
+

2 (2 + 8C1)

Λ2

(
ε2

0

∥∥D2f
∥∥2

L2(Br(y))
+Krn−2+2α

)
.

Now, we would like to apply Lemma 4.9. To this end, let

φ(ρ) =

∫
Bρ

∣∣D2f
∣∣2

A = 4C1

ε =
2 (2 + 8C1)

Λ2
ε2

0

B =
2 (2 + 8C1)

Λ2
K

α = n

β = n− 2 + 2α

γ = n− 1

R =
1

2
.

To be clear, in order to avoid notational double-dipping, the notations appearing
on the left hand side of expressions above refer to constants as they are named in
Lemma 4.9, while the right hand side refers to constants as they appear previously
in this proof so far. We observe that (4.86) can be written using notation on the
left side of the above table as

(4.87) φ(ρ) ≤ A
[(ρ
r

)α
+ ε
]
φ(r) +Brβ

for all 0 < ρ ≤ r < 1
2 . There exists a constant ε∗ (A,α, β, γ) so that (4.87) allows

us to conclude that there is a constant C > 0 such that

φ(ρ) ≤ C
[(ρ
r

)n−1

φ(r) +Brn−2+2α

]
whenever

(4.88)
2 (2 + 8C1)

Λ2
ε2

0 ≤ ε∗ (A,α, β, γ) .

We pick one such ε0. Thus

φ(r) ≤ C
[
2n−1rn−1φ(

1

2
) +Brn−2+2α

]
≤ C ′rn−2+2α

where C ′ depends on
∫
B1/2

∣∣D2f
∣∣2 ,Λ, n, α, and 2(2+8C1)

Λ2 K.

We now have that ∫
Br

∣∣D2f
∣∣2 ≤ C ′rn−2+2α.

Noting that we chose an arbitrary point in B1/4(0) we may apply Morrey’s Lemma
[?, Lemma 3, page 8] to Df to get the desired conclusion. �
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Proof of Theorem 4.11. Applying Proposition 4.6.1 we see that u ∈ W 3,2, with
estimates controlled by ‖u‖W 2,∞ . The difference quotient f = uhp satisfies (4.70)
where now f ∈ W 2,2 with estimates. Using the supremum norms of DF, ak, b
and that u ∈ W 2,∞, the conditions on γjl, ψk, ζ in Proposition 4.6.2 are fulfilled,
namely, they are in L2q. In light of Proposition 4.6.2 we conclude uhp ∈ C1,α with
the estimate (4.78) where we note that now

‖f‖W 1,∞ =

∥∥∥∥u(x)− u(x− hp)
h

∥∥∥∥
W 1,∞

= ess sup

(∣∣∣∣u(x)− u(x− hp)
h

∣∣∣∣+

∣∣∣∣Du(x)−Du(x− hp)
h

∣∣∣∣)
≤ Lip(u) + Lip(Du)

≤ ess sup
(
|u|+ |Du|+ |D2u|

)
= ‖u‖W 2,∞

Letting h → 0 in (4.78) yields the estimate that holds on B1/4. Now take any
interior point x0 and consider the equation

(4.89) ∂yl∂yj F̃
jl(y,Dv,D2v) = ∂yk ã

k(y,Dv,D2v)− b̃(y,Dv,D2v)

with

F̃ jl(y,Dv,D2v) = F jl(x0 + ry, rDv(x0 + ry), D2v(x0 + ry))

ãk(y,Dv,D2v) = rak(x0 + ry, rDv(x0 + ry), D2v(x0 + ry)

b̃(x,Dv,D2v) = r2b(x0 + ry, rDv(x0 + ry), D2v(x0 + ry).

Suppose that

Br(x0) ⊂ B1.

Define

v(y) =
u(x0 + ry)

r2
.

One can check that v satisfies (4.89) on B1 whenever u satisfies (4.61).
Noting that

∂F̃ jl

∂vik
(y,Dv,D2v) =

∂F jl

∂uik
(x0 + ry, rDv(x0 + ry), D2v(x0 + ry))

we see equation (4.89) and the solution v will satisfy the closeness condition (4.73)
as well. This rescaling argument allows us to claim an estimate holds at any interior
point in B1. �

4.6.4. Proof of Theorem 4.12. We start by boosting regularity from C2,α

to C3,α.

Proposition 4.6.3. Suppose that u ∈ C2,α(B1) satisfies the Λ-uniform equa-
tion (4.61) on B1, and let 0 < δ < α. Then D3u ∈ Cα−δ/2(B1/5) and satisfies the
following estimate:

(4.90) ||D3u||Cα−δ/2(B1/5) ≤ C(||u||W 2,∞(B1),Λ, α, δ).
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Proof. We assume that u enjoys uniform C2,α estimates on B9/10. As before

we take a difference quotient of the solution u to (4.61) to get (4.70) with f = uhp ,
for some h < 1/100. Since D2u ∈ Cα(B̄9/10), the measurable coefficients are now
integrals of Hölder continuous functions, when defined for any x ∈ B3/4 as follows:

βij,kl(x) =

∫ 1

0

∂F jl

∂uik
(ξ0 + t~V )dt ∈ Cα(B3/4)

γjl(x) =

∫ 1

0

(
∂F jl

∂uk
(ξ0 + t~V )u

hp
k +

∂F jl

∂xp
(ξ0 + t~V )

)
dt ∈ Cα(B3/4).

Note also that ψk(x) ∈ Cα(B3/4). In particular∣∣βij,kl(x)− βij,kl(y)
∣∣ ≤ C3 |x− y|α .

Again, fixing y ∈ B1/4 for a fixed r < 1
2 we let w solve the boundary value problem∫

Br(y)

βij,kl(0)wijηkl dx = 0, ∀η ∈ C∞0 (Br(y))

w = f , Dw = Df on ∂Br(y)

and repeat verbatim the steps leading to (4.81), with aij,kl0 being replaced by
βij,kl(0), again taking v = f − w ∈ H2

0 (Br(y)). Thus by (4.70)∫
Br(y)

βij,kl(0)vijvkldx =

∫
Br(y)

(
βij,kl(0)− βij,kl(x)

)
fikvjldx−

∫
Br(y)

(
γjlvjl + ψkv

−hp
k + ζv−hp

)
dx.

Now this time, we define

(4.91) Υ(r) = sup
{∣∣βij,kl(x)− βij,kl(x′)

∣∣ | x, x′ ∈ Br(y)
}

which enjoys an estimate from the Hölder estimate on D2u :

(4.92) Υ(r) ≤ C4r
α.

Since v ∈ H2
0 (Br(y)), we have, via integration by parts, that∫

B1

γjl(y)vjl(x) dx = 0∫
B1

ψk(y)v
−hp
k (x) dx = 0

and ∫
B1

ζ(y)v−hp(x)dx = ζ(y)
1

h

(∫
B1

v(x− hp)dx−
∫
B1

v(x)dx

)
= 0

so we may write∫
B1

(
γjlvjl + ψkv

−hp
k + ζv−hp

)
dx

=

∫
B1

([
γjl(x)− γjl(y)

]
vjl +

[
ψk(x)− ψk(y)

]
v
−hp
k + [ζ(x)− ζ(y)] v−hp

)
dx.

Now∫
B1

∣∣[γjl(x)− γjl(y)]vjl
∣∣ dx ≤ ‖γ(x)− γ(y)‖L2(Br(y))

∥∥D2v
∥∥
L2(Br(y))

≤ C5

(
r2αrn

) 1
2
∥∥D2v

∥∥
L2(Br)
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and similarly,∫
B1

∣∣∣[ψk(x)− ψk(y)]v
−hp
k

∣∣∣ dx ≤ C6

(
r2αrn

) 1
2
∥∥D2v

∥∥
L2(Br(y))

∫
B1/2

∣∣[ζ(x)− ζ(y)]v−hp(x)
∣∣ dx ≤ C7

(
r2αrn

) 1
2 ‖Dv‖L2(Br(y))

≤ C7

(
r2αrn

) 1
2 Cp|Br|

1
n

∥∥D2v
∥∥
L2(Br(y))

≤ C ′pC7

(
r2αrn

) 1
2
∥∥D2v

∥∥
L2(Br(y))

where Cp is from the Poincaré inequality [17, (7.44)], C ′p = Cp|B1|, and

|γ(x)− γ(y)| ≤ C5r
α

|ψ(x)− ψ(y)| ≤ C6r
α

|ζ(x)− ζ(y)| ≤ C7r
α.

(Recall the components of these functions are smooth as functions of D2u so these
will be Hölder continuous now as D2u is Hölder continuous.) Note that, for Λ the
ellipticity constant for β we have

Λ
∥∥D2v

∥∥2

L2(Br(y))
≤ Υ(r)

∥∥D2f
∥∥
L2(Br(y))

∥∥D2v
∥∥
L2(Br(y))

+(C5+C6+C ′pC7)
(
r2αrn

) 1
2
∥∥D2v

∥∥
L2(Br(y))

.

That is∥∥D2v
∥∥
L2(Br(y))

≤ 1

Λ

{
Υ(r)

∥∥D2f
∥∥
L2(Br(y))

+ (C5 + C6 + C ′pC7)
(
r2αrn

) 1
2

}
or ∥∥D2v

∥∥2

L2(Br(y))
≤ 2

Λ2

{
Υ2(r)

∥∥D2f
∥∥2

L2(Br(y))
+ (C5 + C6 + C ′pC7)2r2αrn

}
.

Using Corollary 4.6.1, for any 0 < ρ ≤ r we get∫
Bρ(y)

∣∣D2f − (D2f)ρ
∣∣2 ≤ 4C2

(ρ
r

)n+2
∫
Br(y)

∣∣D2f − (D2f)r
∣∣2 + (8 + 16C2)

∫
Br(y)

∣∣D2v
∣∣2

≤ 4C2

(ρ
r

)n+2
∫
Br(y)

∣∣D2f − (D2f)r
∣∣2

+
2

Λ2

{
Υ2(r)

∥∥D2f
∥∥2

L2(Br(y))
+ (8 + 16C2)(C5 + C6 + C ′pC7)2r2αrn

}
.

(4.93)

Next, to get decay on the
∥∥D2f

∥∥2

L2 factor, we will find an r0 < 1/2 to be determined,
such that for r < r0 we have ∫

Bρ(y)

∣∣D2f
∣∣2 ≤ C9ρ

n−δ

where δ = 1 − α̃ < α. In order to do this, first observe (4.86). We may replace
ε0 by Υ2(r) by virtue of (4.91). We let α̃ = 1 − δ, which will result in a different
value q̃ in the derivation leading up to (4.86). By repeating the derivation of (4.86)
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replacing only ε0 by Υ2(r), α by α̃ = 1 − δ, and K by a K̃ determined by the
different norms arising from now the exponent q̃ = n/(2− 2α̃), we get∫
Bρ(y)

∣∣D2f
∣∣2 ≤ 4C1

(ρ
r

)n ∥∥D2f
∥∥2

L2(Br(y))
+

2 (2 + 8C1)

Λ2

(
Υ2(r)

∥∥D2f
∥∥2

L2(Br(y))
+ K̃rn−2+2α̃

)
=

(
4C1

(ρ
r

)n
+

2 (2 + 8C1)

Λ2
Υ2(r)

)∥∥D2f
∥∥2

L2(Br(y))
+

2 (2 + 8C1)

Λ2
K̃rn−2+2α̃.

As before, denote

φ(ρ) =

∫
Bρ(y)

∣∣D2f
∣∣2

A = 4C1

ε =
2 (2 + 8C1)

Λ2
Υ2(r0)

B =
2 (2 + 8C1)

Λ2
K̃

α = n

β = n− 2δ

γ = n− δ.

Now by (4.92) and Lemma 4.9, there exists r0 small enough such that

2 (2 + 8C1)

Λ2
Υ2(r0) ≤ ε∗ (A,α, β, γ) ,

for the ε∗ provided by Lemma 4.9, and we have for ρ < r0

φ(ρ) ≤ C8

{(ρ
r

)n−δ
φ(r) +Brn−2δ

}
.

Hence

φ(ρ) ≤ C8
1

rn−δ0

ρn−δ
∥∥D2f

∥∥
L2(Br0 )

+Bρn−2δ

≤ C9ρ
n−δ.

Turning back to (4.93), we now have, for r < r0∫
Bρ(y)

∣∣D2f − (D2f)ρ
∣∣2 ≤ 4C2

(ρ
r

)n+2
∫
Br(y)

∣∣D2f − (D2f)r
∣∣2

+
2

Λ2

{
Υ2(r)C9r

n−δ + (C5 + C6 + C ′pC7)2r2αrn
}

≤ 4C2

(ρ
r

)n+2
∫
Br(y)

∣∣D2f − (D2f)r
∣∣2 +

2

Λ2
C4C9r

2α+n−δ

+
2

Λ2
(C5 + C6 + C ′pC7)2r2αrn.
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Now we can apply Lemma 4.9 yet again, this time with

φ(ρ) =

∫
Bρ(y)

∣∣D2f − (D2f)ρ
∣∣2

A = 4C2

α = n+ 2

B =
2

Λ

[
C4C9 + C(C5 + C6 + C ′pC7)2

]
β = n+ 2α− δ
γ = n+ 2α.

We then conclude that∫
Br(y)

∣∣D2f − (D2f)r
∣∣2 ≤ C10r

n+2α−δ

for r < r0 (and will be necessarily true for r ∈ [r0,
1
2 ] as well, perhaps modifying

C10). Noting that this applies for any y ∈ B1/4 we apply [19, Theorem 3.1] to

D2f to conclude that D2f ∈ C(2α−δ)/2(B1/5). Noting f = uhp we may take a limit

and conclude that u must enjoy uniform C3,α estimates on B1/5. �

We now apply the regularity bootstrapping procedure as in [4] to obtain smooth-
ness.

Proof of Theorem 4.12. We may scale the estimate provided in Proposition 4.6.3
to get u ∈ C3,α(Br) for any r < 1. Letting f = uhp1 we may apply the dominated
convergence theorem while passing the limit as h → 0 to the equation (4.70) and
conclude that, for v = up1∫

B1

(
βij,klvikηjl + γjlηjl − ψkηkp1 − ζηp1

)
dx = 0

where

βij,kl(x) =
∂F jl

∂uik
(x,Du,D2u) ∈ C1,α(Br)

γjl(x) =
∂F jl

∂uk
(x,Du,D2u))fk(x) +

∂F jl

∂xp1
(x,Du,D2u) ∈ C1,α(Br).

Noting that the functions ψk, ζ are C1,α when u in C3,α, we can integrate by parts
in the last two terms to get∫

B1

(
βij,klvikηjl + γjlηjl + ∂xp1ψ

kηk + ∂xp1 ζη
)
dx = 0.

Following the difference quotient procedure leading to (4.70), this time in the di-
rection p2∫

B1

(
[βij,klvik + γjl]hpηjl + ∂xp1ψ

kη
−hp2
k + ∂xp1 ζη

−hp2

)
dx = 0.

Expanding∫
B1

[((
βij,kl

)hp2 vik +
(
γjl
)hp2 +

(
βij,kl

)
v
hp2
ik

)
ηjl + ∂xp1ψ

kη
−hp2
k + ∂xp1 ζη

−hp2
]
dx = 0.

Observe that each of the terms
(
βij,kl

)hp2 vik, (γjl)hp2 , ∂xp1ψk, ∂xp1 ζ are Cα with
uniform estimates on Br.
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So letting

γ̃jl =
(
βij,kl

)hp2 vik +
(
γjl
)hp2

ψ̃k = ∂xp1ψ
k

ζ̃ = ∂xp1 ζ

we see that ṽ = vhp2 satisfies

(4.94)

∫
B1

(
βij,klṽikηjl + γ̃jlηjl + ψ̃kη

−hp2
k + ζ̃η−hp2

)
dx = 0

which is of identical form as equation (4.70). By our Λ-uniform assumption on
(4.61), the above equation is uniformly elliptic, as β has not changed. Now we
apply verbatim the proof of Proposition 4.6.3, noting that all coefficients in sight
are Hölder continuous, we get D2ṽ ∈ Cα

′
. Since ṽ is the difference quotient of

a derivative of u, we may take h → 0 and conclude that up1p2 ∈ C2,α′(Br) with

estimates for any α′ < α, for r < 1, thus u ∈ C4,α′(Br).

Note that when bootstrapping from Cm−1,α to Cm,α
′

via (4.94) for

ṽ = u
hpm−2
p1p2...pm−3

we may take the limit of (4.94) to get∫
B1

(
βij,klṽpm−2ikηjl + γ̃jlηjl − ψ̃kηkpm−2

− ζ̃ηpm−2

)
dx = 0

but now ψ̃k, ζ̃ ∈ Cm−3,α so we may integrate by parts and take another difference
quotient in another direction pm−1 to obtain another expression very similar to
(4.94), again with Hölder regularity holding for all the coefficients and one higher
order of derivative arising in ṽ. Repeating the proof of Proposition 4.6.3, we conclude
up1p2...pm−1 ∈ C2,α(Br). In this way we can obtain estimates of any order. �

Proof of Theorem 4.4. Observing that condition (4.60) is equivalent to condition
(4.73), the result follows immediately from Theorems 4.11 and 4.12. �

4.7. Derivation of the Euler-Lagrange equations on a Riemannian ball

We start by deriving the equation for a manifold that is volume stationary
among gradient graphs.

Definition 4.14. Let Γ be the set of gradient graphs of functions u ∈ C1,1(B1)
with Du(0) = 0 and ‖Du‖L∞ ≤ 1, where B1 ⊂ Rn, and

Γ(u) = {(x,Du (x)) : x ∈ B1} ⊂ B2n
2 .

Let h be a Riemannian metric on the euclidean ball B2n
2 in R2n with h (0) = δ0.

We say that Γ(u) is volume stationary in (B1, h) among gradient graphs in Γ, if

d

dt
Volh(Γ(u+ tη))

∣∣∣∣
t=0

= 0, ∀η ∈ C∞c (B1)

where Volh is volume measured in h.

The volume functional Volh acting on Γ is given by

Volh(Γ(u)) =

∫
B1

√
det(gij(x)) dx
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where, in the standard euclidean basis {e1, . . . , en, e1+n, . . . , e2n} of R2n = Rn×Rn,
the induced metric g from h on Γ(u) ⊂ Rn × Rn is

gij = h(ei +
∑
k

ukiek+n, ej +
∑
l

uljel+n)(4.95)

= hij +
∑
k

ukihk+n,j +
∑
l

uljhl+n,i +
∑
k,l

ukiuljhl+n,k+n

with 1 ≤ i, j ≤ n. We may write

hij(x,Du(x)) = δij +Aij(x,Du(x))

hl+n,k+n(x,Du(x)) = δkl + Bkl(x,Du(x))

hk+n,j(x,Du(x)) = Ckj(x,Du(x)).

Note that C need not be symmetric, while A and B are symmetric. In block diagonal
form of matrices we have

(4.96) h =

(
I 0
0 I

)
+

(
A C
CT B

)
.

Now we have

(4.97) gij = δij + uikδ
klulj +Aij + uimupjδ

mkδplBkl + ukiδ
klClj + ukjδ

klCli.

Therefore, as a matrix-valued function defined on (x,Du), the induced metric g is
quadratic in D2u. In particular,

(4.98)

∣∣∣∣ ∂gij∂ukl

∣∣∣∣ ≤ C(n, ‖h‖C0) sup
∣∣D2u

∣∣+ C(n) sup
i,j
|hi+n,j | ,

where (and in sequel) we set

(4.99) ‖h‖C0 = sup
B2

{|hpq| , 1 ≤ p, q ≤ 2n} .

Now, we compute the first variation of Volh. Take a variation generated by η ∈
C∞c (B1) for the path

(4.100) γ[t](x) = u(x) + tη(x),

which varies the manifold Γ(u) along the y-direction in B2n
2 . Denote the induced

metric from h on Γ(u+ tη) by g(t). Straightforwardly,

gij(t) = δij + (uik + tηik) δkl (ulj + tηlj)

+Aij(x,Du(x) + tDη(x))

+ (uim + tηim) (upj + tηpj) δ
mkδplBkl(x,Du(x) + tDη(x))

+ (uki + tηki) δ
klClj(x,Du(x) + tDη(x))

+ (ukj + tηkj) δ
klCli(x,Du(x) + tDη(x)).
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Next, we compute the derivative at t = 0

d

dt
gij(t)

∣∣∣∣
t=0

=
(
uikδ

klηlj + ηikδ
klulj

)
+ (uimηpj + ηimupj) δ

mkδplBkl(x,Du(x))

+ ηkiδ
klClj(x,Du(x)) + ηkjδ

klCli(x,Du(x))

+


DyAij(x,Du(x))

+ukiδ
klDyClj(x,Du(x)) + ukjδ

klDyCli(x,Du(x))
+uimupjδ

mkδplDyBkl(x,Du(x))

 ·Dη.
Then

d

dt
Volh(γ[t])

∣∣∣∣
t=0

=

∫
B1

1

2

√
g[t]gij [t]

d

dt
gij [t]dx

∣∣∣∣
t=0

=
1

2

∫
B1

√
ggij

(
uikδ

klηlj + ηikδ
klulj + (uimηpj + ηimupj) δ

mkδplBkl(x,Du(x))
)
dx

+
1

2

∫
B1

√
ggij

(
ηkiδ

klClj(x,Du(x)) + ηkjδ
klCli(x,Du(x))

)
dx

+
1

2

∫
B1

√
ggij


DyAij(x,Du(x))

+ukiδ
klDyClj(x,Du(x)) + ukjδ

klDyCli(x,Du(x))
+uimupjδ

mkδplDyBkl(x,Du(x))

 ·Dη dx.

Dropping dependencies for easier presentation, and making use of symmetries

d

dt
Volh(γ[t])

∣∣∣∣
t=0

=

∫
B1

√
ggij

(
uikδ

kl + uimδ
mqδlkBqk

)
ηljdx+

∫
B1

√
ggijηkjδ

klClidx

+
1

2

∫
B1

√
ggij

{
DyAij + 2uikδ

klDyClj + uimupjδ
mkδplDyBkl

}
·Dη dx.

Then we arrive at the Euler-Lagrange equation of Volh for variations in Γ:

Lemma 4.15. For 1 ≤ i, j, k, l ≤ n, let

aij,kl(x,Du,D2u) =
√
ggijδkl +

√
ggijBlk(4.101)

bjk(x,Du,D2u) =
√
ggijCki

ck(x,Du,D2u) =
1

2

√
ggij

(
DykAij + 2uikDykCkj + uikuljDykBkl

)
F jl(x,Du,D2u) = aij,kluik + bjl(4.102)

Then the Euler-Lagrange equation of Volh under variations in Γ is

(4.103)

∫
F jlηjl + ckηk dx = 0, for all η ∈ C∞c (B1).

Lemma 4.16. For any s > 0 there exists ε1(s, n) < 1 depending only on s and
n such that if

h(0) = I2n∥∥D2u
∥∥
L∞(B1)

≤ ε1

‖Dh‖L∞(B1) ≤ ε1

all hold we have ∥∥aij,kl(x,Du(x), D2u(x))− δijδkl
∥∥
L∞(B1)

< s.
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(Here and below the norms ‖·‖ are defined as in (4.99).)

Proof. From (4.101)

aij,kl = δijδkl +
(√
ggij − δij

)
δkl +

√
ggijBlk

It will be convenient to define the following function

ω(z) = sup
M∈Sn×n,‖M‖≤z

∥∥∥√det (I +M) (1 +M)
ij − δij

∥∥∥
which is clearly continuous for small values of z and vanishes at z = 0. This allows
us to write ∥∥aij,kl − δijδkl∥∥ ≤ ω (‖g − δij‖) + (1 + ω (‖g − δij‖)) |Blk|
Noting from (4.96)

A(0) = 0

B(0) = 0

C(0) = 0

and

sup
B2n

2

{|A|, |B|, |C|} ≤ 2ε1

we may inspect (4.97) and see that

‖gij − δij‖ ≤ C(n)
(
ε1 + 3ε2

1 + ε3
1

)
Then ∥∥aij,kl − δijδkl∥∥ ≤ ω (C(n)ε1) + (1 + ω (C(n)ε1)) ε1

Because ω is continuous near 0 we choose an ε1 such that∥∥aij,kl − δijδkl∥∥ < s.

�

Theorem 4.17. Suppose that u(x) is a C1,1 function on B1 such that Du =
0, D2u(0) = 0 and ∥∥D2u

∥∥
L∞(B1)

≤ ε1(ε0, n)

for ε1 determined by Lemma 4.16 and ε0( 1
2 , n) determined by (4.60). If Γ(u) =

{(x,Du)} is volume stationary among gradient graphs over the x-plane in for a
Riemannian metric h on the euclidean ball B2n

2 in R2n, then u is smooth in a
neighborhood of 0.

Proof. We start by perfoming a rescaling. Consider the map

S : B2n
2R → B2n

2

given by

S (x, y) =
( x
R
,
y

R

)
.

This gives us a metric h̃ on B2n
2R via

h̃ = S∗h

which satisfies ∥∥∥Dh̃∥∥∥ =
1

R
‖Dh‖ .
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In particular, by choosing R large, we can scale so that∥∥∥Dh̃∥∥∥ ≤ ε1(ε0).

Notice that by letting

ũ = R2u
( x
R

)
on BR

the gradient graph ũ is precisely the pullback of the gradient graph of u via the
scaling S :

S (x,Dũ(x)) =
1

R
·
(
x,RDu

( x
R

))
=
( x
R
,Du

( x
R

))
.

Note also that

(4.104) D2ũ(x) = D2u
( x
R

)
will satisfy the same bounds. Now restricting h̃ to B2n

2 and ũ to B1 we can apply
Lemma 4.16, observe (4.102) and conclude that the Euler-Lagrange equation (4.103)
satisfies the condition in Theorem 4.4. Thus ũ is smooth inside B1. Rescaling, we
see that u is smooth insde B1/R. �

4.8. HSL submanifolds in a symplectic manifold

The following is our main regularity result:

Theorem 4.18. Let (M,ω, h) be a symplectic manifold. Suppose that L is
a C1 Hamiltonian stationary Lagrangian submanifold (possibly open but without
boundary) embedded in M . Then L is smooth.

Proof. Fix an arbitrary point p in L ⊂M . By Proposition ??, we can choose
Darboux coordinates around Υp,v at p, choosing v so that dΥp,v|0 (Rn) = TpL. Now
the submanifold

L0 = Υ−1
p,v(L ∩Υp,v

(
B2n
ε

)
) ⊂ B2n

ε ⊂ Cn

is Lagrangian and Hamiltonian stationary in
(
B2n
ε ,Υ∗p,vh, ω0

)
. As a Lagrangian

submanifold tangent to Rn at 0, L0 must be represented in a neighborhood of 0 as
the gradient graph of function u satisfying Du(0) = 0 and D2u(0) = 0. Because
L0 is C1, the Hessian D2u is continuous: We can choose 0 < ε2 < ε if necessary
such that ∥∥D2u

∥∥
C0(Bε2/2)

< ε1

and so that the projection of L0 ∩ B2n
ε to Rn contains Bε2/2, for the ε1 provided

by Theorem 4.17. Next we make use of the dilation map in Proposition ?? (5),
choosing t < 1

2ε2, small enough so that

‖∂htp,v‖C0 ≤ C1t < ε1.

We now have the following: A rescaled submanifold L̃0, still Lagrangian, and
Hamiltonian stationary with respect to the metric htp,v, which satisfies∥∥Dhtp,v∥∥ < ε1

so that the projection of L̃0 ∩ B2n
2ε/t to Rn contains B1. Noting that the scaling

does not change the Hessian D2u (recall (4.104)), we see that we are in the setting
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of Theorem 4.17. Since ω0 is the standard symplectic form, the condition of be-
ing Lagrangian Hamiltonian stationary is equivalent to being critical for gradient
graphs. Theorem 4.17 now gives us that u is smooth in a neighborhood of 0, so L
is smooth in a neighborhood of p. As p was arbitrary, L is smooth everywhere. �

4.9. Compactness of space of HSL submanifolds

The discussion will be based on works of Chen-Warren [9] when the ambient
space is Cn, Chen-Ma [10] for HSL surfaces in a Kähler surface, and for ambient
space is a symplectic manifold [11].
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