1. TRUE or FALSE:

- (a) If A is an $n \times n$ matrix with nonzero determinant and AB = AC then B = C.
- (b) A square matrix with zero diagonal entries is never invertible.
- (c) A linear transformation from \mathbb{R}^n to \mathbb{R}^n is one-to-one if and only if its standard matrix has nonzero determinant.
- (d) Every spanning subset of \mathbb{R}^4 contains a basis for \mathbb{R}^4 .
- (e) A linearly independent subset of \mathbb{R}^n has at most n elements.
- (f) Every subspace of \mathbb{R}^3 contains infinitely many vectors.
- (g) The system of linear equations $A\mathbf{x} = \mathbf{b}$ has a solution if and only if \mathbf{b} is in the column space of A.
- 2. Indicate if each of the following is a linear subspace:
 - (a) The set of all vectors parallel to a fixed vector $\mathbf{v}.$

(b) All the vectors
$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$
 with $x_1 + x_3 = 1$.

- (c) The intersection of two subspaces of \mathbb{R}^n .
- (d) The set of vectors in \mathbb{R}^3 with two equal components.

3. Determine if each of the following matrices is invertible? If not, explain why. If so, compute its inverse.

$$\begin{pmatrix} 1 & 0 & -1 & 2 \\ 0 & 3 & 0 & -4 \\ 3 & -2 & -2 & 8 \\ 1 & 1 & 0 & 0 \end{pmatrix} \qquad \begin{pmatrix} 1 & 1 & 2 \\ 3 & 0 & 1 \\ -1 & 1 & 1 \end{pmatrix}$$

4. Compute the determinant of the following matrices:

1	0	ე	2 \	$\begin{pmatrix} 0 \end{pmatrix}$	0	5	5 \	١
(2		0	2	6	12	١
	-1	-1	$\begin{bmatrix} 4 \\ 0 \end{bmatrix}$	1	4	$\overline{7}$	5 12 12	
/	2	-2	$_{2}$)	2	8	14	15	J

- 5. Suppose $A = (\mathbf{a}_1 \cdots \mathbf{a}_n)$ is an $n \times n$ matrix with columns $\mathbf{a}_1, \ldots, \mathbf{a}_n$. For each of the following statements, indicate whether they are true or false and justify your answer.
 - (a) If det(A) = 0, then the set $\{\mathbf{a}_1, \dots, \mathbf{a}_n\}$ is linearly dependent.
 - (b) If det(A) = 0, then \mathbf{a}_n is a linear combination of $\{\mathbf{a}_1, \ldots, \mathbf{a}_{n-1}\}$.
 - (c) If $\{\mathbf{a}_1, \ldots, \mathbf{a}_{n-1}\}$ is linearly independent and $\det(A) = 0$, then \mathbf{a}_n is a linear combination of $\{\mathbf{a}_1, \ldots, \mathbf{a}_{n-1}\}$.
 - (d) If the system of linear equations $A\mathbf{x} = \mathbf{b}$ has a solution, then the determinant of the matrix $B = (\mathbf{a}_1 \cdots \mathbf{a}_{n-1} \mathbf{b})$, obtained from replacing the last column of A by **b**, is zero.
 - (e) The exists a vector $\mathbf{c} \in \mathbb{R}^n$ which is not in the span of $\{\mathbf{a}_1, \ldots, \mathbf{a}_{n-1}\}$.
 - (f) If $\{\mathbf{a}_1, \ldots, \mathbf{a}_{n-1}\}$ is linearly independent then there exists a vector \mathbf{c} such that the determinant of the matrix $C = (\mathbf{a}_1 \cdots \mathbf{a}_{n-1} \mathbf{c})$, obtained from replacing the last column of A by \mathbf{c} , has nonzero determinant.
- 6. Given a set of vectors $\{\mathbf{a}_1, \ldots, \mathbf{a}_n\}$ in \mathbb{R}^n , if A is the matrix $A = (\mathbf{a}_1 \ldots \mathbf{a}_n)$, we write

$$\det(\mathbf{a}_1,\ldots,\mathbf{a}_n)=\det(A)$$

(a) Suppose that $det(\mathbf{u}, \mathbf{v}, \mathbf{w}, \mathbf{z}) = 2$ for a set of vectors $\{\mathbf{u}, \mathbf{v}, \mathbf{w}, \mathbf{z}\}$ in \mathbb{R}^4 . Find:

$$\det(\mathbf{w} + 2\mathbf{v}, \mathbf{v}, \mathbf{z}, 3\mathbf{u})$$