This midterm exam has **5** questions on **6** pages, for a total of 50 marks.

	Duration: 50 minutes	
Last name:	First name:	
Student-No:		Course Section: 202, 204
Signature:		

Question:	1	2	3	4	5	Total
Points:	10	10	10	10	10	50
Score:						

Please read the following carefully before starting to write.

- This is a closed-book examination. None of the following are allowed: books, notes, cheat sheets or electronic devices of any kind (including calculators, cell phones, etc.)
- You must show your work to receive full credit on a problem (except question 3 and question 5).
- Please do your work on the exam provided. Continue on the back of the previous page if you run out of space.
- Attempt to answer all questions for partial credit.
- You may not leave during the first 30 minutes or final 15 minutes of the exam.

10 marks 1. Find the inverse matrix A^{-1} of $A = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 4 & -1 \\ 1 & 3 & 0 \end{pmatrix}$.

Solution:

$$\begin{pmatrix} 1 & 2 & 1 & | & 1 & 0 & 0 \\ 2 & 4 & -1 & | & 0 & 1 & 0 \\ 1 & 3 & 0 & | & 0 & 0 & 1 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 2 & 1 & | & 1 & 0 & 0 \\ 0 & 0 & -3 & | & -2 & 1 & 0 \\ 0 & 1 & -1 & | & -1 & 0 & 1 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 2 & 1 & | & 1 & 0 & 0 \\ 0 & 0 & 1 & | & 2/3 & -1/3 & 0 \\ 0 & 1 & -1 & | & -1 & 0 & 1 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 2 & 0 & | & 1/3 & 1/3 & 0 \\ 0 & 1 & 0 & | & -1/3 & -1/3 & 1 \\ 0 & 0 & 1 & | & 2/3 & -1/3 & 0 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 0 & 0 & | & 1 & 1 & -2 \\ 0 & 1 & 0 & | & -1/3 & -1/3 & 1 \\ 0 & 0 & 1 & | & 2/3 & -1/3 & 0 \end{pmatrix}$$

$$A^{-1} = \begin{pmatrix} 1 & 1 & -2 \\ -1/3 & -1/3 & 1 \\ 2/3 & -1/3 & 0 \end{pmatrix} .$$

2. Let $A = \begin{pmatrix} 1 & 2 & -1 \\ c & 0 & 2 \\ -1 & c & -1 \end{pmatrix}$.

(a) [7 points] Find det(A).

(b) [3 points] Find all real number *c* such that the matrix *A* is invertible.

Solution:

$$\det \begin{pmatrix} 1 & 2 & -1 \\ c & 0 & 2 \\ -1 & c & -1 \end{pmatrix} = \det \begin{pmatrix} 1 & 2 & -1 \\ 0 & -2c & 2+c \\ 0 & c+2 & -2 \end{pmatrix}$$
$$= 4c - (2+c)^{2}$$
$$= -c^{2} - 4$$
$$< -4$$

So the determinant is never 0, hence the matrix is invertible for any real number *c*.

10 marks3. Find the 2×2 matrices which describe the following linear maps.You only need to write answers, no justification necessary.

a) [3 points] projection onto the *y*-axis.

b) [3 points] reflection about the line y = x.

Solution: $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.

c) [4 points] rotation by 90 degrees *clockwise* followed by projection onto the *y*-axis.

|--|

10 marks 4. Let $T : \mathbb{R}^4 \to \mathbb{R}^3$ be the linear transformation given by

$$T\begin{pmatrix} x\\ y\\ z\\ w \end{pmatrix}) = \begin{pmatrix} x\\ -y\\ w-z \end{pmatrix}.$$

(a) [7 points] Find the standard matrix *A* for *T*.

Solution:

$$T(\mathbf{e}_1) = \begin{pmatrix} 1\\0\\0 \end{pmatrix}, T(\mathbf{e}_2) = \begin{pmatrix} 0\\-1\\0 \end{pmatrix}, T(\mathbf{e}_3) = \begin{pmatrix} 0\\0\\-1 \end{pmatrix}, T(\mathbf{e}_4) = \begin{pmatrix} 0\\0\\1 \end{pmatrix}.$$

The standard matrix of T is

$$A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 1 \end{pmatrix}$$

(b) [3 points] Is *T* onto? Explain how you get your answer.

Solution:

T is onto. *A* has a pivot in each row. *or* dim Col(A) = 3 = dimension of the codomain. *or* $Col(A) = \mathbb{R}^3$.

- 10 marks 5. For each of the following state whether the statement is TRUE or FALSE (**no justifica-tion is necessary**).
 - 1. There exists a linear map $T : \mathbb{R}^4 \to \mathbb{R}^3$ which is onto but *not* one-to-one.

Solution: True

2. If A, B, C are square matrices and AB = C and A is invertible then $B = CA^{-1}$.

Solution: False

3. Suppose that $A = (\mathbf{u}, \mathbf{v}, \mathbf{w})$ is a 3×3 matrix where $\mathbf{u}, \mathbf{v}, \mathbf{w}$ are its columns. If det(A) = 3 then $det(2\mathbf{w}, \mathbf{u}, \mathbf{w} - \mathbf{v}) = 6$.

Solution: False

4. Suppose that the standard matrix *A* of a linear transformation $T : \mathbb{R}^n \to \mathbb{R}^n$ has linearly independent column vectors. If T(x) = T(y) then x = y.

Solution: True

5. If *A* is a 2×2 matrix which satisfies $A^2 = 2A$, then either *A* is the 2×2 zero matrix or $A = 2I_2$.

Solution: False

For example:
$$A = \begin{pmatrix} 2 & -1 \\ 0 & 0 \end{pmatrix}$$
.