Set 1, Due: January 29

1. p. 47: 2-1.

2. p. 48: 2-9, 2-.10 (read the definition of gradient of a function, p. 27)

3. Let ∇ be an affine connection on an *n*-dimensional manifold M. Let $T:TM\times\cdots\times TM\to C^\infty(M)$ be a (r,0)-type tensor. The covariant derivative ∇T is a tensor of r+1, 0-type defined by

$$\nabla T(X_1,...,X_r,X) = X(T(X_1,...,X_r)) - T(\nabla_X X_1,...,X_r) - \cdots - T(X_1,...,\nabla_X X_r).$$

For $X \in \Gamma(TM)$, the covariant derivative $\nabla_X T$ of T relative to X is a (r, 0)-type tensor given by

$$\nabla_X T(X_1, ..., X_r) = \nabla T(X_1, ..., X_r, X).$$

Let g be a Riemannian metric on M and ∇ be the Levi-Civita connection of (M,g). Show $\nabla g=0$.

4. Consider two parametrizations of the 2-dim torus T^2 :

(a) $F_1(\alpha, \beta) = (e^{\sqrt{-1}\alpha}, e^{\sqrt{-1}\beta}) \subset \mathbb{R}^4$

(b) $F_2(\alpha, \beta) = ((2 + \cos \alpha) \cos \beta, (2 + \cos \alpha) \sin \beta, \sin \alpha) \subset \mathbb{R}^3$.

Hence T^2 is equipped with two Riemannian metrics via the pullbacks by F_1, F_2 . In each case, compute $[\frac{\partial}{\partial \alpha}, \frac{\partial}{\partial \beta}], \nabla_{\frac{\partial}{\partial \alpha}} \frac{\partial}{\partial \beta}$ where ∇ is the Leli-Civita connection in each case.

5. p.49: 2-15

6. p.50: 2-18